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SUMMARY

A new, and as yet unexplored, approach to passive flutter contrel 15 aero-
dynamic detuning, defined as designed passage-to-passage differences in the
unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic
detuning directly affects the fundamental driving mechanism for flutter, 1.e.,
the unsteady aerodynamic forces and moments acting on individual rotor blades.
In this paper, a model to demonstrate the enhanced supersonic unstalled aero-
elastic stability associated with asrodynamic detuning 1s developed. The
stabi11ty of an aercdynamicalily detuned cascade operating in a supersonic inlet
flow field with a subsonic leading edge locus 4s anaiyzed, with the aerodynamic
detuning accomplished by means of nopuniform circumferential spacing of adja-
cent rotor blades. The unsteady aerodynamic forces and moments on the blading
are defined in terms of influence coefficients in a manner that permits the
stabi11ty of both a conventional uniformally spaced rotor configuration as well
as the detuned nonuniform circumferentially spaced rotor to be determined.

With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then
utilized to demonstrate the potential enhanced aercelastic stability assoclated
with this particular type of aerodynamic detuning.

NOMENCLATURE
c airfoil chord
T
k reduced frequency, K = wC/Uyp
U, cascade inlet velocity
ys mean airfoil position

c perturbation sonic velocity

Cqa Uunsteady aerodynamic moment coefficient

influence coefficient of airfoil, n
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M dimensionless unsteady aerodynamic moment
Mo cascade inlet Mach number

P perturbation pressure

AP perturbation pressure difference

S uniform airfoil spacing

Sq¢ nonuniform airfoil spacing

u perturbation chordwise velocity

v ‘ perturbation normal velocity
a amplitude of oscillation

a complex oscillatory amplitude
B interblade phase angTe

£ level of aerodynamic detuning

s cascade stagger angle

P fluid density

) oscillatory frequency

{1 matrix

Subscripts:

d detuned cascade

n airfoil number

R reference a1rf011 uniformly spaced cascade

Re reference for set of even numbered airfoils of detuned cascade

Ro reference for set of odd numbered airfoils of detuned cascade



INTRODUCTION

Structural detuning 1s defined as blade-to-blade differences 4n the nat-
ural frequencies of a blade row resulting from variations in the individual
blade structural properties. Mathematical models hava been developed which
demonstrate that even the small amounts of blade-to-blade structural detuning
assoclated with manufacturing tolerances can have a benefictal 2ffect on the
flutter characteristics of rotor assemblies (refs. 1 to 5}, Furthermore, these
models indicate that the aercelastic stability of a rotor can be controlled by
the deliberate introduction of increased levels of blade-to-blade structural
detuning in the rotor design.

However, hlade-to-blade structural detuning is not a universally accepted
potential mechanism to eliminate flutter from the operating range of a fan or
compressor stage. This 1s because of the associated manufacturing, material,
inventory, engine maintenance, control, and cost prcblems.

A new, and as yet unexplored, approach to passive, flutter conirol is
aerodynamic detuning, defined as desfigned passage-to-passage differences in
the unsteady aerodynamic flow field of a rotor blade row, Thus, aerodynamic
detuning results in blade-to-blade differences in the unsteady aerodynamic
forces and moments acting on a blade row. This results 4n the blading not
responding in a classical traveling wave mode typical of the flutter behavior
of a conventional aerodynamically tuned rocor. Thus, aerodynamic detuning
directly affects the fundamental driving ‘mechanism for flutter, the unsteady
aerodynamic forces and moments acting on individual rotor blades.

Supersonic unstalled flutter 1s a significant, problem in the development
of advanced gas turbine fans and compressors: because it restricts the high-
speed operating range of the engine. Hence, the objective of this research
program 1s to devetop a model for aerodynamic detuning applicable to supersonic
unstalled flutter. 1In particular, a mathematica’l mndel is developed to analyze
the stabi1ity of an aerodynamically detuned rotor operating in a supersonic
inlet flow fleld with a subsonic leading edge Tocus, with the aerodynamic
detuning accomplished by means of nonuniform circumferential spacing of adja-
cent rotor blades. This method of aerndynamic detuning was selected because
small solidity variations do not have a dominant effect on the steady-state
arrodynamic performance of a rator. In this modal, the unsteady aerodynamic
forces and moments acting on the blading are defined in terms of influence
coefficients in a manner that permits the stabilty of both a conventional
aerodynamically tuned rutor configuration as well as the detuned nonuniform
circumferentially spaced rotor to be determined,

UNSTEADY AERODYMAMIC MODEL

Current aeroelastic stakility analyses of conventional aerodynamically
tuned and structurally detuned rotors utilize two-dimensional aerodynamic
models applied in a strip theory technique. Hence, a two-dimensional, uni-
formly spaced, airfoil cascade 1s used to represent a twpical rotor blade
section, These models then analyze the unsteady aerodynamics associated with
. the atrfoil cascade executing harmonic oscillations 1n a classical traveling
wave mode, i.e., with a constant interblade phase angle B between adjacent
airfoils.



For supersonic unstalied flutter, a flat plate airfoil cascade embedded
in a supersonic inlet flow field with a subsonic leading edge locus (fig. 1)
undergoing torsion mode harmonic oscillation is considered, The fluid 1is
issumed to be an inviscid, perfect gas with the flow isentropic, adiabatic, and
frrotational. The unsteady continuity and Euler equations are linearized by
assuming that the unsteady perturbations are small as compared to the uniform
throughflow. Thus, the boundary conditions, which require the unsteady flow
to be tangent to the blade and the normal velocity to be continuous across the
wake, are applied on the mean positions of the nscillating a%rfoils.

Unsteady cascade aerodynamics and, in particular, the unsteady forces and
moments acting on the uniformly spaced airfoils are then predicted using
varlous techniques, for example (refs. 6 to 14), Of particular interest are
the analyses of Verdon (ref. 6), Brix and Platzer (ref. 9), and Caruthers
(ref. 10). These analyses utilize a finite cascade representation of the semi-
infinite cascade. The cascade perfodicity condition is enforced by stacking
sufficient numbers of uniformly spaced single airfoils unti} convergence in the
unsteady flow field 4s achieved. ‘

For the aerodynamically detuned, alternate nonuniform circumferentially
spaced rotor, an analogous unsteady aerodynamic model 1s utilized. 1In partic-
ular, thke unsteady aerodynamics associated with the small perturbation torsion
mode harmonic oscillations of a nonuniformly spaced two-dimensional flat plate
alrfoll cascade embedded in an invisscid, supersonic inlet flow field with a
subsonic leading edge Tocus 1s considered.

The analysis of this type of configuration is most easily accomplished
uti1izing a finite cascade representation of the semi-infinite cascade
(fig. 2). As seen, there are two distinct flow passages: a reduced spacing or
increased solidity passage and an increased spacing or reduced solidity pas-
sage. Also, the detuned cascade is composed of two separate sets of airfoils.
For convenience, these are termed the set of even numbered airfoils and the set
of odd numbered airfoils. Thus, twe passage periodicity is required for this
detuned cascade, 1.e., the periodic cascade unsteady flow field 4s achieved by
stacking sufficient numbers of two nonuniform flow passages or two airfoils,
one from each set. :

For the alternate nonuniform airfoil spacing aerodynamic detuning tech-
nique being considered, the spacing, Sq, of the two sets of airfoils is
equal (fig. 2). Thus, the individual sets of odd and even numbered airfoils
can be considered as cascades of uniformly spaced airfoils each with twice the
spacing of the associated baseline uniformly spaced cascade. This enables an
interblade phase angle for this aerodynamically detuned cascade configuration
to be defined. 1In particular, each set of airfoils 1s assumed to be executing
harmonic torsional osctllations with a constant interblade phase angle, By,
between adjacent airfotls. Thus, this detuned cascade interblade phase angle
Is twice that for the corresponding baseline uniformly spaced cascade, The
interblade phase angle for the motion between the sets of even numbered and
odd numbered airfoils is determined from the flutter mode which 1s obtained by
specifying the detuned cascade phase angle, B4, and the level of aerodynamic
detuning, ¢, which defines the nonuniform airfoil spacing.

S,2 = (1 ¥ €)S ' ‘. (1)



where S 15 the spacing of the baseline uniformly spaced cascade and Sy
and Sp denote the spacing of the reduced and increased flow passages of
the detuned cascade.

The formulation of the 1inearized differential equations describing the
unsteady perturbation quantities for the finite aerodynamically detuned cascade
is based on the method of characteristics analysis of the finite uniformly
spaced airfoll cascade developed by Brix and Platzer (ref. 9). In particular
the dependent variables are the nondimensional chordwise, normal, and sonic
perturbation velocities, U, V, and C, respectively. The independent variables
are the dimensionless chordwise and normal coordinates, x and y as defined
In fiqures 1 and 2 and time t. Assumirg harmonic motion at a frequency w,
the resulting set of differential equations which describe the unsteady pertur-
bation flow field are specified in equation (2).
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Solutions to this system of equations are obtained by the method of
characteristics. The compatibility equations are specified in equation 3.
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- o + ikU = 0 (3c)
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where the subscripts ¢, n, and str indicate that the relation is vaiid
along the left or right running characteristic and the characteristic in the
streamline direction, respectively.

The flow tangency boundary condition requires that the normal perturbation
velocity component, V, bz equal to the normal velocity of the airfoil surfaces
on the mean position of the oscillating airfoils. For an aerodynamically
detuned airfoil cascade executing harmonic torsional motions about an elastic
axis Tocated at xp as measured from the leading edge, the dimensionless
normal perturbation velocity component on the n-th airfoil is specified in
equation (4). ‘

1(kt+nﬂd)-

Vlks Yo £) = - ap {1+ (x - x )ik} e (4)
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where yc denotes the mean position of the airfeils, k 1s the reduced
frequency, B 1s the interblade phase angle, and «p denotes the amplitude
of oscillation of the n-th airfoil.

These boundary conditions are applied on the mean positions of the oscil-
lating cascaded airfoils. For the uniformly spaced cascade depicted in
figure 1, the mean position of the n-th airfoil is given 4in equation (5).

nd tan { < x < nd tan ¢ + 1 (5a)
ys = nd | (5b)
ne0, £, *2, . ..

where d is the perpendicular distance between adjacent airfoils, as indicated
in figure 1.

For the nonuniformly spaced airfoil cascade depicted in figure 2, the mean
position of the n-th even numbered airfoil is specified in equation 6.

dy +dg =D (6a)

[—%] D tapn ¢ < x <|:%] D tan ¢ + 1 {6b)

v = [g-] D (6c)

The mean positions of the set of odd numbered airfoils can be expressed ip an
analogous manner.

Thus, the formulation of the mathematical problem for the unsteady aero-
dynamic model of the alternate nonuniform circumferentially spaced detuned
‘cascade 1s complete. At the intersection points of the characteristics,
equation (3) represents a system of three differential equations in three
unknowns, with the appropriate boundary conditions specified in equations (4)
and (6). The unknown chordwise, normal, and sonic dimensionless perturbation
velocities, U, V, and C, in each of the two periodic flow passages of the
semi-infinite cascade are then determined by means of the two airfoi] passage
stacking technique in conjunction with the finite difference scheme developed
by Brix and Platzer for the tuned cascade configuration.

The dimensionless unsteady perturbatton pressure distributions on the sur-
faces of a reference airfoil from each set in the periodic detuned cascade are
defined by these perturbation velocities. In particular, these perturbation
unsteady surface pressure distributions are determined by means of the linear-
ized unsteady Bernoulli equation. The nondimensional unsteady aerodynamic
moment acting on the reference airfoil, M, and the standard torsion mode
unsteady aerodynamic moment coefficient, C,,, are then calculated by integrat-
ing the unsteady surface perturbation pressure difference across the chordline
per equation (7).
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where ap 15 the amplitude of oscillation of the reference airfeil.

INFLUENCE COEFFICIENT TECHNIQUE

The boundary conditions specified in equations (4) and (6) require that
the nonuniformly spaced airfoils oscillate with equal amplitudes, a situation
not appropriate for the detuned airfoil cascade. In addition, the application
of this analysis is unnecessarily costly because the complete periodic per-
turbation flow field must be recalculated, not only for every new cascade
geometry and flow condition, but also for each interblade phase angle value
considered for a particular cascade and flow condition. These l1imitations are
easily rectified by calculating the unsteady aerodynamic moment coefficients,
Cuoe Dy means of influence coefficients. This influence coefficient technique
will first be developed for a cascade of uniformly spaced airfoils and then
extended for the aerodynamically detuned nonuniformly spaced cascade.

For an aerodynamically tuned cascade with N uniformly spaced airfoiis,
the total unsteady aerodynamic moment acting on an arbitrary reference airfoil,
Mg, can be expressed 1n terms of influence coefficients per equation (8).

wedo ] e w Al a ], e
2= O « . & ) ]
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Here,[éa] R denotes the influence coefficients on the reference airfoil,

R, associated with the motion of alrfoil number n. Physically it represents
the unsteady aerodynamic moment acting on the fixed reference airfoil, R, due
to a unit amplitude torsional oscillation of airfoil number n. When n cor-

responds to R, the influence coefficient CﬁJR is the unsteady moment acting
on airfoll R due to 1ts own motion, with all other airfoils fixed.

For the detuned nonuniformly spaced cascade, a reference flow passage
bounded by two reference airfoils must be considered. This is because the
detuned cascade 1s made up of two distinct sets of airfoils, termed the odd
numbered and the even numbered airfoils, and two distinct flow passages. Each
of these flow passages 1s bounded by one airfoil from each airfoil set, per
figure 3.

A reduced spacing flow passage is taken as the reference. The reference
airfoll for the lower boundary of the reference flow passage and for the set
of even numbered airfo{ils 1s denoted by Rp. The reference atrfoll for the
upper boundary of the reference flow passage and for the set of odd numbered
airfoils 1s denoted by Rq. Thus, the unsteady aerodynamic moment acting on
these two reference airfolls can each be written in terms of the influence of
the sets of odd and even numbered airfoils as follows.
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The two groups of bracketed terms are associated with the motion of the
sets of odd numbered and even numbered airfoils, respectively. Also, to assure
that there are an equal number of reduced spacing and increased spacing flow
passages in the cascade, 1.e., that periodicity 1s achieved by stacking two
airfoll passages at a time, equation (9) has been developed assuming that the
cascade s made up of an odd number of airfoils, thereby resulting in an even
number of airfoll passages.

The amplitude of thg harmonic oscillations of the set of odd numbered
airfolls 1s denoted by ap exp(in Bd). with Bd defining the constant
0

interblade phase anale between sequenttally odd numbered airfoiis. The set of
even numbered airfoils are assumed to oscillate with a complex amplitude

ap exp{in ﬁd). with the same constant interblade phase angle. The amplitude
o .

and phase difference between the motions of the sets of odd and even numbered
airfolls 1s accounted for by considering the amplitudes of oscillation,

op and ;R , to be complex quantities. FGecause the interblade phase angles
0 e
are referenced to the reference airfoils, Ry and Rg, the dimensionless
unsteady aerodynamic momnets, equation (10), are rewritten in terms of the
amplitudes of oscillation of the two reference airfoils as follows.

R in
M = o, [C{| + e d [Ca]
RO,Re R0 M R R M R R

o'e o''e
N-1
: [--] B
N ‘e 2 d CN
Mi e R
‘o'e
R B8
- e d [.2
+ aRe [C”] + e [CM] ;
Ro'Re Ro'Re
N-3
=r
+ e 2 d I:Cu"ﬂ (10}
R ,R



where the subscripts Rg,Re refer to the individual reference airfoils.

These two reference airfoil unsteady aerodynamic moments can be shown to
be a standard eigenvalue problem, expressed in matrix form as follows.

-1 — F - ul - rt -
H 5 [ow] [ew?] a
R0 Ro Ro Ro Ro
- C = (11)
M ap [CH1]R {C"a]ﬂe o
o e-J - eJ ol e 'J . e_J
where:
- N-1]
R 18 Y 115 B
[CH]] a CMO +te d [Ca + ... t+t0 -2-4 d [Cg]
RopRe - mRO'Re -Ro’Re RO'RB
- - ™= |
R B 1155 8
E!MQ]R R ® CHe + @ d [C:"] + ., .., +8 Lz.. d [c:"l]
o'"e [ Ro.Re JRO.Re Ro'Re
The terms CMT]R R describe the influence that the set of odd numbered
y o''e

airfoils has on the unsteady moment developed on reference airfoils Ro and

Re respectively. [?M{,R R represents the effect that the set of even
o''e
numbered airfoils has on these two reference airfolls.

Equation 11 denotes a standard eigenvalue problem. The unsteady aero-
dynamic moment coeffictent, C,,, 1s the eigenvalue of the influence coefficient
matrix, [CM], with the associated eigenvector defining the flutter mode for the
nonuniformly spaced cascade, 1.e., the relationship between the motions of the
sets of odd numbered and even numbered airfoils. In the 1imit wherein this
aerodynamically detuned cascade becomes uniformly spaced, the eigenvalue prob-
Tem of equation (11) reduces exactly to that considered by Bendiksen (ref. 4)
for a tuned airfoil cascade.

The influence coefficients [%g] R g are determined from a modification
o''e

of the unsteady aerodynamic model previously described. For example, to
determine l?a] R ! airfoil n 1s harmonically osciliated while all of the
0

other nonuniformly spaced cascaded airfoils are Kept fixed and the effect on
reference airfoil Ry calculated. With all of the influence coefficients

determined in this manner, [CM1] and [(:Mz] are calculated by
RO.Re Ru'Re

vector addition of the appropriate influence coeffictents after multiplication
by the specified complex interblade phase angle term. To analyze a different
interblade phase angle, 1t 15 only necessary to perform the vector addition in
terms of this new phase angle. The influence coefficients calculated from the
unsteady aerodynamic model do not have to be recalculated.
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Thus, this matrix formulation of the eigenvalue problem (eq. (11)) 1s
utilized herein in conjunction with the influence coefficient technique to
efficiently determined the standard dimensioniess torsion mode unsteady aero-
dynamic moment coefficients, Cyq, for specified aerodynamically tuned and
detuned nonuniformly spaced cascade configurations.

MODEL VERIFICATION

To verify the formulation of this aerodynamically detuned finite cascade
model, the 14miting case of a uniformly spaced cascade configuration is con-
sidered. In particular, both this detuned finite cai.cade analysis based on an
influence coefficient technique and the uniformly spaced infinite cascade
analysis of Adamczyk and Goldstein (ref. 11) are applied to Verdon's uniformly
spaced Cascade B configuration (ref. 14).

The real and imaginary parts of the unsteady aerodynamic moment coeffi-
cient, C,,, predicted with these two models are presented in figure 4, with
the interblade phase angle B as a parameter. Two interblade phase angles
are associated with each point shown 4in figure 4. Bq refers to the inter-
blade phase angle utilized in equation (10) and B 1is the interblade phase
angle calculated from the eigenvectors of equaticn (11). Because the cascaded
alrfoils are executing single degree of freedom torsion mode oscillations, the
stabi14ty of the cascade 1s specified by the sign of the imaginary part of this
moment coefficient, with positive values svrresponding to an unstable cenfigur-
ation. As seen, there 1s excellent agreement between these two analyses for
all interblade phase angles,

RESULTS

To demonstrate this ponuniform airfoll spacing technique for aerodynamic
detuning, the Cascade B geometry is utilized as a baseline with a midchord
elastic axis location.

The influence coefficients, Cﬂ , for both the uniformly spaced baseline

cascade and a 13.3 percent nonuniformly spaced cascade are presented in

figure 5. As seen, the airfoils from 0 to -« have no influence because of

the law of forbidden signals. For the detuned cascade, the reference airfoils
Ro and Rp are oscillated. Ffor comparison purposes, the results are shifted
so that the results presented in this figure correspond to airfoil number two
being the vscillating reference airfoil in all cases. These influence coeffi-
cients are displayed in a manner corresponding to airfoil number 2 harmonically
oscillating with all other airfoils in the cascade fixed. As seen, the oscil-
lating airfoil has a significant effect only on the unsteady moments developed
on the airfoils in its immediate vicinity. Also, the influence of the oscil-
lating alrfoil 1tself on the total unsteady moment coefficient, Cyq, 15
stabi1izing. The stabi11zing or destabilizing influence of the other airfoils
in the cascade can not be determined from these influence coefficients alone.
This 1s because the total unsteady moment coefficient 1s determipned from these
influence coefficients by performing the vector addition Indicated 1in

equation (11) for a specified interblade phase angle value referenced to the
oscillating alrfoil,

10
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The variation of C,, Wwith interblade phase angle for both the 13.3
percent nonuniformly spaced detuned cascade and the baseline 1s presented in
figure 6. For the conditions considered, the baseline cascade exhibits an
ipstabi1ity, 1.e., the imaginary part of C,, bhas a positive value. How-
ever, the aerodynamic detuning associated with this nonuniform spacing results
in a neutrally stable or stable Zonviguration for all interblade phase angle
values, Also, the nonuniforin airfoil spacing generally exhibits a beneficial
effect on stability in that this derodynamic detuning results in the imaginary
part of the moment coefficients for the deiuned cascade becoming more nagative
than the corresponding baseline values. This beneficlal effect 1s particularly
evident for interblade phase angle values corresponding to forward traveling
waves, being somewhat less pronounced for backward traveling waves.

Figure 7 shows the effect of inlet Mach number on the variation with
reduced frequency of the imaginary part of C,, for the least stable inter-
blade phase angle value. For a constant Mach number value, the stability of
the uniformly spaced baseiine configuration s generally enhanced by the non-
uniform airfoil spacing, with the larger effects asyociated with the lower Hach
numbers, Also, as the Mach number increases, there 1s a decreased effect of
aerodynamic detuning on the critical reduced frequency, defined as the reduced
frequency resulting 4n neutral stability and characterized by a value of zero
for the imaginary part of Cgq.

To demonstrate the fundamental mechanism for the enhanced stability of the
detuned cascade, the reduced frequency and Mach number at which the detuned
configuration 1s neutrally stable but the baseline cascade is unstable is con-
sidered: k = 1.2375 and M = 1.15, per figure 7. The chordwise variation of
the imaginary part of the dimensionless surface pressure and pressure differ-
ences on the reference airfoils for the detuned and baseline configqurations
are presented in figures 8 to 13. As seen, the aerodynamic detuning affects
the imaginary part of the unsteady surface pressure distributions over the
complete airfoil chord, including the surface intersection locations, of the
Mach waves and their reflections (figs. 8 to 171). However, there is only a
relatively small effect on the chordwise distributions of the unsteady pressure
differences in front of the first Mach wave - airfoil intersection location as
a result of this aerodynamic detuning (figs. 12 and 13). The effect of aero-
dynamic detuning on these unsteady pressure difference distributions are asso-
clated with the Mach wave -~ airfoil intersection locations and the chordwise
distributions aft of the first intersection.

Because the nonuniform airfolil spacing at these conditions primarily
affects the pressure difference distribution over the mid and aft chord por-
tions of the airfoil surfaces, the elastic axis location should have a signi-
ficant effect on the detuning stability enh:ncement. This 1s demonstrated in
figure 14 which considers the effect of elastic axis location on the stability
of the baseline and detuned cascades of these conditions. As seen, as the
elastic axis is moved forward of widchord, the “mprovement 1n stability due to
aerodynamic detuning 1s increased ay compared to a movement of the elastic
axis aft of midchord.

11
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It 4s interesting to consider the fundamental differences betwaen the two
cascade configurations at the conditions fu} which both are neutrally stable,
M=1.32 and K = 1,3 per figure 7. The chordwise variation of the imaginary
part of the surface pressures and the pressure differences are presented in
figures 15 to 20. As seen, the detuning primarily affects the chordwise dis-
tributions of the unsteady pressures on the pressure surfaces of the two
reference airfoils (figs. 15 to 18). However, the chordwise distributions of
the unsteady pressure difference for the baselipe and the detuned cascade con-
fiqurations are significantly different (figs. 19 and 20) even though their
integrated values are equal, i.,e., the imaginary part of C,, for each of
these configurations is zero. Thus, although the aerodynamic detuning has
greatly affected the unsteady aerodynamic loading distributions, the aero-
elastic stabi1ity has not been affected.

SUMMARY AND CONCLUSIONS

A model for aerodynamic detuning to achieve enhanced supersonic unstalled
aeroelastic stabilty hias been developed. This model analyzes the stabiiity of
an aerodynamically detuned rotor operating in a supersonic inlet flow field
with & subsonic leading edge locus, with the aerodynamic detuning accomplished
by means of nonuniform circumferential spacing of adjacent rotor blades. The
unsteady aerodynamic forces and moments acting on the blading are defined in
terms of influencr coefficients in a manner that permits the stability of both
a conventional uniformiy spaced rotor configuration as well as the detuned
nonuniform circumferentially spaced rotor to be determined.

The effect of this aerodynamic detuning on the fundamantal unsteady aero-
dynamics and aeromlastic stabjlity were considered utilizing Verdon's Cascade
B as a baselin¢ resfiguration. This study demonstrated the potential enhanced
stabi1ity asspciated with this type of aerodynamic detuning. The aerodynamic
detuning signiticantly affected the chordwise distributions of the unsteady
surface pressures. However, aerodynamic detuning did not always affect the
unsteady pressure distributions over the complete airfoi} chord. For condi-
tions such that the baseline configuration was unstabie but the detuned cascade
neutrally stable, the effect of aerodynamic detuning on the unsteady pressure
differences was shown to be associated with the Mach wave airfoil intersection
locations and the chordwise distributions aft of the first intersection. For
these conditions, it was then demonstrated that a forward position, as opposed
to an aft position, for the elastic axis was associated with increased stabil-
1ty enhancement. It was also stown that for one particular set of conditions,
both the uniformly spaced and the aerodynamically detuned cascade configura-
tions were neutrally stable but the associateu unsteady surface pressure and
pressure difference chordwise distributions were significantly different, 1.e.,
detuning significantly affected the surface pressure distributions but did not
ephance the cascade stability.
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