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FLUID-ELECTROLYTE RESPONSES DURING PROLONGED SPACE FLIGHT:

A REVIEW AND INTERPRETATION OF SIGNIFICANT FINDINGS

Joel I. Leonard, Ph.D.

Management and Technical Services Company

Houston, Texas

Throughout the manned space-flight program, there has been a continuous

interest in the fluid regulating systems of the body. The cephalad redistri-

bution of blood, the decrements in plasma volume, and negative water and

electrolyte balances are believed to be common occurrences in weightlessness

for all astronauts. Coupled with these well-known disturbances, are more

complex and subtle changes in renal and circulatory dynamics, endocrine

function, body biochemistry, and metabolism. The Skylab program provided the
S

most comprehensive set of observations on these related systems during the

most prolonged flights that the U.S. has undertaken. Interpretation of these 	 1

data in terms of an integrated theory of space-flight adaptation has been a

major goal of this author as well as other investigators. In contrast to

experimental laboratory research or traditional statistical analysis, however,

the primary tools of the current effort are mathematical models of physio-

logical systems. Inasmuch as examination of the data must precede any

detailed modeling analysis, and since the optimal use of mathematical models

demands that data of a certain type and format be available, it was deemed

appropriate that the derived data be collected and summarized. This report, 	 ;^ s

therefore, represents a summary of the most important results of the Skylab

studies related to fluid-electrolyte regulation and was the starting point of

an extensive systems analysis which is available elsewhere (Ref. 1-22).	 n

Most of the results contained herein have been previously published byi
j

the principal investigators, but in a different format (Ref. 20,23-33). New 	 i?

analyses of these data are presented here to permit a description of both the 	 (j I

short and long-term responses to space flight. Obtaining a composite picture

of these responses, based on the nine Skylab crewmen, was preferable in most

instances to explaining the differences between flights. Thus, instead of

presenting the individual crew data for day-by-day biochemical changes in
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blood and urine (which have been previously reported), the same information

has been computed as daily nine-man averages so that trends, if they exist,

could be headily discerned. Also, water and electrolyte balance results are

presented in a more complete form than has heretofore been available.

Finally, questions concerning these observations were identified, categorized,

and interpreted. These issues formed the basis of a subsequent simulation

model analysis, as well as helping to design the next generation of

space-flight experiments. A brief summary of the results of the model

analyses concludes this document.

Pre-Slab Results

Prior to Skylab, considerable information had been accuoulated concerning

the body's fluid and biochemical 	 responses to space flight.	 These studies of (	
f

the astronauts who participated in the Mercury, Gemini, and Apollo missions u,

were designed to provide data relative to the maintenance of crew health and

safety.	 The early flights entailed exceedingly complex technological t

constraints which made the design of valid physiological	 experiments nearly

impossible.	 With the exception of two missions, only preflight and postflight

measurements were permitted, and there was limited opportunity to provide f

experimental	 controls for diet and activity.	 Therefore, most of the

information collected was in the form of observations based on urine and blood

analyses and some whole-body measurements, most of which were obtained on the

ground.	 From these data, only gross changes could be revealed, and inflight

aberrations could only be inferred.	 The investigation and elucidation of the

basic physiological mechanisms responsible for these changes were to be

performed on future flights, such as Skylab. j

Sufficient data were obtained, however, to demonstrate that space flight
w

is associated with significant weight loss, 	 substantial	 deficits in fluid and {

electrolyte balance, a variety of endocrine responses, demineralization of

bone, and cardiovascular deconditioning (Ref. 	 34-39).	 Water losses were

believed to occur principally on the first or second day of flight.	 On the

basis of the rate of body weight recovery during the postflight phase, it was

estimated that 50-85 percent of the total weight loss during space flights of r

about a week in duration could be attributed to water loss.	 The remaining
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loss was taken to be due to catabolism of tissue components	 (fat and protein)

which was a result of an inadequate diet 	 (Ref. 40),	 In retrospect,	 it was

suggested that a decrease in food consumption during the early period after

launch might have been associated with low grade vestibular disturbances and

space motion sickness symptoms	 (Ref,	 41).	 Diminished urinary excretion in the

immediate postflight period indicated efforts by the body to retain fluid and

electrolytes lost inflight.	 Signs of musculoskeletal	 atrophy and loss of

intracellular content was indicated by decreased total 	 body potassium, a

negative nitrogen balance, and reduced intracellular fluid volume. 	 Preflight

and postflight measurement of hormones related to fluid and electrolyte

balance were also consistent with inflight loss and postflight retention.	 In

particular,	 elevated levels were noted postflight for urinary anti-diuretic

hormone	 (ADH), aldosterone, catecholamines, and plasma angiotensin. 	 These

hormones are usually secreted when retention of water and salt is required.

Also noted were moderate losses of blood volume (both plasma and red cells). f:

Cardiovascular alterations were indicated by a postflight decrease in is

orthostatic tolerance and a reduction in exercise capacity.
i
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Following Apollo and before Skylab, a working hypothesis was proposed'

which presumably accounted for the adaptive changes in the fluids, electro-

lytes, and hormones	 (Ref.	 27).	 Table 1 outlines those parts of the proposed

hypothesis that describe factors influencing fluid shifts within the body. j

Upon initial	 entry into the weightless environment, the circulating blood

volume shifts from the extremities and lower abdomen toward the central

thoracic regions.	 This is	 interpreted by the body as an increase in total

circulating blood volume	 (since "volume" receptors are located in the

cardiopulmonary region), which the body attempts to reduce by a decrease in

the production of ADH and aldosterone. 	 The result is a loss of water, sodium,
1

and potassium.	 The accompanying decrease in plasma volume may then produce a 1	 '

secondary aldosteronism.	 At this point, the body is believed to enter a phase

of electrolyte and fluid imbalance, in which sodium retention increases, while 1

potassium loss continues.	 The extracellular alkalosis which results from such

a response may produce an intracellular exchange of potassium and hydrogen f

ions.	 At some point, it has been theorized, respiratory and renal	 compensa-

tion could halt the negative balance trend and produce a physiological	 system

which is stabilized.	 This yields a new effective circulating blood volume and

3



TABLE 1

OVERVIEW OF PRE-SKYLAB HYPOTHESIS CONCERNING PROCESSES

INVOLVED IN MAN'S ADAPTATION IN ZERO GRAVITY*

EVENT	 RESPONSE OF BODY

Entry into zero gravity. Redis- 	 Body attempts to reduce volume. ADH
tribution of circulating blood 	 decreases, aldosterone production
volume.	 decreases.	 K

Loss of water, sodium, potassium	 Decrease in plasma volume. Aldosterone 	
S(loss of body weight).	 increases (secondary aldosteronism).

)
a	 i

Increased sodium retention. 	 Intracellular exchange of potassium

Potassium loss continues. Cell: — wand hydrogen ions. Decrease in bone
acidotic — extracellular fluid: 	 density, muscle cell potassium, and	 i
alkalotic	 muscle mass; possibly including

cardiac muscle.	 1

Respiratory and renal compensa- 	 Stabilizes with new effective	 {
tion. Halt to weight loss	 circulating blood volume. New body 	 1
trend.	 ,fluid and electrolyte balance.

r
I

r^	 7,l

* Taken from Berry (1973)
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fluid and electrolyte balance. While some of the details of this hypothesis

have not proved correct, the overall schema provides a means of explaining

short-term fluid changes in space flight.

Prior to Skylab, little was known about the detailed nature and time

course of these changes during weightlessness. Also, it was uncertain as to

whether the changes represented a new adaptive steady-state, or whether they

would progress to the point of adaptive failure somewhere beyond the two to

three weeks exposure to weightlessness studied in previous flights (Ref. 42).

Missing from the data collected on these early missions was a reliable

baseline for quantitation of inflight urine excretion and inflight biochemical

analysis of urine and blood, and sufficient postflight sampling to document

the crew's return to normal. The Skylab experiments were designed to study,

in greater detail, the aspects of biochemical and fluid regulation that had

previously shown the most significant changes. The experiments were also

designed to complete, where possible, the incomplete observations of the prior

flight programs. Accordingly, the studies were designed to investigate the

mechanisms involved in weight loss, demineralization, and altered endocrin-

ological status. More specifically, evaluation of the endocrinological

adaptation and other homeostatic mechanisms which control the volume and

composition of the body fluids was needed. These objectives were accomplished

under the Bioassay of Body Fluids Experiment by establishing controlled

dietary conditions, collecting metabolic excreta and blood samples inflight,

and taking whole-body measurements of fluid and electrolyte compartments prior

to and after flights. Supporting this study were other related and

overlapping experiments in which mineral balances, daily body mass, blood

volumes, and leg volume measurements were performed.

Major Skylab Findings

Fluid-electrolyte status was characterized during Skylab by a number of

physiological quantities which can be divided into the following categories:

body weight losses (total body water, lean body mass); body fluid volumes

within the major compartments (blood, entracellular, intracellular, upper

body, lower body); and major body electrolytes and their plasma concentrations

(sodium and potassium). Other groups included hormone levels which control
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fluid-electrolyte balance (angiotensin, aldosterone, ADN, cortisol); renal

excretion of water and electrolytes (rates and concentrations); and water and

electrolyte balances (intake, excretion, sweat). Changes in these quantities,

as measured on the Skylab crew, will be described below.

a)	 Weight Loss:

Weight loss has been one of the most commonly observed findings in

astronauts returning from space flight, regardless of flight duration. Figure

1 shows the percentage weight loss compared to mission duration for all U.S.

space crewmen (Ref. 23). The average measured weight loss has been 2.8 kg, or

3.8 percent of preflight body weight. Although Figure 1 suggests that weight

loss may diminish for the longest flights, this is presumably not caused by

any adaptive effects. Rather, it is caused by the fact that the dietary

intake was increased on those flights; hence, fat loss was negligible.

Skylab permitted the first inflight measurements of body mass. The

analysis of the components of this weight loss was based both on direct

whole-body measurements and on indirect metabolic balance data. One of the

conclusions from that analysis was that more than half of the weight loss was

derived from lean body mass and the remainder from fat stores (Ref. 3 and 11).

Inasmuch as lean body mass contains the most significant amounts of water and

electrolytes, the losses of this tissue component are of crucial interest in

understanding the fluid-electrolyte disturbances which occur in space flight.

Some of the major components of the lean body mass loss in the Skylab crew are

summarized in Table 2.

About half the total weight loss occurred within the first two days of

flight, and it was due to water loss. The remaining loss occurred more

gradually over the duration of the missions and was attributed to both fat and

protein depletion. As demonstrated by inflight metabolic balances of nitrogen

and potassium, the most significant losses of protein stores occurred during

the first several weeks.

6
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FIGURE 1

Percentage weight loss of U.S, space crewmen as a function of mission

duration, based on preflight (usually the mean of multiple values) and

immediate postflight weights. M correlation exists between weight loss

and mission length for flights up to two weeks. On the Skylab missions

weight loss diminished with flight duration but this was likely caused

by increased dietary intake.
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TABLE 2

CHANGES IN FLUID AND ELECTROLYTE COMPARTMENTS

IN SkYLAB CREW (N-9)

INFLIGHT POSTFLIGHT
QUANTITY LOSSES* GAINS**

Leg Volume	 (ml) - 1500 + 1500

Blood Volume	 (ml) + -	 590 + 590

Red Cell	 Mass	 (ml) -	 230 + 240

Plasma	 Volume	 (ml) -	 360 + 550

Intracellular Water	 (nil )+ -	 480 + 530

Extracellular Water (ml) + -	 330 + 590

Interstitial	 Water	 (nil) + +	 30 + 50

Total	 Body Water (ml) -	 820 + 1120

Exchangeable Body K+ (meq) -	 240 + 164

Extracellular NA + (meq) + -	 90 + 100

Body Mass (gm) - 2630 + 1840

*	 Measured from preflight to recovery day

(average mission length = 57 days)

**	 Measured from recovery day to two weeks postflight

+	 Measured indirectly

h
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b)	 Body Fluids:

The loss of body water was studied in considerable detail (Ref. 2-8, 129

17), since it provides major clues to understanding the headward shift of

fluids, the fate of electrolytes, renal function, and endocrine regulation.

Tice fluid compartments of the body were measured directly before and after

flight the crewmen returned to Earth and this information is summarized in the

composite analysis of Table 2. Interpretation of these results is confounded

by the fact that fluid compartments are labile and probably subject to rapid

changes, as a result of reentry forces. Therefore, these results may not

truly reflect the magnitude of change incurred inflight. This was exemplified

in the detailed water balance analysis (Ref. 14) which indicated that the

inflight loss of water was probably closer to 1.1 liters rather than the 0.8

liter shown in Table 2. This discrepancy was explained by demonstrating

partial replenishment of water fr ym drinking prior to the isotope dilution

studies.

In order to determine alterations of body water during the flight itself,

it was necessary to develop special techniques to examine the water balance

data. The dynamic behavior of body water was derived using these methods

(Ref. 2-8, 12, 17) and is shown in Figure 2 for the first 28 days of flight.

(This time period was chosen for analysis of most of the data presented here,

because it is :tie longest continuous inflight period in which all crewmen from

the three missions can be included in an averaging procedure.) A loss of

between 1.0 and 1.4 liters occurred rapidly and then essentially stabilized at

the reduced level after a day or so followed by a slight tendency toward

partial recovery. A greater initial loss of water was associated with the

crewmen who exhibited space motion sickness and drank less fluid.

Significant postflight decrements were found in blood volume (-600 ml),

extracellular (-300 ml), and intracellular fluid (-00 ml). Interstitial

fluid volume did not appear to change appreciably. Blood volume loss was

caused by a combination of plasma volume and red cell loss. Hemoglobin

concentration measurements, performed inflight, indicated that plasma volume

losses of 10 to 15 percent occurred within the first few days and might have

been lather stable thereafter. However, red cell mass was lost more gradually

9
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FIGURE 2

Changes in total body water. body sodium and body potassium for the

entire Skylab crewmembers during preflight the first inflight month

and recovery. Values shown are changes from morning of launch.

Data was obtained by the indirect metabolic balance method.
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(41 percent) over the course of the entire mission (Ref. 24-26). During the

two-week postflight period, blood volume and intracellular fluid volume

recovered completely. Blood volume replenishment was primarily a result of

overrecovery of plasma volume, since less than 20 percent of the red cells

lost during space flight were regained during this time.

c) Fluid Redistribution:

Headward shifts of fluid in weightlessness were documented for the first

time by leg volume measurements performed on the crew on the 84-day mission.

Most, if not all, of the body fluid deficit could be accounted for by losses

in the lower limbs. Postural change is usually associated with an acute fluid

volume shift of 600 to 800 ml. The fluid volume that shifted from the legs

after several days of weightlessness appears to be much greater (about 1.R

liters). This implies that there are greater reserves of mobilized fluid than

previously recognized. A mean leg volume loss of 1.5 liters for all nine

crewmembers was found just after reentry, and this was almost completely

regained within the first postflight week.

There are two important questions that were not completely resolved from

these studies. The contribution of each major leg compartment (blood,

interstitial, intracellular) to the initial loss of leg volume is still

undetermined. It was also not determined how much of the fluid shifted was

not excreted from the body and in which compartments of the upper body it was

stored. The puffy tissues of the face and distended head and neck veins of

the crewmen suggested that these regions were involved as storage depots. An

expanded fluid volume in the upper body, if sustained and not accommodated,

could have long-term consequences on pulmonary function, cardiac function, and

volume receptor pathways (Ref. 43).

d) Altered Water Balance:

Body fluid loss was expected to result from increased renal excretion.

However, a diuresis was not recorded in the 24-hour pooled urine sample]

obtained from each crewmember early in the mission. As indicated in Figure 3,

urinary excretion was diminished for the first ten days of the mission. The

11
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A composite water balance analysis of the Skylab crew (N =9). Percent
changes from control are indicated for the first 28 days and the two

weeks postflight. Also shown is the average three month mean that

provides insight into long-term changes of intake, excreta and evapor-

ative water loss during a time when the water balance is essentially
zero. Intake includes drinking water, water in food and metabolically

produced water. Output includes both urine and fecal water. Evaporative
water loss was estimated indirectly, (Leonard, 1977).
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loss of body water during the first two days primarily resulted from a deficit

intake of fluid. Evaporative water loss increased significantly for several

days during the first week, mainly as a result of increased ambient

temperatures in the orbital workshop when a heat shield malfunctioned on the

first mission (Ref. 2). However, due to a corresponding increase in fluid

intake and diminished excretion, this did not result in further body water

losses. The three-month averages, as shown in Figure 3, indicate that an

essentially zero water balance was achieved at new equilibrium levels for

intake (slightly diminished compared to preflight), excretion (slightly

increased), and evaporative water loss (decreased 10 percent). During the

first few days of the postflight period, water was regained because of

enhanced intake and diminished excretion, similar to results found in earlier

flights.
1	

t

e)	 Electrolyte Losses:

Of all physiological changes seen during and after space flight, probably

the most reliable clues to the mechanisms involved are offered by an

examination of the electrolyte response. Loss of extracellular fluid is

always accompanied by its major cation, sodium. Potassium, nitrogen, and

magnesium are located primarily in the intracellular spaces. Loss of these

quantities is assumed to reflect muscle degradation, a process known to occur

during gravity unloading. Calcium and phosphorus losses are useful indicators

of bone demineralization.

Of these substances, sodium and potassium were subjected to a more

careful	 analysis	 (Ref.	 1,7).	 Exchangeable body potassium decreased about 240

meq	 (6.4 percent)	 from preflight levels,	 indicating a significant loss of a

cellular mass	 (see Table 2).	 A net loss of approximately 100 meq of sodium

occurred from the extracellular space, and most of these changes were regained f

during the two-week postflight period as summarized in Figure 2. 	 There was an

expected correspondence between total 	 body water and sodium dynamics, since

these quantities are associated with extracellular fluids, especially during

periods of rapid changes.	 While body water and sodium appeared to stabilize

after the initial	 inflight disturbance, body tissue, as exemplified by

potassium loss, continued to decline gradually.	 Potassium and nitrogen losses

(not shown) were essentially parallel 	 (Ref.	 17) as might be expected for a

13



generalized degradation of cellular material. Two quantities that probably

should have correlated, but which did not, were cell water loss and potassium

loss; much more intracellular water than was measured should have accompanied

potassium loss if their normal ratios had been maintained.

The changes in metabolic balance (intake minus excreta) for the major

intracellular electrolytes, calcium, phosphorus, nitrogen, and magnesium are

shown in Table 3. While the loss of electrolytes represent significant

changes in the body's physiology, it does not significantly contribute to the

overall loss in body weight.

f)	 Plasma and Urine Analysis:

Disturbances in the fluid-electrolyte system were also measured by

analysis of weekly blood samples and daily urine collections. These represent

the first systematic collection of inflight body fluid specimens under

somewhat controlled conditions during the space program. Plasma electrolyte

concentrations are very useful in interpreting metabolic, and hormonal

alterations. Elevations in plasma levels were noted for potassium, calcium,

and phosphate, constituents which are normally associated with intracellular

metabolism (see Table 4). The plasma concentration of the major entracellular

salt, sodium chloride, was found to be reduced as was the plasma osmolarity.

Elevated rates of renal excretion were found for all electrolytes (sodium,

potassium, calcium phosphates, and magnesium) during the flight period (see

Figure 4); all except calcium were reduced during the period following

recovery. Loss of body protein was indicated by elevated levels of urine

creatinine and total urinary nitrogen. Uric acid was one of the few

metabolites showing a decreased rate of renal excretion. Taken as a whole,

these findings suggest loss of lean body mass constituent and degradation of

tissues (Ref. 30). However, unless all the routes of metabolism are examined,

it is not possible to quantitatively estimate rates of loss by analyzing

either plasma or urine composition alone.
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TABLE 3

AVERAGE DAILY

NET METABOLIC BALANCES OF INTRACELLULAR MINERALS

1ST INFLIGHT 2ND INFLIGHT 3RD INFLIGHT
PREFLIGHT MONTH MONTH MONTH

(N=9) (N=9) (N=6)

J
S

(N=3)

1

Nitrogen	 (g) 3.2 -	 1.7 0.2 0.2

Potassium	 (meg) 17.0 4.0 9.3 8.7	
r	 ,

Calcium (mg) 8 -18 -170 -168

Phosphorus	 (mg) 180 -24 64 20

j

Magnesium (mg) 26 16 25 15

1
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TABLE 4

CHANGES IN PLASMA ELECTROLYTE CONCENTRATIONS

IN SKYLAB CREW (N=9)

	

ELECTROLYTE	 PREFLIGHT*	 INFLIGHT

	

Na + (meq/1)	 142.2 + 2.6	 137.7 + 1.5**

K+

	

(meq/1)	 4.07 + 0.13	 4.23 + 0.12**

	

Ca ++ (meq/1)	 9.52 + 0.31	 10.23 + 0.23**

PO 	 (meq/1) 3.35 + 0.54 3.96 + 0.54

Cl -	(meq/1) 100.3 + 5.3 95.7	 + 1.7**

Osmolarity	 (mosm/1) 291.0 + 2.8 286.4 + 3.1**

* MEANS + SO

** Inflight significantly different than preflight (p < .05)

I^
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g)	 Endocrine Function:

Endocrine changes which reflect alterations in fluid-electrolyte status,

physical stress, and tissue metabolism were observed in analyses of blood and

urine. Examination of the data from the first month inflight (Figure 5)

revealed elevations in plasma angiotensin, ,.,vinary aldosterone, and urinary

cortisol throughout this period; the highest levels were reached early

inflight. Urinary ADH was elevated during the first week inflight, but was

depressed during the latter half of the first month. All the hormones shown

in Figure 5 reached maximum values on the first or second day of recovery.

These substances are released during periods of general stress, but they are

also sensitive to specific stressors, including plasma levels of electrolytes

and blood pressures.

In many cases, the measured levels of these hormones can be plausibly

correlated with other known changes. For example, increased angiotensin and

aldosterone can account for the elevated renal potassium rates of excretion.

Elevated cortisol levels undoubtedly contribute to muscle catabolism and

increased nitrogen and potassium loss. The behavior of ADH qualitatively

exhibits the expected inverse correlation with urine output during the

inflight and postflight period. The elevation of the catecholamines

(epinephrine and norepinephrine) early in flight and on the day of recovery,

together with cortisol changes, indicate acute stress responses.

Interpretation of these changes is difficult because of the multiple

competing factors which influence hormonal secretion rates and the various

target sites they affect. In some cases, the hormone changes appear

paradoxical. For example, angiotensin is a powerful vasoconstrictor in

addition to its action as an aldosterone stimulator. It is usually released

in response to hypovolemia, so it is not clear why angiotensin is elevated in

zero-g (and also bed rest), at a time when there is a tendency for central

blood volume expansion. ADH is also a potent prtssor agent, in addition to

its known effects on water excretion. However, this hormone is depressed

during periods when angiotensin is elevated. In addition, the behavior of ADH

was quite different on the three missions, as indicated in Figure 6. ADH

levels were elevated on the shortest mission, but were reduced throughout the

18
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other two missions, In another case, aldosterone is a well-known promoter of

renal sodium retention. Therefore, the elevated levels of aldosterone are

inconsistent with the enhanced excretion of sodium. This is possibly evidence

of a previously suggested natriuretic factor which may be operative in space

flight.

h)	 Renal Function:

Alterations in renal function during Skylab were indicated by minor

changes in creatinine clearance, low levels of uric acid in urine and plasma,

and increased secretion of angiotensin. As discussed above, the fluid-

regulating hormones and the degree of water and salt excretion all were

altered during the entire three-month period of study. However, there is no

firm evidence at present to warrant the belief that renal function was

Impaired. Rather, the renal system was probably responding to the demands of

removing ordinary waste products from the body in addition to the extra

demands of removing products created by the adaptive space-flight processes.
e

An understanding of renal function in the weightless environment is made more

difficult by the necessity to study the large number of biochemical agents

which control and are controlled by the kidneys, as well as the complexity of

the regulatory processes associated with that organ. A major emphasis of the

present study was directed toward the systematic study of these processes.

Identification of Problem Areas

Overall, this analysis has identified a number of physiological events

important to an accurate assessment of fluid-electrolyte disturbances during

space flight. These events fall into a small number of categories which

include: a) the redistribution of fluids between various compartments such as

intracellular/extracellular, plasma/interstitium, lower body/upper body; b)

the changes in quantity and concentrations of the body electrolytes ds they

affect the loss of fluids from the body and osmotic shifts with the body; c)

the separate effects of short and long-term neural, hormonal and hemodynamic

regulators of the circulatory-renal system as they influence the above

processes; and d) the changes in intake, sweat losses, and body tissue 	 y
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catabolism of not only water, but of the major electrolytes as they effect the

transient and steady-state reiial and plasma concentration responses. Within

each of these areas there were found experimental observations which, on the

surface, appeared paradoxical and whose etiology was not obvious. A

representative portion of this list is summarized in Table 5.

The analysis which was necessary to resolve the issues listed in Table 5

required addressing various elements of the circulatory, fluid, electrolyte,

hormonal, and renal systems. It is no longer adequate to answer any one of

these questions without considering the effects on other related systems.

That is, an interpretation of these Skylab findings should take place within

the context of considering a total integrated control network. The use of

systems analysis and mathematical modeling of the relevant physiological

control systems is well suited to this task. The results of that extensive

analysis are not within the scope of this report and may be found elsewhere

(Ref. 1-22). However, it would be desirable to provide a summary

interpretation of the space-flight data based on those analyses. An

interpretation of many of the individual biochemical and fluid changes

observed during space flight are provided in Table 6. An integration of these

findings and interpretations into a picture of acute and chronic adaptation to

weightlessness is discussed below.

Interpretation of Skylab Findings

There is unequivocal evidence that hypogravic stresses such as bed rest,

water immersion, and space flight result in significant fluid redistribution

within the body. The removal or reduction of the hydrostatic pressure in the

blood column, coupled with the normal tissue elastic forces and muscle tone of

the lower body, results in shifts of blood and tissue fluid from the lower

body to the intrathoracic circulation. The consequences of this event are

widespread and long lasting, as suggested by Figure 7. As a result of central

volume expansion, a complex set of reactions is presumed to occur: a)

stimulation of all cardiopulmonary pressoreceptors and decreased sympathetic

activity; b) increased blood pressures and secondary decreases in peripheral

resistance, promoting enhanced renal blood flow; c) altered secretion of the
	

I
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TABLE 5
CRITICAL AREAS IDENTIFIED IN ANALYSIS OF FLUID-ELECTROLYTE SYSTEMS

OBSERVATIONS QUESTIONS

Significant tosses of water, 	 sodium, and i) What was the overall magnitude and

potassium were measured directly or time course of the losses?

indirectly in the Skylab crew. ii) From what body compartments did these

quantities originate?

iii) What components of the metabolic balancel
were most significantly altered: 	 intake,!

excretion, or sweat losses?
iv) What regulatory mechanisms were predom-

inantly involved in controlling the

i initial	 loss of fluids and electrolytes 	 1
as well	 as in the final	 approach toward

a new homeostatic level? 	 j

After the first several days of flight, i) Does this imply continuous loss of the

inflight phase was characterized by fluids and electrolytes from the body,

somewhat higher excretion rates of or sloes it	 reflect an alteration of

fluids and major electrolytes. inta:(e or sweat components as suggested
by metabolic balance studies?

ii) What are the mechanisms required to

accomplish this and are they consistent

with observed biochemical 	 changes?

Fluid losses from the legs occurred i)

!

From what compartments does this fluid

rapidly at the onset of zero-g and were originate?

unexpectedly large. ii) What are the forces which drive it from I

the legs?

iii) Is this fluid eventually excreted from	 j

the body or is there a residual volume

remaining?
iv) If residual	 volume is stored in upper

body as has been postulated, does this

represent long-term stress with regard 	 i

to volume receptors or do these

receptors adapt?

Urine volumes were reduced during the i) Is the Henry-Gauer reflex, which pre-

first week inflight,	 coinciding with dicts a diminished trend of ADH and a

mean increases in ADH. diuresis during acute zero-g stress,	 i

not operative in this instance?

ii) What factors are capable of modifying

or reversing this reflex and can they

quantitatively account for the
observed renal excretion?

i

I

a

l
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T R F 5 (CONTINUED)

OBSERVATIONS QUESTIONS

Urinary ADH was significantly depressed i) What are the factors causing the ADH

during the latter part of the inflight response?

phase, while urine volume was only ii) What other competing factors are

slightly elevated, present,	 including longer term adap-

tive mechanisms that maintain reduced

ADH levels and that prevent urine
volumes to be even higher than would 	 i
be expected on Earth?	 j

IThe measured loss ratio of potassium:I i) Does this reflect measurement error or

intracellular water is not consistent are other factors such as altered

with values expected from normal 	 cell extracellular osmolarity involved?

composition. ii) What are the factors which permit

potassium extrusion from the intra-
cellular compartment to occur?	 i

Aldosterone was increased in space i) Is this paradoxical 	 relationship	 in

flight accompanied by an increased terms of one-g physiology) explained

sodium excretion. by other factors which influence
aldosterone release or sodium

excretion?

ii) Is this an instance of sodium escape

from aldosterone?	 I`
iii) What factors caused excess sodium

excretion to occur in the face of

hyponatremia and elevated aldosterone?

Angiotensin was apparently increased i) What mechanisms are responsible for

during space flight, the elevations in angiotensin in a
situation where there is a tendency

toward upper body fluid congestion and

incroses in central blood pressures

which are usually associated with

depressed angiotensin?

ii) How is it possible to reconcile the

increased angiotensin and aldosterone

levels in space flight with the findings

from water immersion studies, which show

an opposite effect?

Plasma osmolarity and plasma sodium i) How can these findings be reconciled

concentration were slightly reduced, when it would be expected that while

urine osmolarity was increased. dilute urine would be associated with

hypotonic plasma, decreased ADH and

increased aldosterone?

ii) What are the facto! • s causing the hypo-

tonic plasma and why does this phenomena'

persist when the renal-thirst reflexes
are capable of exerting exquisite

control of body fluid osmolarity?

24
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TABLE 6

INDICES OF FLUID-ELECTROLYTE STATUS OBSERVED ON SKYLAB

WITH INTERPRETATIONS FROM COMPUTER MODEL ANALYSIS

QUANTITY OBSERVATION SIED ETIOLOGY

LEG VOLUME DECREASED 1,5 LITERS IN FLUID LOSS FROM VASCU-
TWO DAYS AND SMALLER LAR,	 INTERSTITIAL AND
LOSSES THEREAFTER POSSIBLY INTRACELLULAR

COMPARTMENTS,

TOTAL BODY DECREASED ,1 - 1,^4 FLUID LOST APPEARS TO
WATER LITERS	 IN	 DAYS,	 EN- @[}E DERIVED FROM LEGS,

DENCY TO PARTIALLY 9ODY WATER FALLS BY
RECOVER IN CREWS THAT COMBINATION OF SHORT-
WERE MOST DEHYDRATED TERM DIUgES1S	 (NOT

OBSERVED) AND DECREASED
INTAKE,

ENTRACELLULAR DECREASED ABOUT 100 MEO SODIUM LOSS ACCOMPANIES
SODIUM IN TWO DAYS AND STABLE

THEREAFTER
EXTRACEhLULAR WATER
LOSS,	 ATRIURESIS MAY
OCCUR, BUT PRIMARY LOSS
RESULTS FROM DECREASE
IN	 INTAKE,

XCHANNGEABLE DECREASES MOR	 RADUALLY LOSS OCCURS PRIMARILY
ODY tOTASSIUM THAN SODIUM; M MEO OVER FIRST MONTH; DE-

LOST THROUGHOUT MISSION, RIVED FROM INTRACELLULAR
FLUIDS; EARLY DECREASED
INTAKE AND PROLONGED
ELEVATION OF RENAL
POTASSIUM IDENTIFIED AS
AVENUES OF LOSS,

CELL FLUIDS AND POTAS-INTRACELLULAR DECREASED ABOUT U,5
WATER LITERS SIUM LOSS ASSOCIATED

WITH GRAVITY UNLOADING
AND MUSCLE DISUSE
ATROPHY; FLUID LOSS
PROPORTIONALLY LESS THAN
POTASSIUM, BUT CAN BE
EXPLAINED ON BASIS OF
HYPOTONIC EXTRACELLULAR
FLUID,

INTERSTITIAL
FLUID

NO CHANGE LYMPH FLOW AND TISSUE
GEL TEND TO RETURN
INTERSTITIUM TO ORIGINAL
STATE AFTER	 INITIAL
UNLOADING,

i

r
i

(CONTINUED)
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TABLE 6 (CONTINUED)

PLASMA VOLUME DECREASES 10-15% INITIAL LOSS ASSOCIATED
WITH DECREMENTS IN TOTAL
BODY WATER; LOSS IS
MAINTAINED BY MECHANISMS
WHICH REGULATE HYPERVOL-
EM1A; PLASMA VOLUME
LOSSES MAY REPRESENT
NEARLY HALF OF BODY
WATER LOSSES,

HEMATOCRIT INCREASED 10% ACUTELY RESULTS FROM EARLY LOSS
AND DIMINISHES SLOWLY OF PLASMA VOLUME FOLLOWED

BY MORE GRADUAL DECRE-
MENTS OF RED CELL MASS,

INTAKE OF FLUIDS DECREASED EARLY IN SPACE SICKNESS ANOREXIA
AND ELECTROLYTES FLIGHT; OTHERWISE MAY BE RESPONSIBLE FOR

SIMILAR TO PREFLIGHT NTAKE REDUCTIONS UP TO
O% PERSISTING UP TO A

WEEKIN A FEW CREWMEM-
BERS,	 RESPONSIBLE	 IN
LARGE PART FOR FLUIDS
AND ELECTROLYTES LOST
EARLY	 IN FLIGHT,

URINE VOLUME DECREASED ABOUT 201'a NO DIURESIS OBSERVED
FIRST WEEK;	 SLIGHTLY FIRST DAY,	 POSSIBLY DUE
ABOVE CONTROL THERE- TO LACK OF yOID-BY-VOID
AFTER SAMPLING,	 ECREASE

ASSOCIATED WITH REDUCED
INTAKE OF FLUIDS,	 LONG-
TERM RESPONSE RESULTS
FROM DECREASED EVAPORA-
TIVE WATER LOSS,

SODIUM EXCRE- DECREASED ABOUT	 10% EARLY DECREASE ASSOCI-
TION EARLY INFLIGHT AND

INCREASED ABOUT 12%
ATED WITH REDUCED INTAKE
AND HIGH ALDOSTERONE

ABOVE CONTROL LEVELS; LATER INCREASE
THEREAFTER REFLECTS REDUCED SWEAT

LOSSES RATHER THAN CON-
TINUOUS BODY LOSS,	 NOT
CLEAR HOW EXCRETION
INCREASES WHEN ALDOS-
rERONE 4S ELEVATED; THIS
^ESCAPE^ FROM ALDOSTERONE
MAY BE MEDIATED BY A
NATRIURETIC FACTOR,

'[L
j

(CONTINUED)

I
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TABLE 6 (CONTINUED)

QUANTITY OBSERVATION_ SUGGESTED ETIOLOGY

^
OTASSIUM INCREASED ABOUT 10% REFLECTS BOTH CELLULAR
XCRETION THROUGHOUT FLIGHT LOSS AND PERHAPS DECREASED

SWEAT LOSSES.	 GOVERNED
PRIMARILY BY INCREASED
ALDOSTERONE AND INCREASED
PLA SMA POTASSIUM,

R
V APORATIVE DECREASED ABOUT 10% UNEXPECTED DECREASE MEAS-
TER LOSS URED INDIRECTLY;	 POSSIBLY

RESULTING FROM SUPPRESSED
SWEATING.

O
ODIUM AND DECREASED MEASURED INDIRECTLY; 	 PER-
OTASSIUM HAPS DUE TO SUPPRESSED

SWEAT LOSSES SWEAT WATER LOSSES AND
BELIEVED TO BE OF SAME
MAGNITUDE ( ABOUT -30%).

URINE[PIA
+]

INCREASED ABOUT 10% PARADOXICAL FOR REDUCED
ADH AND ELEVATED ALDOS-
TERONE COMBINATION;	 HOW-
EVER, EXPECTED ON BASIS
OF STEADY-STATE ANALYSIS
SHOWING NET SODIUM
INTAKE	 (DIET - SWEAT)
GREATER THAN NET FLUID
INTAKE.

PLASMA	 [NA+] DECREASED ABOUT 3% TOTAL OSMOLARITY ALSO
THROUGHOUT FLIGHT DECREASED; CAUSE NOT

KNOWN.	 NATRIURETIC
FACTOR MAY BE INVOLVED
IN EXCRETION OF SODIUM.

PLASMA	 [K+] INCREASED 2 - 4% INTRACELLULAR POTASSIUM
LOSS AND POSSIBLY DE-
CREASED SWEAT LOSSES CON-
TRIBUTE TO THESE RESULTS,

ANGIOTENSIN INCREASES ABOUT 100% ETIOLOGY NOT CLEAR	 IN
IN PLASMA LIGHT OF SUSPECTED HYPER-

VOLEMIA OF UPPER BODY;
DECREASED PLASMA SODIUM
CONCE14TRATION CAN EXPLAIN
PART OF	 INCREASE.

ALDOSTERONE INCREASED ABOUT 100% SEVERAL FACTORS CAN
IN URINE EXPLAIN CHANGE:	 INCREASED

PLASMA POTASSIUM,	 IN-
CREASED ANGIOTENSIN,
DECREASED PLASMA SODIUM

27
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TABLE b (CONTINUED)

QUANTITY

^
NTI —DIU ETIC INCREASED ON FIRST DECREASED ADH EXPLAINED
ORMONE ^ADH) MISSIONo DECREASED ON BASIS OF DECREASED

LAST TWO MISSIONS, PLASMA OSMOLARITY,	 ROLE
OF VOLUME RECEPTORS NOT
CLEAR, BUT HYPERVOLEMIA
COULD HAVE (LSO CON—
TRIBUTED,	 ESULTS OF
FIRST MISSION ARE PARO -
DOXICAL,

28
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fluid-electrolyte regulating hormones including ADH, the renin-angiotensin-

aldosterone triad, catecholamines, and possibly a natriuretic agent, as well

as renal prostaglandins; d) enhanced renal excretion of fluid and electrolytes

as a result of the alterations in sympathetic activity, hormone secretion, and
J

blood pressures and flows; e) increased transcapillary filtration of plasma

into the interstitium, and, f) a decrease in thirst following reduction in

angiotensin levels and augmented by space motion sickness anorexia. The net

result of these processes is the loss of entracellular fluid and electrolytes,

which has been observed frequently during and following weightless space

flight.

Most, if not all of the rapidly acting mechanisms described above (which

serve to correct the original blood volume disturbance) would most likely be

observed only during the first hours of a hypogravic stress. However, on the

basis of 24-hour metabolic balances, urine flow in the Skylab crew was not

increased, and the entire loss of body fluids could be accounted for by

deficit fluid intake (possibly as a result of space motion sickness).

Computer simulation analysis of the acute stress period indicated that a

reduction in fluid intake always diminished, but did not abolish, the diuresis

response and immediately following this diuresis, renal excretion decreased

below control. Thus, it is postulated that a diuresis was not observed

because void-by-void urine samples could not be obtained and because an early

diuresis would be masked in a 24-hour pooled sample in the presence of	
f

diminished intake. The short-term renal response to space flight in well

hydrated subjects is not yet known.

Whatever the mechanism, most of these early losses were probably derived

from observed decrements in leg volume involving a contraction of the plasma

and the interstitial (and possibly intracellular) fluid spaces of the lower t

limbs. By the end of the first two days in space, the reduction in body water

and body sodium was largely complete (see Figure 2). Also, during the early

stages of flighty significant quantities of potassium escape from intracel-

lular compartments. This may be deduced from increased renal excretion of

potassium, elevated plasma potassium, increased levels of cortisol and	 t

aldosterone which are involved in releasing and controlling potassium, and

potassium balance studies on which the data of Figure 2 is based.
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The more prolonged adaptive phase was characterized by a new water and

sodium steady-state and a slightly negative balance of potassium. The modest

increase of water and sodium excretion throughout this adaptive phase did not

necessarily reflect continued whole-body loss, inasmuch as excretion could

have been offset by a decreased sweat component. Both a steady-state

metabolic balance analysis and model simulation analysis supported this

concept. The continued loss of body potassium is expected from the atrophy of

lean body tissue, a consequence of gravity unloading and muscle disuse.

Model simulation ascertained the importance of autonomic, hemodynamic,

and hormonal regulators of circulatory and renal function during the chronic

phase. These pathways were influenced by fluid shifts between body

compartments, altered metabolic balance, potassium loss from the cells, and

plasma electrolyte concentrations. On the basis of model analysis, it appears

that plasma volume is depressed about one-half liter throughout the flight.

This prediction is supported by postflight measurements. The failure of the

plasma volume to return to normal in zero-g is presumptive evidence of the

presence of blood volume controllers responding to the tendency of fluids to

pool headward. During the adaptive phase of flight, angiotensin and

aldosterone presumably reversed direction from the suppression hypothesized in

the acute stress state. Increased release of these substances can account for

the elevated rates of excretion of renal potassium. It was necessary to

introduce a natriuretic factor in the model (responding to central blood

volume expansion) to obtain realistic simulations of enhanced sodium excretion

in the face of elevated aldosterone, and also to generate the hyponatremic

plasma that was observed. For all Skylab subjects, ADH exhibited the expected

inverse correlation with the urine output; on average, ADH increased during

the first ten days and was suppressed thereafter. The elevation of plasma

angiotensin I is less easy to understand. Since renin-angiotensin is usually

released in response to hypovolemia, it is not clear why angiotensin is

elevated in zero-g (and also in some bed-rest studies) at a time when there is

a tendency for central blood volume expansion. A mild reduction in plasma

osmolarity and sodium concentration occurred early in flight and continued

through the longest mission. The mechanisms which maintain this condition are

not clear. However, the combination of mild hypo-osmolarity and hyperkalemia

helps account, at least in part, for the increases in angiotensin and

aldosterone and decreased ADH.

31
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One of the more consistent findings in astronauts returning from space

flight of any duration has been a loss in body weight. The dynamic behavior

of this weight loss during flight was observed for the first time in the

Skylab program. An analysis method was developed during the current systems

analysis program to numerically determine the major components of body weight

loss in terms of continuous time profiles for body water, body protein, body

fat, body potassium, and body sodium (Ref. 12). The basis of the approach was

a group of metabolic models for water, mass, and energy balance, which, when

combined with whole-body measurements, allowed sequential accumulation of

daily balance without incurring unreasonable error. The general conclusion of

this study was that little more than half of the weight loss observed during

the Skylab mission can be attributed to loss in lean body mass, the remainder

being derived from fat stores. As a working hypothesis, we have assumed the

following: a) acute water and sodium losses are obligatory as a result of

normal physiological responses to headward shifts of fluid in zero-g; b)

protein and intracellular mineral losses are primarily a result of disuse

atrophy of postural muscles and may be obligatory in weightlessness (without

appropriate exercise), although the losses appear to stabilize after about a

month in space; c) fat losses are more variable and are probably dependent on

the usual one -g inFluences of diet and exercise; and d) if present, the

anorexia associated with space motion sickness will augment fat and protein

losses by virtue of a caloric deficiency and will enhance water loss as a

result of reduced fluid intake. These conclusions must be considered

tentative because of the indirect method of estimation and because adequate

experimental controls for assessing the role of diet and exercise in

weightlessness were not available.
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