General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

DOE/JPL/957031--85/1
QUARTERLY TECHNICAL REPORT
for the period
10/1/84 through 12/30/84
DE85 007127

INK JE'i PRINTING OF SILVER METALLIZATION FOR PHOTOVOLTAICS

Purdue Research Foundation

Principal Investigator:
R.W. Vest (317/494-7009)

JPL Flat Plate Solar Array Project
January 25, 1985
"The JPL Flat Plate Solar Array Project is sponsored by the U.S. Department of Enersy and forms part of the Solar Photovoltaic Conversion Program to iniilate a major effort toward the development of flat plate solar arrays. This work was performej by agreement between NASA and DOE."
"This report was prepared as an account of work sponsored by the United States Government. Neither the United States not the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, compieteness or usefulness of any information, apparatus, product or process disclozed, or represents that its use would not infringe privately-owned rights."

FOREWORD

The research described in this report represents the effort for the first tizee months on Contract No. 957031 with the Jet Propulsion Laboratory, Pazadena, CA, under the technical cognizance of Paul Alexander. The research was conducted in the Turner Laboratory for Electroceramics, School of Materials Engineering and School of Electrical Engineering, Purdue University, W. Lafayette, IN under the direction of R.W. Vest. The research was carried out by Dr. S. Singaram, D.A. Binford and K.F. Teng.

TABLE OF CONTENTS

Page

1. INTRODUCTION AND SUMMARY 4
2. PROGRESS 7
2.1 Mechanical Modifications 8
2.2 Electronic Modifications and Programing 10
2.3 Ink Development 14
3. PLANS 14
4. SCHEDULE 19
APPENDIX A. A. 1

1. INTRODUCTION AND SUMMARY

During this quarter, significant progress was made in the continuing development of the ink jet printing system for thick film circuits. The unit being used in this research is a prototype ink jet printer developed on a contract with the Naval Avionics Center. One of the first tasks completed early in the quarter was the complete documentation of this ink jet printing system as it existed. It was determined that this was an essential step in deciding what modifications were needed to the sylstem and how these modifications would be implemented. This printing system documentation has been included as Appendix A to this report, and will be referred to for clarification of changes which have already been completed during this quarter. Figure 1 gives an overall view of the ink jet printer as it existed at the beginning of this contract and Fig. 2. shows more detalls of the spray heat and X-Y table.

After this initial step was cor:pleted, design modification studies were started for electronic, mechanical, and programming aspects of the system. These studies were completed at the end of the second month. The areas needing improvement were discussed and applicable changes decided upon. Some of these improvements were completed during this quarter and others have only been started. It should be noted that, although the general areas needing improvement have been identified and some changes decided upon, the exact details of how other changes will be implemented have not yet been decided. During the next months, these details will be discussed further and the modifications put in place accordingly.

Figure 1. Turner Laboratory Ink Jet Printer.

Figure 2. Spray Head and $X-Y$ Table.

The first section of this report details the modifications which have already been made to the ink jet printing system. These include both mechanical and electronic and programing changes which were decided upon during the design modification studies. In some cases, these changes have been made only on a temporary basis until testing can verify that they work in the manner intended. As testing verifies their applicability, they will be implemented in a more permanent manner. Also, it should be pointed out that these circuit changes themselves may undergo additional modifications as total system packaging considerations and other factors dictate the need.

Other changes which will be made as a result of the design modification studies and those modifications which have been started but not completed are discussed in Section 3. These include not only the mechanical and electronic changes but, also, the programming modifications which often must be made along with the electronic changes and additions. Changes in software are always an ongoing process. For example, if greater print speeds are to be achieved then programming routines to control table acceleration and deceleration must be written to accomplish this. Some of the preliminary study to accomplish this was started early in the quarter and the actual programming is still in the process of being developed. Programming changes which have already been tested and implemented are included in the Section 2.2.

2. PROGRESS

2.1 Mechanical Modifications

The pressure control system for supplying the ink to the ink jet head assembly is a very critical element for the correct functioning of the ink jet system. This slight pressure (less than 0.25 inches of water) is used to offset the static vacuum present at the ink jet nozzles due to the ink supply being at a level below the nozzles. As additional testing is done to optimize the various parameters associated with the printing process, accuracy in controlling and monitoring this slight pressure will be essential. For this reason, a model 602-1 differential pressure transmitter was purchased from Dwyer Instruments, Inc. It has a minimum range of $0-0.4$ inches of water. Power was supplied to the unit by connecting it to a transformer with a 20 yolt secondary. A 500 ohm resistor was connected as a receiver for the transmitter and the voltage across the resistor monitored with a digital voltmeter. This assembly was calibrated for the 0 to 0.4 inches of water range which corresponds to 2.0 volts to 10.0 volts on the digital voltmeter.

As a part of this change, the entire pressure control and monitoring system was moved out of the original equipment cabinet (see Fig. l) and temporarily mounted in a second cabinet to facilitate the changes. The new Dwyer pressure transmitter was connected to the 19 ml glass bottle which contains the MOD ink being printed. This connection was made temporarily by using the purge line as shown on Figure All of Appendix A. This change will permit more accurate evaluation of the existing pressure control system. As additional printing studies are done, other
improvements in the ink supply and pressure control system may have to be made.

Other mechanical modifications to the existing ink jet printing system have been completed. It was decided that a more rigid mounting bracket for the ink jet spray head was needed so that more accurate and repeatable printings could be made. An aluminum wount was machined and attached to the aluminum plate which the positioning table is mounted on. Along with this change, a portion of the Siemens ink jet head not necessary in this application was cut away to make its mounting simpler. The head is attached to a precision adjustment mechanism so that the head to substrate spacing can be changed and this mechanism is attached to the new aluminum mount.

For many of the same reasons, a new brass block was machined for the positioning table. The inner region of cais block has a recessed section where the substrate is placed. The block is machined in such a way that the substrate can be positioned in only one corner of the recessed section. The new block also contains both a vacuul chuck and the original 40 watt cylindrical heating element to keep the block at a temperature between 30 and $35^{\circ} \mathrm{C}$.

Finally, two micro switches were mounted on the positioning table so that the table could be positioned to an initial start point prior to each print sequence. These switches are 'debounced" before going to the microcomputer board. The actual initialization is accomplishei in the microcomputer programming. This programming and the actual connections into the SCCS-85 board will be described in the next section.

2.2 Electronic Modifications and Programming

In the existing ink jet printing system, the trigger signal for the pulse driver board circuits either came from a manual trigger circuit or from an external square wave renerator (see Fig. A3 of Appendix A). This method did not allow the frequency of the trigger signal to be microprocessor controlled. As additional work is done to determine the optimum ratio between the trigger frequency and the $X-Y$ table stepping frequency, it will be necessary to controi these two frequencies carefully. The table stepping frequency is already controlled by the microcomputer board.

To eliminate the external generator and control the trigger rate from the microprocessor, one of the three programmable timers which are part of the SCCS-85 microcomputer board were utiilzed. Since these timers are referenced to the on-board crystal controlled clock, the frequency of the trigger signal for the ink jet nozzles could be assured. The timer output selected was OUT 2. It exits the SCCS-85 board at J3 pin 2. This signal was applied directly to the normally open contacts of the twelve ink jet head switches which are tied together. The switches still function as before and route the signal on to the selected nozzle channel of the pulse driver board. The two 'AND' gates located on the inverter board which were used to gate the trigger signal on and off were eliminated (see Fig. A3 of Appendix A). The SCCS-85 output port line PC 3 which had controlled these gaces was routed to the programmable timer input GATE 2 after the or-board jumper connecting GATE 2 to +5 volts was removed. When GATE 22 shigh the OUT 2 signal is
enabled. GATE 2 's status (either low or high) is controlled through programming. It is taken high only when the table is moving and printing is desired.

In order to utilize the frogrammable timer which is on the SCCS-85 board, a few changes to the main program were necessary. These changes were really just a simpie initialization sequence for the timer. The timer mede was estrblished and the frequency of its output signal set. Its mode was set so that it outputs a continuous square wave signal when enabled by the gate. Since the positioning table is currently being used at a base speed only of 400 steps per second, the frequency of tine square wave signal from $0 U T 2$ was set at 100 Hz . This frequency can, cf course, be easily changed but the one to four ratio between nozzle frequency and table stepping frequency has in the past proven to be \perp good general rule for obtaining smooth, continuous printed lines. This relationship is something which will be studied further.

Another problem encountered in the past has been the inability to establish an exact starting point for printing on a substrate. The manual "joystick" controller could be used to position the $X-Y$ table to a general start point under the ink jet head prior to a printing sequence, but it was impossible to go to an exact point time after time. It was decided that the table could be positioned to a start point or origin by using some kind of initialization routine prior to any print sequence. It order to accomplish this some hardware additions were recessary, along with a few programming changes and additions to the main program.

As stared in the previous section, two precision switches having reasonably low differential travel specifications were mounted on the positioning table. These single pole double throw devices were mounted in such a way that their common terminals switched from the normally closed contacts to the normally open contacts when the table was pusitioned at the desired origin. They have fine adjustment mechanisms so that an exact initial starting point can be set. In order to be interfaced with the SCCS-85 microcouputer board, the switches were first "debounced" using a circuit similar to the circuit for "debouncing" the MANUAL TRIGGER switch shown on Fig. A3 of Appendix A. These circuits were built temporarily on the existing inverter board. The output line from the X-axis switch circuit was connected to the RST 5.5 interrupt input on the SCCS-85 board and the line from the Y-axis switch circuit was connected to the RST 6.5 interrupt input on the SCCS-85 board. These two interrupt inputs now make a low to high transition when the table gets to the origin for each respective axis. This completed the necessary hardware additions.

The programming which had to be arded to complete this initialization process made use of the Superior Electric indexer board JOG command In order to move the table to the desired start position. The RST 5.5 and RST 6.5 input lines on the SCCS-85 microcomputer board are system interrupts. These two interrupts first had to be enabled and unmasked. The routine to accomplish initialization gives a JOG + commard to the X-axis indexer board in an endess loop, moving the table along the X axis toward the precision switch. When the switch is activated and the RSI 5.5 interrupt line goes high, the endless JOG + loop is broken and
the X-axis motor is switched off. The routine called by the interrupt also immediately masks the 5.5 interrupt 00 that additional switch activations would be ignored. The RST 5.5 interrupt remains masked but the RST 6.5 interrupt must again be enabled because the entire interrupt system is disabled any time any interrupt is received. Similarly, a JOG + command is given repetitively to the Y-axis indexer board, moving the table along the Y-axis until the switch is activated. The RST 6.5 input goes high generating another system interrupt. This switches off the Y-axis stepping motor and, as did the 5.5 , masks itself so that additional transitions of the RST 6.5 line are ignored. The positioning table is now set to an origin from which it will begin a print sequence. After receiving the last interrupt, the microprocessor proceeds with the main program.

One other elratronic modification was coupleted. There were several features built into the Siemens driver board which could not be used in this application. By eliminating this unneeded circuitry, the power requirements for the system could be reduced and the system further simplified. For these reasons, circuit traces on the board were cut and other modifications made so that power is applied only to the twelve pulsedriver channels. The heater, temperature sense, wiper motor, and ink level sense lines to the ink jet head were removed, leaving only thirteen necessary lines to the ink head. Along with this change, the PRINTER READY l.e.d., the LOW INK l.e.d., and the MOTOR switch were discarded. With this change in place, the +5 volt supply is no longer needed on the driver board.

One last modification was made to the Siemens driver board. The original single turn potentiometers Rl-R12, which control the amplitude of the output pulses from the 12 driver channels, were replaced with 15 turn potentiometers of the same 5000 ohm value so that more accurate contiol of the pulse amplitude could be accomplished.

2.3 Ink Development

Lots of silver neodecanoate and bismuth 2-ethylhexanoate were synthesized for use in the first test ink. Further ink development studies must await coupletion of the initial mechanical and electronic design modifications.

3. PLANS

As described in the preceeding sections, the original prototype ink jet printing system has already undergone several changes. Many other design modifications will be mate in the coming months. Most of these will be implemented in ordor to reduce the number of connections and minimize interwiring (hence improving reliability), improve serviceability, improve system printing accuracy and repeatability, and generally to meet future system goals. Many of the system improvements have been dectded upon as a result of the design modification studies. Other changes, however, will be put in place as experience with the system and future plans dictate. Some of these design changes have already been partially implemented or, in sone cases, put in place on somewhat of a
temporary basis for testing. Other modifications, particularly software modifications, will require some further investigation and will be made over many months.

During this quarter, some preliminary investigations were initiated to determine how a computer aided design routine might be integrated into the ink jet printing system. The final goal would be to be able to go directly from a circuit design created on a display terminal to the substrate. This would make the ink jet printing system a very valuable tool for circuit prototyping. It was found that there are several programs available within Purdue's Engineering Computer Network for laying out circuits on graphic terminals. Some of these programs may require additional equipment not currently available. This aspect will be looked into further. In any case, programs will have to be written so that the microcomputer board can receive and properly inter:pret the circuit information that would come from a graphics display terminal. This could require some basic restructuring of the entire main operating program. Work will continue in order to determine what additional equipment might be needed for this process and what additional programming will be required.

In the area of mechanical modifications, several jobs have either been started or are being planned. It has already been stated that other modifications may have to be made to the ink pressure control and monitoring section after ink printing studies are started. However, along with the changes already made, one other aspect of the system will be changed in the very near future. Two new pinch valves have been ordered to replace the Sporlan solenoid valves currently being used in
the pressure control system. In the past, there had been a periodic problem due to the electifcal noise (or line transients) being generated by the valves switching on and off. The new valves operate on 12 volts direct current instead of 115 VAC and operate on much less power. This should alleviate the noise problem encounted in the past. They, aiso, will avoid the two tubing connections at each valve since they operate by finching the tube.

Another mechanical aspect of the system which will be improved is in the area of general system packaging. Some preliminary layout work has already been done. This change will involve almost all components of the system. This is being done primarily to minimize connections and interwiring between components, to improve system cooling, to make components more easily accessible, and to generally improve system operation. This change will include redesigning the power supply and relocating it. Additionally, all the components included in the positioning table drive system will be consolidated onto one rack-mountable panel. This panel will also include the two displays indicating table position. The system packaging changes will be an ongoing process , most of which should be completed in the next several months.

Several electronic modifications are in the planning stages. The pulses to the piezoceramic drivers in the ink jet head must be able to be controlled accurately. The addition of the higher quality potentiometers to the Siemens driver board was a step in this direction. However, the input pulse to the Siemens driver bard is largely esponsible for the shape of the output pulse so its pulse width must be precisely controlled. The pulse driver board (Fig. A4 of Appendix A) which is
composed of twelve identical circuits is responsible for generating these pulses. These twelve circuits are 'one-shot' multivibrators which use a simple external resistor-capacitor circuit for controlling their output pulse width. The Siemens Corporation specifies that the pulses to trigger the Siemens driver board have a pulse width of $22.5 \mu \mathrm{~s}$. A check of the existing circuitry indicated a variation of 20 to $26 \mu s$. To more accurately control this pulse width, the present SN74121N multivibrator I.C.'s will be replaced by dual precision monostable multivibrator I.C.'s. This will, first of all, reduce the chip count from twelve to six since these units have two complete circuits per package. More importantly, these integrated circuits use linear CMOS techniques allowing more precise control of output pulse width. This in combination with the external 15 turn potentiometers for initial calibration will dramatically improve the accuracy of the outputted pulse.

As part of the new packaging for the positioning table drive components, the existing LED displays will be replaced by new liquid crystal displays in order to reduce overall system power requirements. A new up/down counter and LCD display driver integrated circuit has been ordered to provide the correct drive signals to the displays. They will connect to the indexer boards in very much the same way as the displays do currently. Special bezels will be used to mount the new displays into the eighth inch aluminum rack panel.

As a means of planning for the future when an attempt will be made to use all twelve ink jet nozzles for printing, circuitry is being added now so that the nozzles can be turned on and off via the microprocessor. This will be accomplished by adding two octal data latches to the same
circuit board which contains the new CMOS multivibrators. Three control 1ines and the eight data buss lines from the SCCS-85 microcomputer board will control these latches. Twelve manual switches will be included so that the nozzles may still be turned on manually. Light emitting diodes will probably be incorporated to give a visual indication of which nozzles are on. It should be pointed out that before all twelve nozzles can be utilized for printing, much more program development will be necessary.

Program development continues on a regular basis. Even though programs have been written for the nozzle triggering system and for the table initialization process, these programs way require additional work in order that these systems work in the most efficient and concise manner. Other areas requiring programming changes are being investigated. A program addition may be made to pattern data in such a way that the ink jet print head is moved away from the substrate after the print is completed. This will facilitate the removal of the substrate.

More work will be done in achieving the goal of much higher print speecs. This may involve a new degree of programming complexity up until now not needed. Currently the positioning table is being used at a base speed only. The Superior Electric indexer boards are capable of fairly high print speeds, but acceleration and deceleration must also be programined into the system when higher speeds are used. The acceleration and deceleration parameters are entered into the indexer board in ASCII code as are other instructions. Nonetheless, a large amount of additional software development will be necessary before higher print speeds can be reached. Some preliminary testing routines are currently
being written and work will continue through the next quarter to accomplish this goal.

4. SCHEDULE

The description of tasks and the updated milestr.se chart are attached.

1. Ink Development and Processing Studies
2. Electronic Modifications and Programming
a. Design modification studies
b. Electronic assembly
c. Operational demonstration
d. Computer sof tware generation
3. Mechanical Modifications
a. Design modification studies
b. Mechanical assembly
c. Operational demonstration
4. Film Thickness and Line Width Studies
5. Printing Speed Studies
6. Fabricating and Characterizing Cells
7. Specifications
8. Data for Economic Evaluation
9. Personnel for Meetings
10. Documentation
a. Monthly technical reports
b. Quarterly technical reports
c. Final technical report
d. Monthly financial reports

APPENDIX A

Documentation of the Turner Laboratory Ink Jet Printer

8 s of October 1, 1984

table of CONTENTS

Page

1. INTRODUCTION A. 4
2. INK JET PRINTING SYSTEM OVERVIEW. A. 5
3. SCCS-85 MICROPROCESSOR SECTION A. 10
3.1 SCCS-85 Microcomputer Section A. 10
3.2 Downloading from Host Computer A. 13
3.3 Joystick Control A. 14
4. INVERTER BOARD A. 14
5. INK JET DRIVE SECTION A. 17
5.1 Overview. A. 17
5.2 Triggering and Control Circuits A. 19
5.3 Pulse Driver Board A. 21
5.4 Siemens Driver Board. A. 23
5.5 Siemens Pt80i Spray Head A. 25
6. X-Y POSITIONING TABLE SYSTEM A. 27
6.1 Overview A. 27
6.2 Superior Electric Indexer Boards A. 30
6.3 Superior Electric Driver Boards A. 40
6.4 Design Components X-Y Positioning Table A. 43
6.5 Joystick Control of Table A. 44
7. L.E.D. DISPLAY SECTION. A. 46
7.1 Overview A. 46
7.2 Counter/Display Driver Board A. 48
7.3 L.E.D. Displays A. 51
8. POWER SUPPLY SECTION. A. 52
A. 3
Page
8.1 Overview. A. 52
$8.2+15$ Volt Unregulated Supply. A. 55
8.3 +40 Volt Unregulated Supply A. 55
$8.4+5$ Volt Supplies. A. 56
$8.5+12$ and -12 Volt Supplies. A. 57
$8.6+12$ Volt Superior Electric Driver Board Supply. A. 57
$8.7+24$ Volt Supply A. 58
9. INK SUPPLY AND PRESSURE CONTROL SECTION A. 58
9.1 Overview. A. 58
9.2 Siemens Pt80i Head Modifications. A. 60
9.3 Ink Pressure Control System. A. 62
9.4 Purge System. A. 63
9.5 Ink Compcsitions. A. 64
10. SOFTWARE A. 66

1. INTRODUCTION

There are many inherent advantages to using ink jet printing techniques on hybrid microcircuits. First of all, this process can easily be completely computer controlled allowing a higher degree of automation than now possible with conventional screening techniques. This would, in turn, yield a potential cost savings, greater repeatability and reliability, and the abiltity to move rapidly from initial design stages to circuit prototypes. Another major advantage of the ink jet printing process is better uniforwity of the thickness of the deposited films since surface topography is no longer a factor in influencing film thickness. If circuit performance can be improved by varying the thickness of the films in various regions of the same circuit then this technique will ellow one to accomplish that with relative ease.

There are many potential advantages to ink jet printing, but designing and implementing a workable system requires overcoming some significant problems. First of all, it should be pointed out that consideration of using this technique of printing was made possible by the development of metallo organic decomposition (MOD) inks since this process dictates the use of iaks which to not contain particulates. However, for these MOD inks to be used with an ink jet spray head their viscosities had to be much lowe- than that required for screening and their surface tension was a much more critical parameter in this application. Additionaliy, the ink jet spray heads presently available were designed primarily for the printing of alphanumeric characters, not for printing th: continuous, uniform patterns required for most hybrid
microcircuits. This meant that a commercially available head had to be modified. Other problems also had to be dealt with such as designing an Ink supply system for the head which would provide the neccesary meniscus at the ink jet nozzles and also allow the MOD inks to be contained in an inert environment. Another complex task was coordinating the pulsing of the ink jet nozzles with the movement of an X-Y table directly telow the ink jet head in order to print the required pattern on a substrate. Some progress has been made in this area but additional work will have to be done, particularly as an attempt is made to increase the printing speed. Some of the mentioned problems have now been resolved, but others will have to be investigated further and solutions found.

The existing system is described in this Appendix, including complete circuit diagrams and explanations, software documentation, and general operational aspects. The system has been described section ?; section with most sections prefixed by a general overview of that portion of the system. There is also a discussion of a few of the problem: that require additional investigation and study.

2. INK JET PRINTING SYSTEM OVERVIEN'

The ink fet printing system, although having limitations in its current state of development, is capable of printing well defined patterns onto substrates using MOD inks. The ink jet printer used in this study was a Siemens Pt80i head which has 12 nozzles ($76 \mu \mathrm{~m}$ diameter) arranged in two staggered rows of six. Each nozzle has its own piezoelectric driver making this head a drop-on-demand type. Ink is

A. 6

supplied to the head under silght static vacuum so that flow is resisted by the surface tension of the meniscus at the nozzle. A droplet is ejected by means of a pressure wave generated by an impulse from the piezoelectric driver. Substrates were mounted on an $X-Y$ table which moved in $25 \mu \mathrm{~m}$ steps in response to input pulses. The desired patterns were generated by programing the motion of the table and the firing of the jets. So far the system has been used only at reasonably slow print rates (substrate velocities between . 00254 and .01016 meters per second) although higher rates are possible. In its simplest form, the system consists of two major blocks. The first section contains ail the necessary components to fire and control the irk jet nozzles, and the other section is responsible for the movement of the $X-Y$ positioning table below those nozzles. In acruality, of course, the system is much more complex. A SCCS-巛5 microcomputer board has been integrated into the system. Its function ts basically to take operatiunal and circuit pattern data given to it via its RS-232 input, process that data, and then provide the proper signals to the two above mentioned sections so that they will work together in a manner which will print the desired pattern on the substrate.

All the major sections of the system are indicated in Fig. Al. A manual triggering circuit was provided as a means of manually firing the ink jet nozzles for initial testing purposes. Most of the testing was done using an exterral oscillator as the triggering source. Also, a joystick control was included in the system for manually controlling the table even though most of the experimental work was done with the table in an automatic controi mode. Two four digit l.e.d. displays were

[^0]
A. 8

Abstract

incorporated into the system to give a visual indication of table position. Each unit represents one motor step or about $25 \mu \mathrm{~m}$. Direction and count information for the X and Y channels of the counter/display driver board comes from the X-axis or Y-axis Superior Electric indexer boards respectively. All of these sections mentioned so far, although important, are not an integral part of the main operating system.

At the heart of the operating system is the SCCS-85 wicrocomputer board. The main operating program and pattern data are downloaded into the microprocessor board via the RS-232 input from a host computer system. The SCCS-85 then provides signals to the ink jet drive section and the $X-Y$ table positioning section. In the first case, the SCCS-85 provides only a single control line which enables a gate on the inverter board. This allows the external oscillator triggering signals to pass on to the ink jet drive and control circuits. There, one or more tracks of the ink jet spray head are selected and the triggering signals then routed on to the appropriate drive channels. The drive electronics provide the necessary pulses to fire the corresponding piezoelectric elements in the Siemens head. Thus the droplets of ink are ejected onto the substrate. In the case of the table control section, the SCCS-85 provides 10 lines of information, via the inverter board, to the two Superior Electric indexer boards. The 8-bit parallel data bus goes to both boards, then there is a single enable line to each board. Additionally, there are two 1ines bacii to the SCCS-85 (again via the inverter board) from the indexer boards to p :ovide proper sequencing of signals. Output signale from the X-axis and Y-axis indexer boards provide the necessary information to the respective X and Y axis Superior Electric driver

A. 9

boards. These then, in turn, provide the drive signals to the Design Components positioning table. It is also the indexer boards which provide the position information to the l.e.d. displays.

With all these sections working together correctly, a preprogrammed pattern can be printed onto a substrate. The actual operation of the system to accomplish this is fairly simple. A 10 cm square brass block which is mounted on the $X-Y$ table is preheated to somewhere between 30 and $35^{\circ} \mathrm{C}$ by a heating element mounted in the block and controlled by a variable transformer. The substrate is positioned in a recessed inner region of the block and held in place by a vacuum applied to a hole beneath the substrate. The table is manually positioned to a predetermined start point in respect to the ink jet head. The MOD ink is put in the ink supply system and the supply system checked for proper operation. An oscillator is connected to the external oscillator input and adjusted for the correct triggering signal. All power supply switches are turned on, the MAN/EXT switch is set to EXT, the ENABLE and MOTOR switches are turned on, one of the twelve ink jet track switches is turned on, and the SCCS-85 is reset. The microprocessor is instructed to load and the main operational program is downloaded from the host computer. The micro is again instructed to load and the pattern program is downloaded. A final command to the microprocessor starts the program running and the circuit pattern is printed onto the substrate. As the program runs the l.e.d. displays track the table movement. Once the printing stops, the vacuum is switched off and the substrate removed and fired as necessary.

It is hoped that the above description has provided the reader with a general understanding of the ink jet printing system that was developed in the Turner Laboratory. The sections which follow describe in more detail the major blocks of the system. There is also a description and listing of the software for the SCCS-85 board.

3. SCCS-85 MICROPROCESSOR SECTION

3.1 SCCS-85 Microcomputer Board

The SCCS-85 is a very versatile Intel 8085 -based microcomputer system contained on a $11.43 \mathrm{~cm} \times 17.78 \mathrm{~cm}$ board. Its designed-in flexibility allows it to be used in a wide variety of control applications. With no modifications at all, it is configured to operate as a small computer communicating via RS-232 with a user supplied terminal. Up to four kilobytes of RAM (random access memory) may be installed on the board itself and a memory capacity of up to 65 K bytes is possible by extending the SCCS-85 bus to additional cards.

The SCCS-85 circuit board is a unit designed by Robert Rindfuss that was purchased locally. It is revision 2 of the original circuit board design. The integrated circuits, I.C. sockets, connectors, and other miscellaneous electronic components were purchased from various suppliers and mornted on the circuit board according to its included instructions. Specific modifications must be made to the circuit board according to the user's individual needs. Most of these are accomplished by cutting circuit board traces and/ or jumpering pins or specified feed through terminals.

This ricrocomputer board is divided into seven functional groups. They are the following:
\therefore CPU (central processing unit) group
2. ROM (read only memory) group
3. RAM (random access memory) group
4. SERIAL IO (input/output) group
5. PARALLEL 10 group
6. TIMER group
7. DMA (direct memory access) group

The CPU, RAM, and ROM groups are required for the operation of any system, however the remaining groups are optional and need only be present on the board if the application requires it. For the ink jet printing system, all the above blocks were required except the DMA group. The two integrated circuits necessary for $D: A$ were not purchased and are not present on the ink jet p.inting system's SCCS-85 board. In the case of the ROM group, a single NEC: D2716 EPROM, giving 2 K of ROM, is being used, leaving I.C. location U5 free for expansion to 4 K as required. The board was reconfigured to accept the 2716 EPROM. The 2 K of EPROM (2048 bytes) holds the control and monitor programs. The 4 K of RAM short term memory holds graphic data downloaded from the host computer and also provides a scratch pad work space for the monitor and control programs. The SERIAL IO group contains the USART (universal synchronous/asynchronous receiver transmitter) through which all communication and data transfer takes place via a standard RS232 serial link. Outputs to the indexer boards and the irk jet head enable circuitry, and inputs for 'handshaking' lines are sent and received in the PARALLEL I/O
group. The TIMER group is being used to provide the correct tiaing to the USART and, in the future, may be used to provide the triggering signals to the ink jet head circuitry.

- A complete copy of the SCCS-85 (revision 2) User's Manual is included as Appendix Al. Included in it is both a component list for the board and also the instructions for mounting the components. Additionally, necessary modifications as required by the user are described in detail and complete circuit daigrams are provided. As a means of clarification, however, specific modifications and parts used in this application of the microcomputer board are listed below:

1. A 4 MHz crystal is used so the $8085^{\circ} \mathrm{s}$ clock frequency is 2 MHz .
2. I.C. locations U5, U15, and U16 are not being used.
3. A single NEC D2716 EPROM chip is being used in the ROM group section. It is a single voltage (+5V) I.C. so the modification described on pages 12 and 13 of the User's Manual has been performed.
4. The TRAP interrupt input (pin 6 of the 8085) is being used for enabling the -joystick'. On the SCCS-85 the TRAP input is normally pulled low so to use this feature the trace between P3-1 and P3-2 (CPU schematic, User's Manual) had to be cut.
5. For proper operation of the RS232 serial data input the following modification was made done (refer to the Serial Group schematic, User's Manual). The trace between C and D was cut so that pin 1 of the 1489 I.C. at location $U 24$ is no longer pulled up to +12 volts.

A. 13

The connection between pin 3 of the 1489 and pin 22 of the 8251 was broken and pin 3 and pin 22 of the 8251 was jumpered.
6. Two connectors were installed on the circuit board at locations J2 and J6a. Each of these is a 26 -pin double row header made by A P Products, Inc. (part \# AP 923863-R).

3.2 Downloading from Host Computer

As previously stated, the control and monitor program for the 8085 is contained in the 2716 EPROM on the SCCS-85 circuit board. However, the main operating program and any pattern programs nust be downloaded into the SCCS-85 board from a host computer. This is accomplished through the RS232 serial data input which was incorporated into the design of the board. There is a standard 25 -pin D connector mounted in the equipment cabinet and it is wired in the following manner to the SCCS-85 buard:

Ground	J6a-pin 1
Transmit	J6a-pin 3
Receive	J6a-pin 5

A switch box assembly is used to provide all necessary switching between the host computer, the SCCS-85 board, and a terminal. This makes it possible for the terminal to communicate with either the host computer or with the SCCS-85 board. It also allows the host computer to transmit information directly to the SCCS-85 board, i.e. it allows 'downloading' from the host to the microprocessor. This information is stored in the RAM group on the SCCS-85 board.

2.3 Joystick Control

In initial design stages, the $X-Y$ table was only controllable through the use of a manually operated 'joystick'. In its current state of development, the ink jet printing system uses the SCCS-85 microcomputer board to control the positioning table. After this system was implemented, it was still felt that some means of manually positioning the table should be provided so that the table could be positioned to the required start position prior to a print run.

For this reason, a program was written and made a part of the main operating program for the system. Pressing the JOYSTICK ENABLE button takes the TRAP interrupt on the SCCS-85 board momentarily high, vectoring the microprocessor to the joystick program. Once this has been done, the joystick control operates the table in the manner one would expect with this exception. Only movement parallel to the X or Y axis is possible. This, by the way, is also true in the computer controlled mode. All information for manual joystick control enters the Parallel I/O section of the SCCS-85 board via J2 pins $20,22,24$, and 26.
4. INVERTER BOARD

The inverter board (Fig. A2) provides two very simple functions in the system. First of all and most obvious, it provides inversion of signals where necessary. There are fourteen inverters on the board, and twelve of these are used to reconfigure signals either coming from or going to the SCCS-85 board. The last two inverters provide inversion between ihe 'not' XLR-PU outputs on the X and Y axis Superior Electric

Figure A. 2 Inverter Board.
indexer boards and the count inputs on the Counter/Display Driver board. Secondly, the inverter board contains a SN74LSORN qüad-AND integrated circuit. Two sections of this IC are used to provide a gating function for the triggering signal for the ink jet drive and control section. This gate allows the SCCS-85 to enable this trigger.

The inverter board is a Vector" \#3677-2 circuit board (11.4 cm X 16.5 cm) with a $22-\mathrm{pin}$ edge connector. Mounted on the board is one SN74LS08N quad-AND IC and three SN74LSO4N hex inverter IC's. Referring to Fig. A2, it is shown that the power supply ground enters the board on pin 2 while the +5 volt line $j s$ applied at pin A. Pins $20-22$ are the input, the output, and the enable lines for the gate IC l. Two AND gates are used in order to provide proper isolation between input and output. The trigger signal from the trigger select switch MAN/EXT goes to pin 9 of IC 1 . If pins 10 and 13 of IC 1 are high due to an exable signal from the SCCS-85 board, then the trigger signal passes on through from pin 9 to pin 8. Since pin 13 is also high, the signal continues from pin 12 to pin 11 and exits the board at pin 21. Eight inverters are used to Invert the data line from the SCCS-85 board to the two indexer boards. The output port (PA 0-7) signals enter the board at pins M-D respectively and exit the board at pins $11-4$ respectively. Pins 4-11 connect to Pl-4 through Pl-11 on the Superior Electric indexer boards. Two other signals from PC 0 and PC 1 on the SCCS-85 board are routed to pins N and P. They are inverted and exit at pins 12 and 13 to continue on to $\mathrm{Pl}-16$ of the X -axis indexer board and to $\mathrm{Pl}-15$ of the $\mathrm{Y}-$ axis indexer board respectively. P1-26 ('not" BUSY) lines and Pl-37 ('not' AUX STROBE/DATA TAKEN) lines from both indexer boards enter the

A. 17

inverter board at pins R and S. These inverted signals exit at pins 14 and 15 and return information to the SCCS-85 board (PC 7 and PC 6). These two inverters have 1000 ohm pull-up resisters on their inputs. Finally, the "not" XLR-PU signals from the two indexer boards are inputted at pins U and W and exit at pins 17 and 19 to provide count information to the corresponding channel of the Counter/Display Driver board. These two inverters also have 1000 ohm resistors from their inputs up to the +5 volt supply.

Even though this board is very simple in its function, its input and output pin number designations can be confusing as described above. For that reason, it is suggested that Figs. A5 and A6 be referred to for clarifying signal flow in and out of the board. On these two figures all fourteen inverters are shown. Figure A3 may also be referred to clarify the function of the gate circuit on this board.
5.INK JET DRIVE SECTION

5.1 Overview

The ink jet driver section can be summarized very simply. Figure A3 explains the flow from the triggering source to the Siemens ink jet spray head. The triggering signal, which must be enabled by the SCCS-85 microcomputer board, leaves the inverter board and is routed on to the ink jet head switch assembly. There it is routed to one or more channels of the Pulse Driver board. It should be noted here that most of the testing that has been done was done using only one ink jet nozzle at a time. The Pulse Driver board provides triggering signals of specific

Figure A. 3 Ink Jet Driver System.
amplitude and pulse width to the Siemens driver board. The Siemens driver board and the Siemens Pt80i head were purchased directly from the Siemens Corporation. They were specifically designed to be used together. The driver board, after receiving the correct trigger pulse, outputs the proper pulse on the corresponding channel to fire the piezoelectric driver for the corresponding ink jet nozzle. Thus a droplet of ink is ejected onto the substrate. This process continues at a rate equal to the rate of the trigger pulses as long as the microprocessor keeps the gate on the inverter board enabled. Hence, assuming that the $X-Y$ table is moving, a series of ink droplets (forming.a line) are printed onto the substrate.

5.2 Triggering and Control Circuits

Triggering is possible from either of two sources. IC 101 (F7400PC) is a quad 2-input NAND gate. Two of these gates have been connected as indicated in Figure A3 to form a "bounceless" switch. The MANUAL TRIGGER switch is a momentary single-pole double-throw device. Pin 11 of IC 1 is normally low. It goes high at the instant the normally open terminal of the MANUAL TRIGGER switch is taken to ground and stays high until the normally open terminal of the switch goes high again (when the button is released). It is the positive-going portion of this signal which is the actual triggering mechanism. Triggering may also come from an external source connected to front panel banana jacks. A Hewlett Packard model 3310A function generator was used for this purpose. Several different waveforms and amplitudes were investigated but 1t was found that a squareweve witi: an amplitude of about 5 volts pro-
vided proper triggering. The frequancy of the external oscillator had to be adjusted according to the velocity of the positioning table since the relationship of these two variables (and actually several others) affect many characteristics of the line printed. Most tests were conducted using table speeds of .00254, .00508, or . 01016 meters per second. These speeds correspond to motor step frequencies of 100,200, or 400 steps per second respectively. Some experimental work was done concerning the relationship between the trigger frequency and the table velocity. A formula relating the two was found which seemed to produce, in most cases, smooth line patterns on the substrates assuming that a median nozzle to substrate spacing of about $300 \mu \mathrm{~m}$ was maintained. If the table velocity (expressed in meters per second) is divided by . 0001 meter per cycle then the value obtained in hertz (cycles per second) is the oscillator frequency which will produce the desired effect. Put more simply, the table motor step frequency divided by four will yield the required oscillator frequency. The MANUAL/EXT trigger select switch was provided to select between the two above trigger sources.

The trigger leaves the common terminal of the MANUAL/EXT switch and flows through the gate on the inverter board as described in the inverter section. From pin 21 of the inverter board the signal travels on to the normally open terminals of the twelve ink jet head switches. These twelve single-pole double-throw switches either ground the corresponding input on the Pulse Driver board or route the trigger signal on to that channcl. These switch numbers indicate the track number on the ink jet spray head as indicated in the lower portion of Fig. A3

The INTERNAL SOURCE switch is not presently being used but has been provided for future development. Eventually, it is hoped that the necessary triggering signals will come from the SCCS-85 board. Additional software development is necessary to provide this feature.

5.3 Pulse Driver Board

The pulse driver board's function is to provide the Sienens driver board with triggering pulses of definite pulse duration and amplitude. It assures that the pulses triggering the Siemens board are independent of the amplitude and duration of the triggering pulses coming either from the "bounceless" switch or the external oscillator.

This board, shown schematically in Fig. A4, is a 12 channel unit built on a Vector" \#3677-2 circuit board (11.4 cm X 16.5 cm) with a 22-pin edge connector. It is comprised of 12 SN74121N integrated circuits which are monostable multivibrators in 14 pin dual in-line packages. The power supply ground is at pin A and +15 unregulated volts come in at pin 2. There is $7805+5$ volt regulator on the board to provide the necessary supply voltage to the IC's. There is a +5 volt line leaving the board at pin Y which supplies +5 volts to one side of the MOTOR switch. This connection is indicated in Fig. A3. A switched ground (from the front panel ENABLE switch) enters the board at pin 20 to enable tise 12 multivibrators. The inputs to the board (from the 12 Ink jet head switches) are at pins $1-12$ but in an opposite order in terms of track numbers. The pulses exit this board at pins p-B. The output lines from the I^{\prime} 's have been shielded as indicated in Fig. A4 to avoid "crosstalk" and noise problems.

SN $74121 N$

Figure A. 4 Pulse Driver Board.

The SN74121N IC's used on this board are monolithic TTL monostable multivibrators. The internal structure is indicated on Fig. A4. The input at pin 5 is a positive Schmitt-trigger input and will trigger the monostable multivibrator when it makes a positive transition if either pin 3 or 4 are pulled low. The enable line on the board is responsible for taking all the pin 4^{\prime} s low and there are no connections to pin 3^{\prime} s. The 6.8 K ohm resistors (connected between pin $11^{\prime} \mathrm{s}$ and $14^{\circ} \mathrm{s}$) and the 0.005 microfarad capacitors (connected between pin 10^{\prime} s and $11^{\prime} \mathrm{s}$) determine the pulse width of the output pulse. The values selected provide a pulse duration of approximately 24 microseconds which was selected to achieve correct triggering at the Siemens driver board.
5.4 Siemens Driver Board

The Siemens Driver board was purchased directly from the Siemens Corporation. Their identification number for the board is S22251-J141. It is a circuit board approximately 14 cm square with a $34-$ pin input connector and a $28-$ pin output connector. It was specifically designed to work with the Siemens Pt80i spray head that is used in this system. Its major purpose is providing the correct drive signals to the piezoelectric elements in the head. Other circuitry has been included on the board for driving led status display lines, for monitoring ink levels, for controlling a head wiper motor, and for maintaining the nozzle array plate at a constant temperature.

Power supply voltages are applied to the board via the three switches that are indicated on Fig. Al0. The power supply connections to the board are as follows:

Ground	$X 1$ pins $27-31$ and 33
+5 volts	$X 1$ pin 26
+12 volts	$X 1$ pin 25
+40 volts unreg.	$X 1$ pin 32

The inputs to the board are on pins 1-12 of XI but note (Fig. A3) that track numbers do not correspond to pin numbers. The same holds true in the case of the outputs which are at X 2 pins $15-26$. Power supply ground is connected to X 2 pins $3,7,13$, and 14. This ground exits the board at X 2 pin 14 to provide the ground reference at the ink jet spray head.

The status display lines are being used to drive the PRINTER READY and LOW INK led's. These lines exit the board at Xl pin 15 and 16 respectively. The PRINTER READY led circuit includes one NAND-gate section of IC 101. It serves to invert the pin 15 signal and drive the led. Three 6.8 K ohm resistors have been added on the 1 nk level sense terminals of the ink jet head, as shown on Fig. A3, to simulate the presence of ink to the board. This has been done because the board checks for ink presence before operating. Ink level sense lines leave the Siemens driver board at X 2 pins 7, 9, and 10. Due to the addition of these resistors, the LOW INK led is never on except momentarily durIng power up. The motorized head wiping system which is incorporated into the Siemens units is not currently being used in this application. The actual wiping mechanism was removed but, otherwise, the system has been retained. The switched +5 volts from the MOTOR switch enters the board at X 1 pin 14. The motor drive lines are at X 2 pins 5 and 8. The MOTOR switch must be on in order to enable the driver channels of the Siemens board. The nozzle array plate heating system consists of a
heater resistor and a temperature sensor in the ink jet head and the necessary control and drive electronics on the Slemens driver board. The temperature sensor and the heater resistor are connected to X 2 pins 11 and 12. It was found that the array plate heating system tended to dry the xylene ink solution so it was defeated.

As stated before, the major function of the Siemens driver board is to provide the necessary signals to fire the ink jet piezoelectric drivers. There are twelve identical channels on the board for that purpose. Each channel includes an amplitude adjustment potentiometer for fine tuning the output pulses. These twelve controls are located in a 1ine along the side of the board opposite to the Xl input connector and are screwdriver adjustable. They provide an output amplitude range from about 125 to 300 volts peak to peak. It was found through experimentation that output pulses need to be somewhere in the range of 150 to 250 volts to properly drive the piezoelectric transducers. The necessary amplitude will be dependent on the pressure in the ink supply bottle, the ink viscosity, and other related parameters. The pulse width of these output pulses is about 30 microseconds. The exact width is difficult to specify due to the non-square nature of the pulse.

5.5 Siemens Pt80i Spray Head

The Siemens Pt80i ink jet spray head is a drop-on-demand type head with 12 nozzles arranged in two vertical rows. The diameter of each nozzle is $76 \mu \mathrm{~m}$. Each ink jet channel is concentrically enclosed by a piezoceramic transducer tube. Silver films on the inner and outer surfaces of the tubes serve as electrodes for applying the electric field.

Ink droplets are efected from the nozzles by momentarily applying an electric field to these transducers. The nozzles that are pulsed are determined by the input signals to the Siemens driver board as described above. The unit, as shipped from Siemens, was designed to print characters using a 12-by-9 dot format. The head in conjunction with its matching driver board was capable of printing up to 300 characters per second.

For th's application specific requirements in an ink jet head had to be met which required that the Siemens head be modified in several ways. The unit was designed, originally, such that ink was ejected from the nozzles in the horizontal plane. Also, a collapsible bladder containing the ink was an integral part of the unit. Along with the ink supply were features to monitor the ink level, wipe the nozzle array plate, and maintain the nozzle array plate at a constant temperature. In this application of the ink jet spray head, most of these features were either not needed or simply could not be used due to other considerations. Since the substrate needed to be mounted on a positioning tablo, the ink droplets from the head had to be ejected in the vertical plane. This, alone, would have eliminated using the existing ink supply since the relative position of the ink jet head to the ink supply is responsible for the static vacuum applied to the ink jet nozzles. It is this static vecuum which is critical to the correct operation of this drop-cn-demand system. However, using MOD inks in a xylene solution dictaied operating in a closed inert atmosphere which was not possible with the existing heat and ink supply system. A new mounting system for the head was devised so that the ink was ejected down onto the sub-
strate. The mounting system includes a means of adjusting the head to substrate distance. Although further studies will be necessary to determine an absolute optimum nozzle to substrate spacing, $300 \mu \mathrm{~m}$ has proven to provide good line definition and so was used for recent testing. A short length of Teflon tubing was attached to the head and connected to a new ink supply arrangement. The specifics of the ink supply system will be discussed in Section 9. The nozzle array plate wiping feature was deemed not necessary and so the actual wiping arm mechanism was removed. The ink level monitoring feature could no longer be used and was overridden. It was also fou d that the array plate heating system tended to dry the xylene ink solution so it was defeated.

The nodified head and the Design Components positioning table were mounted on an aluminum plate having dimensions of approximately 1.3 cm X $35.5 \mathrm{~cm} \times 45.5 \mathrm{~cm}$. Connections to the head from the electronics cabinet is via ribbon cable. The table motors, discussed in Section 6, are connected to the cabinet with "Jones" style 8-pin connectors. A vertical rod is also mounted on this plate for supporting the new ink supply bottle (Section 9).

6. $X-Y$ POSITIONING TABLE SYSTEM

6.1 Overview

The complete $X-Y$ table positioning system is shown in Fig. A5. The basic system consists of two identical charmels, one for movement in the X direction and one for movement in the Y direction, both of which are controlled by the SCCS-85 micrccomputer board. A 'joystick' control is

Figure A. 5 X-Y Table Positioning System.
also connected to the SCCS-85 board to provide a means of manualiy moving the table. The inverter board (as described in Section 4) is a part of the system simply to provide inversion of any lines leaving or entering the SCCS-85 board. A large portion of the table positioning system has been purchased commercially because high quality units meeting all our requirements were readily available. The actual positioning table is a model LC-22 from Design Components, Inc. It is a $X-Y$ positioning table with a maximum travel in each direction of 5.08 centimeters. The stepping motors which are part of cne positioning table are 200 steps per revolution units made by the Superior Electric Co. Each channel consists of two boards, an IDD008 indexer board and a DRD002A driver board. These boards are part of a line of modules for stepping motor control made by the Superior Electric Company which have the trademark name of "MODULYNX".

All move information enters the indexer boards on the 8-bit parallel data line in ASCII format from the SCCS-85 board. The numbe: of steps to be taken and the direction is encoded in the data. Four sther lines connect the microprocessor board and the two indexer boards as seen in Fig. A5. These four lines are used in a simple 'handshaking" routine to correctly sequence signals.

Manual control of table movement is accomplished by pressing the JOYSTICK ENABLE button and then using the "joystick" control to move the table as desired. The 'joystick' function is accomplished in a program that has been appended to the main program as discussed in Section 10. When the JOYSTICK ENABLE button is pressed an interrupt vectors the microprocessor to this "joystick" program.

6.2 Superior Electric Indexer Boards

The two indewr buards used in this system are IDD008's ma'e by the Superior Electric Co. They have been specifically designed to be used with the DRD002A driver boards. They are $19.6 \mathrm{~cm} \times 22.4 \mathrm{~cm}$ circuit boards having 50 pin edge connectors for input signals and 20 pin edge connectors for connections to the DRD002A driver boards. Robinson Nugent, Inc. edge connectors were used for these connections. They were obtained from Digi-Key Corporation and are type R500. In addition to these two edge connectors there are six spade lug terminals along the same edge of the card as Jl. Three of these are for grounds and +5 volt power supply connections and the other three are additional output lines. Figure A6 is a complete circuit schematic for the indexer board.

The indexer boards receive input data in digital format which specifies the number of steps to be taken and the direction. When these commands are received, the indexer boards provide the correct number of properly sequenced phase control signals needed to operate the DRD002A two-phase stepping motor drivers. The indexer boards may be used to operate the motors one step at a time in either direction using a Jog command or to run the motors continuously in either direction using the Run command. The indexer boards can be used in two different basic modes in terms of the way in which move information is inputted. In the Switch Interface mode (Pl pins 47 and 48 left floating) nu:e information is entered on the data bus with external switches which are diode isolated. In this application, which required microprocessor control, the indexer boards are being used in the Smart Interface mode accomplished by jumpering P1-47,48 to P1-49. This allows all move comands to enter

Figure A. 6 Schematic Diagram IDD008 Indexer Card.
the indexer boards on the data bus from the SCCS-85 microcomputer board. This mode does require a simple "handsheking" routine in order to function correctly.

Also contained within the circuitry of the indexer boards are provisions for establishing the base speed, the high speed rate, and the rate of acceleration and deceleration. The values for each of these parameters can be fixed using a series of on-board jumpers or may be entered into the IDD008's memories from the data bus in ASCII format. There are several other operational parameters which can be selected with on-board jumpers. The first of these is unique to each of the two indexer boards in that it basically gives each board an address identification. There are two sets of terminal arrays which are responsible for this address. They are the SEL and the POL terminals. There are axis designations of $S-Z$ for each and so it follows that both sets of X Lerminals should be jumpered on the X-axis board and that both sets of Y terminals should be jumpered on the Y-axis board. The remaining jumper-selected parameters are set the same for both boards. The base speed, the high speed rate, and the rate of acceleration and deceleration, even though jumper-selected on the board, may be overridden in the Smart Interface mode by inputting the data in ASCII format over the data bus. The following is a listing of the other parameters mentioned and an indication of exactly which terminals are jumpered:

Function	Terminal Pair	Jumpered?	Result
Stepping Mode	F/H	no	Full-step, two
	OWO	no	windings on mode
Reduced	STB-1	yes	Reduced standby

Standby
Current Option

Mid-range Stabilization	$\mathrm{N}-\mathrm{T}$		no	Mid-range stabilization feature selected
Mid-range	SL-C		yes	Feedback cut-
Stability,	SL-B		yes	out frequency
High Speed Cutout	SL-A		yes	of 6134 steps/ sec. selected
Half	HF		no	Half-frequency
Frequency				option not
Option				selected
Backlash Compensation	BCK		no	No backlash compensation
Resonance	PPS-1		no	Resonance
Control	PPS-2		no	control time
	PPS-3		yes	of 2000
	PPS-4		no	microseconds
	PPS-5		yes	selected
	PPS-6	$*$	no	
Base Speed	B-7		no	With HF not
Programming	B-6		no	jumpered,
	B-5		no	base speed of
	B-4		no	40 pulses/sec.
	B-3		no	selected
	B-2		no	
	B-1		no	
High Speed	H-8		no	With HF not
Limit	H-7		no	jumpered,
	H-6		no	high speed of
	H-5		no	40 pulses/sec.
	H-4		no	selected
	H-3		no	
	H-2		no	
	H-1		no	
Acceleration/	A-8		no	500 steps/
Deceleration	A-7		no	second/
	A-6		no	second
	A-5		no	selected
	A-4		no	
	A-3		no	
	A-2		no	
	A-1		no	

current option selected

Mid-range stabilization eature

Feedback cutout frequency of 6134 steps/ sec. selected

Half-frequency option not selected

No backlash compensation

Resonance
control time of 2000 icrosecinds selected

With HF not jumpered, base speed of 40 pulses/sec. selected

With HF not
jumpered, high speed of pulses/sec. selected

500 steps/
second/
second selected

In the Smart Interface mode move comands and data are entered into the indexer board through the data bus using a "handshaking schene as mentiontd before. Since individual handshaking response is required before any operation takes place, only one axis address enable input (Pl-16 X-axis board or Pl-15 Y-axis board) is allowed at a time. The following sequence of events must occur for ASCII characters to be read from the data buss by an indexer board:

1. character put on the data bus.
2. In no less than 62 microseconds the indexer will respond by taking 'not' DATA TAKEN low thus reading the character on the data bus.
3. The SCCS-85 board sees that 'not' DATA TAinEN has gone low and responds by taking "not" EN INDEXER back high and removing the ASCII character from the data bus.
4. F'he indexer board senses the low to high transition of This starts the processing of the character read and/or the execution of the move. At the same time that "not" DATA TAKEN goes high, "not' BUSY goes low indicating to the SCCS-85 board that the indexer is busy and cannot accept data or commands.
5. After the processing and/or execution is completed the indexer board takes 'not' BUSY back high indicating to the SCCS- 85 board that it may again enable the board by taking "not" EN INDEXER low again and repeating the above sequence.

By the uee of the above sequence, information is transferred from
the $\operatorname{sCCS}-85$ board to the indexer board. Not only must this specific sequence be used to input characters but also a definite progression of characters must be entered in order for the indexer to carry out the desired move. One of the first things necessary to specify is the data entry format. The two possible formats are hexadecimal and decimal. An
 decimal format. By default, when power is applied to the indexer board, the hexadecimal format is chosen. It is also chosen whenever the Indexer board is given a ' C ' command which is a Ciear All Registers command. The data entry format remains active until a command specifying the other format is entered.

The indexer card has five registers. Once a register has been selected, data are then entered into the register using a sequence of ASCII characters. Once the data are entered into a register and the register has been closed, another register can be selected by entering the appropriate register select character. The register select characters are as follows:

A acceleration/deceleration register
B base speed register
H high speed register
M move register
S delay register

It should be noted that the move register is also selected by power turn-on, a "not" RESET INDEXER signal, or entry of a ${ }^{-} C^{\prime}$ (clear all registers) character. Once a register has been specified by entering one of the five above characters (or by default) then data are entered
into the selected register using the following format:

1. Bnter the "<" character to clear the previous data and open the addressed regisier.
2. Enter the data characters.
3. Enter the ">" character to close the register.

All data entered must be within specified limits for the particular register. Aso, it should be noted that that data characters are actually only codes for numbers as specified in tables for each register. The required limits and all tables are listed in the Superior Electric indexer board instruction manual and, due to their length, will not be duplicated in this document. In the case of the move register only, the data characters between the " $<$ ' and the " $>$ " may be prefixed with a "-' to Indicate movement in the negative direction. If "-" does not preceed the data, then movement in the positive direction is assumed by the indexer.

For clarification, some explanation of 'direction of movement" may be in order at this time. In the operating manual for the indexer board, the Superior Electric Co. defines positive movement as that which occurs when the motor is turning in a clockwise direction as viewed from the label end of the motor. If, however, a point directly below the ink jet head is specified as a origin prioi to any table movement, then an indexer positive move command moves the table in such a manner that the head is repositioned at a point either on the X or Y negative axis. For that reason, in order to accomplish movement in the positive X or positive Y direction (that is, of the head in respect to the table), a command for movement in the negative direction must be given to the indexer
board. In the remainder of this section explaining the operation of the indexer boards, reference to the "positive direction' refers to the positive direction as defined by the manufacturers of the board. Keep in mind that the actual print direction on the substrate will be just the opposite.

In studies to date, the table has been operated only at a constant base speed. For this reason, the acceleration/deceleration register, the high speed register, and the delay register have not been utflized. As increased substrate speeds are investigated, these registers will have to be used.

There are many ASCII character commands that may be used with the indexer board in addition to the commands already mentioned. Many of these utilize special features of the indexer board which are not needed in this application. The following is a listing of motion commands which are used and a brief description of what each command does:

Command Name	Character	Function
INDEX	G	Initiates a programmed move as specified by previous commands
JOG +	I	Pulses motor one step in negative direction
	J	Pulses motor one step in positive direction

In this application the G command is the motion command most often used in that it initiates motion for each individual move. When the JOYSTICK mode of operating the table is selected then the two JOG commands, I and J, are utilized.

Referring to Figure A5, it is seen that an external MOVE/CLEAR switch has been provided for the indexer boards. When PI pin 36 is taken low by pressing this switch then any motion taking place is terminated, without programmed deceleration (if applicable), and the move register is cleared. If this line is held low then all motion except JOG - and JOG + is inhibited.

The Superior Electric C_{0}. indexer board has many features which are not being utilized presently since all the testing done to date has been at fairly low table speeds. The above description of the board and its command structure for the various registers, etc., may seem somewhat complicated. In the future, as an attempt is made to increase print speed, then many of the additional features built into the board will have to be used. However, it is currently being operated using a very simple process with a minimum of commands. The sequence described above for reading ASCII characters from the data bus must be adhered to, but otherwise the following sequence is all that is needed to accomplish table movement:

1. Select the base speed register by inputting a " B " to the indexer board chosen.
2. Open the register and clear it of previous data by inputting an ASCII - < .
3. Select the hexadecimal number from the base speed table in the indexer board operating manual which represents the required base speed and input it to the indexer board. This number must be within the range of 00 through FA. (Note: The hexadecimal format
was chosen by default upon application of power to the indexer board.)
4. Input a ">" to close the base speed register.
5. Select the move register with a ${ }^{-} M^{\circ}$.
6. Open the register and clear any previous contents with a " $<$ ".
7. If movement in the negative direction is required then input a", otherwise positive direction is assummed.
8. Select the hexadecimal number from the move register table in the indexer board operating manual which represents the required number of steps to be moved. This number must be within the range of 000000 through FFFFFF, although leading zeroes need not be entered.
9. Close the move register with a ->".
10. Initiate the specified move at the specified base speed by inputting a 'G".

The two indexer boards in the system, when given the proper commands by the SCCS-85 board, output the proper signals to the associated driver board for each channel in order to accomplish the desired move. A definite format for inputting commands and data to the boards must be followed, but otherwise the process for specifying and accomplishing movement of the $X-Y$ table is fairly simple.

There are three other outputs from the indexer board, two of which are being used. These are buffered translator monitoring signals which
exit the board on both the $20-\mathrm{pin}$ edge connectior and also on three spade lug terminals. The "not' MOTION BUSY line is ait being used. The -DIR and the "not" XLR-PU outfuts at the quick disconnes: terminals are being employed to provide direction and count intormation to the Counter/Display Driver board. The details of these signs.s will be discussed later in the L.E.D. Display section.

6.3 Superior Electric Driver Boards

The two driver boards used in this ink jet printing system are part of the MODULYNX trademark line of modules made by the Superior Electric Company. They are type DRD002A cards having dimensions of 19.6 cm X $22.4 \mathrm{~cm} \times 5.7 \mathrm{~cm}$. Inputs to the board are through a $20-\mathrm{pin}$ edge connectoi and the board outputs and the power supply connections are made via a 10-position terminal board. As stated in the indexer board section above, this board has been specifically designed to be used with the IDD008 indexer board. The DRD002A driver board contains a bipolar chopper stepping motor drive. The indexer board provides the properly sequenced and ramped phase control signals to the driver board to control motor direction, running speed, acceleration, and deceleration. The complete circuit schematic for the driver board is shown in Fig. A7.

The driver board contains two DIP (dual in-line package) switches indicated as S1 and S2 on the circuit diagram. S2 has been provided for matching the board to the various motors that could be connected to it. It adjusts the nominal motor phase current. For the Design Components table that is being used in this system which has Superior Electric Co. type M061-FD-301 motors, S2 needs to be set as follows:

Figure A. 7 Schematic Diagram DRD002A Priver Card.

S2 switch position	status
1	off
2	off
3	on
4	on

Switch S1, located near TB1 on the board, is used to adjust the MidRange Stabilization feature to a particular motor and power supply voltage used with the board. This feature of the Superior Electric boards improves motor stability at middle range motor speeds. Due to the fact that tests run to date have been at some selected base speed, this feature is not actually used. It is, nevertheless, suggested in the operating manual for the driver board that switch $S 1$ be set as specified for the motor and power supply. The necessary switch settings are given in an appropriate table in the operating manual. The Sl settings for the M061-FD-301 motor and 24 volt power supply combination are as follows:

Sl switch position	status
1	off
2	off
3	off
4	on

Two different power supplies were needed for this board. There is a 12 volt supply which provides power to the logic circuitry on the board and there is a 24 volt supply which is required by the motor circuitry. These two supplies, as discussed in Sections 8.6 and 8.7 , are isolated from other power supply sections, that is, the negative sides of these supplies are not tied to the general power supply ground. Also, as recommended, a 1000 ohm, 5 watt, "bleeder" resistor was added across the output of the Sierracin Power Systems model 3D24 24 volt

A. 43

power supply. It is also seen (Figs. A6 and A7) that a +5 volt line ($\mathrm{J} 1-7,8$) leaves the indexer board and is the 5 volt source voltage for the four optocouplers ($\mathrm{U} 7-\mathrm{U} 10$) located on the driver board. Other +5 voltages required for the driver board cnme from its own on board +5 volt regulator. There is a +12 volt line leaving the driver board at J1-19,20 which is, in turn, a +12 volt source to the indexer board, entaring it at its respective J1-19,20. Note that it feeds the anode terminal of an optocoupler on the indexer board (U1) which is part of the Mid Range Stabilization circuitry incorporated into the two boards.

The four main inputs to the driver board are at J1-9 through J1-12. These are labeled as 'not' MD4, 'not' MD5, 'not' MD1, and 'not' MD3. These four translator inputs are connected to the corresponding translator outputs on the indexer board. The indexer board provides the correct number of properly sequenced phase control signals to the driver board in a manner so that the output signals from the driver board at TB1-5, TB1-7, TB1-8, and TB1-9 move the X or Y axis table motor as required. As mentioned in the indexer board section, this system uses the motors in a Full-Step, Two Windings on mode. Due to the required 'handshaking' routine between the SCCS-85 board and the indexer board, only one motor at a time is run.

6.4 Design Components X-Y Positioning Table

The X-Y positioning table used in the ink jet printing system is a unit that was purchased from Design Components, Inc. It is a model LC22 having a maximum travel in each direction of 5.08 centimeters. With the 200 step per revolution motors that are being ised with the table,
it has a resolution of $25.4 \mu \mathrm{~m}$ per step. The work surface available on the unit as shipped is $10 \mathrm{~cm} \times 10 \mathrm{~cm}$. To this surface has been attached a 10 cm square brass block which is 1.27 cm thick. This block has been machined such that there 1 - a very slightly recessed inner region into which the substrate to be printed is placed. Under the substrate area is a 4.76 mole to which a vacuum is applied during the printing operation in order to hold the substrate stationary. A cylindrical heating element is mounted in the block to keep its temperature within the range of approximately $30-35^{\circ} \mathrm{C}$. A 120 VAC variable transformer is used to control the temperature.

The two Superior Electric Co. type M061-FD-301 synchronous stepping motors used with this Design Components table are actually part of a Joystick Controller package. It was purchased during initial design stages of the ink jet printing system before the $X-Y$ table was put under microprocessor control. This package was also obtained from Design Components, Inc. and was identified as model JC-103-2. These motors are part of a line of stepping motors manufactured by the Superior Electric Co. under the trademark name of "SLO-SYN".
6.5 Joystick Control of Table

As mentioned, during initial design stages of this ink jet printing system the table was only moved manually through the use of a Joystick Controller package purchased from Design Components, Inc. Further development dictated the need for the table to be controlled from a microprocessor so that precise patterns could be printed. After such a system was implemented it was felt that some means of manually moving

A. 45

the table should be retained so tiat the table could be positioned to the required start position prior to a printing run.

Because of this need, a front panel mounted 'joystick' control may still be used to manually move the $X-Y$ table. This function is now, however, accomplished in a program which is part of the main operating program for the SCCS-85 board. Pressing the JOYSTICK ENABLE button vectors the microprocessor to this joystick program which is appended to the main program. Once this is done, the table is controllable only with the 'joystick' control until the SCCS-85 board'is reset. The joystick function uses the Superior Electric indexer boards in their JOG modes.

It can be seen from Fig. A5 that the joystick control information enters the SCCS -85 board on four lines. These lines enter the board at J2 pins $20,22,24$, and 26. They occupy a portion of the $\mathrm{I} / 0$ port PB and are normally pulled low by the four 10 K ohm resistors connected to ground. The other four lines of the PB port are also pulled low as indicated. When the "joystick" control is moved either one or two of the four control lines are taken high (+5 volts) and in this manner the move information is transferred. Even though it is possible for two of the contiol lines to be high at one time, table motion can only be in one direction at a time. In other words, only movement parallel to one of the axes is possible. When the 'joystick' control is held in one position, movement occurs in that particular direction until the table reaches the end of its allowable excursion or the control is released to return to its center static position.

7. L.E.D. DISPLAY SECTION

7.1 Overview

The 1.e.d. displays which have been designed into the ink jet printing system provide a visual indication of where the ink jet nead is in respect to the $X-Y$ positioning table. This is very useful both for 'debugging' pattern data and also for setting up the table for a print sequence. Noimally, prior to printing the table is positioned so the Ink jet head is located near the lower left-hand corner (as viewed from the front of the cabinet) of the substrate. This then establishes a reference origin. As the printing sequence starts, the numbers read on the l.e.d. displays are the number of steps in the positive X direction or the positive Y direction from this origin.

The entire display section is shown in Fig. A8. Two signal lines are needed for each of the two channels and they come from the corresponding X or Y indexer board. The inverter board is used to invert the two "not" $X L R-I U$ buffered outputs from the indexer boards since they are negative logic. The Counter/Display Driver board contains two Intersil ICM 7217 IJI integrated circuits which contain all the necessary circuitry to both drive the l.e.d. displays and interpret the count and direction signals from the indexer boards. Clear switches have been provided to reset the two 4 -digit l.e.d. displays to zero. The two l.e.d. display modules are 1.27 centimeter high displays having four 7 segment digits each. They are common anode units driven in a multiplexed fashion from the Intersil I.C.'s.

Figure A. 8 L.E.D. Display System.

With the exception of the two inverters being used, the Counter/Display Driver board contains all the circuitry used in the L.E.D. Display section. Except for one on-board +5 volt regulator, all that circuitry is contained within two identical integrated circuits made by Intersil. These and the 7805 regulator are mounted on a "Vector ${ }^{-}$3677-2 circuit board having dimensions of $11.4 \mathrm{~cm} \times 16.5 \mathrm{~cm}$. All inputs and outputs to and from the board are via a 22 pin edge connector. The circuit schematic for the Counter/Display Driver board and its connections to the two displays are shown in Fig. A9.

The poner supply ground enters the board at pin A and an unregulated +15 volt line enters at pin Z where it inputs the +5 volt regulator. The X-axis count signal is at $p i n B$ and the Y-axis signal is at pin D. Directional signals for the X and Y channels enter the board at pins C and E respectively. When the "not' XLR-PU output from the indexer board goes from high to low, then back to high, the indexer translator advances one translator sequence in the direction indicated by the -DIR signal, i.e. the motor is moved one step in the specified direction. Remember that the count signal that the Counter/Display Driver board gets is the inverse of the 'not' XLR-PU output from the indexer board. If the -DIR line is in the low state when this occurs then movement is in the negative direction and the counter will count down. If the -DIR line is in the high state when this occurs then movement is I the positive direction and the counter readout will increase. Intuitively, this may seem exactly opposite to what one would expect regarding the status of the -DIR line and the direction of travel. This

Figure A. 9 Counter/Display Driver BD. and L.E.D. Displays.
confusion arises due to the two possible points of referenca regarding the movement. In the indexer board operating manual, positive direction is referred to as that which causes clockwise motor rotation when viewed from the label end of the motor. This means that the -DIR line is low for movem:nt in the positive direction. When viewing the X - Y table from In front of the equipment cabinet, $C W$ rotation of the X motor causes table movement to the right and $C W$ rotation of the Y motor causes table movement away from the viewer. However, the direction that the ink jet head is moving in respect to the table is in the negative X or the negative Y direction. For that reason movement in the positive direction from the specified origin on the substrate is accomplished by commanding a negative move within the indexer board. The clear switches connect to pins 1 and 2 of the board and accomplish the clearing function by puiling the reset pins of the I.C.'s to ground momentarily. Outputs to the X-axis l.e.d. display are on pins $9-19$ and outputs to the Y-axis l.e.d. display are on pins $K-W$.

The Intersil ICM 7217 IJI integrated circuit is a 28 pin CMOS device designed to drive four digit common anode l.e.d. displays. The count input at pin 8 is a Schmitt trigger input in order to permit operation in noisy environments. In 9 on the I.C. (not^{-}STORE) has been pulled low in order for the contents of the internal counter to be transferred to the 7 segment outputs. The 7 segment outputs and the four lines Dl-D4 opercie in a multiplexing arrangement to drive the l.e.d. displays. The reset line to clear the internal counter is at pin 14 of the I.C. The count signal enters the integrated circuit at pin 8 and whether the counter counts up or down depends on the logic level at
pin 10. If pin 10 is high tien the I.C. functions as a up counter. Conversely, if pin 10 is it a low logic state then the counter counts down. There are several feacures incorporated into this Intersil I.C. Winh are not being used in this system, hence there are many unused pins on the I.C.

7.3 L.E.D. Displays

The two l.e.d. display units are identical assemblies made by the National Semiconductor Co. They are common anode, four digit, seven segment character with decimal point modules having part number NSB 5882. The actual displayed characters are 1.27 cm (0.5 inch) high. Connections are made to the units on solder pads along the lower rear edge of the assemblies.

In this application there was no need for decimal points so the indicated " h " connection was not used. There are eleven lines feeding each assembly. Pad numbers 1-4 are the common anode connections for each digit. Note, however, that the Dl line from the Intersil ICM 7217 IJI connects to the " $4^{\prime \prime}$ pad on the display. This is because the ${ }^{-4}$ digit is the least significant digit of the display. The other seven connections to the display (pads $a-g$) are the segmeat drive lines.

The two displays which are used to indicate table position are mounted in rectangular cutouts in the front panel of the equipment cabinet. The corresponding CLEAR switch is located to the right of each 1.e.a. module.

8.1 Overview

The power supply section for the ink jet printing system is a combination of linear power supplies. The complete power supply section is shown in Fig. AlO. Two of the power supplies have been purchased commercially and the remainder were designed and built using off-the-shelf conventional components. There is one MAIN POWER switch which controls the $A C$ input to all the power supply subsections except the +24 volt power supply for the Superior Electric driver boards. It has its own separate switch identified as X-Y POWER. Both of these have front panel mounted indicator lights to show when power is applied. The 2.5 ampere fuse for the +24 volt power supply is front panel mounted, however, the main power fuse is located on the rear panel.

There are three other front panel mounted switches marked 5V, 12V, and 40 V which control these three voltages to the Siemens Driver board. There is a l.e.d. associated with each of these switches, all three of which are located on the front panel. One other l.e.d. labeled 15 V is provided to indicate whether the +15 unregulated voltage is present.

There are actually three other components which are part of this system which require 115 VAC power. There is a cooling fan for provid${ }^{4}$ ng ventilation for the equipment cabinet and there is a variable transformer which is used to control the temperature of the brass block which the substrate rests on. Finally, there is a photohelic pressure switch/gage (Fig. All) which has 115 VAC power applied to it. It is the

Figure A. 10 Power Supply.

Figure A. 11 Ink Pressure Control System.
heart of the ink pressure control system described in the foliowing section.

$8.2+15$ Volt Unregulated Supply

The +15 volt unregulated supply is used to supply the Counter/Display Driver board and the Pulse Driver board with an unregulated voltage source since they both have on-board +5 volt regulators. This unregulated voltage is also the source voltage for two $7805+5$ volt regulators located on the power supply chassis.

The power transformer for +15 unregulated voltage section is a Stancor $\mathrm{P}-8130$ which has a 12.6 VAC center tapped secondary. The secendary voltage is applied to the inputs to a Varo brand VH 148 single package rectifier bridge assembly. It has a 6 a rating. The negative output of the bridge is grounded and the positive side is filtered using a series combination of two $2400 \mu \mathrm{f}$ capacitors. The center tap of the secondary connects to junction point of these two capacitors. This unregulated output is fused at 1 a and, as shown in Fig. AlO, there is also an l.e.d. in series with a 1500 ohm resistor to indicate the presence of this voltage. The approximate current draw from this supply is 250 ma.
$8.3+40$ Volt Unregulated Supply

The +40 volt unregulated source is used in the ink jet system by the Siemens Driver board. It is used in the output section of the board in order to generate an output pulse of sufficient amplitude to the
piezoceramic drivers. As indicated, there is a separate switch for application of this voltage to the board and there is a 1 a fuse to protect the supply.

The secondary winding voltage of the transformer used in this section is approximately 30 VAC. This enters a Varo bridge package (VE 18) rated at 1 a. The $A C$ is rectified and then filtered by the $100 \mu \mathrm{f}, 80 \mathrm{v}$ capacitor from the positive output to ground. The quiescent draw from this section is in the range of 10 ma .

$8.4+5$ Volt Supplies

There are three separate +5 volt regulated supplies used in this system. The first is a +5 volt, 2 a rated module made by Polytron Devices, Inc. It is a model P-38-2 designed so that it may be mounted directly to a circuit board. It supplies power to the SCCS-85 microcomputer board and the 'joystick' controller with connects to the SCCS-85. It is fuse protected at 2 a and the quiescent state current flowing from this supply is approximately 700 ma.

[^1]supplied by each of these three pin regulators is about 400 ma .

$8.5+12$ and -12 Volt Supply

One section of the power supply is used to supply both the positive and negative 12 volts to the SCCS-85 board. Additionally, this same +12 volts goes tc the Siemens Driver board. The 115 VAC is reduced to 25.2 VAC by a Stancor trosformer P-8357. Its secondary is center tapped and this center tapped connection is tied to the power supply ground. A Varo VH 148 bridge circuit rectifies this $A C$ and a 350μ f capacitor shunts both the positive and negative bridge outputs to ground to provide proper filtering. Both the positive and negative outputs from the bridge are approximately 16 VDC unregulated. These are then the source voltages for the 7812 (positive voltage regulator) and the 7912 (negetive voltage regulator) as shown in Fig. Alo.

The +12 volt regulated ontput line is fused at 0.75 a and as mentioned, is the supply for both the SCCS-85 board and the Siemens Driver board (via the 12 V switch). The -12 volt regulated output line is fused at . 375 ampere and supplies only the SCCS-85 board with power. The Siemens board demands about 70 ma from the +12 volt supply. The SCCS-85 circuit board requires approximately 20 ma from both the +12 volt and -12 volt supplies.

$8.6+12$ Volt Superior Electric Driver Board Supply

This portion of the power supply provides the +12 volts needed for both Superior Electric Co. driver boards. It is a separate power supply
because it was necessary for it to be isolated, ine. the negative gide of this supply is not thed to the coln poner supply ground. A stencot P-8130 provides 12.6 VIC to the VE 148 bridge aseenbly. This rectified 8 gnal is filesed by the two 470 uf capacitors indiceted on the schematic. This is the input voltage for a 7812 regulator whose output is fused as: 1 a. The two $0.1 \mu f$ capacitors on the input and the output of this device are for noise immuity and inproved regulation. The input voltage to the 3 -pin regulator is approximately 16 VDC. The maximum current required by each of the driver boards is 550 ma .

8.7 +24 Volt Supply

A Sierracin Power Systems model 3024 power supply was chosen to supply this needed voltage to the Superior Electric driver boards. It is rated at 4.8 a and the lines going to each driver board are fused at 2.5 a. A 1000 ohm, 5 watt resistor was added across the output of the supply as specified by the Superior Electric Co. driver board instruction manual. This serves as a bleeder resistor for the large power supply filter capacitors which were also specified in the instruction manual.
9. INK SUPPLY AND PRESSURE CONTROL SECTION

9.1 Overview

The ink supply and pressure control portion of the ink jet printing system is a critical factor in the correct operation of this system. The system must feed the "MOD' inks which are in a xylene solution to

A. 59

the Stemens Pt801 spray head in such a manner so that the reaultant static vacuum at the ink jet head provides the proper meniscus at the ink jet nozzles. This meniscus is important in determining droplet size and line quality. The meniscus is affected by several factors; the static vacuum at the Pt801 head only one of them. It is also dependent on both the ink solution surface tension and viscosity. Because of this, these two parameters musi also be given careful consideration.

The components of the system are shown in Fig. All. The ink to be printed is contained in the 19 ml glass bottle and is maintained at a level above the bottom of the line feeding the head. The three tubes which enter the bottle are actually fitted and sealed into a cap which is permanently affixed to the stand holder. This makes the process of changing inks and purging the system with xylene sinple. The stand and holder arrangement makes it possible to adjust the height of the ink bottle. The bottle height is adjusted to some point below the level of the ink jet head so that a static vacuum occuxs at the head. The line going from the 450 ml plastic bottle to the ink bottle is nitrogen gas under a pressure of about 0.1 inch of water column. The nitrogen gas is necessary to provide an atmosphere in the ink bottle to which the ink will not react and the slight pressure is necessary to offset a portion of the static vicuum at the ink jet nozzles due to the lower level of the ink. The Dwyer Photohelic Pressure Switch/Gage and the two Sporlan solenoid valves provide means of maintaining a reasonably consistent pressure in the ink bottle. The approximate static vacuum at the ink jet nozzles is achieved by adjusting the ink bottle to a point where the ink level is roughly 2.5 cm below the nozzle orifices. Fine coatrol of
this required static vacuum is accomplished by the pressure controller. The plastic container serves as a buffer to cushion the on-off operation of the two valves.

The desired effect of this mechanism is to provide a consistent, slightly concave meniscus at the ink orifices in the ink jet head. This consistency is essential so that an ink droplet is ejected only when the piezoceramic driver for a particular oxifice is pulsed. If the static vacuum is too great, then ink is never ejected from the head or if the static vacuum too little then ink may drip from the openings without the p:lezoelectric drivers being energized.

In normal printing operation the purge line nitrogen gas source is cl.osed oif. The purge system has been provided as a means of flushing the ink jet head with xylene after printing to avoid the clogging of the ink jet orifices. To purge the system the ink bottle is replaced with a bottle containing pure xylene. The pressure line from the plastic coritainer to the ink bottle is closed with a pinch valve and a catch container is placed under the head. The shut-off valve for the purge line is then momentarily turned on, forcing the xylene through the ink supply line and the ink jet head openings.

9.2 Siemens Pt80i Head Modifications

The Siemens Pt 801 ink jet head is a "drop-on-demand" style head purchased directly from the Siemens Corporation. It has been designed with 12 nozzles arranged in two vertical rows, each nozzle having a diameter of $76 \mu \mathrm{~m}$. Its original intended purpose was the printing of
alphanumeric characters onto paper using a $12-b y-9$ dot format. The Siemens driver board that is being used with this system has been specifically designed to be used with this print head.

For this application, certain changes had to made to the print head. First, since ink had to be ejected down onto a substrate resting nn a horizontal table, a head mounting mechanism had to be designed for the head so it could accomplish this. It was originally designed to be mounted so that ink dropiets were ejected along a horizontal line rather than downward in a vericical line as needed for this system. Along with this was incorporated a means of adjusting the head to substrate distance.

The original ink container could no longer be used in this new position so the original ink well orifice was enlarged to allow the attachment of a 2.5 mm I.D. teflon tube. This, then, was sealed into the ilk bottle cap as described cerlier. The Tefion tube was essential here because it re:sists deterioration due to the presence of xylene. Other tubing used in the ink supply and pressure system is 3.175 mm I.D. tygon tubing. The original pt801 head also had provisions for monitoring the ink level, wiping the nozzle array plate, and maintaining the nozzle array plate at a constant temperature. The required new method of supplying ink to the head made it impossible to utilize the ink level sensing system and the head wipting mechanism was simply not required in this application. 'Sesting determined that the array plate heating system tenced to dry the xylene-ink solution so it was disabled.

In studies to date, only one of the twelve ink head tracks has been
$u \cdots$ at any one time. This was done 80 that an attempt could be made to cptimize the various parameters associated with the printing of well defined lines. Testing seemed to indicate that a head to substrate spacing of approximately $300 \mu \mathrm{~m}$ printed well defined lines down to widths of $150 \mu \mathrm{~m}$. It is hoped that by reducing the nozzle orifice diam eters and by deterwining optimums for other parameters, that it may be possible to produce high quality lines in the range of $50 \mu \mathrm{~m}$.

9.3 Ink Pressure Control System

The Dwyer model 3000-00 Photohelic Pressure Switch/Gage compares atmospheric pressure to the pressure in the sense line from the 450 ml container. Accordingly, then, it controls the two solenoid valves to maintain a relative constant pressure in the container. Using this method a pressure somewhere in the range of 0.05 to 0.1 inches of water is established in the polyethylene container.

The Dwyer unit, mounted on the right ide of the equipment cabinet, has a range from 0 to 0.25 inches of water. The device is adjusted by setting an upper and lower pointer on the 0 to 0.25 scale. For this application, the lower point has been set at 0.05 inches of water and the lower at 0.15 inches of water. The actual meter movement pointer fluctuates with the slightly varying pressure. If the pressure gets below the lower set point then the intake solenoid is energized, opening the valve and allowing nitrogen to flow into the container. This causes an increase in pressure and as soon as the pressure is just slightly above the lower set point, then the solenoid is deenergized and the valve closcd. The exhaust valve, during this time, has, of course, been

A. 63

closed. Should the pressure in the container increase beyond the upper pressure set point, then the exhaust valve would be opened and remain in the open position until the pressure dropped slightly below the upper set point. It is in this fashion that the Dwyer controller maintains a fairly constant pressure in order to offset a small portion of the static vacuum at the ink jet nozzles.

The Sporlan brand solenoid valves are model W3Pl. They are 115VAC devices which are normally closei in the deenergized state. As shown on Fig. All, the pressure regriator between the nitrogen gas source and its shut-off valve must be adjusted to a point below 25 inches of water for the system to work properly.

9.4 Purge Sjstem

The purge system has been provided so that the ink head nozzles and the supply tube can be flushed with xylene after printing is finished, when changing from one ink to another, or whenever the nozzle orifices should clog for any reason. To purge the system, first close off the pressure line ruming from the 450 cubic centimeter container to the ink botile. Replace the ink bottle with a bottle containing xylene and piace some kind of catch container under the ink jet head. Verify that the nitrogen gas source regulator for the purge system is set to a point no greater then 1 p.s.i. Now, opening che purge line shut-off valve briefly two or three times forces the xylene throing the ink supply line and the nozzles. This purging opertion should be done any time that the system is going to set idle for any more thar ε few hours.

The viscosity and surface tension of the water iassei Sicmens ink were measured at $25^{\circ} \mathrm{C}$ and found to be $18 \mathrm{mPa.s}$ and $47 \mathrm{mN} / \mathrm{m}$, respectively. These values were used as starting points for ink development although it was appreciated that both the viscosity and surface tension of the Siemens ink at the nozzles would be lower due to the heater used in the head. The basic ink chemistry selected was metallo-organic compounde with oxygen as the hetero atom bridge because of the backg=ound developed during earlier studies in the Turner Laboratory. Xylene was selected as the solvent because the desired compounds have a high solubility, and because it has a low viscosity and a high vapor pressure. A silver conductor was chosen for evaluation of ink jet printing partly for economic reasons, and partly because preliminary experiments showed that good adhesion to ceramic substrates could be achieved without the addition of base metal compounds.

The silver compound selected was Ag neodecanoate with formula

wher_ $R_{1}+R_{2}+R_{3}=C_{8} H_{19}$. The tertiary ligand gives enhanced solubility in xylene over secondary or primary ligands, and the ten carbon atoms is a good compromise between solubility and metal content. The $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{COOAg}$ contains $38.6 \mathrm{w} / \mathrm{o} \mathrm{Ag}$, and the solubility in xylene is such
that solutions containing more than $20 \mathrm{w} / \mathrm{o}$ Ag are stable. Upon heating in air at a rate of $10^{\circ} \mathrm{C} /$ minute, silver neodecanoate begins to decompose at $175^{\circ} \mathrm{C}$, has its maximum decomposition rate at $230^{\circ} \mathrm{C}$, and all carbon is gone at $250^{\circ} \mathrm{C}$.

Several procedures are available for synthesizing silver neodecanoate, and the one selected was a double displacement reaction following the equations:

$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{19} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{OH}+\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{COONH}_{4}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{9} \mathrm{H}_{19} \mathrm{COONH}_{4}+\mathrm{AgNO}_{3}+\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{COOAG}+\mathrm{NH}_{4} \mathrm{NO}_{3}
\end{aligned}
$$

This synthesis route eliminated the high temperatures required in some procedures, and eliminated the possibility of introducing any inorganic constituents other than silver. The $\mathrm{NH}_{4} \mathrm{OH}$ was added to the neodecanoic acid while stirring at room temperature to produce the ammonium soap. An aqueous solution of AgNO_{3} was then added while stirring, and the Ag neodecanoate precipitate repeatedly washed with hot ($80^{\circ} \mathrm{C}$) water. The precipitate would typically analyze $35 \mathrm{w} / \mathrm{o} \mathrm{Ag}$, which indicated that some water was retained. Equal volumes of water and xlyene were then added, the 2 phase liquid agitated for 2 hours, and the organic layer removed and filtered after separation. The silver concentration in solution was tiaen increased to the desired value by vacuum distillation of some of the solvent at room temperature. The three inks used for printer evaluation had the properties given in Table 9.1.

Table 9.1 Properties of Experimental Silver Inks.

Ink No	Viscosity $(\mathrm{mPa.s})$	Surface Tension $(\mathrm{mN} / \mathrm{m})$	Density $(\mathrm{g} / \mathrm{ml})$	Ag $(\mathrm{w} / \mathrm{o})$	Ag neo- decanoate $(\mathrm{w} / \mathrm{o})$
1	3.6	35.4	1.058	16.0	41.5
2	5.5	39.3	1.072	17.1	44.3
3	10.2	40.0	1.088	18.3	47.4

10. SOFTWARE

The program controls two Superior Elctric indexer and stepper motor driver boards. Written $i_{i n} 8080$ assembly language, it is designed for a minicomputer with parallel in/cutput ports. The stepper motors move an $x-y$ table in $25 \mu \mathrm{~m}$ increments for a 5 cm maximum travel. This program requires a data file which contains information for a pattern. Data are produced by reducing an existing pattern to lines and rectangles or constructing any pattern out of lines and rectangles. A flow chart for the main program is shown in Fig. Al2, and the main program itself is given in Appendix A2.

The indexer and driver boards are part of the Superiod Electric "Modulynx" (tm) system. The indexer board (PN.IDD008) contains logic for a "smart" interface. There are two versions of the interface, the simpler uses two handshaking lines and enable lines for the X and Y axes. The indexer board has a parallel 8 bit data buss. The buss and the handshaking lines are connected to two parallel ports (see Fig. 5). The addresses of the two ports are 10 h and $12 \mathrm{~h}(\mathrm{~h}=$ hexidecimal). The indexer data buss is connected to the 10 h port. Indexer commands and index (move) data are passed over the buss in ASCII code. The indexer

Figure A. 12 Flow Chart for Main Program.
board receives input data which specifies the number of steps to be taken and the directicn. The port at 12 h is split so half the bits are inputs and half are outputs. Below is a diagram of the connections to the 12 h port.

The diagram indicates the function of each bit in the lin port. Paralle1 poit input/output is done by means of the "in" or "out" commands in conjuntion with the 'a' register. Each bit can be considered part of a eight bit binary number that is addressed by the hexidecimal number below it. The far right bits are assigned to the enables so that a one in the 01 h position enables the x axis and a one in the $02 h$ position enables the y axis. The program sections boxy and boxx control the enables. The enable command (01 h or 02 h) is passed through subroutines move or movel to subroutine hand which controls the ports. The 08 h bit is used for the ink jet aead on/off control. This bit (output line) is manipulated by subroutine movel. The 80 h bit is the busy line and the 40 h bit is the datataken line. These are handshaking lines which regulate the flow of data to the indexer boards and moniter progress of table moves. Note that subroutine hand is used all through the main program. It along with movel (a modified form of hand) control both
ports. Often the "a" register is loaded with a "mvi" command immediatly before hand is called. Whatever is in the "a" register is put on the intexer buss through the 10 h port. Hand alsu controls the 12 h port, and so outputs the enables and calls the handshaking routines dataken, busy and wait. Listed below are data that provide board initialization and coordinates for a rectangle and a line.

DATA

one	org 1000h	
two	db	
chree	db	02h, ${ }^{-} \mathrm{B}^{-},{ }^{-}\left\langle{ }^{-} \mathrm{O}^{-}, \mathrm{A}^{+},\right\rangle^{-}$
four	dw	0000,0000,0000,02dch,0023h
five	dw	02dch , $0000 \mathrm{~h}, 2 \mathrm{~d} 00 \mathrm{~h}, 0000 \mathrm{~h}, 0270 \mathrm{~h}$
six	dw	2e2e, 2e2e, 2e2e

The org statement directs the assembler program to begin at line 1000 . Data starts at memory location 1000 n when loaded. The db and dw directives define data to be stored. The next two lines initialize the indexer boards. The $01 h$ in line two enables the x axis, and similarly the 02 h enables the y axis in Ine three. The indexer comand B is the address for the base speed register on the indexer board. The brackets open and close the register and the hex number $0 A$ sets the base speed to 400 steps per second. The base speed can be set to many different speeds and the indexer manual lists the various settings. Quotes direct the assembler to leave ASCII code. Subroutine bdset passes the iaitialization data directiy to the indexer. This subroutine can be easily changed to pass the acceleration and high speed commands if they are needed. Line six contains ASCII code for the end of file symbol,a
period. If the program reaches end of file it jumps to the microcomputers moniter prigram. Lines four and five are pattern data for a rectangle and a line

FORMAT

four	FORMAT				
	0000	0000	0000	02dch	0023h
	x index	y index	ydir,xdir	xdim	ydim

Each ten byte line represents a printed rectangle or line. The x and y indices are the distance to the lower left corner of the rectangle. In this example that point is the origin for the pattern so the index values are zero. The index direction is specified by ydir and xdir, 00 for positive, 2 d (hex) for negative table moves. When printing a line, rectangle,or indexing, the table will move in a negative direction while the printing progresses in a positive direction on the substrates. For this reason, index directions across the print are 2 d (hex) for posit.ive, 00 for negative moves. The xdim and ydim values are the dimensions of the form to be printed. Subroutine load moves the x and y index into the registers for Goto Subroutine goto, which moves ydir and xdir into temporary storage. Goto then indexes the table to the desired location using subroutines move,doit and add3. Then Load puts the xdim and ydim in registers for testing. The printing action starts in a sweep of the long axis, jogs up the short axis, sweeps back, then jogs up again untill the jof, value is decremented to zero. No printing occurs in
jogs. The printing sweep starts in the lower left corner of the rectangle. Often that point for the first rectangle is the origin for the entire pattern. The printing sweeps will end in the far upper right corner of the rectangle if the jog axis value divided by five (jog amount) is odd. If it is even, then the sweeps will end above the starting point

When a line is desired, the perpendicular axis coordinate is set to zero. The table position will be left at the end of the line. Index values to the next form should be calculated from that point. Lines cannot be printed in a negative print direction. Indexes to a new line must go towards the pattern origin and print moving away. The dimensions are tested to see what axis has the longer dimension then the axis with the shorter dimension becomes the jog axis. The program jumps te xjog or yjog which are nearly identical except for the axis the jog motion takes place on. Jog values have been set to $125 \mu \mathrm{~m}$ due to physical limitations of the ink jet head. Jog values could be set to any value by changing the number in subroutine jog. The shorter dimension of the form to be printed must be a multiple of the jog amount or zero.

The heart of rectangle printing is the program sections boxy or boxx. They are the same except that the jog axis is changed as mentioned before. Once in boxx or boxy the printing action will occur untill the jog axis value is decremented to zero. For this reason it is important that the smaller dimension of the rectangle be a multiple of the jog amount (5). If the program ends up somewhere totally unexpected the smaller dimension amounts should be examined. Another possible problem area is that all data are expected to be hexidecimal. This
means all dimensions of a pattern to be printed must be converted to hexidecimal. The last major subroutine is Add3. The primary function of Add3 is to convert the hexidecimal data to ASCII code. The indexer board expects six place numbers for each index value. Each digit is passed as two in conformance with ASCII code. Essentially ASCII code requires a ${ }^{-3-}$ prefix for numbers up to nine and $a^{\prime \prime} 4^{\prime}$ prefix for hexidecimal letter-numbers. Add3 outputs the sign of the index, then two zero places (that application doe not require indices of great magnitude), and the next four places are taken from the de registers and passed in ASCII. The subroutines letck adj4 and rart are part of add3.

A microcomputer controlled switch for the the ink jet head trigger signal is located on the inverter board (Fig. A3). For it, an output line was needed that goes to a high state at the same time a printing pass was started. When completed, the output line had to return to a low state. The output ine is connected to the inputs of two "AND' gates. The external oscillator is connected to the other input. Due to bleed through of the signal, two gates were used to do the job of one, as shown in Fig. A3.

The main program had to be modified several times to find a satisfactory method of controlling the line along with the findex board. The result was subroutine movel,a modified form of subroutine hand. As mentioned in the program description, the $12 h$ port was used for handshake 1ines. The primary subroutine for handshaking and passing data is Hand. The indexer board accepts data when the low (refer to the timing diagram). The indexer swings the "not" data takeli line low when $1 t$ has reseived the data. Then the microcomputer turns off the enable at which
time the indexer board does a move. A minor change in the command that does that allowed two output lines to be controlled. The commands are as follows in subroutine hand.

mui a,00 ;load a register with zero	
out 12 h	;reset enable

The change was to load " a " with 08 h instead of 00 . Then the enable line is cleared while the 08 h line is set to one. Thus the command t that Initiates motion is the same command that turns on the head. After the move is completed, the indexer board switches the "not" busy line high. The microcomputer turns off the head when it detects this low. Remember that all lines between :he SCCS- 85 board and the indexer boards are inverted (Fig. A5). A summary of the operating procedure is given in Table 10.1.

The "joysk" subroutine at the end of the main program is a new subroutine just developed. This subroutine enables joystick manual movement of the table to a desired position. The TRAP interrupt of microprocessor 8085 is being used in this system. After the interrupt button nas been pushed, the microprocessor jumps to location 1024 h where a jump to "joysk "command is stored. The "joysk" decects joystick movement direction data from input port B (see Fig. A5), and outputs appropriate commands to the indexer boards.

Table 10.1 Operation Procedure: for Ink Jet Printing

START MACHINE

1. Turn on main power switch.
2. Turn on $+5 \mathrm{~V},+12 \mathrm{~V},+40 \mathrm{~V}$ switches for Siemens driver board power.
3. Turn on "MOTOR" and "ENABLE" switches and set MAN/EXT switch to EXT.
4. Load substrate into brass block recess.
5. Turn on vacuum pump.
6. Turn variac to 40% for heater.
7. Nait 10-15 minutes for substrate to stabilize in temperature.
8. Turn off "internal source switch".
9. Add the MOD ink to the ink supply system and check for proper operation.
10. Switch on one of the twelve nozzle control switches.

1i. Turn on X-Y Power switch.
12. Conneci frequency oscillator ic "external oscillator input".
13. Turn on exteraal frequency oscilator.

4.75

14. Set frequency to $50-150$ Hz.
15. Adjust the amplitude of the oacillator output to 5 volts peak-topeak.

LOAD PROCRAM:

1. Reset the SCCS-85 board.
2. Initialise the aicroprocessor and instruct it to prepare to load by enteriag firat a " d^{\prime} and then a " 1 ".
3. Download the min progran from the hose coaputer to the SCCS-85 board.
4. Again send a ' 1 ' to the microprocessor.
5. Download the pattern data progran from the bost computer to the SCCS-85 board.
6. Instruct the adcroprocessor to process the pattern data and start the printing operation by typing in first $\quad \mathrm{g} 1900^{\circ}$ and then a 'return'.
7. When the printing operation is completed, the icroprocessor will send a prompt to the terminal.

APPENDIX A1
SCCS-85
USER'S MANUAL

3ccs-85 userfe manual

reve

IAOLE OF COMTENTS

Preface 1
1.0 Introduction 1
Features 2
CPU Group 2
ROM Group 3
fAM Group 3
Timer Group 3
pIO Group 4
Serial I/S Group 4
offa Group 5
Other Features 5
2.0 Assembly 6
Parts list 6
Preliminar; comments on assembly 7
CPU Group 9
ROM Group 10
2708 EPROM Installation 10
Three-voltage 2716 EPROH installation 11
Single-voltage 2716 EPROM installation 12
RAM Group 13
Timer group 14
Parallel I/0 Group 14
Serial I/O Group 15
DMA Group. 16
Final Assembly 16
3.0 Hardware Engineering 18
CPU Clock Rate 18
ROM Selection. 18
RAM Options 13
Timer Group options 13
Interrupts 21
Serial I/O č2
SOD, SID lines on 8085 23
Bus Extension 23
Connectors 24
Additiorial I/O Select Lines 26
4.0 Software Engineering 28
Power-up information 28
RAM. 28
Peripheral Chip I/O Addresses 28
Initialization of Timer and USART for Serial I/O 29
interrupts 30
5.0 Hardware Reference 31
Connector Pin Assignments 31
Bus Jignal Definitions 32
Schematics 35

PREPAE

To use the SCGS-85 to its fullest, expecially wen hordvare reconfiguration is being asde, it is strongly recomended that the user obtain a copy of she "8080/8085 User's Monual" from Intel. This manual contains detailed infrarastion on all chips used or the sccs-35 (extept standard TTL parts). lso on the recomended reading list is the "8080/8085 Assembly Language Progaming Menual" wich uibl be useful when writing assembly language routines and prograns.

1.0 INTROOUCTION

The SCCS-85 is versatite 8085 -based aicrocomputer system residing on a single 4.5 by 7.0 inch PC board. It may be used by itselr as poweríul control computer in a variety of control applications such as peripheral $5 / 0$ controllers, programasle device controllers, and the like. or, with the addition of a keyboard, video interface and monitor it may serve as a complete microcomputer for the hobbyist, with capabilities for easy expansion as the need dictates.

By extending the SCCS-85's bus to additioral cards, mexory capacity can be extended to a full 65K bytes, additional $1 / 0$ devices ay be added as needed, the bus alay be buffered to permit aditional bus loading, etc.

Flexibility was the prime design goal of the SCCS-85. The card is jesigned so that for particular application only those chips required need be installed. For example, in applications which do not require the 4 -channel DMA controller, the two chips comprising the onA GROUP are sieply anitted from the board. If, at a later date, it is decided to add the onA capability cie need only cut two traces on the underside of the board and install the chips.

Furthermore, extensive provisions have been made in the PG bcard to permit configuring the $1 / 0$ devices in the way which best suits an application. for example, a group of urap-posts are provided which allow any combination of two interrupts from the SERIAL SROUP and the PIO GROUP to be coabined into a single interrupt line to the 8085, thus allowing these devices to operate in various modes of interrupt-driven and/or polled 1/0.

While the sccs-85 has extensive provisions for reconfiguring the components to suit an application the PC board has also been etched so that with no modifications at all, the board is already configured to operate as a small computer commitcating via RS-232 with terminal. Wixh no modifications, the board provides the mecessary hardare to imolement a real-time clock, programable signal generacor, and the like.

Lastly, the sccs-85 has been designed with the user's pncketbook in mind, All chips us.d on the sccs -85 ore easily obiainable and at modest costs. I/O as well as the system bus connectors are inexpensive, easily-abtained A P Products
jumper headers. These are available in either straight or right-angle configurations, and either male or feaple. This allous connections to be made with ribbon cables, by plagging into other bosids, er even virs-wrapping to individual pins. And only those connectors actually needed have to be installed.

FEATURES

The SCCS-85 CPU is divided into seven functional groups: the CPU group, ROM group, RAM group, SERIAL I/O grctp, PARALLEL I/O group, TIMER group, and dMA group. While some groups, like the iPU, RAM, and ROM group are mandatory and must be present on any SCCS-85, the remaining groups are roptional and need only be present on the board if the application requires it.

Following is a description of the features of each group, suggested applications, and user-definable options for that group.

* CPJ GROUP. Ths SCCS-85 is based on the Intel 8085 CPU chip. This MPJ was chosen because of its extensive provisions for interrupts, MPU support, and ease of interfacing with a very low chip count, plus its widespead software support at present time. The address bus is fully denultiplexed and the control signals have been decoded into individual memory-read, memory-urite, I/O-read, I/O-write, and interrupt-acknouledge signals to anke expansion easy.

Very 4 lexible interrupt facilities are available. The noral 3060 -type interrupt/interrupt-acknouledge protocol can be used by external peripherals which can place the RESTART instruction on the bus. Another, easier to use facility includes three separate RST lines, each of wich can directly interrupt the CPU causing the CPU to jump to one of three different locations in memory, with NO other hardware required. One of these liries way be used by the TIMER group to interrupt the CPU at equal time intervals, after programable delays, stc. Another is alailable for using the serial and/or parallel interfaces in interrupt mode. The third is left available on the bus for user purposes. A final interrupt line, sieiler to the RST lines, is the TRAP line, which causes an immediate "panic" jump to a location in memory for such purposes as power-fail sequences, hardyare prors, etc.

The 8085 also provides a 1-bit intput and 1-bit output port. Two 8085 instructions allow the bits to read, and set or reset.

The 8085 may run at speeds up to 3 MHz, but if the TIMER group is present maximu of 2 MHz is recomended, allowing the timer clock to be derived from the CPU clock. Alternativly, the timer clock may be supolied independently, allowing the 8085 to run at $\mathrm{j}_{\mathrm{m}} \mathrm{m}_{2}$, so ing as sufficiently fast RAM and ROM are used. The maximum allowise a anory access time is 1.5 times the CPU clock period. for example, for an 8085 running at 3 AHz the CPU clock period is 333 ns , so the memory access time is 600 ns . Rafis used in a 3 MHz system, then, must have on access diad dest that 500 ns.

When poser is applied to the SCCS-85 the CPU is outsoatically reset, and begins exacution at momery location co00n. Space is avialable on the pic board for a memal reset pushbutton, plus a signol on the bus may be pulliad Low to reset the CPU. A RESET Line coming FRON the CPU is available for resetting other devices.

RON group. The SCCS-85 has roon for 2 K or 4 K of PROM. As etched, the board accepts two 2703 EPROMs, giving 2 X of ROM. If more ROM is desired pads and traces on the board are organized so that it may be reconfigured to accept two 2716 EPAONs, giving $4 K$ of RON.

Memory locations 0000 h through DFFFh are reserved for the on-board rom. This constitutes the first 4 K of memory. At least ans ād is required for operation of the SCCS-85, locared as $\mathcal{G C O U}$ where execution begins when the systex is powered-up.

If 2708 rons are used, a +12 and -5 volt supply will be needed. If the serial interface group is used along with the RS-232 drivers +12 and -12 volts will be required for them, so a 5 FV zener diode and resistor are provided on the bourd to derive the -5V from the -12 V supply. If the new $+5 v$-only 27165 ara used instead, no supplies will be required for the RONs excapt the normai isv supply.

RAM group. Up to $4 K$ of RAM may be intstalled on the SCCS-85, in increments of 1 K bytes. Each 9 K block of Rell consists of a pair of $21141 \mathrm{~K} \times 4$ static rams; one for the upper and one for the lower four bits of each byte. ram addresses range from 1000 h to FFFFh , the second 4 K block of memory.

Other memory-related pofnts: ROM and RAM together occupy the first dk of memory. The memory is fully decoded, meaning that this 3 K block does not "appear" at any other memory locations within the 65K byte address space. This makes it possible to expand the ScCS-85 memory on additional boards. To make external memory decoding easy the SCCS-85 generates a MEMSEL signal on the expansion bus which indicates if a memory location currently being read or written is within the first 8 k block of memory.

TIMER group. In many control applications events occuring in real time nust be monitored and/or controlled. A simple reat-time clock required that the CPU be interrupted at a constant rate. Other applications may require that the time interval between two events be measured, pulses of a particular length or signals of a particular frequency be generated. The TIMER group, using on Intel 8253 peripheral timer chip, provides a flexible means of performing these and other tasks.

The 8253 contains three separate, identical 16-bit counters. Earh counter may be programmed by software to operate in one of six different modes. Mode 0 allows the CPU to comand the tiaer to interrupt the CPU after a programmed delay. Mode 1 is a programable one-shot for generating pulses of programable length. Mode 2 allows pulses to be generated at a programable rate, while mode 3 generates a square wave of programmable frequency. Mode 4 produces a single pulse after a programable delay. Mode 5 allows hardware trigger inpus to initiate a programable delay after which a single pulse is produced.

Each councer may be read at my time to ascertain the contents of the counter. Thus, if the timer's clock input is supplied externally the result is a harduare event counter wich the software can read and modify at any time. Furthermore, even if the timer's clock inputs are supplied on board, an individual enable input for each is available to allow external hardware to enable counting.

As configured, one timer's output is connected to the RST7.5 input of the 3085 . Thus, the output of the timer is used to interrupt the CPU at a programable rate, after a programable delay, etc. Another timer's output serves as the baud rate generator for the serial interface group, thus allowing a fully-programable baud rate for serial $1 / 0$. The third tiaer's cutput is available for external use at connector 13 .

If other configurations are desired jumpers in $p f$ way be changed to allow each timer's clock and enable input and each timer's output to be connected as desired.
** PIO group. An Intel 8255 parallel $1 / 0$ interface ctiop provides 24 lines of parallel I/O for user applications. The chip is programable in several different modes including 24 lines of basic input/output, one or two strobed 8-bit I/0 ports with handshaking and interruft control lines, strobed bi-directiongl 8-bit bus with 5 control lines and interrupts, or combinations of the above. The SCCS-85 allows the PIO group to be handled under programmed control, interrupt control, or a combination of the two.

All 24 I/O lines plus GND and $\$ 5 v$ are available at connector $J 2$.
SERIAL I/O groun. The Intel 8251 USART chip provides a programable zhoice of syachronous or asynchronous I/O. Synchronous serial $1 / 0$ is useful for such applications as using the Sccs-85 as an intelligent tape controller where data is recorded as a combination of both clock and data. The 8259 can be commanded to search for the sync bytels which precede the data, as in IBM's bi-sync format.

A more coman application is using the 3251 as a serial $1 / 0$ port conn:cted to a terminal or another computer. For these applications RS-232 drivers and receivers are provided on the SCCS-85 for the transmit and receive data lines, plus the modew-control lines $\overline{C T S}, \overline{R T S}, \overline{D T R}$, and $\overline{D S R}$. As configured, the modem control inputs 5 ESR and ETS inputs are disabled, as most terminals do not support thein. They may be easily enabled for use on modems by simply cutting two option traces on the board.

Using the timer group as the baud rate generator, baud rates from less than one bit per second to 9600 may be programed. If a 3.5795 MHz crystal (color-burst) is used on the sces-85 baud rates of 19,200 and 33,400 are also available.

Since the RS-232 lines usualiy use a standard 25-pin D (delta) connector, special provisions have been made on the SCCS-85 PC board for mounting one of these connectors very easily. The most readily available 25-pin D connectors are the type witi the solder-cup pins. By apparent coincidence the two rows of pins on these connectors are $1 / 16$ th inch apart, just the thickness of the SCCS-8S PC board. Taking advantage of this fact, wide PC traces extend to the extreme edge of the board in a patrern that exactly aligns with the pins on a 25 -pin D connector. Thus, a connector may
be slipped onto the edge of the PC baerd and ite pins soldered directly to the PC traces, thereby wiring the comector with the standard pinout ond rigidly mount ing it.

If the D connector must be mounted external to the PC board, connector J6a is provided. Since o conrectors are available uhich criap directly to a 25-pin ribbon cable b ih in turn crimps to atandard female ribbon cable connector, the pinout of $j 6$ a is such that the result is ecorrectly vired 0 connector.

* Onf group. Some applications require that blecks of data be rapidly transferred directly from memory to peripheral and vice-versa. Examples include disks and CRT controller chips such as the Intel 8275. For these apolications the DMA group vith its 8257 provides four separata channels of DMA (direct memory access) for supporting up to four DMA peripherals. Having the DMA controller on the sccs-85 board makes ti as easy to add a DMA peripheral devite to the systea as a non-DMA peripheral.

ALL DMA request and grant lines, as well as the terminal count line (indicating when a DMA transfer is complete), are available at connector d .

OTHER TEATURES:

* The PG board is destgned to be mounted in one of two aethods. As supplied, the sCCS-85 board is 4.5×7.0 inches. four mounting holes are provided near the corners for mounting the board, adding rubber feet, or mounting a protective plexiglas cover above and/or below the board for protection. in ardition, four large pads are provided for connecting a power supply cable directly to the board.

In applizations where the system is to be expanded with a mother board, $1 / 6$-inch is sheared from each end of the board. Now, a right-angle AP connector is finstalled in the bus connector location and the board can be perpendicularly-plugged into a mating AP female connector on a mother bard, which now supplies the power to the board through the bus.

* Consideration has been given to making the board as easy to assemble as possible. The PC board is rather dense, yet nearly all conductors-between-? C-pins are on the top side of the board to minimize the possibility of solder bridges. Pin 1 of ach IC is identified on the top and botron sides of the board, and all holes are plated-through. Both sides of the board have a solder wisk, and the top is silk-screened with a component placement "ruad-map".
** ${ }^{\text {eor making more extensive muifications to the sccs-85 spare is-pin IC }}$ pattern is provided. This allows an edditional IC to be mounted or the Doard and used for any desired purpose.

2. ASSEMBLY

PARTS Lisit

```
CPU GRTOUP & NISC. (Eandatory)
\begin{tabular}{|c|c|c|}
\hline U1 & 808 CPU & \\
\hline U2 & 74LS373 & 8-bit tri-state latch \\
\hline U3 & 74LS257 & denultiplexor \\
\hline U4,419 & 74L5138 & decoder \\
\hline U17 & 74LS54 & quad MOI gate \\
\hline U18 & 74LSO2 & quad nop gate \\
\hline R1 & 1K & resistor \\
\hline R2 & 75 ohe 9 & watt (see ROM GROUP assenbly directions) \\
\hline R3 & 1 K & resistor \\
\hline C2 & 20.0 F & ceramic disk capacitor \\
\hline C3, 64 & 100uF & tantalum capacitor \\
\hline C5-C8, \(\mathrm{Cl}^{\text {P }}\) & IuF 35V & tantalum capacitor \\
\hline D1 & 1N4733 & \(5 V\) zener diode, 1 watt \\
\hline D2 & 1N4001 & diode \\
\hline \(\times 1\) & & erystal 3.57 (color burst) or 4 MHz (see text) \\
\hline SW1 & SPST N.O. & pushbutton suitch (optionai) reset switch \\
\hline J1 & & S0-pin connector J 1 (see text) \\
\hline C9-Cl6, & C20 0.14F & caramic disc ormonolithic eapacitor \\
\hline
\end{tabular}
```

ROM GROUP (mandatory)
U5,U6 2708 (0,2716 if board altered)
NOTE: US is optional
RAM GROUP (1K mandatory, other 3K optional)
U7-U14 2114,2114L, etc. 1X $\times 4$ static ram, 450 ns or less
- 300ns 2.114L chips highly-recommended
U10, U14 - 1st 9 K of gAM
U9, U13 - 2nd $1 K$ of RAM
U8, U12 - 3rd ik of RAM
U7, U11 - 4th iK of RAM
TIMER GROUP (optional)
U20 8253 Intel 3-channel timer chip
$\mathrm{J3}$ ar 14 10-pin connector $\mathrm{J3}$ or 40-pin connector 14
PIO GROUP (eptional)
J21 8255 Intex programable peripheral interface
J 2 or $\mathrm{J4} 26$-fin connector for Jà or 40-fin corinector
for 34

PONER SUPPLY

Board requires $+5 V$ reguleted plus or aimus 5%; if 3-voltage EPRons or $85-232$ options ar: used, also requires plus and minus ? 2V at i50 ma regulaté to 10\%. Fivervolt supply current is typically 1.25 A for fuilympopulated SCCS-85.

SERIAL I/O GROUP (optional)

Abstract

HOTE: Because of the high component density of the SCCS-85 PC board successful assembly requires some degree of expertise in the soldering of any very small connections. A low-wattage pencil-type soldering iron and fine rosin-core solder is a must! If you feel that your expertise or equipment are not up to the task and cannot entist the help of a friend, please do us the faver and return the board for a refund.

PRELIMINARY COMENTS ON AESEMRLY

It is advised when assenbling and bringing up an SCCS-85 system for the first time that the ivard be asserbled in the minimum ronfiguration with no hardware reconfigurations made. This means installing the CPU group, one 2708 with the SCCS-85 Monitor, 1 K bytes of RAM, the Timer Group, and Serial Group with RS-232 interface. This will simplify debugging the system should it become necessary.

Note that by simply installing the above components and making no other changes the SCCS-85 can be connected to a terminal and be operated with its operating system.

Before beginining assembly it is a good idea to inspect the board for any flaws in mafacturing. They are much easier to find now than after the board is assembled, and XF MO SOLDERIMG HAS BEEN DONE ON THE BOARD a defective board may be returned for replacement. Look for shorted or broken traces by holding the board up to a bright light.

It is generaliy recomcended that sockets be used for all ICs on the board to facilitate replscement should it ever become necessary. However, some applications requiring very high tolerence to vibration or corrosive and/or dirty environaents may be best served by first testing and burning-in chips, then soldering then directly to the board. In all eases sockets will probably be used for the prome, and all sockets whould be of a high quslity. A recommended type (sold by James Electronics) have pins which contact the flat SIDE of the IC pins over a broad surface area, and plugging zunplugging the it seems to result in less damage to the IC sockes than the II low-profite sockets. whith contaci the ragged EDGES of the IC pins. Gold-plated IC sockets are probably a good idea in hostile environments though not absolutely necessary ir: most other applications.

When installing IC sockets, be sure to note that the pin-i designation on the socket (most have them) is oriented properly on the PC board.

In other critical applications where the board may be subject to repeated flexing buch as plugging into and out of a mother board) a further precaution is sometimes taken to insure the integrity of through-plated holes. After all components have been soldered in place (IC sockets, etc.) all remaining feed-through holes are filled with a small amount of solder. This can be done from the botiom side of the board, although a bit of practice is recomended to judge how much soider to put in each hole where you can't see the other side. In general, filling the feed-throughs is not needed, although it doesn't take very long to do and may enhance one's peace of mind.

It is probably best that sorkets not be installed where options are being omitted (e.g. U15 and U16 when the DHA option is not installed). If the option is later installed a new socket installed then would be preferable to one which has been accumulating dirt and corrosion for a period of time.

After the board has been assembled but before the ICs are installed, you may want to deflux the bottom side of the board. This is probably only a cosmetic improveruent and is not recomanded unless ALL feed-through holes have been fillec. Even shen, extreme caution aust be exercised to prevent the defluxing solution from getting into the IC sockets on the top side, a virtual disaster since when it evaporates it will leave a small film of flux on the pins.

The remainder of the assembly is eategorized into functional groups.

CPU GROHP

The CPU group is mandatory.

STEP 1:

Install:

$\square \mathrm{CB}, 64$	100uf tantalum capacitor. OBSERVE POLAR
$\square \mathrm{R1}, \mathrm{R3}$	1K ohm, 1/4 watt resistor
D 02	IN4001 diode or equiv. OBSERVE POLARITY
[SW1	momentary contact $\mathrm{N}_{\mathrm{O}} \mathrm{O}$. pustioutton stitch for DESET

STEP 2:
It is recommended that the 8085 clock be crystal controlled. It is mandatory that e crystal be used IF:

1. The 8253 timer chip (U20) is installed and requipes that it's input clock (which comes from the GPU) be accurste.
2. The 8251 USART chip (U22) is installed and its clock is derived from the 3253 timep chip (standard) or derived directly from the CPU clik signal CLK (see option under SERIAL I/O GROUP).

The 3085 itself may be run at mpeeds up to 3 iahz (using a 6 if Hz crystal) but care must te taken that at speeds higher than $24 H z$ the other components on the board will aiso be able to run that fast. Standard Intel parts yill meet specs up to 3 iahz with $300 n s$ RAMs and EPROMs, but one may have little information on parts from second-source manufacturers. 50 it mav prove less of a problem to limit yourself to 2 MHz . Furthermore, while the 3253 timer chip can handle bus accesses at 3 MHz its clock input (which comes from the CPU clock on the SCCS-85) is limited to 2 MHz , 50 running the CPU faster than that would require that the timer chip be supplied with its own clock.

It is therefore recommended that the CPU be run at 2 MHz or stouer.
ro provide crystal controlled clock, install:

If maintaining a precise CPU clock frequency is not required, and substential drift of frequency is not objectionable, the expense of the crystal may be eliminated by installing
\square install 10 K resistor in place of $X 9$
\square install 20 p capacitor in C
\square omit Cl

This information is from Intel literature and hes not been tested as yet. The above values will cause the 8085 to rur at spprox. 3 miz; somewhat faster that the 2 MHz rate obtained with 4 miz crystal. Note that using this sechntque of driving the 8085 clock will required that any serial comanications chips have their oun crystai-controlled clock, hence it is felt that thiz option has little to recommend it.

STEP 3:

Install:
(40-pin IC socket for U1
[20-pin IC socket for UZ
a 16-pin sockets for U3, U19 respectively
[] 14-pin sockets for U17, U18 respectively
-->> NOTE: DO NOT INSTALL ICS IN SOCKETS AT THIS TIME <<---
install:
D (5, C6, iuF 35V tantalum capacitors. Do not substitute C?. C8, curcuenon-tantalum capacitors! OBSERVE POLARITY!
\square P3 6-pin double-row header Coptional - see
section on INTERRUPTS under HARDUARE ENGINEERING)

This completes assembly of the cpu group.

BOM GROUP

One 2708 or 2746 EPROM is required (U6). The second (U5) is optional. BOTK KOMs must be either 2708s or 2746s; no mixing possible.

As etched, the SCCS-85 board will secept one or two 2708 EPROMs. Alternatively, one of two options may be thosen: one or two 5 V only (Intel) 2716 EPROMs; or one or two threemoltage 2716 Ef3OMs.

2708

EPROM installation
To utilize 2708 EPROMs, for which the board has been etched, wu the following:

STEP 1:
Install:24-pin IC socket for U6 (fandatory).

- 24-pin IC socket for US (optional - Install if two proms ‥: ! be used)

36pin IC socket for us

$\rightarrow \gg 0$ MOT INSTALL ICS IH SOCRETS AT THIS TINE <<O-
WOTE: It is recommended that high-reliablity sockets be used for 46 and US since they will be inserted and reaoved often. Better still would be zero insertion force sockets.

```
Step 2:
    Install:
        \square\ %hm i watt resistor (sea note below)
        5.1 volt 1 watt zener diode (1Mh733)
        NOTE: If you will nevar use more than one EPROM you may
        substitute { {20 ohm 1/2 watt resistor for R2. Alternatively,
        if you can guarantee that the total current draw from both
        EPROMs on the -5v supoly is 60 aa or less then you may
        substitute a 100 ohm 1/2 watt resistor for R2.
This completes assembly of the 2708 nOM GROUP.
```

Three-voltage 2716 EPROM installation
To utilize 2716 EPROMs wich require +5 , -5 , and $+12 V$ supolies (e.g. TMS2716, Moterola 2716, etc.) perform the following modifications and assembly. (Refer to dwing. no. 2 of schematics.)

Step 1 On the bottom side of the board find the area of the PC pattern nea: U6 and $U 6$ shown at pight. In this figure, three pads near pin 1 of $U 4$ have been labelled A, 8 , and C. Cut the trace between pads A and B.

Step 2 Install a 74LSOO IC in the SPARE IC pattern on the board. Be sure to connect $+5 V$ and GNE to the
 chip using the conveniently located traces on the bottom side of the board.

Step 3 Using short lengths of wire-wrap wire use two of the gates in the 74LS00 cnip to add the following circuit to the board:

Step 4 On the bottom side of the PC board find the ares under 46 show above. In the figure move pads have been labelled D through Q. Cut the trace between pads 0 and P. Also cut the trace between pads N and Q. Jumper pads N, L, and P together.
Step 5 Cut the trace between pads K and I. Also cut the trace between pads J and K. Jumper pad H to Q. Also jumper pad K to M.
Step 6 Install IC sockets for U_{4}, U5, and US exactly as in Step 1 under " 2708 EPROM installation" above. DO NOT INSTALL IG CHIPS YET.
Step 7 Install 01 and $R 2$ exactly as in Step 2 under "2708 EPROM installation" above.
This completes the asseably of the three-voltage 2716 EPROH option.

Single-voltage 2716 EPROM installation
To utilize single-voltage (5 V -only) 2716 EPROMs such as the intel 2716
perform the following modifications and assembly:
Step 1 Perform steps 1 through 3 under "Three-voltage 2716 EPROA installation" above.

Step 2 The figure at right shows the PC board area under IC U6. In the figure pets have been labelled D through Q. Cut the trace between pads D and E. Also cut the trace between pads F and G. Jumper pads D, G, and L together.

Step 3

Gut the trace between
pads O and P. Jumper pads P and M together.
Step 4 Install IC sockets for ITs U4, U5, and U6 exactly as in step 1 under "2708 EPRON installation" above. DO NOT INSTALL CHIPS YET.

Step 500 MOT install 22 or 0i. Instesd, on the top side of the PC board install a jumper from the and for R2 which is closest to pin 1 of di, to. the pad circled in mite near pin 9 of IC U4. See figure at right.

This coapletes installation of the single-voltage EPROM option.

RAM GEOUP

The SCCS-85 board can support up to 4 K bytes of on-board RAM. The RAM is made up of 2114 static RAMs which are organized as $1 K$ by 4 bits wide, thus allowing RAM to be expanded in increments of 1 K bytes.

For an SCCS-85 running at 2 MHz (with 4 AHz crystal) RAMs with 4SOns access tiees are satisfactory. for faster CPU clock rates, e.g. 3 HHz , 30 Ons RaMs will be needed, and are recomended for good reliability margins. In all cases low-power Raks are not absolutely necessary, but are highly recomended, as they not only reduce power consumption of the board, but a'so gererate less noise.

RAA GROUP INSTALLATION:

```
For }X\mathrm{ bytes of RAB, install
    [] 18-pin IC socket for U10
    [ 18-pin IC socket for U14
```

 \(\rightarrow \gg\) NOTE: DO NOT IMSTALL ICS IH SOCKETS AT THIS TIME <<---
 For 2 K bytes of RAM, also install
[] 18-pin IC socket for U9
[18-pin IC socket for U13
For 34 2, ives of RAM, also install
[] 18-pin IC socket for U8
[] 18-pin IC socket for U12
For 4K bytes of rair, also install
[18-pin IC socket for U7
[18-pin IC socket for U11

This completes assembly of the RAM group.

IEAER_GROUP

The timer group is optional.
As wired the 8253 timer receives its clock signal fro the cru clock. Since the maximu clock frequency for the 8253 is 2 AMz using the 8253 will require that the CPU clock rot be faster than 2 WHz . If it is then the timer group will have to be slightly reconfigured to ollow inpust of separate clock signal. For details on this see the section on Harduare Engineering.

Timer Group Installation
Install:
D 24-pin IC socket for U20
If extensive reconfiguration is enticipated (see Harduare Engineering) instell:
-16-pin double-row header in P1
If connections to the timer group aust be aade from off-bosed, install:
\square 10-pin double-row header in $\mathrm{J3}$ or, alternatively, 40 -pin double-row header in 14 (see section on Connectors)

This completes assembly of the timer group, See Mardware Engineering section for suggestions on reconfiguring tiaer group.

PARALLEL_I/O GROUP

The parallel I/O group is optiona'.
To add the parallel I/O group install:
40-pin IC socket for U21

- -m> MARNIMG <<--

When installir, the socket for U21, the P1D chip, and when installing the chip itself, sote that pin 1 of this chip will be oriented in the opposite direction from nearly all other chips. plugging the PIO chip in beckuards would likely destroy if!

Instoll:

- 26-pin double-row hesder in 22 or, alternal ively, $40-\mathrm{p}$ in double-row header in J 4 (see section on Connectors)

This completes assembly of the Presellel $1 / 0$ Group.

SERIAL_/10 GROUP

This grow is cotionsl.

The serial I/0 grow consists of the 8251 serial comanications IC, and opt ional RS-232 driver and receiver chips.

As configured, the 8251 USART receives its baud rate clock from the imer group. This allows the baud rates to be fully software-controllable, as well as minimizing chip count. Thus, as configured, installing the serial i/f group will necessitate that the timer group be present. If desired, however, the 3251 USART may be supplied separately. See Hardware Engineering.

The 8251 USART may also operate in a synchronous rather tinan asynchronous mode. This mould be used, for exampie, if the SCCS-85 mere e dedicated digital mag. tape drive controller. The serial date to and from the USART mould be interfaced to the tape head, requiring different driver chips than the 1436/1439 duo used here. Most likely then, U23 and U24 would be omitted and connections made directly to appropria:e pads. Since the vast majority of users will use the serial port for normal RS-232 commications with terminals and the like, a detailed discussion of other configurations is beyond the scope of i is manual.

To add the serial I/O group install:
D. 28-pin socket for U22
(14-pin sockets for U23, U24 (if being used)
If ihe RS-232 signals will be taken off-board through a ribbon cable, install:

- 26-pin double-row header for J6a

If the RS-232 cable is to plug directly onto the PC board, install:
(25-Din female Delta, or "D" connector. ©Sez mount ing instructions in section on Connectors.

This completes assembly of the Serial $1 / 0$ Group.

DMA_GHOUP

The DMA group is optional.
The on-board DMA group, when installed, ollows external i/0 peripherals to be as easily designed for DAA cperation as the more common program-controlled technique.

To add the DHA group, perform the following modifications and mssembly:
Step 1 On the bottom side of the PC bcard find the area under U1S shown at right. Extending from pins 9 and 10 of U1b are two short traces connecting both to another pair of connected pads. Cut these two short traces as shown to enable the DMA group.

NOTE: If the DAM option is later removed (chips U15 and U16 removed) these traces musi be rewinstalled or the SCCS-85 will not operate.

Step 2
Install:
[] 40-pin IC socket for U16

- 20-pin IC socket for U15

DO NOT INSTALL CHIPS YET
WARNING: Some 8085 chips with early date codes have a bug in them which prevents correct DmA operation. The symptons are that a DMA cycle may affect the flags in the 8085 flag - poister. The DMA transfer itself operates correctly, but the orogran being executed at the time will have unpredictable results.

This completes assembly of the bMA Group.

EINAL ASSEMALY

The assembly of the SCCS-85 is now nearly finished.
If interrupts from either the 2251 USART or the 8255 parallel $1 / 0$ chip are to be used, install:
[] 12-pin double-row header in P2

```
For directions on configuring P2 for interrupts see section on Interrupts in Hardware Engineering.
If the SCCS-85 bus is to be extended to other cards, install:
50-pin double-row header in 19
For suggestions on different connector opiions, see section on Connectors.
If the SCCS-85 will be receiving its power through the provided pads near the lower edge of the board, install:
- 4-ccnductor power cable for \(+5,+12,-12\), and GND. Connect to indicated pads.
Before installing the ICs apply power to the board. With a Vom meter check for the following voltages:
\(\square\) OV at fin 20 of \(\mathrm{U1}\)
口 \(5 v\) at pin 40 of \(u 1\)
If 2708 or 3 -voltage 2716 EPROMS are being used, check for
[-5V at pin 21 of U6
\(\square+12 \mathrm{~V}\) at pin 99 of 46
If SV-only EPROMs are being used, check fisr
\(\square 45 \mathrm{~V}\) at pin 21 of \(\mathrm{U6}\)
If the RS-232 driver is being used, check for
\(+12 V\) at pin 14 of U23
[-12V at pin 1 of U23
```

if the above voltages are not all correct do not proceed until the source OF THE PRCBLEM IS FOUND AND CORGECTED!

With all other assembly completed and any reconfigurations made, install the ICs in their proper sockets. Be absolutely sure that the IC is properly oriented with respect to pin 1, ESPECIALLY IC U21, which is reversed relative to the others. Pin 1 is indicated by a white arrow on the silkscreened top of the board. It is also indicated by a "half-moon" in each silkscreened IC locator box.

This completes assembly of the SCCS-85 board! If an EPROM containing the SCCS-85 monitor is being used refer to the manual for the monitor for a cimple program which can be entered into the SCCS-85 for demonstration purposes.

3. harduare emgineering

This chapter contains suggestions for reconfiguring various component groups on the SCCS-85 to fit your particular application.

CPU CLOCK RATE

The 8085 CPU may be operated at clock rates up to 3 MHz , although other restrictions may make 2 MHz a more practical upper limit. Since this selection must be made at time of assembly it is covered fully in the CPU GROUP section of chapter 2, ASSEMBLY.

ROM SELECTION

The SCCS-85 is etched to accept 2708 EPROMs without alteration. However, with a minimum of patching either single-supply or triple-supply 2716 EPROMs may be used, thereby doubling the ROM capacity of the board.

Like the CPU CLOCK RATE, the ROM SELECTION is best done at time of assembly. However, the change to 2716 FPROMs can be made even after all parts have been installed. For directions on making the reconfiguration see the ROM GROUP section of chapter 2, ASSEMBLY.

RAM OPILENS

In order for the 8085 to have access to a stack at least $1 K$ bytes of RAM will have to be installed on the SCCS-85. Since it is most likely that users expanding their ram will want to do so into successively higher memery locations, then the following table for RAM exponsion should be followed:
for 1 K bytes of RAM, locations 1000 H to 13 FlH , use RAMs 410 and 414.

For 2 K bytes of raH, locations 1000 H to 17 FFH , use RAMs U9, U1C, U13, and U14.

For 3 K bytes of RAM, locations 1000 H to 18 FFH , use RAMS U8, U9, U10, U12, U13, and U14.

For 4 K bytes of RAM, locations 1000 H to 1 FFFH , use RAMS U7 through U14.

TIMER GRQUP OPILOMS

The TIMER GROUP is probably one of the most versatile components of the SCCS-85. Much of the SCCS-8ิ's flexibility in adapting to dedicated control 3pplications stems from the power of the TIMER GROUP. Since the 8253 timer contains three completely independent and ider,tical timer/counters, and each can be individually programmed to operate in one of six modes of pulse generation, square-wave generation, delay timing, event, counting, and the like, nearly endless applications can be easily accomodated.

Each of "he three timer/counters in the 8253 has its own clock input, gate input, and output line. The clock input provides the events (level transistion? which the ehip's counters count, while the gete input allows the slock inpu. to be encbled or disabled. Depending on the node the timer has been prog samed with, the output will then provide the appropriate zignal such as a conitinuous square vave of programable frequency, a pulse troin of programable rate, i single pulse of programable length, asingle pulse at the end of a programatile delay, and so on.

The flexibility of the 8253 ftself is enhanced by the SCCS-85's provisions for supplying the clock and gate inputs from different sources, as well routing the out juts to various places for use.

Nearly all of the clock, gate, and output signals for the $825 s$ are routed inrough the double-rou connector pattern P1. Throughout this discussion refer to dwng. m. 4 of the schematics (Tiser Group, $1 / 0$ address decoder). Here it can be seen that nearly all of the 8253 clock, gate, and output pins are connected to the side of Pl closest to the 325 S chip itself cooth on the schematic and on the PC board as well). The various signal sources and output destinations are connected to the other side of P1. Thus, most all hardware configurations for the three timers can be made by proper connections between these two rows of pins.

In keeping with the design phtlosophy of the Sccs-85 the timer group comes pre-configured in logical structure so that with no modificaticns the timer group will function in a way that vill suit many applications. Looking on the bottoa side of the PC board between the two rows of pins of P1 can be seen the seven traces which define this configuration, and which can easily be cut later if reconfiguration is cesired following is a discussion of that configuration along with suggested applicatior.s.

Timer 0

Looking at the schematic it can be seen that timer 0 is configured to receive its clock from she 2 MHz CPU clock. This signal passes from pin 15 to pin 1 s of Pl as shown by the dotted line on the schematic. If a different source for CLKO is desired the trace between pins 15 and 15 would be cut, and the new clock connected to pin 16. The gate for timer 0 passes through pins 11 and 12 to Vcc, hence it is enabled all the time. The output for timer 0 passes through pins 13 and 14 to pad B, which is connected by cuttable traces to pads A and C. Pad A leads to connector J3 pin 3, while pad C is the RST7.5 interrupt input to the 8085. Thus, as configured, timer 0 way serve two differerit purposes. In the first, the 8085 program would enable the RST7.5 interrupt input and the output of timer 0 would then interrupt the 8085 on each rising edge of the output. Hence, with the six possible modes timer 0 can be used in, the CPU can be interrupted: 1. at a constant rate (real time ciock); 2. after a programmed delay; 3. at the end of a programmed delay initiated by either a software or hardware trigger. The second use of timer 0 would be to simply provide its output at connector J3 pin 3. RST7.5 interrupts should then be masked in the 8085.

Timer 9

As configured timer 1 also gets the 2 whz CPU clock, though it comes through pads D-E rather then through P1. The gate for timer 1 is permanently tied TRUE. The output of timer 1 passes through pins $7-8$ of Pi then on to the SERIAL I/O group where it serves as the baud rate clock for the USART chip. This allows the baud rate to be fully programable by softuare. For suggestions on progaming timer 1 for various standard baud rates see chapter 4 on Software Engireering.

Timer 2
As configured timer 2 receives the $2 \times 1 \mathrm{~Hz}$ CPil clock through pins 1-2 of P1. Its gate is tied TRUE through pins 5-6. Tr: output of timer 2 is connected, through pins $3-4$ of $P 1$, to connector 13 pin 2 ror whatever use is desired. An example might be to buffer the outsut trough a transistor to drive a small loudspeaker for generating beeps, tunes, and the like.

RECONFIGURATION

Reconfiguration will generally involve cutting one o: more traces under P1, or possibly at pad groups $A-B-C$ or $D-E-F$. (Shown at right.) If changes will be made at $P 1$ it is euggested that 8 16-pin double-row header be installed at P1. This will allow connections to be easicy and reliably made by wire-wrapping to the pir., on this header.

At this point possible reconfigurations should be apparent. It it is desired to supply any of the timers with clos ss other than the CPU clock, one need only cut the appropriate trace under P1 (or trace $J-E$ in the case of timer 1) and connect the desired clock. Note that if the clock is originating off the board, pin 1 of $\mathbf{3 3}$ has been conveniently routed to pin 9 of $p 1$ for the user to connect to whatever he pleases.

If very long timing periods are desired, a seperate low-fraquency clock can be supplied to a timer. Alそern tively, two timers may be cascaded by connecting the output of one to the clock of another. The first timer would then be programed to operate as a rate generator (a divide jy N circuit) to supply a programmable frequency to the next.

It should be noted that the clocks need not be continuous square wave signals. The timer: themselves merely count falling transitions on the clock inputs. Thus, if a clock is supplied externally from a device which produces a pulse in coincidence with some event, then the timer can serve as an event counter. The 8253 will allow the count register to be read by the program at any time to deteraine the current count of events. Or, with the various modes the timer may be programes into, such things as "inaterrupt after N events", "interruot after N events following a hardware strobe on the gate input", "interrupt every N events", etc. are easy to impletent.

Since the use of the timers can involve interrupts, see also the discussion of interrupts in chapters 3 and 4 .

ITERRUPTS

The 8085 has extensive provisions for using interrupts. As on the 8080A the 8085 has an INPA tine which way be pulled high to initiate an interrupt sequence. On the first machine cycle of the next instruction the INTA (interpupt acknowledge) signal will be sent, informing the interrupting device that it should place fis interrupt vector on the bus, after which the 8085 will call to one of eight menory locations.

For purposes of using inteppupts from pepipherals on the S:Cs-85 board, (e.g.the 8251, 8253, or 8255) the 8085 also provides another mechanism for generating interrupts. Three inputs to the 8085 chip, the RST5.5, RSTh.5, and RST7.S inputs. will each cause an interpupt vector to specific memory locasion when pulled high, WITH NO OTHER HARDWARE NECESSARV. Furthermore, two of these inputs, the RSTS.5 and RST6.5 are LEVEL SENSITIVE, meaning that an interrupt will be maintained as long as the input is held higho This is used for thing: like a USART which provides a RECEIVE BUFFER FULL signat which can be used to interrupt the 8085 when a chapactep is received. Here, the interrupt is held untit it is serviced by the software which reads the received characterp thereby resetting the flag and the interrupt request.

The other input, the RST7. 5 input, is EDGE sensitive meaning that if the input is putled high and held there indefinitety, only one interrupt wilt be recognized - it is the lowntonigh transition which generates the interrupt. To generate anothep interpupt the input must go lou then go high again. This input is useful for things like making a peal time clock. A square wave of desired frequency is simply tied to the RST7.5 input, then on each rising edge an interrupt will be generated.

Provisions have been made on the SCCS-85. for configuring RST interrupts in any desired fashion. As manufactured two of the interrupt inputs, the RST7. 5 and RST6.5 inputs have been preconfigured in a way which should be adequate in most applications. This configuration is described below along with suggestions for pecconfiguring for other applications.

RST7. 5
As described above under FiAER GROUP the RST7. 5 input is connected to the output of timer 0 . Thus wi"h no stterations this timer can be used for such things as "interrupt at an NH_{2} frequency (real time clock)" "interrupt after in cleck cyctes (programmable delay)" or in general, interrupt according to some programable time function.

If it is desired to use the RST7.5 interrupt injut for some other purpose this can be done in different ways. for example, if the interrupt will be supplied from some other point on the PC boapd, cut the trace between pads B and C shown above, and connect the signal to pad $\mathrm{C}_{\text {。 (Refer atso to dung. no. } 4 \text { of }}$ the schenatics.d

If the interrupt signal will be supplied from off the board, cutting the tpace between pins 15 and 14 of P1 will leave the RST7.5 input connected so connector 33 pin 3.

RST6. 5

Referping to dung. no. 5 of the schematics it can be seen that an ImTERRUPT SELECTOR GROUP has been provided to allow swo interrupt signats to be 0R-ed together to generate the RST6.5 inteppupt input. Selecting two of foup possible signals can be done at the doublemon header $P 2$. (See figure at right.) the four signals are RxRDY and TXRDY from the 8251 USART and PCO and PG3 from the 8255 PLO chip. Also present at piz are two grounded pins allowing one or both of the interrupt inputs to be tied inactive. Note on the schenatic the dotted lines indicating that the PC board is etched with both inteprupt inputs grounded. Hence, to allow one or two of the four interrupt signals it will be necessary to cut one or both of the traces $5-6$ or 11012 under 82 and comect the desired interrupt signal to pads $2-6-6$ and/or pads $8-10=12$.

Of course it is also possible to use interpupt signals other than the four mentioned above. Just cut trace 5-6 or 11-12 and connect the desired interrupt signal to pads 2-4-6 or 8-40-42 as above.

OTHER INTERRUPTS

Three other interrupt inputs to the 3085 are avinilable for user purposes. These are RST5.5. INTR, and TRAP. gll three of these signals pass through double-row header P3 where, as preweonfigured, these inputs are all tied low by short traces on the bottom side of the PG board under P3. \&See dwng. no. 1 of the schematics.) These three inputs are available on the bus at 1 f for connection to other boards in the system, but this by no means pules out using any of them on the board. Just cut the trace under P3 to enable the desired input, and connect the interrupt signal to pad 2,4, or 6, depending on the interrupt desired.

Note when using the ZATR Input that the bus on the sccs-85 goEs NOT float to the high level. This means that the "trick used on some systems of letting the floating bus put a RST 7 instruction on the bus witt not work.

SERTAL I/O

In nearly all applications the SERIAL $\$ 10$ group, when used, will be used for RS-232 communications with other devices.

Some devices modems in particular, make use of number of device-control and handshaking signals in the RS-232 definition, so the SCCSr85 has been designed to support these signals. Such signals include RECUEST-TOOSEND, $\overline{D A T A-T E R M I N A L-R E A D Y, ~ D A T A-S E T-R E A D Y, ~ a n d ~ C L E A R-T O-S E N D . ~ T w o ~ o f ~ t h e s e ~ a r e ~ i n p u t s ~}$ white two are outputs.

The two outputs, BTR and RTS ape gemeani duapose 1-bIT Dutput ports and as such can be used for any purpose the user desires, such as poutring-up. printer, etc.
of the two inputs, one is gemeral purpose i-ait Imput Port, the bSk. its status can be read at any time by the CPS and has no offect on the transmission or reception of data.

The other input, CTS is a clear-tomend input which must be lou (TRUE) to enable the 8251 transmitter. Transmission will stop on the next character if this pin goes high.

Since not all devices vill support the $\overline{B S R}$ and CTS inputs, the SCCS-85 has these two inputs tied TRUE on the RS-232 side of the 1489 receiver chip. (See dung. no. 6 of the sciematics.) If your device supports either of these signals be sure to cut the appropriate traces on the bottom side of the board to enable the input. The trace between pads $A-B$ (shown at right) must be cut to enable CTS, while C-D must be cut to enable $\overline{B S R}$.

Two options exist for connecting the external device to the PC board. These options are covered in the section on
 CONNECTORS below.

It is possibie to suppiy the 8251 with a baud rate clock other that from the timer group. This is most easily done by cutsing the trace between pins 7 and 8 of P 1 , then connecting the new clock signal to pin 7 of P 1.

No provisions have been made for supporting a current-loop interface on the sccs-85.

SOD, SID LINES ON 8085

The 8085 chip itself provides a 1-bit input and 1-bit output port, called SID (serial-in data) and SOD (serial-out data) respectively.

These lines are present on connector J3, pins 7 and 8 for user purposes. Refer to the $8080 / 3085$ Assembly Language Reference Manual and 8085 User's manual for information on reading and setting these lines.

BUS EXTENSIOM

The sccs-85 on-cald bus is available at connector J 1 for expansion to other buards.

Chapter 5 contains a Bus Signal befinition table which describes each of the signals on 11.
for the most part, the sigials on the bus are unbuffered, direct connections to the 8085 and other chips. Hence, care must be taken when expanding the system to other cards that the bus loading be kept below minimums.

The Connector signal Definition table indicates which lines are buffered.

With all acdress and data lines on the bus being driven by MOS chips, and also heing listened to by MOS chips. two aspects of bus-loading must be considered when extending the bus.

The first aspect is current-drive capabitity. The 8085 address and data lines can sink up to 2ma of current and still maintain an output-low voltage less than 0.45 V . Connecting other MOS chips to the address and data lines add an insignificant current load (less than 10uA) to the bus, hence they need not be considered when checking bus current loading.

On the other hand, connecting TTL to the bus (e.g. for I/0 address decoding) adds a significant current load to the bus. Since all TTL on the SCCS-8S is LS, the current load per TTL input is amax. of about . 36 ma for a lou input. Hence, an unbuffered nos address or data line can support at most five LS TTL loads.

The other aspect of bus loading which must be considered is capacitance-loading. The timing specs for the 8085 chip are given assuming a 150pF load on the sichal outputs. For loads between 150pf and 300pf timing specs are to be derated by +0.30 ns per pF. In other words, if we load the bus to 300pF we must derate the timing specs by 45 ns . In high bus-load systems, the advantages of running the CPU at 2 MHz rather than 3 MHz is apparent.

The Intel specs for the MOS peripheral chips (e.g. 8251, 8253, etc.) quote that an input to the chip has a max. capacitance of 10pF, while a bi-directional data pin has a max. capacitance of 20 pF . LS TTL inputs also have an input capacitance of about 5 pF , but since more than five LS TTL chips will overload the current drive of the bus, the toral capacitance of the TTL loads on the bus can be overlooked in most cases.

Based on the above and armed with the data sheets for the chips on your particular SCCS-85 you can add up the bus loading for the various signa:s and establish how much more any bus extension dare load the bus. To give some idea cf what you might come up with, the following table shows the loar: 20 on the upper 3 address lines, the lower 8 address lines, and the data bus for a fULLY POPULATED SCCS-85:
$\frac{A 8-A 1 S}{65 p F, 1} 1 \mathrm{TTL} \quad \frac{A D-A Z}{110 \mathrm{DF}, 1 \mathrm{THL}} \quad \frac{00-01}{134 p F, 1 \mathrm{THL}}$

Above it can be seen that for the user with some options missing on his system, quite a Lit ρ s "headroom" exists fc: expanding the bus without overdoing the loading.

CONNESTORS

The SCCS-Rs provides a convenient and flexible system for making connections ben the board and the outside world. Connectors jl through jba are each a double-rou of plared-through holes spaced on 0.100 inch centers in patterns of from 10 to 50 holes.

These patterns can support a vide variety of connector hardwart which is not only versatile, but inexpensive as well. Some of the possiolitities are out bined belou.

No connections at all

The connector system used hes edventages even where no connections at all are made to connector. The connector pattern is very inexpensive to produce on a PC board, and requires no special tooling, gold-plating, and the like. you don't have to pay extra for something you may not even use!

Just one or two connections
If only one or two connections need to be made, a pisce of wire can simply be soldered directly to the proper hole in the pattern without damaging its future use with a regular connector.

With ribbon cables

When a ribbon cable is to be connected to a partern, it is recommended that a "double-row jumper header" aade by Af Products be installed in the connector. These are double rows of pins bound together in the proper spacing by a plastic header. The header is simply inserted into the pattern and soldered on the bottom. Then a ribbon cable with a femate connector on the end may be simply plugged onto the header.

These double-row headers come in two varieties; straight and right-angle. The straight variety will serve best on the $1 / 0$ connectors J 2 through J 6 z there a ribbon cable extending to a single destination will be plugged.

The right-angle type are very useful for "daisy-chaining" the bus connector 31 to several boards. For example, to make an econonical "mother-board" for extending the bus to three other cards, 50 -pin right-angle headers kould be installed in connector 11 of all cards. Then, four 50-pin female ribion cable connectors vould be installed equidistantly along a length of 50-conductor ribbon cable. Finally, each of the four boards would be plugged onto this cable.

Plugging boards directly into other boards
AP Products also makes double-row FEMALE headers which will solder directly into the connector patterns on the board. This provides two ways in which boards way be plugged directly into other boards.

For example if a right-angle header is installed in connector 11 and a female header installed in another PC board, then the sCCS-85 can be plugged perpendicularly into the "mother-board".

Or, if it is known that the SCCS-85 will extended to only one other board then one may solder a female header in the connector on the rop side of the peripheral gard, and a male header installed on the BOTrOM side of the SCCS-85. Then the two boardis may be easily plugged together in a "sandwitch" configuration. This technique will be recommended for the up-coming CRT interface card, when using the sCcs-85 as dedicated smart terminal.

CONNECTOR J2, J3, and $\mathrm{J4}$
According to the silk-screen legend on the board, $J 4$ is the combination of connectors J 2 and J 3.

J3 is mainly associated with inputs and outputs for the Timer Group, while $\mathbf{d 2}$ provides access to the PIO group. If the signals from J2 and those from J3 are destined to different places, then a 26 -pin header should be installed in J 2 and a $90-p i n$ header installed in J 3 . Then, separate ribbon cables may be plugged into these connectors.

If, on the other hand, both the timer and PIO signals will be cabled to the same destination, then single 40 -pin header may be installed in 14 . A single 40 -conductor ribbon cable will then be sufficient for the interconnection.

The Connector Pin Assignment table in chapter 5 gives the signal assignments for connectors 12 through 14 .

SERIAL CONNECTOR JSb

One last connector deserv.s mentioning, that being the RS -232 connector J6b. Provisions have been made for installing an easy-to-get DB-25S "D" connector directly on the sCCS-85 board. Once installed, this connector is already wired in the RS-232 standard configuration.

On the P C board note that connector J6b appears to be a set of edge-finger contacts. Ir. fact, the positioning of these fingers on the top and bottom of the board exactly coincide with that of the pins on a $08-25 S$ connector. further, the two rows of pins on the connector are separated by $1 / 16 t h$ inch, just the thickness of the SCCS-85 board. This means that the connector may be slipped onto the edge of the board with the row of 13 pins on the bottom side and the row of 12 pins on the top side. Sliding the connector along the edge of the board, eventually the pins uill line-up with the edge fingers. Once positioned, simply solder each of the pins on the connector to the finger directly beneath it. Not only is the connector now correctly wired, but rigidly mounted as well!

ADDITIONAL I/O SELECT LINES

If the use: is adding additional peripheral chips on another board he may find it convenient to use one or more of the unused outputs of the ON-3OARD I/O ADORESS DECODER to perform the chip-select function. (Refer to dwng. no. 4 of the schematics.)

These pads are located between 419 and U22 on the PC board labelled SUh, 60 h , and 40 h .

These pads each go low anytime the lower 8 bits of the address bus equal the indicated value through the next 15 higher addresses. For example, the pad labelled $50 h$ will go low anytime the address bus contains XXSOh through XXSFh where $x X$ indicates that the upper 8 bits are orbitrary. (this makes no
difference during $1 / 0$ cycles since the 8035 places the I/O address on BOTH the upper AND lower 8 bits of the address bus.)
it is importent to note that the peripheral using these $1 / 0$ address select signois must qualify then with either the $\mathbf{I O}$ or 10 control signal. This is becsuse these outputs will go low when memory locations with addresses in the proper range are being accessed. It is a convention that Intel peripheral chips yualify their chip-select inputs with the IOR and IOT signals.

4. SOFTHABE ENGIMEERIMG

This chapter contains hardware-related software information; such things as the I/O addresses of the various peripheral chips, interrupt vector addresses, programing the timer chip to provide standard baud rates for the 8251 USART, etc.

POUER-UP INFORMATION

When power is first applied to the 8085 the reset circuitry will reset the 8085 automatically, after which the 8085 will immediately begin executing at loc. 0000 in memory. Therefore, there must be some program there to execute. That is why at least one EPROM must be installad in U6. At loc. 0000 in your software should be the initialization routine needed for your particular hardware. For example, if the timer chip is used to provide the baudrate ctock for the USART, then the timer chip must be initializec to operate timer $\{$ in the correct mode and divide by the proper number for the desired baud rate. Then tne USART must be initialized for the desired mode of operation.

If interrupts are being used, the 8085 interrupt mask must be initialized to enable the desired interrupts.

The stack pointer must be set to point to the top of your available ram. Etc., etc.

Note also that this same reset sequence takes place any time the manual reset pushbutton $5 W 1$ is closed.

BAM
As mentioned under hardware engineering, RAM starts at $100 \cup H$ and goes up to 33 FF for 1 K bytes, 17 FF for 2 K bytes, 1BFF for 5 K bytes, and 1 FFF for $4 K$ bytes.

PERIPHERAL CHIP 1/O ADDRESSES

There are four peripherals on a fully-populated SCCS-85. These are the 8253 timer, 8255 PIO, 8251 USAAT, and 8257 DMA. The following table gives the I/0 addresses for each of the registers within the chip:

DEYICE	ADORESS	READ OPRATION	WRITE OPERATION
8251 USART	$\begin{aligned} & 00 \mathrm{~h} \\ & 01 \mathrm{~h} \end{aligned}$	Rec. Data Reg. Status Reg.	Trans. Data Reg. Control Req.
8255 P10	$\begin{aligned} & 10 h \\ & 11 h \\ & 12 h \\ & 13 h \end{aligned}$	Read Port A Read Port a Read Port C ILLEGAL	Write Port A Write Port a Write Port C Write Control Reg.

I/O Addresses 80 h and higher are available for user definition

INITIALIZATION OF TIMER AND USART FOR SERTAL_I 10

If you are using the 8253 timer and 8251 USART in the configuration the board is manufactured in, then the following 8085 assenbly code may be used to initialize both for serial $1 / 0$ at the buad rate of your choice:


```
; code to initialize 8253 timer and 3251 USART for serial I/0 on
; SCCS-85 board.
; first initialize timer chip to generate 16X baudrate for USART
    mvi a,76h ;progran timer 1 for mode 3, expect 2 bytes
    out 23h
    mvi a,lobaud ;send lower byte of baudrate divisor to timer
    out 21h
    mvi a,hibaud ;send upper byie of baudrate divisor
    out 21h
;next initialize USART
    mvi a,82h ;force ussrt to expect command word
    out 01h
    mvi a,40h ;now make usart expect mode word
    out 01h
    mvi a,ieh ;mode byte - baud clock is 16x
    out 01n
    mvi a,27h ;command byte
    out 01h
; initialization complete!
```


In the code bbove there are two bytes, lobaud and hibaud, which the user must determine to select the desired baudrate. The table below gives the proper divisor value for each of the standara baudrates, and for two di ferent CPU clock crystals. To use this divisor value, convert it into hexadecimal. Then the upper two hex digits are "hibsud" and the lower two digits are "lobaud".

Bauc Rale	Divisor, with 3.58 min crystal. (1.724H2 CPH all	Divisor, with 4.OUNHz crystal
38,400	3	not possible
19,200	6	not possible
9600	12	13
4800	23	26
2400	47	52
1200	93	104
600	136	208
300	373	417
150	746	833
110	1017	1136
75	1491	1667

INIERRUPIS

As contigured the SCCS-35 makes use of the RST7.5 and RST6.5 interrupt inputs on the 8085.

When a RSTT. 5 interrupt occurs, the equivalent of a CALL instruction to loc. 003 Ch is executed. \therefore : this point the user should store a JMP instruction to the service rout ine for that particular interrupt. Don't forget to preserve the contents of the registers and re-enable interrupts before returning to the interrupted prograw.

Similarly, then a RST6.5 interrupt occurs, the equivalent of a CALL to loc. 0034 h is executed.
S. Harduare Reference

COMEETOR PIM ASSIGMAEHTS

11 - Expansion tus				16-PLO/TIMER			
1	GND	2	GMD	1	PAS	2	PA3
3	A1	4	AO	3	PAS	4	PA2
5	A3	6	A2		PA6	6	PA1
7	A5	8	A4	7	par	8	pao
9	AT	10	A6	9	+5V	10	GND
11	A9	12	AB		PC6	12	PC7
13	115	14	A14	13	PC4	14	PCS
15	A13	16	A12	15	PC1	16	PCO
17	A11	18	A10	17	PC3	13	PC2
19	MEmSEL	20	(not used)		FB7	20	P80
21	+12V	22	-12V		P66	22	P81
23	TOR	24	MEMR	23	P85	24	P82
25	MERM	26	IOW	25	P84	26	P83
27	D6	28	D7	27	(not used)	28	(not used)
29	D4	30	D5	29	(not used)	30	(not used)
31	D2	32	D3	31	user defined	32	OUT?
33	DO	34	Dî	33	RST7.5	34	CLT
35	INTT	36	AEN		user defined	36	user defined
37	S1	33	so	37	SID	38	500
39	INTR	40	RST「.S		user defined		user defined
41	10/月	42	trap				
43	(user defined)	44	ALE				
45	READY	46	CLK				
47	reset ouy	48	RESET IN				
49	+5v		+5v				

12-PIO		13- TIMER		
1 PA4	2 P43	1 user defined	2	OUT2
3 PAS	4 PAZ	3 RST7. 5	4	CLK
5 Pa6	6 PA1	5 user defined	6	user defined
7 PA7	8 PAO	7 SIO	8	SOD
$9+5 V$	10 GND	9 user defined	10	user defined
11 PC6	$12 \mathrm{PC7}$			
13 PC4	14 PC5			
15 PC1	16 PCO	15-pend		
$17 \mathrm{PC3}$	18 PCL	1 DRQ1	2	DRQO
19 P8?	20 PBO	3 DRQ3	4	DRQ2
21 PB6	22 PP 1	5 DACKO	6	DRCKI
23 P85	24.892	7 DACK2	8	DECK 3
25 P84	26 P83	9 GND	10	TC

$\frac{16 \mathrm{~b}-\mathrm{BS}-232 \text { Delta_connector }}{9}$ GND
2 Transmit data
3 Receive data
4 Request to send (output)
5 Clear to Send (inptst)
7 GND
8 Dats Set Ready (input)
20 Data Yerminal Rasdy (output)
16 - RS-232 double-roy header
$\frac{1}{1}$ GND
3 Transait data
5 Receive data
7 Request to send
9 Clear to send
13 GND
15 Data Set Ready
14 Data Terminal Ready

NOTE: Connectors $J 2$ and $J 3$ are positioned such that together they may be considered a single 40 -pin connector $\mathrm{J4}$, or used individually.

RUS SIGNAL DEEINIYLONS

GND Logic ground for SCCS-85
AO - A15 (Output) Address lines 0 through 15. These are positive true signals. Lower eight bits are valid from the falling edge of ALE to end of machine cycle, and are buffered EXCEPT DURING A DMA CYCLE. (See data sheets on 8257 DMA controller. Upper eight bits are also valid from the falling edge of ALE to end of cycle but are not buffered.

DO - D7 Si-directional positive-true data bus. During write cycles data on bus is valid during trailing edge of MEMW or $\overline{1 O W}$ pulse. During read cycles, data must be valid on trailing edge of MEMR or $\overline{I O R}$ pulse. The daia bus is not buffered.
$\overline{I O R} \quad$ (Output) $\overline{I / O}$ READ control signal. Lowgoing pulse during which selected peripheral should enable its tri-state bus drivers and place data on bus. Data must be valid on the trailing (rising) edge of pulse. Buffered by LS TTL gate.
(Output) ITO WRITE control signal. Low-going pulse used by peripherals to strobe data on bus into peripheral register. Latching should occur on trailing (rising) edge of pulse. Buffered by LS TTL gate.
$\overline{M E M R}$ (Output) MEMORT READ control signal. Low-going pulse during which selected memory device should place its data on the bus. Data must be valid on the trailing (rising) esge of pulse. Buffered by LS TTL. gate.

MEMW (Output) MEMORY WRITE control signal. Low-going pulse used by memory devices to enable the u ititing of the data currently on the bus into the selected memory location. Buffered by LS TTL gate.

AEN	(Output) ADDRESS EMABLE signal used only during dma cycles. Otherwise remains lou. Positive-true signal which indicates that the address currently on the oudress bus is that provided by the DMA controller during oma transfer cycle. Unbuffered, has same timing and specs as pin by save name on 8257 oma controller.
\$0, 51	(Output) Machine-cycte status bits output by 8085. Same timing specs and definitions as pins by same name an 8085. Hot buffered.
[$0 / \overline{1 / 4}$	(Output) Indicates if the current READ or WRITE is to memory or I/O. Same timing and specs as pin by same name on 8085. Not buffered.
ALE	(Output) Positive going pulse used to latch the jower eight address bits and the status bits $S 0$ and 51 . Latches should be a level-triggered type. Not buffered.
LLK	(Outpist) Square wave of half the frequency of the crystal used to clock the 3085. Same timing as the pin by saime name on 8085. Not buffered.
READY	(Input) This input is used by slow peripheral or memory to insert Hait states into machine cycle. Has pullup resistor, so may be left unconnscted, or several devices may drive the input through open-collector gates.
RESET IN	(Input) Uhen pulled low the program counter is reset to 0 and the INTE flip-flop and HLDA flip-flop are reset. May be momentarily grounded with pushbutton switch to effect a manual reset.
RESET OUT	(Output) Positive-true signal that indicates the CPU is being reset. May be used as a system reset. Not Duffered.
INTR	(Input) Positive-true input which initiates an interrupt to the 8085. Same definition and restrictions as pin by same name on 8085.
INTA	(Output) Is used instead of (and has the same timing as) the MEMR during the next instruction cycle after the INTR has been accepted. Has same timing and specs as pin by same name on 8085 . Not butfered.
TRAP	(Input) Input which causes a non-maskable interrupt. conirol transfers to location 0024h in memory. Same timing and specs as pin by same name on 2985.
RSTS.S	(Input) Has same input timing as INTR but causes a RESTART to automatically be inserted. Control is transferred to loc. 002Ch. Maskable.
MEMSEL	(Output) Positive-true signal which indicates that the address currently on the bus is within the first 3 K bytes of memory space. Is useful in systems with memory expanded onto additional cards to determine if the memory selected is on the $\operatorname{SCCS}-85$ card. Bufferad by LS TTL gate.
$+i c+,-i 2 v$	Power supply inputs to sccs-85 board. Requirements are rejulation to plus or minus 10% with currents up to 150 ma. If the SCCS-85

uses $5 V$-only EPROMS and the RS-232 driver chip is not used, these supplies nay be onfted.
$+5 v$
Logic supply to all ching, thast bregulated to plus or minus $5 x$ and capable of 1.5 A for a fully-populated cCCS-85.

Hardware configuration assumed:
8253: Timer 1 clock input difiven by high frequency

[^2]

RST 6.5 entry point

	$3 c$		
255	$3 c$	3c	$3 c 1$ f
256	$3 f$		

4．

278	48 c 3	2
271	43 c 3	1af12
272	46 c3	c712
273	49 c 3	defl
274	$4 \mathrm{c} \mathrm{c}^{3}$	¢5月2
275	41 c 3	183
276	52 c3	24m3
277	55 c3	5183
278	58 c 3	5c月3
279	5 b c3	6c』3
28\％	$5 . c 3$	9．593
281	61 c 3	9883
282	64 c3	a483
283	67 c 3	d／f3
284	6a c3	dffity

56. 133 11 lbsy monod:
561 136 cd 2483 ce

$$
(e p),(1 f) . "(a d d r)=x x
$$

(if) - - Address the next previous location and print the address and contents like this:

$$
(e r),(1 f), \cdot(a d d r)=\pi x
$$

(v) "/0 - Coto step 1 and read a new address
v) Anything ilse : Type : what
Note - If option "a" is not executed then memory is not altered.

96.	203 de	P2\%2
961	20667	
962	207 cd	f5.82
963	20a da	P2.52
964	2ed 6	
965	200 cl	
966	2ef 7	
967	2ffel	
968	2fl e9	
969	$2 f 2 \mathrm{cl}$	
97月	2 F 3 cl	
971	244 e9	

REGISTERS CHANGED: a, c, flags

$\begin{aligned} & 1488 \\ & 1489 \end{aligned}$	$\begin{aligned} & \text { date } \\ & \text { data } \end{aligned}$
1 14733	data
2114	data
27.8	data
2716	data
Programming Intel 2798s and 2716s	
	Notel Texas Instruments makes a "TMS2716" which is NOT compatable with an Intel 2716. The TI 2716 is a $2 K \times 8$ version of the 2758 , and requires three power supplies to operate and a 2758 like programming procedure. The Intel 2716 requires only a single 5 volt supply to operate and is programmed in a very differnt manner. ramming instructions if the TMS2716 is used.
8885	data
8989	mnemonic and opcode reference sheet
8885	Applications of MCS-85
8251	data
AP-16	Using the 8251 Universal Synchronous/Asyncronous Receiver/Trnsmitter
8253	data
8255	8255 Programmable Peripheral Interface Applications
8257	data
74 xx	Family TTL General Information
7408	data
7482	data
7454	data
74LS138	data
74257	data
74373	data

APPENDIX A2

MAIN PROGRAM
; --- MAIN ---

```
;*****************************************************************************
This program is written for control of ink jet printer.
This program uses data structure as shown in pattern program
to create a certain desired printing pattern.
For a desired printing pattern, only a new pattern program
is needed.
For programming a new pattern program, understanding of this
MAIN program is necessary.
;
;************************************************************************
```

 ; There are three ports for the microcomputer:
 ; Port A: addr 0010 h , output port.
 ; Port B: addr 0011h, input port.
 ;Port C: addr 0012h, handshaking port, lower 4 bits is
 ; output, higher 4 bits is input.
 ; Control register for the ports above: addr 0013 h .
 ;x-axis enable: 0001h
 ;y-axis enable: 0002h
 ;negative direction: 002dh
 ;positive direction: 0000h

org	1900h	
miri	a,8ah	;select input and output ports, 8a means that port
		a:out,b:in, c:in, lower out

main mov a, m;move ont byte of data from memory to acumulator.
cpi 002eh ;check for end of file,. $=2 e$ ($2 e$ is the end flag
of data progrim)
jz 006ah ;if end of file,jump to moniter.
call load ;load indev values
call goto ;move tabie to desired location by x and y index value.
call load ;load length and width (load x-dim and y-dim value)

;the next four commands pick the shorter dimension for jog axis. ;jog: move without print.

jz	xjog	;if $x=y$ jump to $x j o g$
jnc	$y j o g$;no carry indicates $x>0 r=y$

xjog push d ;store $y-d i m$ on stack.
mov d, b;move x-dim from $b c$ to d e register.
mov e,c
pop b ;now x and y have switched reg.
push b ;store y-dim to bcregister.


```
boxy mvi b,002dh ;- move (002d means negative direction
        in ASCII code)
    mvi c,02h ;y axis (select y-axis enable)
    call movel ;printing sweep
    pop b ;pop x-dim from stack.
    call test ;check if x-dim is zero,test is here for lines.
    push b ;push x-dim on stack.
    mvi c,01h ;x axis (select x-axis enable)
    call jog ;(do jogging)
    pop b ;(pop x-dim)
    call min5 ;decrement jog value (x-dim value)
    call test ;check if zero,if so get new data
    push b ;push x-dim on stack.
    mvi b,00h ;+ move, positive direction.
    mvi c,02h ;select y-axis enable.
    call movel ;print sweep other direction
    mvi c,0lh ; select x-axis enable.
    call jog ;do jogging.
    pop b ; pop x-dim from stack
    call min5 ;decrement jog value, decrement x-dim value by 5
    call test ;check if zero
    push b ;store x-dim value
    jmp boxy
```


;print retangle, y-axis is jog axis
yjog push b ;print rectangle,y axis is jog axis
boxx mvi b,002dh ;- move
mvi c,01h ;enable x axis
call movel ;printing sweep
pop b ; pop y-dim from scack
call test ;test if zero,for lines
push b ;push y-dim from stack
mvi c,02h ;enable y axis
call jog ;do y-dim jogging
pop b ;pop y-dim
call min5 ;decrement jog value, decrement y-dim by 5
call test ;check if zero

```
push b ;push y-dim on stack
mvi b,00h ;+ move
mvi c,01h ;x axis
call movel ;printing sweep other direction
pop b ;pop y-dim from stack
call min5 ;decrement y-dim value by 5
call test ;ck if zero, if so get new data
push b ;push y-dim on stack
mvi c,02h ;enable y axis
call jog ;do y-dim jogging
jmp boxx
```



```
    ;load 4 bytes of data into register.
load mov e,m ;loads 4 bytes of data into registers
    inx h ;increment pointer
    mov d,m ;x coords in de
    inx h
    mov c,m
    inx h
    mov b,m ;y coords in bc
    inx h
    ret
```



```
    ;this routine moves table to box location.
goto push b ;this routine moves table to box location
    mov b,m ;get x direction from memory (note: x-dir and
        y-dir interchange after assembly)
    mvi c,01h ;select x axis
    cail move ;do move
    pop d ;put y index in de reg for move
    inx h
    mov b,m ;get move airection
    mvi c,02h ;select y axis
    call move
    inx h
    ret
```



```
test mvj a,00h ;checks if bc is zero,if yes get more data
    cmp b ;compare 00 with the content of bc
    rnz ;return, bc is not zero
    cmp c ;b was zero is c ?
    jz main ;bc was zero,print done,get new line of data
    ret
```



```
min5 dcx b ;decrements bc reg by 5 for jog
    dcx b
    dcx b
    dcx b
    dcx b
ret
```



```
jog push d ;jog increments after a printing pass
    lxi d,0005h ;jog will move 5 steps
    mvi b,002dh ;jog is always in negative table direction.
    call move ;do the jog
    pop d ;put the original number back in de register
    ret
```



```
move call doit ;doit provides stepper bd. commands
    call hand ; output the g command from doit
    ret
;:::::::::::::::::::::::::::: :: : : :: :: :: : : : : : :
movel call doit ;movel turns head on and off
    out 10h ;put on buss
    mov a,c ;get enable
    out 12h ;enable axis
    call dataken ;watch to see that index board has data
    mvi a,08h ;reset enable,turn on head
    out 12h
    call busy ;wait untill move is done
    mvi a,00h
    out 12h ;turn head off
    ret
```



```
; provide stepper board command format
doit mvi a,004dh ;m register
    call hand ;send in
    mvi a,003ch ;<, open register M
    call hand
    cal1 add3 ;looks to de for index number
    mvi a,003eh ;>, close register M
    call hand
    mvi a,47h ;g stepper bd "go" cmd.
    ret
```



```
    ;bdset gets stepper board setup commands
```

```
bdset mov c,m ;store axis enable byte
    call getnext ;get next data from memory to cpu, and
        then to index board.
    call getnext
    call getnext
    call getnext
    call getnext
    inx h
    ret
```



```
getnext inx h ;increment pointer
    mov a,m ;move data from memory to accumulator
    call hand; move data from cpu to index board
    ret
```



```
;add3 converts hex to ascii,gets index 非 from de reg.
;outputs 6 digits,we need only 4,top 2 are zero
add3 mov a,b ;get minus if tbere
    call hand ;output sign,0=+
    mvi a,30h ;select 0
    call hand ;output lst 0 digit
    mvi a,30h ;select 0
    call hand ;output 2nd 0 digit
    mov a,d ;select hex value
    ani 00f0h ;mask out lower ribble,also c=0
    call rart ;move upper nibble down
    cail letck ;output 3rd digit
    mov a,d ;select hex value for low nibble
    ani voOfh ;mask upper
    call letck ;output 4th digit
    mov a,e ;select another hex value in e register
    ani 00f0h
    call rart
    call letck ;output 5th digit
    mov a,e
    ani Ofh
    call letck ;output 6th digit
    ret
```



```
;letck looks for hex letter,if so converts to proper ascii code
; it converts number from 0 to 9 in hex to ASCII.
letck adi 30h ;add ascii prefix
        cpi 3ah ;ck if hex "letter" number
        cnc adj4
        call hand ;output digit
```

ret

;adj4 converts A-F from hex to ASCII
adj4 sui 09h ;adj lower nibble to ascii code
adi 10 h ;set upper to ascii code
ret

;rart rotates 4 digit down.
rart rar
rar
rar
rar
ret
;::::::::::::::::::::::::: ::: :
;hand puts data from a reg. on buss
;passes axis enable in c reg.
hand out 10 h ;put data on buss of output port A
mov a, c; move axis enable byte to reg. a
out 12h ;enable axis
call dataken ;check if data has been taken ?
mvi a,00h
out 12 h ;reset axis enable
call busy ;check if index board busy ?
ret

; check if data has been taken
$\begin{array}{llll}\text { dataken } & \text { in } & 12 \mathrm{~h} & \text {;moniter data taken pin } 37 \text { stepper bd } \\ & \text { ani } & 00 \mathrm{f} 0 \mathrm{~h} & \text {;mask lower bits } \\ \mathrm{cpi} & 40 \mathrm{~h} & \text {;sets zero flag if line is high } \\ & \mathrm{rz} & & \end{array}$

; check if index board busy
busy in 12 h ;moniter busy pin 26 ret when high,ie done.
ani $00 f 0 \mathrm{~h}$;mask low bits
cpi 80h ; compare
jz wait ;if busy line high,go wait untill low
jmp busy


```
;wait until index board is not busy
wait in 12h
    ani 00f0h
    cpi 80h
    rnz ;if busy is low, return
    jmp wait
;::::::::::::::::::::::::::::::::::::::::::::::: :: :: :: : : : : : 
;joysk is for interrupt of manually joystick control.
joysk mvi a,8ah ;select control word for for port control register
        out 13h ;set pio in case of reset
        mvi a,08h
        out 12h ;clear enables, leave head on
joy in 11h
        mov b,a
        mvi a,04h ;move right
        cmp b
        jnz two
        mvi c,01h
        mvi a,004ah ;J for jog+
        call hand
        call time
two mvi a,08h ;move forward
        cmp b
        jnz three
        mvi c,02h
        mvi a,004ah
        call hand
        call time
three mvi a,01h ;move left
        cmp b
        jnz four
        mvi c,01h
        mvi a,49h
        call hand
        call time
    four mvi a,02h
        cmp b
        jnz joy
        mvi c,02h
        mvi a,49h ;I for jog-
        call hand
        call time
        jmp joy
    time mvi c,0030h
    ti mvi d,0022h
    me dcr d
        jrzz me
```

```
dcr c
jnz ti
ret
org 1024h
jmp la7fh
end
```


[^0]: Figure A. 1 Ink Jet Printing System Block Diagram.

[^1]: The remaining two +5 volt supplies use 7800 series three pin voltage regulators and their input voltage is the +15 volt unregulated supply. Each of these $7805+5$ volt regulators have 0.1 ui capacitors on their inputs and outputs for improved noise rejection and regulation. One of the regulators supplies the logic circuit power to the Superior Electric X-axis indexer board. The other unit supplies +5 volt power to the Y-axis indexer board, the Siemens Driver board (via the 5 V switch), and I.C. 101 (debounced switch circuit) shown on Fig. A3. The current

[^2]:
 |

