General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CE-175833)LITERNATIVES FOR JETN85-26715ENGINE CONTEOLSemiannual Status Report, 1Nov.1983 - 30 Apr. 1934 (Notre Dame Univ.)271 p HC A12/MF A01CSCL 21EUnclas

The second second second second

Semi-Annual Status Report

to the

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

on

۰.

NASA Grant NSG-3048

ALTERNATIVES FOR JET ENGINE CONTROL*

November 1, 1983 - April 30, 1984

*This work has been carried out under the direction of

1

η.

ì

₽.

.

J

Dr. Michael K. Sain Department of Electrical Engineering University of Notre Dame Notre Dame, Indiana USA 46556

through the set of the state of the set

ABSTRACT

This report documents the technical progress of researches under National Aeronautics and Space Administration Grant NSG-3048, entitled "Alternatives for Jet Engine Control", during the six-month period from November 1, 1983 to April 30, 1984. NASA Technical Officer for the work was Dr. Bruce Lehtinen, at Lewis Research Center. Dr. Michael K. Sain was director of the investigation at the University of Notre Dame.

Since the last report, Mr. Daniel Bugajski has completed an M.S. Thesis on the topics discussed therein. This work includes extensive numerical testing, over and above the previous progress document. Results indicate that optimal inputs contribute significantly to the process of calculating tensor approximations for nonlinear systems, and that the resulting approximations may be order-reduced in a systematic way.

TABLE OF CONTENTS

LIST OF TABLES 1	i
LIST OF FIGURES iv	v
CHAPTER I: INTRODUCTION	1
CHAPTER II: PROBLEM BACKGROUND	4
2.1 Model Structure	4
2.2 Input Design	9
2.3 Singular Value Decomposition I	13
2.4 Remarks 1	.5
GARTER III; SOFIWARE OVERVIEW	. 0
3.1 Mode11ing	16
3.2 Simulation	19
CHAPTER IV: MODEL REDUCTION	2
4.1 Reduction Technique	22
4.2 Remarks	34
CHAPTER V: EXAMPLE REDUCTIONS	35
5.1 Two State, Two Input System	35
5.1.1 Degree Two Approximation	36
5.1.2 Degree Three Approximation	17
5.? Three State, Three Input System	9
5.3 Three State Two Input System.	57
5.4 Remarks	4
CHAPTER VI: CONCLUSIONS 18	19
APPENDIX A: NONLINEAR TENSOR MODELS: A CASE STUDY	1
REFERENCES	1

LIST OF TABLES

Table 5.1.1 through Table 5.1.5 Simulation tables for linear model versus second degree reduced model

en logisti dell'aletti di l'esti e l'all'internatione di l'esti di

- Table 5.1.6 Low frequency table for linear model versus second degrees reduced model
- Table 5.1.7 through Table 5.1.8 Step response tables for linear model versus second degree reduced model
- Table 5.1.9 through Table 5.1.12 Simulation tables for second degree full model versus second degree reduced model
- Table 5.1.13 Low frequency table for second degree full model versus second degree reduced model
- Table 5.1.14 through Table 5.1.19 Simulation tables for second degree full model versus third degree reduced model
- Table 5.1.20 Low frequency table for second degree full model versus third degree reduced model
- Table 5.1.21 Step response table for second degree full model versus third degree reduced model
- Table 5.1.22 through Table 5.1.25 Simulation tables for third degree full model versus third degree reduced model
- Table 5.1.26 Low frequency table for third degree full model versus third degree reduced model
- Table 5.1.27 Step response table for third degree full model versus third degree reduced model
- Table 5.2.1 through Table 5.2.4 Simulation tables for linear model versus second degree reduced model
- Table 5.2.5 Low frequency table for linear model versus second degree reduced model
- Table 5.2.6 through table 5.2.9 Simulation tables for second degree full model versus second degree reduced model
- Table 5.2.10 Low frequency table for second degree full model versus second degree reduced model

ii

- Table 5.3.1 through Table 5.3.4 Simulation tables for linear model versus second degree reduced model
- Table 5.3.5 Low frequency table for linear model versus second degree reduced model

Table 5.3.6 through Table 5.3.9

ļ

-

ì

teres and

Simulation tables for second degree full model versus second degree reduced model

Table 5.3.10 Low frequency table for second degree full model versus second degree reduced model

LIST OF FIGURES

- Figure 2.1 Upper Triangular Portion of the Matrix M
- Figure 3.1 Logical Structure of the Modelling Scheme
- Figure 3.2 Logical Structure of Simulation on the IBM 370/3033
- Figure 4.1 Variation of Model Sizes with Various Parameters
- Figure 4.2 Reduction Data for Sample Exercise
- Figure 5.1.1 Full Second Degree Model and Reduction Test (First Pass)
- Figure 5.1.2 Reduced Second Degree Model and Reduction Test (Second Pass)

Figure 5.1.3 Simulation Number 10 of Table 5.1.1

- Figure 5.1.4 Simulation Number 25 of Table 5.1.1
- Figure 5.1.5 Simulation Number 29 of Table 5.1.2
- Figure 5.1.6 Simulation Number 14 of Table 5.1.3
- Figure 5.1.7 Simulation Number 13 of Table 5.1.4
- Figure 5.1.8 Simulation Number 37 of Table 5.1.5
- Figure 5.1.9 Simulation Number 15 of Table 5.1.6
- Figure 5.1.10 Simulation Number 35 of Table 5.1.7
- Figure 5.1.11 Simulation Number 48 of Table 5.1.8
- Figure 5.1.12 Simulation Number 32 of Table 5.1.9
- Figure 5.1.13 Simulation Number 26 of Table 5.1.9
- Figure 5.1.14 Simulation Number 19 of Table 5.1.10
- Figure 5.1.15 Expanded Section of Figure 5.1.14
- Figure 5.1.16 Simulation Number 13 of Table 5.1.11
- Figure 5.1.17 Simulation Number 1 of Table 5.1.1
- Figure 5.1.18 Simulation Number 26 of Table 5.1.13
- Figure 5.1.19 Full Third Degree Model and Reduction Test (First Pass)
- Figure 5.1.20 Reduced Third Degree Model and Reduction Test (Second Pass)

1

-1

Figure	5.1.21	Reduced Third Degree Model and Reduction Test (Third Pass)
Figure	5.1.22	Simulation Number 5 of Table 5.1.14
Figure	5.1.23	Simulation Number 33 of Table 5.1.14
Figure	5.1.24	Simulation Number 18 of Table 5.1.15
Figure	5.1.25	Simulation Number 26 of Table 5.1.16
Figure	5.1.26	Simulation Number 4 of Table 5.1.17
Figure	5.1.27	Simulation Number 2 of Table 5.1.18
Figure	5.1.28	Simulation Number 46 of Table 5.1.18
Figure	5.1.29	Simulation Number 12 of Table 5.1.19
Figure	5.1.30	Simulation Number 46 of Table 5.1.19
Figure	5.1.31	Simulation Number 3 of Table 5.1.20
Figure	5.1.32	Simulation Number 21 of Table 5.1.20
Figure	5.1.33	Simulation Number 15 of table 5.1.21
Figure	5.1.34	Simulation Number 7 of Table 5.1.22
Figure	5.1.35	Simulation Number 30 of Table 5.1.23
Figure	5.1.36	Simulation Number 44 of Table 5.1.23
Figure	5.1.37	Expanded Section of Figure 5.1.36
Figure	5.1.38	Simulation Number 8 of Table 5.1.24
Figure	5.1.39	Simulation Number 12 of Table 5.1.25
Figure	5.1.40	Simulation Number 3 of Table 5.1.26
Figure	5.1.41	Simulation Number 21 of Table 5.1.26
Figure	5.1.42	Simulation Number 13 of Table 5.1.27
Figure	5.1.43	Simulation Number 49 of Table 5.1.27
Figure	5.2.1	Full Second Degree Model and Reduction Test (First Pass)
Figure	5.2.2	Reduced Second Degree Model and Reduction Test (Second Pass)
Figure	5.2.3	Simulation Number 6 of Table 5.2.1
Figure	5.2.4	Simulation Number 15 of Table 5.2.2

à

V

- Figure 5.2.5 Simulation Number 10 of Table 5.2.3
- Figure 5.2.6 Simulation Number 3 of Table 5.2.4
- Figure 5.2.7 Simulation Number 1 of Table 5.2.5
- Figure 5.2.8 Simulation Number 16 of Table 5.2.5
- Figure 5.2.9 Simulation Number 2 of Table 5.2.6
- Figure 5.2.10 Simulation Number 17 of Table 5.2.7
- Figure 5.2.11 Simulation Number 16 of Table 5.2.8
- Figure 5.2.12 Simulation Number 9 of Table 5.2.9
- Figure 5.2.13 Simulation Number 16 of Table 5.2.10
- Figure 5.2.14 Simulation Number 19 of Table 5.2.10
- Figure 5.3.1 Full Second Degree Model and Reduction Test (First Pass)
- Figure 5.3.2 Reduced Second Degree Model and Reduction Test (Second Pass)
- Figure 5.3.3 Simulation Number 4 of Table 5.3.1
- Figure 5.3.4 Simulation Number 22 of Table 5.3.2
- Figure 5.3.5 Simulation Number 11 of Table 5.3.3
- Figure 5.3.6 Simulation Number 3 of Table 5.3.4

- Figure 5.3.7 Simulation Number 27 of Table 5.3.4
- Figure 5.3.8 Simulation Number 10 of Table 5.3.5
- Figure 5.3.9 Simulation Number 33 of Table 5.3.5
- Figure 5.3.10 Simulation Number 4 of Table 5.3.6
- Figure 5.3.11 Simulation Number 6 of Table 5.3.7
- Figure 5.3.12 Simulation Number 21 of Table 5.3.8
- Figure 5.3.13 Simulation Number 18 of Table 5.3.9
- Figure 5.3.14 Simulation Number 16 of Table 5.3.10
- Figure 5.3.15 Simulation Number 36 of Table 5.3.10

vi

CHAPTER I

INTRODUCTION

Inherent in the design of any control scheme is a model of the physical system or plant. The plant itself can be modelled in basically two ways. First, laws of nature can be applied to the system in question. Many of these models are time tested and shall considered an adequate representation. Examples are the laws governing the mechanics of rigid bodies, and the set of equations governing the response of electric circuits. Or, second, if the system is far too complex for the relative simplicity of familiar equations, or if the governing scientific laws are too complicated to implement, system identification via excitation of the plant and measurement of the response can be performed [1]. It is this modelling technique we address here.

In the case of a linear approximation, this identification can be carried out without much computational difficulty. Unfortunately, because of system nonlinearities, in many instances the linear approximation, while adequate, leaves much room for improvement. In these cases, a model containing parameter estimates of higher degree terms (squared terms, cubic terms, and so forth) is an answer to characterizing the system nonlinearities.

Methods of calculating nonlinear models through the use of tensor algebraic ideas have been studied [2], and results have been good for academic examples [2] as well as for models of NASA's QCSE (<u>Ouiet</u>, <u>Clean</u>, <u>Shorthaul</u>, <u>Ex-</u> perimental) jet engine [3]. As we shall see, the tensor approach is invaluable in that nonlinear problems are solved using linear techniques. A challenge of this tensor method, as with all general nonlinear methods, is the problem of complexity. Obviously the size of the model will increase with the

addition of states or control inputs; however a very noticeable increase in model size accompanies any increase in the degree of approximation. Presently, typical problems using square or cubic series approximations can be handled quite capably. As the need or desire to expand to fourth degree models, and beyond, surfaces, computational constraints will need increasing attention. Upper limits on addressable storage must be considered; and most matrix software routines have a vague upper limit on dimensions beyond which calculation becomes unreliable. In lieu of computational limitations, we can call on simple intuition to cite some disadvantages in the use of large models. A first obvious observation maintains that a model containing redundant information or one retaining useless information offers no advantages over the same model with the extraneous data disregarded. Both of these faults, however, are likely to occur as model size increases. A second, less compelling teason is that large models are simply more cumbersome than smaller, compact models.

In light of the above motives, clearly a scheme to reduce full size models could be nothing but beneficial to the modelling problem. This work then opens a pathway to the identification of such reduced systems by making use of a simple idea involving the comparison of squared errors. Finally, it is worth mentioning that state reduction is not addressed here, but rather reduction via the omission of selected terms in the series approximation is considered.

A brief review of the contents of the remaining chapters is appropriate. Chapter II presents some informal mathematical background Among the items discussed are (1) overall problem formulation, (2) input design, (3) the sin-

2

*±

gular value decomposition. Chapter III briefly summarizes the software package and the logical flow of each phase of the modelling/simulation procedure. In Chapter IV the scheme for model reduction is presented and discussed. It will be shown how the reduction method fits well into the present identification technique. Sample reductions and verifications are presented in Chapter V as a few example problems are studied. Finally, Chapter VI draws some conclusions and offers some pertinent suggestions.

CHAFTER II

PROBLEM BACKGROUND

The intent of this chapter is to provide a brief presentation of some of the principles on which the work in the following chapters is founded. The purpose here is not to relay detailed theory, but the material presented will be sufficient enough to gain a proper understanding of the problem.

The model structure formation, by means of a symmetric tensor method, is discussed in the first section along with a few ideas concerning the actual calculation of the model. Following this, the next section summarizes an information theoretic approach to input design used in the parameter identification. The final section presents an overview of the singular value decomposition because of its importance in the calculation of the model.

2.1 MODEL STRUCTURE

In a most general form, a nonlinear ordinary differential equation in x with input u can be written

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$$

where x is a real n-vector and u is a real m-vector.

Now suppose a Taylor series expansion is performed scound some operating point $(\overline{x},\overline{u})$, then [2]

$$\hat{\mathbf{x}} = \mathbf{f}(\hat{\mathbf{x}}, \hat{\mathbf{u}}) = \mathbf{f}(\overline{\mathbf{x}}, \overline{\mathbf{u}}) + \frac{\partial \mathbf{f}}{\partial \hat{\mathbf{x}}} \Big|_{(\overline{\mathbf{x}}, \overline{\mathbf{u}})} (\hat{\mathbf{x}} - \overline{\mathbf{x}}) + \frac{\partial \mathbf{f}}{\partial \hat{\mathbf{u}}} \Big|_{(\overline{\mathbf{x}}, \overline{\mathbf{u}})} (\hat{\mathbf{u}} - \overline{\mathbf{u}})$$

$$+ \frac{1}{2} \sum_{i=1}^{n} e_{i} (\hat{\mathbf{x}} - \overline{\mathbf{x}})^{T} \frac{\partial^{2} f_{i}}{\partial \hat{\mathbf{x}}^{2}} \left| (\hat{\mathbf{x}} - \overline{\mathbf{x}}) \right| (\hat{\mathbf{x}} - \overline{\mathbf{x}})$$

$$+ \sum_{i=1}^{n} e_{i} (\hat{\mathbf{x}} - \overline{\mathbf{x}})^{T} \frac{\partial^{2} f_{i}}{\partial \hat{\mathbf{x}} \partial u} \left| (\hat{\mathbf{u}} - \overline{\mathbf{u}}) \right| (\hat{\mathbf{u}} - \overline{\mathbf{u}})$$

$$+ \frac{1}{2} \sum_{i=1}^{n} e_{i} (\hat{\mathbf{u}} - \overline{\mathbf{u}})^{T} \frac{\partial^{2} f_{i}}{\partial \hat{\mathbf{u}}^{2}} \left| (\hat{\mathbf{u}} - \overline{\mathbf{u}}) \right| (\hat{\mathbf{u}} - \overline{\mathbf{u}})$$

where
$$e_i = \begin{bmatrix} \cdot \\ \cdot \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ \cdot \\ \cdot \end{bmatrix} \leftarrow i^{th} position.$$

If the operating point $(\overline{x},\overline{u})$ is taken as a reference, then

$$x = \hat{x} - \overline{x},$$
$$u = \hat{u} - \overline{u},$$

and if

ļ

ļ

PARTICIPACITY OF T

The second se

Ì

10140

ALTY 1

$$\overline{\mathbf{x}} = \mathbf{f}(\overline{\mathbf{x}}, \overline{\mathbf{u}}),$$

then

$$\dot{\mathbf{x}} = \hat{\mathbf{x}} - \mathbf{f}(\mathbf{x}, \mathbf{u}).$$

Substituting these into the expansion expression, we obtain

$$\dot{\mathbf{x}} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \begin{vmatrix} \mathbf{x} + \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \\ (\overline{\mathbf{x}}, \overline{\mathbf{u}}) \end{vmatrix} \begin{pmatrix} \mathbf{u} \\ \partial \overline{\mathbf{u}} \\ (\overline{\mathbf{x}}, \overline{\mathbf{u}}) \end{pmatrix}$$

$$+ \frac{1}{2} \sum_{i=1}^{n} e_{i} x^{T} \frac{\partial^{2} f_{i}}{\partial x^{2}} \bigg|_{(\overline{x},\overline{u})} x$$

$$+ \sum_{i=1}^{n} e_{i} x^{T} \frac{\partial^{2} f_{i}}{\partial x \partial u} \bigg|_{(\overline{x},\overline{u})} u$$

$$+ \frac{1}{2} \sum_{i=1}^{n} e_{i} u^{T} \frac{\partial^{2} f_{i}}{\partial u^{2}} \bigg|_{(\overline{x},\overline{u})} u$$

+ • • •

It is at this point where tensor algebra becomes important. Specifically the bilinear symmetric tensor product, \vee , [4] is used to form the products of the higher degree terms. If $x \in X$ and $u \in U$, then

 $\begin{array}{c} \vee : X \times X + X \vee X \\ \vee : X \times U + X \vee U \\ \vee : U \times U + U \vee U \\ & \cdot \\ & \cdot \end{array}$

We use these to write the differential equation as follows

 $\dot{\mathbf{x}} = \mathbf{L}_{10x} + \mathbf{L}_{01u} + \mathbf{L}_{20}(\mathbf{x} \vee \mathbf{x}) + \mathbf{L}_{11}(\mathbf{x} \vee \mathbf{u}) + \mathbf{L}_{02}(\mathbf{u} \vee \mathbf{u}) + \dots$

where the L_{ij} make up the model. Note that the first and second subscripts correspond to the number of times x and u respectively are used in the symmetric tensor products associated with a given model partition L_{ij} . Simplifying the differential equation again

$$\dot{\mathbf{x}} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \mathbf{L}_{ij} \underbrace{(\mathbf{x} \lor \mathbf{x} \lor \mathbf{x}...)}_{i \text{ times}} \underbrace{(\mathbf{u} \lor \mathbf{u} \lor \mathbf{u}...)}_{j \text{ times}}$$

6

i ł

Finally

 $\dot{x} = L z$

where

 $L = [L_{10} \ L_{01} \ L_{20} \ L_{11} \ L_{02} \ L_{30} \ \dots],$

and z is a stacked vector of tensor term products:

	u	
	x V x	
z =	x ∨ u	
	u v u	
	x ∨ x ∨ x	
	•	
	.	
	· _	

It is interesting to note that the vector z is already reduced in one sense. Because of the properties of symmetric tensor algebra, redundant cross products are eliminated. For example

 $\mathbf{x} \vee \mathbf{u} = \mathbf{u} \vee \mathbf{x} ,$

 $\mathbf{x} \lor \mathbf{x} \lor \mathbf{u} = \mathbf{x} \lor \mathbf{u} \lor \mathbf{x} = \mathbf{u} \lor \mathbf{x} \lor \mathbf{x}$.

Thus, when x and u have dimension greater than one, cross products of individual elements contain redundancies and are hence eliminated. Some example instances are

> $x_1x_2 = x_2x_1$, $x_1x_2x_3 = x_1x_3x_2$ $= x_2x_1x_3$ $= x_2x_3x_1$ $= x_3x_1x_2$ $= x_3x_2x_1$,

 $x_1x_2u_1 = x_1u_1x_2$ = $x_2x_1u_1$ = $x_2u_1x_1$ = $u_1x_1x_2$ = $u_1x_2x_1$.

The existing software package includes an efficient ordering algorithm [2,3] which insures that redundant products are not calculated. It is clear that a significant amount of reduction in size, and hence, calculation is inherent is the use of symmetric tensor algebra.

We can now address the question concerning the calculation of the model, L, given a "black box" system. In our case the black box consists of a QCSEE digital simulation routine or a system of mathematical equations that represent a physical system.

Recall the equation

 $\dot{x}(t) = L z(t)$

where $\dot{x}(t)$ is a vector of state derivatives and z(t) is a vector of tensor terms. Because L is the unknown, obviously we must know (or estimate) the values of $\dot{x}(t)$ and z(t) to identify the parameters contained in L. To get a reliable determination of how \dot{x} and z change with time, the system is perturbed from an equilibrium state, $(\overline{x}, \overline{u})$, to a trajectory (\hat{x}, \hat{u}) where [5]

 $x = \hat{x} - \overline{x}$ $u = \hat{u} - \overline{u}.$

The values of x(t) and u(t) and estimates of $\dot{x}(t)$ are then sampled and stored. From x(t) and u(t), z(t) is formed. The problem now appears:

8

J

$$\begin{vmatrix} \dot{x}_{1}(t_{1}) & \dot{x}_{1}(t_{2}) & \cdots & \dot{x}_{1}(t_{h}) \\ \dot{x}_{2}(t_{1}) & \dot{x}_{2}(t_{2}) & \cdots & \dot{x}_{2}(t_{h}) \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \dot{x}_{n}(t_{1}) & \dot{x}_{n}(t_{2}) & \cdots & \dot{x}_{n}(t_{h}) \end{vmatrix} = L \begin{bmatrix} z_{1}(t_{1}) & z_{1}(t_{2}) & \cdots & z_{1}(t_{h}) \\ z_{2}(t_{1}) & z_{2}(t_{2}) & \cdots & z_{2}(t_{h}) \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ z_{p}(t_{1}) & z_{p}(t_{2}) & \cdots & z_{p}(t_{h}) \end{bmatrix}$$

9

where h is the number of samples and p is the number of terms in the nonlinear approximation; p is dependent on the number of states, n, the number of inputs, m, and the degree of approximation. We shall write this as X = LZ.

Fortunately, a very good routine for solving a problem of this form exists in the SPEAKEASY library of the IBM 370/3033. Using a singular value decomposition, discussed later, of Z, a least squares problem is solved [6] and L is calculated. The model then is ready for verification by means of digital simulation and comparison with true system solutions.

2.2 INPUT DESIGN

From the preceding section, it is clear that the model L is dependent on the excitation, (x(0),u(t)). Improper choice of perturbation might translate to an insufficient excitation of the nonlinearities, instability, or singularity. A careful method for choosing inputs could decrease the likelihood of encountering these defects. With this, the chance of identifying a "good" mode!, one with strong tracking ability and an acceptable region of stability, is then increased. In addition to better models, the capability of an input selection routine eliminates the need for an exhaustive search of input parameters. For the purpose of this work, the theoretical detail of an input optimization derivation is not required. It is the intent here merely to present the basic members in the cost function calculation. For a theoretical and mathematical treatment, the reader is directed to [7]. The basic idea for the optimization comes from [8] and leads to the introduction of Fisher's Information Matrix, M. It is desired to get, in some sense, the minimum of a measure of M^{-1} . The formulation of Fisher's Information Matrix has its roots in probability, and many probabilistic rules and simplifications are used to express each element of M as

$$M_{ij} = \sum_{k=0}^{N} \left[\frac{\partial}{\partial \theta_{i}} y(k) \right]^{T} R^{-1} \left[\frac{\partial}{\partial \theta_{j}} y(k) \right],$$

where

i = 1,2,...np,
j = 1,2,...np,
and
N is the number of observation points,
y(k) is the model output sequence,
θ is a vector of parameters to be identified,
R is the covariance matrix of the measurement of y(k).

Now for our problem let

or for the discrete case

y(k) = L z(k).

Recall that θ is a vector of parameters to be identified, that is, each element of L. The partial derivatives can then be found. If

then the partial derivative of y = Lz with respect to some element of L, say l_{ij} , is an nxl matrix with zeros in all but the i-th position where the entry is simply the j-th entry of z, z_i . Now let

$$\mathbf{R}^{-1} = \begin{bmatrix} \mathbf{r}_{11} & \mathbf{r}_{12} & \cdots & \mathbf{r}_{1n} \\ \mathbf{r}_{21} & \mathbf{r}_{22} & \cdots & \mathbf{r}_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{r}_{n1} & \mathbf{r}_{n2} & \cdots & \mathbf{r}_{nn} \end{bmatrix};$$

upon the calculation of each M_{ij} and the building of M, the following observation is made [7]

$$M = R^{-1} \otimes \widetilde{M}$$

where \overline{M} is symmetric and its upper triangular portion is shown in Figure 2.1.

Now that we have determined that \overline{M} and hence M are calculable, their role in the cost function is examined. The objective function chosen is

min
$$tr(M^{-1})$$
.

We use a property of the Kronecker product [9] to obtain

$$M^{-1} = R \otimes \overline{M}^{-1}.$$

Another property allows

$$tr(M^{-1}) = tr(R)tr(\overline{M}^{-1}).$$

But if \overline{M} is an invertible matrix,

$$tr(\overline{M}^{-1}) = \sum_{i=1}^{p} \frac{1}{\lambda_{i}}$$

where the λ_{j} are the eigenvalues of \overline{M} . Finally

$$tr(M^{-1}) = tr(R) \left(\sum_{i=1}^{p} \frac{1}{\lambda_{i}} \right).$$

It is worthwhile to note that, following from the above discussion, there are essentially two ways to generate the objective value; the eigenvalues of \overline{M} or the inverse of M must be calculated. In the case of real, symmetric matrices, these are similar in software requirements. Because we only need the trace, and not the entire inverse, we choose the eigenvalue approach.

	∑x ⊗ x ^T	∑x ⊗ u ^T	$\sum x \otimes (x \vee x)^T$	[[x % (x v u) ^T	$x \otimes (u \vee u)^T$	•
		∑u ⊗ u <u>T</u>	$\sum u \otimes (x \vee x)^T$	∑u ⊗ (x ∨ u) ^T	∑u ⊗ (u ∨ u)T	
			$\sum (x \lor x) \otimes (x \lor x)^{T}$	$\sum (x \lor x) \otimes (x \lor u)^{T}$	[(x v x) © (u v u) ^T	• •
ם דבו				$\sum (x \vee u) \otimes (x \vee u)^{T}$	[(x v u) ⊗ (u v u) ^T	•
					[(u ∨ u) ⊗ (u ∨ u) ^T	•
	•	•		•	•	
	•	•	·	•	•	
	•	٠	•		•	
		ы	igure 2.1. Upper Triang	ular Portion of the Matr	ix M	

F

L

12

.

 $\left[\right]$

ŗ

, |. |.

.

i a

This distinction becomes more important with increasing model size, which grows factorially with n, m, and degree of approximation. Despite the fact that matrix inversion is less acceptable, the current software makes provisions for both methods, for purposes of generality.

2.3 SINGULAR VALUE DECOMPOSITION

The discussion now turns to a brief presentation of the singular value decomposition (SVD). In this research effort, the SVD serves the important purpose of calculation of the generalized inverse of a matrix when the model is to be determined. The reader is directed to [10,11,12] for more formal and theoretically based discussions concerning the SVD and its computational implications and interpretations.

We first present the defining theorem of the SVD. If A is nxm with rank ρ , then there exist orthonormal matrices U (nxn) and V (mxm) such that

 $A = USV^T$

where

112113

T indicates transposition

and

S (nxm) is a "diagonal" matrix with diagonal elements s_1 ,

 $s_i > 0$ $i = 1, 2, ... \rho$

 $s_{i} = 0$ $i = (\rho+1)...min(n,m)$.

The columns of U are the left singular vectors and are the orthonormal eigenvectors of AA*. The columns of V are the right singular vectors and are the orthonormal eigenvectors of A*A. As expected the diagonal elements of S are the singular values. The non-zero elements of $\{s_i\}$ are the positive square roots of the eigenvalues of A*A (or AA*). This may seem to suggest a simple way to calculate the singular values. This is not true, however, when finite precision arithmetic is involved. Because of the usually inexact representations due to truncation or rounding of numbers in a digital computer, the calculation of the eigenvalues of A*A can often lead to incorrect results concerning matrix rank [11,12].

Fortunately, SVD algorithms do exist that are computationally sound and not hindered by the above fault. Those that are generally considered among the best are the versions developed by Argonne National Laboratories. These include the SVD subroutine used by the SIMEQUAT algorithm of the SPEAKEASY library, IBM system 370/3033. The SIMEQUAT routine solves for the minimal solution x to the equation Ax=b. It does this by decomposing A and then finding the generalized inverse, A^{I} , (or A^{-1} if A is square) of A. Given the generalized inverse, the problem becomes trivial. If

 $A = USV^T$

AI = VSIUT

then

and

becomes

$x = VS^{I}U^{T}b$.

 $\mathbf{x} = \mathbf{A}^{\mathbf{I}}\mathbf{b}$

Despite the existence of other methods for calculating the generalized inverse, A^I, the SVD remains the best. This is so because in problems where matrix rank is involved, as it is for matrix inversion, the SVD is the most reliable method of rank determination [11,12].

Finally, the concept of condition number is introduced. Very simply the condition number, k, is the ratio of the largest singular value to the smal-

lest non-zero singular value. That is

$$k = \frac{\max s_1}{\min s_1}.$$

There is a lot of abstract theory involving the interpretation of the condition number, but for the purposes herein, we will regard the condition number as a measure of "nearness to singularity".

2.4 REMARKS

This chapter presents the major ideas involved in the present modelling scheme. A sound, qualitative understanding of section one is most important, since throughout the remainder of this thesis, references to these ideas will be made. In section two, a summary derivation of the input design is presented. Here we are concerned not with mathematical rigor but rather with the idea that an input can be designed at all. We shall see the importance of this design when the examples are discussed.

CHAPTER III

SOFTWARE OVERVIEW

The intent of this chapter is simply to present the logical flow of the software package. This includes both the modelling and the simulation segments. Most of the CATNAP [3] software still exists, although in a more flexible form. In addition, software has been added to provide for the input optimization as well as for the model reduction test as presented in Chapter IV. The interactive modelling and simulation packages make use of two computers. They are the IBM 370/3033 and the DEC PDP 11/44.

3.1 MODELLING

The modelling segment of the present software package ties together each of the three ideas found in Chapter II. The IBM 370/3033 computer is used here in light of its computational power and its extensive support software libraries. The routine SUFRVIZE is an IBM command language (CLIST) program which governs the entire modelling segment. It is in SUFRVIZE that necessary libraries are made accessible and control is passed from loader routine to identification routine.

The first major duty of SUPRVIZE is compilation and execution of the proper leader routine. The loader routine (usually written in extended precision FORTRAN) has the chore of set up for identification and/or optimization. It is first determined whether a reduced model is to be identified. If so, a set of column numbers corresponding to the column numbers of the full model is read from the data set REDUCE. The products that correspond to these column numbers are omitted from further calculation. Then if an optimization is desired, the proper arrays are initialized and the minimization routine is

-16

called. The minimization routine is supplied by IMSL (International Mathematical and Statistical Libraries) available on the IBM 370/3033. The IMSL routine requires a user supplied subroutine which calculates the cost function. In our case the cost function is computed using the eigenvalues of Fisher's Information Matrix as discussed in Section 2.2. Following the determination of inputs (whether by optimization or by user choice), the loader routine excites the system and forms the tensor term and state derivative matrices via sampling. These two matrices are loaded into the data set TEMP-FILE for later use.

15

Li

After termination of the loader execution, the next duty of SUPRVIZE is to invoke the high level language SPEAKEASY [6]. The routines written in SPEAKEASY have two tasks: model calculation, and reduction test, if desired. As we have mentioned in Section 2.1, the model is calculated using a least squares approximation and singular value decomposition in the SIMEQUAT function of the SPEAKEASY library. Following output of the model parameters, the model is stored in data set MODEL. Now the reduction test can be performed. After completion of the test, if model reduction/re-optimization is desired, a set of column numbers is written to the data set REDUCE. SPEAKEASY is then exited and control is passed back to SUPRVIZE.

The final tasks of SUPRVIZE are simple. If the model is to be kept, the user is prompted for a model name and storage area (one of two partioned data sets). The model then is stored in the desired partioned data set with the given name. If another model is to be identified, the procedure restarts. Otherwise, unnecessary data sets are deleted and modelling is complete. See Figure 3.1 for a flow diagram of the entire modelling scheme.

Figure 3.1. Logical Structure of Modelling Scheme

E.

3.2 SIMULATION

Simulation of the nonlinear models can take place on either the IBM 370/3033 or the DEC PDP 11/44. For bulk tabular verification, the IBM 370/3033 is generally preferred due to its computational speed. Plot capability is handled with SAS (Statistical Aralysis Software). For plot comparison, though, it is preferred to use the DEC PDP 11/44. While computationally slower than the IBM, the DEC machine has high speed CRT plot capability with a hard copy unit for instant quality plots.

Simulation on the IBM 370/3033 is governed by the CLIST program COMPARE. COMPARE has several duties, the first of which is compilation of the simulation routine. The simulation routine (usually written in single precision FORTRAN) has the chore of solving the true system and integrating one or two models for a specified time interval. Furthermore, the simulation routine stores the data in the case that plotting is desired, and performs an error analysis between the models (if two models are simulated simultaneously). The error criteria is a simple ratic of mean square errors of the two models for each state.

After the simulation routine has been compiled, control passes back to COMPARE where the set up for simulation takes place. If a bulk tabular simulation is desired, COMPARE compiles and runs a short program that builds any specified table and stores it in data set SIMPNT. Upon exit from COMPARE, SIMPNT can be copied to a partitioned data set, TABLES, which acts as a library of simulation tables. If the desired simulation table is already built, COMPARE will ask for its name along with the names of the desired models. Following this, execution of the simulation routine is started. If the simulation is at a single point, the user is prompted for the input parameters.

Otherwise, the table is read for the input parameters of each simulation. After all simulations have been completed, control is passed back to COMPARE. If plotting is desired, control is passed to the SAS plotting routine. Otherwise the option to do another simulation is made. If simulation is complete, COMPARE is exited. See Figure 3.2 for the logical flow of simulation on the IBM 370/3033.

For simulation on the PDP 11/44, the models must first be transferred via magnetic tape from the IBM 370/3033. Once the model is on the DEC machine, an updated version of the CATNAP simulation routine is used. See Section 3.3 of [3] for an explanation of this simulation structure. Here we list only major changes to the old CATNAP software. They are

- comparison ability between any two models and the true solution (as opposed to strictly true solutions, linear model and some nonlinear model),
- instead of a separate Versatec hard copy routine, a hard copy unit which transfers the CRT image to paper is used,
- 3) the error criteria is now the ratio of mean square errors,
- ability to blow up a portion of any plot for closer inspection of model trajectories.

In the writing of the current software, every effort was made to keep the programs general and flexible. See [15] for current IBM 370/3033 software listings. See also [16] for current listings of PDP 11/44 software.

CHAPTER IV

MODEL REDUCTION

In Chapter II some mathematical ideas were set forth that are at the center of the entire problem of nonlinear modelling via tensor parameterization. It is hoped in any nonlinear modelling exercise that the addition of higher degree terms will benefit the model in that the system nonlinearities will be more easily characterized by these higher degree terms or combinations there-But these models with the obvious advantage of higher degree lead us to a of. This challenge is the dimension or size of the model, p, and the challenge. arrays associated with its computation. Figure 4.1 shows how the size of model increases with the increase of the three determining factors, number of states, number of controls and degree. As the model gets larger, several issues may need to be examined, such as addressable storage limits, limits on computational reliability, and time of computation. Clearly a way of making the models easier to handle is very desirable. In short, if modelling is to proceed to higher degree terms, the models must have unnecessary monomials eliminated. It is to this end that we devote the remainder of this chapter to the introduction of one such size reduction method.

4.1 REDUCTION TECHNIQUE

As mentioned in past chapters, the model is calculated using a least squares approximation given times series state derivative data and time series tensor product data. Because this calculation uses a least squares approximation, and a truncation of the series approximation there will be an inherent error in the model. We can characterize the error, E, as

 $\mathbf{E} = \mathbf{X} - \mathbf{L} \mathbf{Z}.$

number of states	of	number controls	degre approxi	ee of imation	model <u>ɛize</u>
2 2 2 2		2 2 2 2		1 2 3 4	2 x 4 2 x 14 2 x 34 2 x 69
2 2 2 2	• •	3 3 3 3		1 2 3 4	2 x 5 2 x 20 2 x 55 2 x 125
2 2 2 2		4 4 4 4		1 2 3 4	2 x 6 2 x 27 2 x 83 2 x 209
3 3 3 3		2 2 2 2		1 2 3 4	3 x 5 3 x 20 3 x 55 3 x 125
3 3 3 3		3 3 3 3		1 2 3 4	3 x 6 3 x 27 3 x 83 3 x 209
3 3 3 3		4 4 4 4		1 2 3 4	3 x 7 3 x 35 3 x 119 3 x 315
4 4 4 4	• • •	2 2 2 2		1 2 3 4	4 x 6 4 x 27 4 x 83 4 x 209
4 4 4 4		3 3 3 3		L 2 3 4	4 x 7 4 x 35 4 x 119 4 x 315
4 4 4 4		4 4 4		L 2 3 4	4 x 8 4 x 44 4 x 164 4 x 474

Figure 4.1. Variation of Model Sizes with Various Parameters

Because X and Z are time series data, E will become a time series matrix of state derivative errors. This simple calculation will become the base for the reduction method.

The idea of using an error matrix analysis is a modified approach from a treatment of nonlinear model reduction given by A.A. Desrochers [13]. Desrochers poses the problem with only a linear control input and in discrete time

$$x(k+1) = A F(k) + B u(k)$$

where

x is a state vector, u is an input, A and B constitute the model, F is q-vector of states and state combinations, that is, F(k) =

F(x(k)).

To determine which columns¹ of A are most dominant, a modified state error vector \tilde{e} is formed

$$\tilde{e}_{j}(k) = x(k+1) - [A(,j)B] \begin{bmatrix} F(j,k) \\ ---- \\ u(k) \end{bmatrix} j = 1,2,...,q.$$

Note that the error is modified in the sense that it is formed using only one term at a time in addition to the control input. The state error vectors are then squared and summed for all h time points

$$\sum_{k=0}^{h-1} \sum_{i=j}^{T} \sum_{k=0}^{\infty} (k) e_j(k).$$

Based on this squared error number, the most important terms can be kept and the others discarded.

Now in our more general problem, we have nonlinear input terms in addition to the linear terms, and we choose to test the effect of all terms in-

¹Henceforth, given a matrix A, we denote the ij-th element as A(i,j), the i-th column of A as A(,i), and the i-th row as A(i,).

cluding those corresponding to the linear control inputs. (Recall Desrochers decided to keep all linear controls.) Our test error matrix E_j is

$$E_{j} = \dot{X} - L_{j} Z_{j}, \quad j = 1, 2, ..., p$$

where

 E_j is the time series error matrix with the j-th term removed, p is the number of terms in the approximation,

 L_j is the model with the j-th column removed, Z_j is the time series tensor term data with the j-th row removed.

Note that now, in addition to the error incurred by the averaging of the least squares algorithm, there is error due the loss of the j-th term. We see that each column of E_j is the error vector at a certain time. Then we can use the same squared error calculation,

 $h^{-1} T$ $\sum_{k=0}^{T} e_j(k) e_j(k) j = 1, 2, ..., p$

where $E_j = [e_j(0) | e_j(1) | \dots | e_j(h-1)]$, to determine the effect of a certain term on the model. The influence of a term on the model is measured by checking the difference of the squared error of the full model and the squared error of the model shortened by that term. As an aside, it is interesting to note a philosophical difference between the problem formulation of Desrochers and this problem formulation. Desrochers chose to pick a significant term by including only that term in the error test. On the other hand, our reduction test checks a term's significance when that term is removed.

A simple example here will illustrate the calculations. Suppose we have a two state, one control system which we sample for four time points and calculate a linear approximation. Let

* =	1	2	3	4
	2	3	4	1
Z =	0	1	2	3
	1	2	3	0
	2	3	0	1

.

and

and

$$\mathbf{L} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \end{bmatrix}.$$

First we calculate the state error matrix E of the full model, $E = \dot{X} - LZ$,

$$\mathbf{E} = \begin{bmatrix} -7 & -12 & -5 & -5 \\ -5 & -9 & 3 & -9 \end{bmatrix}.$$

Now calculate the squared error for the full model, Ψ ,

$$\Psi = \sum_{k=0}^{3} E^{T}(,k) E(,k) = \begin{bmatrix} -7 & -5 \end{bmatrix} \begin{bmatrix} -7 \\ -5 \end{bmatrix} \\ + \begin{bmatrix} -12 & -9 \end{bmatrix} \begin{bmatrix} -12 \\ -9 \end{bmatrix} \\ + \begin{bmatrix} -5 & 3 \end{bmatrix} \begin{bmatrix} -5 \\ 3 \end{bmatrix} \\ + \begin{bmatrix} -5 & -9 \end{bmatrix} \begin{bmatrix} -5 \\ -9 \end{bmatrix} \\ = 439.$$

Following this calculation, we start checking the errors of the shortened models. We want first to calculate E_1 which is the state error matrix with the first term of the model, x_1 , and its corresponding data removed. According to the method, the first row of z is removed, the first column of L is removed, and the error calculations are repeated:

$$E_{1} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 1 \end{bmatrix}$$

$$-\begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -7 & -11 & -3 & 1 \\ -5 & -7 & 7 & -3 \end{bmatrix} .$$

$$E_{1} = \sum_{k=0}^{3} E_{1}^{T}(.k) E_{1}(.k) = \begin{bmatrix} -7 & -5 \end{bmatrix} \begin{bmatrix} -7 \\ -5 \end{bmatrix}$$

$$= \begin{bmatrix} -11 & -7 \end{bmatrix} \begin{bmatrix} -11 \\ -7 \end{bmatrix}$$

$$+ \begin{bmatrix} -3 & 7 \end{bmatrix} \begin{bmatrix} -3 \\ 7 \end{bmatrix}$$
+
$$\begin{bmatrix} 1 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

= 312.

Then the relative error due to term x_1 is $\Psi - \Psi_1 = 312-439 = -127$.

Now we repeat the calculations for the removal of the second term in the model, x_2 . Here

$$E_{2} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix}$$

$$- \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 & 3 \\ 2 & 3 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -5 & -8 & 1 & -2 \\ -6 & -11 & 0 & -9 \end{bmatrix}.$$

The squared error number, Ψ_2 ,

$$\Psi_2 = \sum_{k=0}^{3} E_2(,k) E_2(,k) = 332,$$

and the relative error is 332-439 = -107.

Finally the last term, corresponding to u, is checked. Thus

 $E_{3} = \begin{bmatrix} -1 & -3 & -5 & 1 \\ 3 & 3 & 3 & -5 \end{bmatrix},$ $\Psi_{3} = \sum_{k=0}^{3} E_{3}^{T}(k) E_{3}(k) = 88,$

and the relative error is 88-439 = -351.

In most cases, examination and comparison of the computed relative errors will give a fair indication of which terms in the model are the most influential. Sometimes this is not the case and we must extend this squared error concept to look at more data. The extension is a simple and informative one.

Recall that each error matrix, E and the E_j 's, is a time series matrix representation of the errors in the states. For example, in the previous

example the time series error in the first state of the full model is

$$E(1,) = [-7 -12 -5 -5],$$

the first row of E. Now use the squared error calculation for each individual state to get

$$\psi_{i} = \sum_{k=0}^{h-1} E(i,k) E(i,k) \quad i = 1,2,...,n.$$

This says that the error in the i-th state, ψ_1 , is the sum of the squares of each of the entries of the i-th row of E. Furthermore note that the error in the entire system, Ψ , is the sum of the ψ_1 's. That is

$$\Psi = \sum_{i=1}^{n} \psi_i,$$

and for the reduced cases

$$\Psi_{\ell} = \sum_{i=1}^{n} \Psi_{\ell i},$$

where ℓ is the number of the term removed from the model. With these additional calculations, now, we can compare not only the entire system errors (the $\Psi - \Psi_{\ell}$), but also the errors in the states $\psi_{1} - \psi_{\ell 1}$.

To illustrate these calculations, we return to the example. We begin with the full model. The error in the first state is

$$\psi_1 = \sum_{k=0}^{3} E(1,k)E(1,k)$$

= (-7)² + (-12)² + (-5)² + (-5)²
= 243,

and the error in the second state is

$$\psi_2 = \sum_{k=0}^{3} E(2,k)E(2,k)$$
$$= (-5)^2 + (-9)^2 + (3)^2 + (-9)^2$$

Thus

 $\Psi = \psi_1 + \psi_2 = 243 + 196 = 439.$

After removing the first term in the model, the error in the first state

is

$$\psi_{11} = \sum_{k=0}^{3} E_1(1,k)E_1(1,k)$$

= (-7)² + (-11)² + (-3)² + (1)²
= 180,

and the error in the second state is

$$\psi_{12} = \sum_{k=0}^{3} E_1(2,k)E_1(2,k)$$

= (-5)² + (-7)² + (7)² + (-3)²
= 132.

So

$$\Psi_1 = \psi_{11} + \psi_{12} = 180 + 132 = 312.$$

Now, as we calculated before, the change in the overall error is $\Psi_1 - \Psi = -127$. In addition to this we check the change in the state errors. That is,

$$\psi_{11} - \psi_1 = 180 - 243 = -63$$

and

$$\psi_{12} - \psi_2 = 132 - 196 = -64.$$

Now, repeat the calculations when only the second term of the model is re-

$$\psi_{21} = \sum_{k=0}^{3} E_2(1,k)E_2(1,k)$$
$$= (-5)^2 + (-8)^2 + (1)^2 + (-2)^2$$
$$= 94$$

$$\psi_{22} = \sum_{k=0}^{3} E_2(2,k)E_2(2,k)$$

= (-6)² + (-11)² + (0)² + (-9)²
= 238.
$$\Psi_2 = \psi_{21} + \psi_{22} = 94 + 238 = 332,$$

$$\Psi_2 - \Psi = 332 - 439 \approx -107,$$

and

Then

 $\psi_{21} - \psi_1 = 94 - 243 = -149$ $\psi_{22} - \psi_2 = 238 - 196 = 42.$

Finally, the third term is removed and the calculations are performed. We get

```
\psi_{31} = 36
\psi_{32} = 52
```

and $\Psi_3 = 88$, so $\Psi_3 - \Psi = -351$. Also Ψ_3

 $\psi_{31} - \psi_1 = -207$ $\psi_{32} - \psi_2 = -144,$

which finishes the computation.

Arranging this data in a table will make it readable and usable. See Figure 4.2 for the reduction data of the sample problem. Naturally, as the model increases in size, the testing will increase to include all terms in the model approximation. These, then, are the simple calculations concerning the reduction method. When a reduction is done in the following chapter, an explanation of how to use these numbers will be presented.

Assume for now that the above test has indicated a set of terms are likely candidates for removal. There are several steps that can now be taken.

Fu <u>1</u> 1	mode1	system	n error:	439	
Fu11	mode1	state	errors:	243	196

Term: x₁ Change in system error: -127 Change in state errors: -63 -64

Term: x₂ Change in system error: -107 Change in state errors: -149 42

Term: ul Change in system error: -351 Change in state errors: -207 -144

Figure 4.2 Reduction Data for Sample Exercise

One option is to remove those terms from the model and retain the remainder of the terms thus producing the reduced model. This, although simple, is not a logical choice. For when we omit terms in a model, we are overlooking some dynamics. Regardless of their significance, these lost dynamics may be modelled adequately using the remaining terms, if they are given a chance. Hence, it is advantageous to regenerate the derivative and tensor data followed by a re-calculation of the now reduced model. But, by removing terms, we have changed the model structure and, intuitively, the system will need to be excited differently. Therefore, it would be a further advantage if a new input is designed.

The decision to re-optimize after terms are omitted seems sound, but it is by no means trivial. It was argued that a new input design is the sensible next step after the decision is made as to which terms are kept. But if the input changes (due to the optimization), the full model associated with this new excitation may contain influential terms at those places we have already made unavailable by reduction. Because of this difficulty, an assumption is made. It is assumed that a relatively insignificant term will remain relatively insignificant if the change in input excitation is not extreme. To ensure that the change in excitation is not too great, terms are not discarded in large groups. This is so, because it is hypothesized that a large change in model structure (that is, many terms removed) will cause the optimum input to move farther away from the present input parameters. Furthermore, the input optimization routine converges to a local minimum which will usually ensure the parameters do not move too much. To summarize, problems in reduction may be encountered if there is significant change between the input parameters of the model to be reduced and the input parameters of the reduced model.

As a result of the previous discussion, we have made a minor rule for reduction. It claims that terms to be omitted should not be discarded in large groups. There is another rule implicit in the preceding paragraph which is worth stating. The model to be reduced must have been identified at an input parameter set which is locally optimum. If it is not, optimization for the reduced model may change the input parameters significantly, and we have already argued that. in general, this is not desired.

It is worthwhile to pause here to make some observations. First, by way of reasoning, a "multiple pass" reduction method has evolved. That is, an optimum input is chosen, the model is calculated, and the least significant terms in the model are determined. These terms are removed from further calculation, and an optimum input is re-chosen, the model is re-calculated, and so on. Obviously this process has a limit, and as the model becomes smaller, more care must be taken when choosing terms to be omitted. In some cases, the final pass is obvious. In these instances, the reduction test will indicate that all remaining terms are relatively significant. In other cases, the final pass is not so clear. Usually after a few passes, the model is adequately shortened, and the reduction test may indicate only a single term or two to be insignificant. It is in these cases that care must be taken when omitting terms. This is intuitively sensible since, as a model is made smaller, the dynamics in a single term are harder pressed to appear in the remaining terms. Because of this, model performance may suffer. It is in such cases that after a model has been reduced, some sample simulations should be run to check if model performance is still acceptable. If it is not, then the previous step was the final one. Otherwise reduction can continue. A second observation is that in requiring only a small change in input parameter design

from step to step in the reduction process, we have taken advantage of the fact that the IMSL optimization routine yields a local minimum. While it would be more advantageous to have a global minimization routine if full model identification was being done, in the case of iteratively reducing models, the local optimization is actually more desirable.

Returning to the reduction method, we can use the rules from the previous arguments to state the scheme in full:

- a) identify a model at an input which is locally optimum,
- b) determine a set of terms which seem to be the least significant.
- c) remove the terms in the set and re-optimize,
- d) identify reduced model.
- e) model simulation to test performance,
- f) if reduction data indicates more insignificant terms, go to step b), otherwise stop.

This simple method works quite well as the examples in the following chapter will show.

4.2 REMARKS

This chapter summarizes the present reduction method, including demonstration of the calculations and a step by step outline of the technique. Difficulties arising from the combination of input design and term removal are discussed and a suitable compromise is obtained by the application of some basic tules. The following chapter contains concrete examples where the qualitative ideas of this chapter become clearer.

~

CHAPTER V

EXAMPLE REDUCTIONS

It is in this chapter that a few examples are studied to illustrate the power and usefulness of the model reduction method presented in the previous chapter. The first two systems were initially investigated in [2]. The first system is a two state, two control input set of nonlinear differential equations. The second system is a three state, three control set of strictly polynomic nonlinear differential equations. The final system is a three state, two input example. The first system will be modelled and reduced for second and third degree approximations. The other two examples will demonstrate second degree reductions.

The true test of a model's validity is borne out in simulation. Therefore much of the chapter is comprised of simulation data tables and plots. With this in mind, we establish two general criteria for judging a reduced model. They are:

a) the reduced model should approximate the full model of like degree of approximation,

b) the reduced model should outperform the full model of less degree. Both of these are sensible goals and the examples herein do well with respect to them. Finally, it is worth restating a weak assumption necessary for model reduction. This is that the model should be an acceptable representation of the system. This is fairly obvious: since the motivation of a reduced model is to approximate the full model, we would hope the full model accurately describes the true system.

5.1 TWO STATE SYSTEM

The first system is given by the following equations

$$x_{1} = u_{2}\cosh(x_{1}x_{2}) - e \quad \sinh(2x_{1}) - 3\sinh(x_{2}),$$

$$u_{1}u_{2} \quad u_{1}$$

$$x_{2} = e \quad \sinh(x_{1}) - e \quad u_{1}\cosh(x_{1}^{2}) + \sinh(x_{2}).$$

These equations were studied in depth to demonstrate the power of the input optimization in identifying models that improve in quality as the degree of approximation increased. This study appears in Appendix A. It is from this report that "good" second and third degree models are taken as starting points for the reduction.

5.1.1 DEGREE TWO APPROXIMATION

For this system, the point of expansion is the origin because it is a stable equilibrium point. In the case of a second degree expansion, 14 model parameters corresponding to the tensor products

> x1, x2, u1, u2, x1x1, x1x2, x2x2, x1u1, x1u2, x2u1, x2u2, u1u1, u1u2, u2u2

must be identified.

Now, to begin the reduction, a good full model that is locally optimum is necessary. The first appendix gives us such a model. That particular second degree model was identified using an initial state perturbation vector of

 $x_0 = (0.005, -0.005).$

In addition the excitation for each input was taken to be a sum of two sinusolds:

> $u_{1}(t) = 0.025 \sin(2\pi t \cdot \phi_{1}) + 0.025 \sin(2\pi t \cdot 2\phi_{1}),$ $u_{2}(t) = 0.025 \sin(2\pi t \cdot \phi_{2}) + 0.025 \sin(2\pi t \cdot 2\phi_{2}).$

In this case $\phi = (\phi_1, \phi_2)$ was determined by optimization to be (0.7418, 0.9022) given the starting values (0.75, 1.0). The system was run for 4 seconds and 100 samples were taken at evenly spaced intervals.

Given this locally optimum model, the reduction test can be performed. See Figure 5.1.1 for the full model and its reduction test. The decision as to which terms should be omitted (or equivalently which terms should be kept) must now be made. Upon inspection of the reduction test, it should be noted that with the removal of any term, the change in the squared error number may increase or decrease significantly, or stay about the same. In this particular application, we choose to ignore the sign of the square error numbers and look upon their magnitudes as quantifiers of the effect of a term on the model. This is reasonable since removal of a term with a large change in squared error (either an increase or decrease) will most likely cause a large change in model performance. This, then, directs our attention to the terms with small changes in their errors. These terms are in some sense the least significant, so it is hoped that removal of them will have the least effect on model performance.

As a conservative first attempt, it is decided that error changes (both system and state errors) with magnitudes less than about 4 will be omitted. The set of these terms is

 x_1x_1 , x_1x_2 , x_2x_2 , x_1u_2 , x_2u_1 , x_2u_2 , u_1u_2 . Equivalently, the terms kept are

x1, x2, u1, u2, x1u1, u1u1.

Note that all linear terms were kept. In general, saving the linear terms is desired, since they hold the good local behavior.

Now, an input optimization is performed using only the six significant terms given by the reduction test The system is again perturbed with initial conditions

ENTER INITIAL CONDITIONS FOR THE 2 STATES: 0.0050 -0.0050

ENTER SAMFLING FARAMETERS: AFFROXIMATION DEGREE # SAMFLE PDINTS INTERVAL BETWEEN SAMFLES INTEGRATION STEFSIZE 2 100 0.0400 0.0050

SHOULD THE EXCITATION BE SINUSOIDAL OR COSINUSOIDAL?ES/CJ:

IDENTIFICATION WILL BE ACHE WITH SINES.

ENTER THE NUMBER OF (CO)SIMUSOIDS PER INPUT: 2

ENTER THE 4 INITIAL INPUT AMPLITUDES: 0.249999999999999996E-01 0.249999999999999996E-01

ENTER THE 2 FREQUENCY WEIGHTS: 0.7418 0.9022

SHOULD THE IDENTIFICATION BE PERFORMED USING DATA THAT IS REDUCED?EY/NJ: N

0

ENTER OFTIMIZATION OFTION: 1 - NO OFTIMIZATIONS 2 - AMPLITURES ONLY 3 - FREQUENCIES ONLY 4 - INITIAL CONDITIONS ONLY 5 - AMPLITURES AND FREQUENCIES 6 - AMPLITURES AND INITIAL CONDITIONS 7 - FREQUENCIES AND INITIAL CONDITIONS 8 - AMPLITURES, FREQUENCIES, AND INITIAL CONDITIONS 1

DO YOU WISH TO NORMALIZE THE DATA?CY/NJ:

THE MATRIX OF SAMFLED MONOMIAL TERMS HAS 14 ROWS AND 100 COLUMNS.

NUMBER OF TIMES COST FUNCTION WAS EVALUATED: WOULD YOU LIKE TO SEE FLOTS OF THE INPUTS? IF SO, LINE UP THE CARRIAGE.

TSD SPEAKEASY III PI+ 7:16 PW FEBRUARY 22, 1984 :_SIZE=500;GET IDENT;IDENT;QUIT

EXECUTION STARTED

PARTITION NUMBER 1. PRTITION (A 2 BY 2 ARRAY)

Figure 5.1.1a Full Second Degree Model and Reduction Test (First Pass)

-2.0009 -2.9978 .9998 .99982
WITH EIGENVALUES: VALUES (A VECTOR WITH 2 COMPONENTS) 50055+.86378i5005586378i
FARTITION NUMBER 2. FRIITION (A 2 BY 2 ARRAY) 6.7297E-4 .99934 -1.0003 -3.5733E-5
FARTITION NUMBER 3. PRTITION (A 2 BY 3 ARRAY) .0019401080981 .034007 .0052751 9.3478E-4 -3.8931E-4
PARTITION NUMBER 4. PRTITION (A 2 BY 4 ARRAY) -4.06860062571030538024848 01896901154301223011688
PARTITION NUMBER 5. PRIITION (A 2 BY 3 ARRAY) 033944 -6.0501E-4 .0049369 99912 .0066456 8.6412E-5

\$ (A 14 COMPONENT ARRAY) 9.7385 6.5841 6.4438 5.5233 3.802 3.1743 2.3796 2.1075 1.8207 1.5919 1.1872 .83463 .51123 .74939 THE MAXIMUM SINGULAR VALUE: MAX = 9.7385 THE MINIMUM NONZERO SINGULAR VALUE: MIN = .51123

RTIO = 19.049

WANT TO TRY REDUCTION TEST?CY/NJ: Y

FULLSYSTEMERROR:195.7138FULLSTATEERRORS:171.443324.2706TERM:X1.COLUMN #:1.CHANGEINSYSTEMERROR:187.8448CHANGEINSTATEERRORS:145.151642.6933TERM:X2.COLUMN #:2.CHANGEINSYSTEMERROR:90.6012CHANGEINSYSTEMERROR:90.6012CHANGEINSTATEERRORS:82.8124TERM:U1.COLUMN #:3.CHANGEINSYSTEM ERROR:0.0621TERM:U2.COLUMN #:4.CHANGEINSYSTEM ERROR:39.0776CHANGEINSYSTEM ERROR:39.07750.0001TERM:X1.X1.COLUMN #:5.CHANGEINSYSTEM ERROR:0.0306

Figure 5.1.1b Full Second Degree Model and Reduction Test (First Pass)

CHANGE IN STATE ERRORS: -0.6430 0.0736 TERM: X1.X2. COLUMN 4: 5. CHANGE IN SYSTEM ERROR: -2.02 CHANGE IN STATE ERRORS: -2.01 -2,0255 -2,0145 -0.0111 TERN: X2.X2. COLUMN *: CHANGE IN SYSTEM ERROR: -CHANGE IN STATE ERRORS: -7. -0.6560 -0.6514-0.0046 TERM: X1.U1. COLUMN 4: CHANGE IN SYSTEM ERROR: -1 CHANGE IN STATE ERRORS: -1 ε. -122.4182 -122.3798 -0.0384TERM: X1.U2. COLUMN #: CHANGE IN SYSTEM ERROR: -CHANGE IN STATE ERRORS: -0.0639 0.0211 -0.0849TERM: X2.U1. COLUMN #: CHANGE IN SYSTEM ERROR: (CHANGE IN STATE ERRORS: (10 0.9927 0.0253 TERN: X2.U2. COLUMN **#**: 11. CHANGE IN SYSTEM ERROR: 0.2700 CHANGE IN STATE ERRORS: 0.1913 0.0787 TERM: U1.U1. COLUMN #: CHANGE IN SYSTEM ERROR: -: CHANGE IN STATE ERRORS: N \$: 12. -15.4377 0.2414 -15,6811 TERM: U1.U2, COLUMN #: 13. CHANGE IN SYSTEM ERROR: -0.0333 CHANGE IN STATE ERRORS: -0.0192 -0.0141TERM: U2.U2. COLUMN #: 14. CHANGE IN SYSTEM ERROR: -0.1777 CHANGE IN STATE ERRORS: -0.1797 -0,1797 0.0019 DO YOU WANT TO DISCARD ANY TERMS AND RE-OPTIMIZE?CY/NJ: Y HOW MANY TERMS WILL BE KEPT? 6

ENTER THE COLUMN NUMBERS OF COLUMNS WHICH ARE TO BE KEPT. WHEN ASKED, ENTER A AS AN ARRAY. A = ARRAY(6:1,2,3,4,8,12)

MANUAL MODE SFACE USED 63 K NOW, 72 K FEAK, SIZE 500 K DO YOU WISH TO SAVE THIS MODEL?CY/NJ:N DO YOU WISH TO IDENTIFY ANOTHER MODEL?CY/NJ:Y

Figure 5.1.1c Full Second Degree Model and Reduction Test (First Pass)

40

.....

ŗ.

: . . .

Ľ

L

 $x_0 = (0.005, -0.005).$

The control inputs are again given by

$$u_1(t) = 0.025 \sin(2\pi t \cdot \phi_1) + 0.025 \sin(2\pi t \cdot 2\phi_1),$$

$$u_2(t) = 0.025 \sin(2\pi t \cdot \phi_2) + 0.025 \sin(2\pi t \cdot 2\phi_2).$$

Now as starting frequencies for the optimization, we use the frequency set determined by the first pass optimimation, $\phi = (0.7418, 0.9022)$. The optimum frequencies are computed to be $\phi = (0.6499, 0.9014)$. Note that there is not much change in the optimum frequencies which is what we desire. The model is re-calculated and the reduction test again performed. See Figure 5.1.2 for the "second pass" output. Inspection of the reduction data indicates that the remaining terms are all fairly significant. So the model given in Figure 5.1.2 is the final reduced model. It contains 6 terms of a possible 14; a 57% reduction. Furthermore, by taking all the partial derivatives, the exact second degree approximation would be

$$L_{10} = \begin{bmatrix} -2 & -3 \\ 1 & 1 \end{bmatrix}, \quad L_{01} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
$$L_{20} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$
$$L_{11} = \begin{bmatrix} -4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$
$$L_{12} = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}.$$

Obviously, the reduction method singled out the appropriate columns to be kept. In addition the error test for the individual states indicates the correct insignificant entries in each column. The reduction method seems to

ENTER INITIAL CONDITIONS FOR THE 2 STATES: 0.0030 -0.0050 ENTER SAMPLING PARAMETERS: APPROXIMATION DEGREE SAMPLE POINTS INTERVAL BETWEEN SAMPLES INTEGRATION STEPSIZE 2 100 0.0000 2 100 0.0400 0.0050

SHOULD THE EXCITATION BE SINUSOIDAL OF COSINUSOIDAL?ES/CJ: IDENTIFICATION WILL BE DONE WITH SINES. ENTER THE NUMBER OF (CO)SINUSOIDS FER INPUT: 2

ENTER THE 4 INITIAL INFUT AMPLITUDES: 0.24999999999999996E-01 0.24999999999999996E-01

ENTER THE 2 FREQUENCY WEIGHTS: 0.7418 0.9022

SHOULD THE IDENTIFICATION BE PERFORMED USING DATA THAT IS REDUCED?[Y/N]:

ENTER OPTIMIZATION OPTION:

		12345678		NO D AMPL FREG AMPL AMPL AMPL	PTIP ITUI UENC IAL ITUI UENC ITUI	IZA ES CON ES ES ES ES	DNL ONL ONL ONL ONL ONL AND AND FR	NS Y IONS FRE INJ D IN EQUE	S ON EQUE LTIA LTIA LTII ENCI	ILY NCI AL ES,	es Indi Cond And	TIONS ITION ITION INIT	is Tal	COND	ITIC)NS
ENTI 0.	ER T 9999	HE 999	TRAI 999	CE () 9999	IF TH 19954	IE C IE-0	0VA 6	RIAN	ICE	MATI	RIX:					
ENT	ER 7	ΉE	OPT: 4	IMIZ	ATIC	א אנ	ETH	00:	1,2	13	DR 4					
enti Kaxi And 2	ER I IMUM THE 2	0F # ZX	SI OF I MIN	GNIF FUNC OPT 2	ICAN TION ION	it d i ca i (IGI LLS 071	TS F , ,2,3	TOR 5)	CON	VERG	ENCE,	r		·	
10 THE 0. THE OBJI	CAL PAR 6872 CON ECTI	LS AME 968 DIT VE	OF TERI D+00 ION FUN	FCN. 5: 0 0 NUM CTIO	.947 BER N V	623 0 LUE	7D+ 12	00 60+0 •197)5 750+	00	••					
20 THE OF DBJ	CAL PAR 6782 CON ECTI	LS AME 293 DIT VE	OF TER! D+0 ION FUN	FCN. 3: 0 0 NUM CTIO	1746 BER N VA	847 0 1LUE	4D+1 111 : 0	00 3D+0 •191)5 8D+	00		· · ·				
30 THE 0.0 THE 0BJI	CAL PAR 6495 CON ECTI	LS AME 584 IVIT VE	OF TER! D+C(ION FUN(FCN. 5: 0 0 NUM CTIO	.892 BER N VA	2106 0 LUE	8D+(.10] : 0;	00 7D+0 174)5 5D+	00						

Figure 5.1.2a Reduced Second Degree Model and Reduction Test (Second Pass)

42

~

Ľ

 \mathbf{b}

ORICENSE SAL

40 CALLS OF FCN.... THE PARAMETERS: 0,6478634D+00 0,9013817D+00 THE CONDITION NUMBER: 0.104D+05 OBJECTIVE FUNCTION VALUE: 0.1719D+00

50 CALLS OF FCN..... THE PARAMETERS: 0.6498652D+00 0.9013841D+00 THE CONDITION NUMBER: 0.104D+05 OBJECTIVE FUNCTION VALUE: 0.1719D+00

60 CALLS OF FCN.... THE FARAMETERS: 0.6498653D+00 0.90138422+00 THE CONDITION NUMBER: 0.104B+05 OBJECTIVE FUNCTION VALUE: 0.1719D+00

CONVERGENCE WAS ACHIEVED AND NO ERRORS OCCURRED.

DO YOU WISH TO NORMALIZE THE DATA?CY/NJ:

THE MATRIX OF SAMPLED MONOMIAL TERMS HAS 6 ROWS AND 100 COLUMNS.

NUMBER OF TIMES COST FUNCTION WAS EVALUATED: 63 THE OPTIMUM FREQUENCIES ARE: FREQ(1)= 0.650 FREQ(2)= 0.901 FREQ(3)= 0.000 WOULD YOU LIKE TO SEE PLOTS OF THE INPUTS? IF SO, LINE UP THE CARRIAGE. N

TSO SPEAKEASY III PI+ 7:33 PH FEBRUARY 22, 1984 :_SIZE=500;GET IDENT;IDENT;QUIT

EXECUTION STARTED COLSKEFT (A 6 COMPONENT ARRAY) 1 2 3 4 8 12

PARTITION NUMBER 1. PRTITION (A 2 BY 2 ARRAY) -2.003 -3.0012 .9999 1.0001

...WITH EIGENVALUES: VALUES (A VECTOR WITH 2 COMPONENTS) -.501464.86391 -.50146-.86391

FARTITION NUMBER 2. FRIITION (A 2 BY 2 ARRAY) 2.3743E-4 .9991 -1.0005 -1.5637E-5

Figure 5.1.2b Reduced Second Degree Model and Reduction Test (Second Pass)

e de la composition de la comp

PARTITION NUMBER 3. PETITION (A 2 BY 7 ARRAY) 0 0 0 0 0 0 0 0 0

PARTITION NUMBER 4. FRTITION (A 2 BY 4 ARRAY) -4.0049 0 0 0 .016344 0 0 0

PARTITION NUMBER 5. PRTITION (A 2 BY 3 ARRAY) -.016019 0 0 -.99954 0 0

S (A 6 COMPONENT ARRAY) 7.3342 2.012 2.2395 4.5216 5.5657 6.1157 THE MAXIMUM SINGULAR VALUE: MAX = 7.3342 THE MINIMUM NONZERO SINGULAR VALUE: MIN = 2.012

...AND THEIR RATIO: RTIO = 3.6452

WANT TO TRY REDUCTION TEST?CY/NJ: Y

FULL SY FULL ST	(STE TATE	EM ERROF)R: KS:	200. 176	9931 7734		24,2198
TERM: Change Change	IN IN	X1 SYSTER STATE	L CO 1 ERRO ERROR	LUMN R S	#: 236 194	1. 6909 4798	42.2111
TERM: Change Change	IN IN	X2 SYSTEN STATE	2, CO 1 ERRO ERROR	LUMN R: S:	#; 67, 60,	2. 8517 9716	6,8801
TERM : Change Change	IN IN	UI SYSTEN STATE	L. CO I ERRO ERROR	LUMN IR: IS:	#: 11.0	3. 0693 0157	11.0535
TERM: Change Change	IN [.] IN	U2 SYSTEN STATE	2. CO 1 ERRO ERROR		‡; -16 -16	4. 1350 1348	-0.0002
TERM: CHANGE CHANGE	IN IN	X1.UI SYSTEM STATE	L. CO 1 ERRO ERROR	ILUMN IR: IS:	‡: -120, -120,	8. 4635 5174	0.0539
TERM: Change Change	IN IN	U1.U1 SYSTER STATE	L. CO LERRO ERROR	ILUMN IR: IS:	*: -15 0	12+ 9942 2470	-16.2412

DO YOU WANT TO DISCARD ANY TERMS AND RE-OPTIMIZE?[Y/N]: N MANUAL MODE SPACE USED 43 K NOW, 47 K PEAK, SIZE 500 K

DO YOU WISH TO SAVE THIS MODEL?CY/NJ:N

NO YOU WISH TO IDENTIFY ANOTHER MODEL?CY/NJ:N

Figure 5.1.2c Reduced Second Degree Model and Reduction Test (Second Pass)

.

1

have done about as well as could be expected. The true proof of a model's validity though lies in its simulation.

For the purpose of model verification, simulation consists of the excitation of the true system and the model at points about the point of identification. The control input excitation in this case is a single cosinusoid. That is

$$u_{i}(t) = \alpha_{i}\cos(2\pi t \cdot \phi_{i})$$
 $i = 1, 2, ..., m_{i}$

Furthermore, an initial condition for each state is required. The true system and each model are run for a specified time and sampled at evenly spaced points throughout the interval. If two models are simulated simultaneously, a mean square error (with respect to the true solution) analysis is performed. The error criterion, then, is just the ratio of the mean square errors of the two models for each state. For the following simulations, the error ratio is

 $R_{1} = \frac{MSE(MODELl_{1})}{MSE(LINEAR_{1})}, \quad i = 1, 2, \dots, n$

where in this case MODELl₁ refers to the i-th state of the six term reduced model. Obviously then, we desire the error ratios to be less than one. But, the following tabular data will show for some cases the error ratio between two models becomes very large. In these simulations it is necessary to check the normalized error data and closely examine the graphical output. Most of the time the large numbers are due to the fact that one model's trajectory lies on top of the true solution trajectory. Despite the fact that the other model may also be very close to the true solution, the error ratio becomes large.

Recall that two goals were set for performance evaluation of reduced models. The first is to outperform models of lesser degree, and the second is

to approximate full model behavior. Tables 5.1.1 through Table 5.1.8 address the first criterion. In each of these tables, the heading MODEL1 refers to the reduced second degree model. The first three tables (Table 5.1.1 through Table 5.1.3) originally appear in [2] and test the model performance very close to the identification point. Note that throughout the trio of tables. according to the error ratios, the reduced model seems to be outperformed when the input amplitudes are zero. This behavior of the error criterion was explained above and a representative plot set is given in Figure 5.1.3.¹ Representative plot sets of the simulation data tables follow each table. Note that even with the loss of terms, the second degree model exhibits exceptional behavior over the linear approximation. In Table 5.1.4, the model's region of validity is tested farther away from the origin as the input amplitudes are increased substantially over those in previous tables. Table 5.1.5 gives a set of simulations whose initial state conditions are (-0.01, -0.01), and whose input amplitudes and frequencies are randomly chosen in the ranges (-0.2, 0.2) and (2, 6) respectively. The following three tables (Tables 5.1.6 through Table 5.1.8) test the low frequency and d.c. behavior of the models. Table 5.1.6 has various small frequencies and steps. Note that it was previously determined in [2] that the true system is unstable in the first state when excited with steps of magnitude more than 0.1. Table 5.1.7 is another random table of smaller steps whose initial state conditions are in the range (-0.01, 0.01) and whose amplitudes are in the range (-0.025, 0.025). Table 5.1.8 has some larger steps with the initial state conditions randomly chosen in the range (-0.05, 0.05) and input amplitudes also randomly chosen in the range (-0.075, 0.075).

¹In all plots, if a curve is indistinguishable, it over-lays another curve.

46

Sŧ	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
1234567890123456789012345678901234567890123456	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0.75 \\ 1.00 \\ 0.75 \\ 1.00 \\ 0.75 \\ 1.00 \\ 0.75 \\ 1.00 \\ 0.75 \\ 1.00 \\ 0.75 \\ 1.00 \\ 0.75 \\ 1.00 \\ 0.775 \\ 1.00 \\ 0.775 \\ 1.00 \\ 0.775 \\ 1.00 \\ 0.775 \\ 1.00 \\ 0.00 \\ 0.775 \\ 1.00 \\ 0.00 \\ 0.775 \\ 1.00 \\ 0.$	$\begin{array}{c} 0.748\pm+0.6 & 0.60.6\pm+0.6 \\ 0.488\pm-0.5 & 0.54.9\pm-0.4 \\ 0.269\pm-0.5 & 0.452\pm-0.4 \\ 0.269\pm-0.5 & 0.362\pm-0.4 \\ 0.263\pm-0.5 & 0.729\pm-0.4 \\ 0.257\pm-0.3 & 0.237\pm-0.2 \\ 0.258\pm-0.3 & 0.237\pm-0.2 \\ 0.258\pm-0.3 & 0.362\pm-0.2 \\ 0.258\pm-0.5 & 0.362\pm-0.2 \\ 0.278\pm-0.5 & 0.362\pm-0.4 \\ 0.218\pm-0.5 & 0.374\pm-0.4 \\ 0.218\pm-0.5 & 0.374\pm-0.4 \\ 0.218\pm-0.5 & 0.352\pm-0.4 \\ 0.320\pm-0.3 & 0.362\pm-0.2 \\ 0.581\pm-0.3 & 0.362\pm-0.2 \\ 0.285\pm-0.3 & 0.352\pm-0.4 \\ 0.362\pm-0.5 & 0.254\pm-0.4 \\ 0.353\pm-0.5 & 0.254\pm-0.4 \\ 0.190\pm-0.5 & 0.330\pm-0.4 \\ 0.870\pm-0.5 & 0.330\pm-0.4 \\ 0.870\pm-0.5 & 0.384\pm-0.2 \\ 0.295\pm-0.3 & 0.384\pm-0.2 \\ 0.295\pm-0.3 & 0.384\pm-0.2 \\ 0.295\pm-0.3 & 0.384\pm-0.2 \\ 0.295\pm-0.5 & 0.432\pm-0.4 \\ 0.285\pm-0.5 & 0.259\pm-0.4 \\ 0.285\pm-0.5 & 0.259\pm-0.4 \\ 0.286\pm-0.5 & 0.259\pm-0.4 \\ 0.286\pm-0.5 & 0.259\pm-0.4 \\ 0.286\pm-0.5 & 0.259\pm-0.4 \\ 0.286\pm-0.5 & 0.229\pm-0.2 \\ 0.285\pm-0.3 & 0.374\pm-0.4 \\ 0.286\pm-0.3 & 0.374\pm-0.2 \\ 0.286\pm-0.$

Reduced Model

Table 5.1.1 Simulation Table for Linear Model versus Second Degree

Ĺ

1

Tangan and

- -----

and the second

S#	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
1234567890123456789012345678901234567890123456	$\begin{array}{c} 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & 0.005 \\ -$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.75 & 1.00 \\ 0.75 & 1.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 5.1.2 Simulation Table for Linear Model versus Second Degree Reduced Model

Sŧ	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
123456789012345678901234567890123456	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.75 & 1.00 \\ 0.75 & 1.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 5.1.3

Simulation Table for Linear Model versus Second Degree Reduced Model

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S# INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		S# INITIAL CONDITIONS 1 0.025 0.025 2 0.025 0.025 3 0.025 0.025 4 0.025 0.025 5 0.025 -0.025 6 0.025 -0.025 7 0.025 -0.025 8 0.025 -0.025 9 -0.025 0.025 10 -0.025 0.025 11 -0.025 0.025 12 -0.025 0.025 13 -0.025 -0.025 14 -0.025 -0.025 15 -0.025 -0.025 16 -0.025 -0.025 17 0.025 -0.025 18 0.025 -0.025 20 0.025 -0.025 21 0.025 -0.025 22 0.025 -0.025 23 -0.025 -0.025 </td <td>AMPLITUDES 0.100 0.100 -0.100 0.100 -0.100 0.100 0.100 -0.100 0.100 -0.100 0.100 -0.100 -0.100 0.100 -0.100 -0.100 0.100 -0.100 0.100 -0.100 -0.100 -0.100 0.100 -0.100 -0.100 -0.100 0.100 -0.100 0.100 -0.100 -0.100 -0.200 0.200 -0.200 0</td> <td>FREQUENCIES 2.00 1.00 2.00 1.00</td> <td>ERROR EATIOS 0.566E-03 0.231E-02 0.497E-03 0.240E-02 0.469E-03 0.195E-02 0.414E-03 0.224E-02 0.419E-03 0.224E-02 0.204E-03 0.111E-02 0.205E-03 0.115E-02 0.205E-03 0.148E-02 0.205E-03 0.862E-03 0.151E-03 0.806E-03 0.151E-03 0.806E-03 0.136E-03 0.850E-03 0.136E-03 0.850E-02 0.904E-03 0.442E-02 0.107E-02 0.514E-02 0.107E-02 0.514E-02 0.104E-02 0.514E-02 0.105E-02 0.101E-01 0.297E-02 0.101E-01 0.297E-02 0.105E-01 0.402E-02 0.135E-01 0.402E-02 0.135E-01 0.402E-02 0.135E-01 0.402E-02 0.135E-01 0.402E-02 0.186E-01 0.402E-02 0.186E-01 0.415E-02 0.3448E-01 0.734E-02 0.3448E-01 0.734E-02 0.3448E-01 0.776E-02 0.3448E-01 0.776E-02 0.3448E-01 0.776E-02 0.3448E-01 0.776E-02 0.3448E-01 0.776E-02 0.3448E-01 0.415E-01 0.500E-01 0.218E-01 0.500E-01 0.200E-01 0.500E-01</td>	AMPLITUDES 0.100 0.100 -0.100 0.100 -0.100 0.100 0.100 -0.100 0.100 -0.100 0.100 -0.100 -0.100 0.100 -0.100 -0.100 0.100 -0.100 0.100 -0.100 -0.100 -0.100 0.100 -0.100 -0.100 -0.100 0.100 -0.100 0.100 -0.100 -0.100 -0.200 0.200 -0.200 0	FREQUENCIES 2.00 1.00 2.00 1.00	ERROR EATIOS 0.566E-03 0.231E-02 0.497E-03 0.240E-02 0.469E-03 0.195E-02 0.414E-03 0.224E-02 0.419E-03 0.224E-02 0.204E-03 0.111E-02 0.205E-03 0.115E-02 0.205E-03 0.148E-02 0.205E-03 0.862E-03 0.151E-03 0.806E-03 0.151E-03 0.806E-03 0.136E-03 0.850E-03 0.136E-03 0.850E-02 0.904E-03 0.442E-02 0.107E-02 0.514E-02 0.107E-02 0.514E-02 0.104E-02 0.514E-02 0.105E-02 0.101E-01 0.297E-02 0.101E-01 0.297E-02 0.105E-01 0.402E-02 0.135E-01 0.402E-02 0.135E-01 0.402E-02 0.135E-01 0.402E-02 0.135E-01 0.402E-02 0.186E-01 0.402E-02 0.186E-01 0.415E-02 0.3448E-01 0.734E-02 0.3448E-01 0.734E-02 0.3448E-01 0.776E-02 0.3448E-01 0.776E-02 0.3448E-01 0.776E-02 0.3448E-01 0.776E-02 0.3448E-01 0.776E-02 0.3448E-01 0.415E-01 0.500E-01 0.218E-01 0.500E-01 0.200E-01 0.500E-01

Table 5.1.4 Simulation Table for Linear Model versus Second Degree Reduced Model 1

1

LJ

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$).315E-04).417E-04).215E-03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-408E-04 -970E-04 -970E-04 -970E-04 -137E-02 -137E-02 -137E-02 -125E-02 -125E-02 -125E-02 -125E-02 -125E-02 -125E-02 -125E-02 -125E-02 -125E-02 -125E-02 -265E-02 -265E-02 -2732E-02 -2732E-02 -125E-02 -2732E-02 -2732E-02 -115E-03 -1177E-02 -112E-03 -112E-02 -12E-02

Table 5.1.5

Reduced Model

Simulation Table for Linear Model versus Second Degree

Figure 5.1.8 Simulation Number 37 of Table 5.1.5

S# INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.827E-04 0.769E-04 0.754E-04 0.695E-04 0.545E-04 0.527E-04 0.218E-04 0.180E-04 0.683E-02 0.594E-02 0.644E-02 0.548E-02 0.543E-02 0.486E-02 0.543E-02 0.486E-02 0.359E-01 0.459E-01 0.394E-01 0.459E-01 0.394E-01 0.459E-01 0.412E-01 0.216E-01 0.412E-01 0.216E-01 0.412E-03 0.115E-03 0.109E-03 0.115E-03 0.109E-03 0.115E-03 0.129E-03 0.111E-03 0.129E-04 0.747E-04 0.724E-04 0.673E-04 0.724E-04 0.507E-04 0.725 -02 0.608E-02 0.669L-02 0.563E-02 0.564E-01 0.459E-02 0.564E-01 0.506E-02 0.564E-01 0.506E-02 0.564E-01 0.499E-01 0.416E-03 0.114E-03 0.109E-03 0.114E-03 0.109E-03 0.114E-03 0.109E-03 0.114E-03 0.109E-03 0.114E-03 0.109E-03 0.124E-03 0.109E-03 0.124E-03 0.109E-03 0.124E-03 0.109E-03 0.124E-03

Table 5.1.6 Low Frequency Table for Linear Model versus Second Degree Reduced Model

S# INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
S# INITIAL CONDITIONS 1 -0.003 0.010 2 0.008 0.903 4 0.010 -0.002 3 0.008 0.903 4 0.010 -0.003 5 -0.009 0.002 6 0.007 0.009 7 0.005 -0.004 10 0.007 -0.003 12 -0.007 -0.003 13 0.000 -0.001 14 -0.010 0.008 15 0.007 -0.001 14 -0.010 0.008 15 0.001 -0.003 16 -0.004 -0.001 17 0.001 0.003 19 0.001 0.003 21 -0.008 -0.002 22 -0.009 0.008 23 -0.003 -0.002 24 0.003 -0.002 25 0.003 0.008	AMPLITUDES 0.010 -0.021 -0.006 -0.015 0.002 0.023 0.015 -0.022 0.010 0.003 -0.006 -0.013 0.012 -0.002 0.016 0.011 -0.002 0.002 -0.008 -0.018 -0.012 0.014 -0.012 0.001 -0.005 -0.003 -0.005 -0.008 0.009 -0.024 0.005 -0.008 0.009 -0.024 0.002 0.016 0.002 0.016 0.002 0.016 0.002 -0.021 -0.011 0.023 -0.021 0.023 -0.021 0.023 -0.021 0.023 -0.021 0.024 0.001 0.016 -0.012 0.016 -0.012 0.016 -0.012 0.021 -0.024 0.001 0.024 0.014 -0.024 0.014 -0.024 0.015 0.003 0.021 0.023 -0.022 -0.021 -0.021 0.024 0.017 0.016 -0.025 0.022 0.007 -0.024 0.017 0.018 -0.017 0.018 -0.017 0.018 -0.012 0.017 0.014 -0.012	FREQUENCIES 0.00 0.00 0.00 0.00	ERROR RATIOS 0.506E-05 0.488E-05 0.144E-05 0.1122-05 0.207E-06 0.123E-06 0.468E-04 0.4887E-04 0.987E-04 0.487E-04 0.336E-05 0.249E-05 0.441E-05 0.158E-05 0.242E-05 0.164E-05 0.242E-05 0.164E-05 0.242E-05 0.164E-05 0.294E-06 0.229E-06 0.294E-06 0.229E-06 0.153E-04 0.110E-04 0.431E-03 0.603E-04 0.431E-05 0.251E-05 0.151E-05 0.251E-05 0.151E-05 0.291E-05 0.167E-06 0.891E-07 0.262E-04 0.213E-04 0.155E-05 0.550E-06 0.110E-06 0.891E-07 0.262E-04 0.911E-06 0.877E-03 0.130E-02 0.413E-03 0.130E-02 0.413E-03 0.130E-02 0.413E-03 0.130E-02 0.413E-03 0.130E-02 0.413E-03 0.130E-02 0.413E-03 0.130E-02 0.413E-03 0.348E-03 0.343E-05 0.427E-05 0.363E-05 0.247E-05 0.363E-05 0.173E-05 0.167E-04 0.257E-04 0.518E-04 0.257E-04 0.416E-05 0.427E-05 0.363E-04 0.264E-05 0.363E-04 0.264E-05 0.363E-05 0.427E-05 0.167E-04 0.139E-04 0.262E-04 0.257E-04 0.262E-04 0.257E-04 0.262E-04 0.257E-04 0.532E-04 0.257E-04 0.532E-04 0.365E-04
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0,00 \\ 0,$	0.332E-02 0.323E-02 0.980E-05 0.342E-05 0.417E-05 0.314E-05 0.666E-04 0.483E-04 0.281E-03 0.286E-03 0.694E-04 0.788E-04 0.251E-05 0.163E-05 0.430E-03 0.303E-03

Table 5.1.7 Step Response Table for Linear Model versus Second Degree Reduced Model

1-1 1.

Ň

S# INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
St INITIAL CONDITIONS 1 -0.022 0.031 2 0.010 0.011 3 -0.044 -0.004 4 0.015 -0.006 5 0.019 0.042 6 0.023 -0.029 7 0.048 0.035 8 -0.006 0.016 9 0.026 -0.043 10 0.018 -0.016 11 0.029 0.042 12 0.011 -0.001 13 -0.027 0.022 14 -0.028 0.030 15 -0.025 -0.002 16 0.006 0.010 17 0.011 -0.001 18 0.011 -0.005 19 0.021 -0.044 20 -0.026 0.030 21 0.035 -0.021 22 -0.024 -0.040 23 0.047 0.036 24 -0.027 -0.018 25 -0.038 0.015 26 -0.004 0.050 27 -0.008 0.026 28 -0.036 0.020 29 -0.004 0.050 27 -0.008 0.026 28 -0.036 0.020 29 -0.004 0.050 30 -0.027 -0.018 31 -0.025 0.035 32 0.047 0.035 33 0.041 -0.038 34 -0.027 -0.004 35 0.038 -0.004 35 0.038 -0.004 36 0.049 -0.015 37 0.012 -0.036 39 -0.039 -0.043 40 -0.006 0.007 41 0.022 0.016	AMPLITURES -0.062 -0.034 0.005 -0.050 0.055 0.043 -0.007 0.042 0.038 -0.049 0.068 0.027 -0.027 -0.052 0.024 -0.027 0.049 0.044 0.054 0.071 -0.018 0.066 0.049 -0.064 -0.003 -0.064 -0.003 0.029 0.068 0.056 -0.015 -0.014 -0.015 -0.014 -0.015 -0.014 -0.015 -0.014 -0.018 0.057 0.070 0.004 0.010 -0.010 -0.018 0.057 0.022 0.064 -0.018 0.057 -0.018 0.046 -0.022 0.064 -0.018 0.047 -0.018 0.047 -0.018 0.047 -0.018 0.047 -0.018 0.047 -0.018 0.041 0.021 0.070 -0.068 0.055 -0.012 0.062 -0.020 -0.064 -0.012 0.0653 -0.014 -0.053 -0.055 0.0653 -0.015 -0.012 0.0653 -0.055 0.0653 -0.055 0.0653 -0.055 0.067 0.049 -0.011	FREQUENCIES 0.00 0.00 0.00 0.00	ERROR RATIOS 0.451E-03 0.520E-03 0.617E-05 3.561E-05 0.339E-02 0.426E-02 0.350E-05 0.344E-05 0.581E-02 0.636E-02 0.581E-02 0.636E-02 0.581E-02 0.7346 0.391E-04 0.79E-04 0.724E-03 0.741E-03 0.622E-02 0.735E-02 0.648E-03 0.943E-03 0.240E-03 0.203E-03 0.223E-01 0.262E-01 0.400E-06 0.269E-06 0.190E-03 0.245E-03 0.143 0.240 0.862E-05 0.405E-05 0.357E-05 0.451E-06 0.140 0.180 0.309E-04 0.217E-04 0.277E-04 0.217E-04 0.356E-06 0.253E-06 0.106E-05 0.654E-06 0.106E-05 0.654E-03 0.107E-03 0.972E-04 0.526E-05 0.588E-05 0.130 0.184 0.261E-01 0.31.E-01 0.406E-01 0.342E-01 0.279E-06 0.276E-06 0.252E-01 0.266E-05 0.130 0.184 0.225E-01 0.266E-05 0.393E-03 0.529E-03 0.179E-06 0.149E-06 0.149E-01 0.342E-01 0.279E-06 0.276E-07 0.173 0.227 0.112E-02 0.950E-03 0.595E-03 0.595E-02 0.673E-02 0.673E-02 0.673E-02 0.106E-01 0.123E-02 0.673E-02 0.106E-01 0.123E-02 0.673E-02 0.106E-01 0.123E-02 0.673E-02 0.123E-02 0.673E-02 0.123E-02 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.030 0.016 0.043 -0.026 -0.015 -0.009 0.063 0.003	0.00 0.00 0.00 0.00 0.00 0.00	0.936E-03 0.117E-02 0.120E-01 0.136E-01 0.135E-04 0.561E-05 0.873E-01 0.114
*5 0.007 -0.047 47 0.008 -0.038 48 -0.036 0.018 49 0.026 0.017 50 -0.029 0.038	0.007 0.032 0.042 0.071 -0.074 0.031 0.061 0.006 -0.023 -0.055	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.290E-05 0.953E-06 0.809E-04 0.762E-04 0.474 0.514 0.920E-01 0.119 0.254E-05 0.593E-06

Table 5.1.8 Step Response Table for Linear Model versus Second Degree Reduced Model

From the tables and plots it is obvious that the second degree reduced model performs very well with respect to the linear model. Clearly, the loss of the eight terms in the model has not caused model performance to deteriorate significantly. In order to better check the reduced model's degradation of tracking ability, it is compared against the full second degree model. Tables 5.1.9 through 5.1.13 and the corresponding plots will show that good model behavior is preserved despite the loss of more than half the full model's terms. In each case now, we do not expect to outperform the full model, rather we just hope to approximate it. The error ratio, now

$$R_{i} = \frac{MSE(MODEL2_{i})}{MSE(MODEL1_{i})} , \quad i = 1, 2, \dots, n,$$

(where MODEL1 and MODEL2 refer to the full and reduced models respectively) is expected to be around unity. This may or may not be true, again depending on the relative closeness of a model's solution to the true solution, so we rely on the graphical data. Table 5.1.9 is a table of simulations close to the origin. The error ratios meet their expectation and the plots in Figures 5.1.12 and 5.1.13 present typical curves. Table 5.1.10 moves the excitation parameters farther away from the origin. Figure 5.1.14 gives a representative set of plots, and Figure 5.1.15 is a blow up of Figure 5.1.14 to give a better look at the reduced model performance. Tables 5.1.11 and 5.1.2 are tables with constant initial state conditions and randomly chosen frequency and amplitude pairs. Table 5.1.11 has amplitudes in the range (-0.05, 0.05), and Table 5.1.12 has amplitudes in the range (-0.25, 0.25). Both have frequencies chosen from the range (2,6). Finally, Table 5.1.13 tests the low frequency and d.c. behavior of the full and reduced second degree models.

From all of the results presented so far it appears the model reduction technique is working quite well as both criteria for judging reduced models

64

 \mathbf{b}

******* ***** ***************

Sŧ	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
123456789012345678901234567890123456	$\begin{array}{c} 0,001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & 0.0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.75\\ 1.00\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.0\\ 0.75\\ 1.00\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

J+ Sj í-

> Table 5.1.9 Simulation Table for Second Degree Full Model versus Second Degree Reduced Model

Original page 19 Of poor quality

66

-

 $\left[\right]$

Π

6

Table 5.1.10 Simulation Tables for Second Degree Full Model versus Second Degree Reduced Model

•

Figure 5.1.15 Expanded Section of Figure 5.1.14

original page is Of poor quality 70

Į.

.

CF INITIAL CONFERENCE	HULTINGS	FREQUENCIES	ERROR RHILUS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.032 & -0.049 \\ 0.004 & 0.046 \\ -0.049 & 0.018 \\ 0.043 & -0.045 \\ -0.034 & -0.017 \\ 0.027 & -0.021 \\ 0.027 & -0.021 \\ 0.027 & -0.033 \\ -0.017 & -0.019 \\ 0.027 & -0.022 \\ 0.010 & 0.015 \\ 0.027 & -0.022 \\ 0.010 & 0.011 \\ 0.027 & -0.025 \\ -0.041 & 0.024 \\ 0.045 & 0.049 \\ -0.006 & 0.026 \\ -0.025 & -0.027 \\ -0.025 & -0.027 \\ -0.021 & -0.010 \\ -0.006 & 0.026 \\ -0.025 & -0.027 \\ -0.021 & -0.010 \\ -0.0028 & -0.000 \\ 0.017 & -0.017 \\ -0.011 & -0.022 \\ 0.037 & 0.035 \\ 0.002 & 0.002 \\ 0.028 & -0.000 \\ 0.019 & -0.044 \\ 0.011 & 0.036 \\ -0.039 & 0.021 \\ -0.038 & -0.008 \\ -0.039 & 0.021 \\ -0.038 & -0.008 \\ -0.002 & -0.008 \\ -0.0044 & -0.026 \\ -0.0038 & -0.008 \\ -0.0044 & -0.026 \\ -0.002 & -0.008 \\ -0.0044 & -0.026 \\ -0.002 & -0.008 \\ -0.023 & 0.021 \\ -0.023 & 0.021 \\ -0.023 & 0.021 \\ -0.038 & -0.008 \\ 0.044 & -0.040 \\ -0.038 & -0.008 \\ -0.023 & 0.021 \\ -0.023 & 0.021 \\ -0.038 & -0.008 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.038 & -0.008 \\ -0.038 & -0.008 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.026 \\ -0.038 & -0.008 \\ -0.044 & -0.007 \\ -0.019 \\ -0.019 \\ -0.038 & -0.008 \\ -0.007 \\ -0.019 \\ -0.019 \\ -0.008 \\ -0.008 \\ -0.008 \\ -0.008 \\ -0.008 \\ -0.008 \\ -0.008 \\ -0.008 \\ -0.008 \\ -0.008 \\ -0.008 \\ -0.008 \\ -0.008 \\ -0.009 \\ -0.008 \\ $	3.687 3.687 3.677 3.677 3.677 3.677 3.677 3.677 3.677 3.677 3.677 3.677 3.677 3.677 3.677 3.677 3.677 3.671 3.677 3.671	ERRORRH1105 0.140 0.120 $0.320E-01$ $0.898E-02$ 0.325 0.315 0.238 0.224 0.165 0.146 0.104 $0.818E-01$ $0.647E-01$ $0.409E-01$ $0.527E-01$ $0.284E-01$ $0.887E-01$ $0.657E-01$ $0.924E-01$ $0.766E-01$ $0.724E-01$ $0.766E-01$ $0.724E-01$ $0.766E-01$ $0.724E-01$ $0.766E-01$ 0.727 0.211 0.227 0.227 $0.325E-01$ $0.934E-02$ $0.322E-01$ $0.898E-02$ $0.742E-01$ $0.717E-01$ $0.671E-01$ $0.432E-01$ 0.727 0.243 $0.387E-01$ $0.145E-01$ 0.179 $0.327E-01$ $0.387E-01$ $0.147E-01$ $0.463E-01$ $0.258E-01$ $0.378E-01$ $0.147E-01$ $0.385E-01$ $0.147E-01$ $0.385E-01$ $0.147E-01$ $0.404E-01$ $0.160E-01$ $0.404E-01$ $0.160E-01$ $0.404E-01$ $0.160E-01$ 0.258 0.244 0.224 0.207 0.230 0.204 0.230 0.204 0.230 0.204 0.276 0.263 0.276 0.263 $0.298E-01$ $0.968E-02$ 0.276 0.263 $0.298E-01$ $0.297E-01$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.017 0.019 0.045 0.030 0.009 -0.017 -0.020 -0.047 -0.038 0.048 0.033 -0.009 0.015 -0.007 -0.033 0.020	2.83 3.44 4.78 2.79 5.55 5.42 5.28 3.08 4.37 4.33 2.36 3.31 5.22 4.14 5.43 2.44	0.538E-01 0.297E-01 0.278 0.265 0.370E-01 0.161E-01 0.633E-01 0.396E-01 0.321 0.308 0.153 0.134 0.486E-01 0.240E-01 0.156 0.134

Table 5.1.11 fimulation Table for Second Degree Full Model versus Second Degree Reduced Model

S# INITIAL CUMPTITUMS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.249 & 0.243 \\ -0.041 & 0.179 \\ -0.147 & 0.192 \\ -0.205 & -0.164 \\ -0.090 & 0.082 \\ -0.171 & 0.070 \\ -0.155 & 0.162 \\ -0.108 & -0.171 \\ 0.017 & 0.066 \\ -0.186 & 0.180 \\ 0.140 & 0.188 \\ -0.0355 & -0.145 \\ -0.0355 & -0.145 \\ -0.0355 & -0.145 \\ -0.0355 & -0.145 \\ -0.024 & 0.070 \\ -0.114 & 0.154 \\ -0.085 & 0.086 \\ 0.129 & -0.134 \\ -0.085 & 0.086 \\ 0.129 & -0.134 \\ -0.085 & 0.086 \\ 0.129 & -0.134 \\ -0.0069 & 0.096 \\ 0.217 & 0.223 \\ -0.006 & -0.234 \\ -0.175 & 0.074 \\ 0.160 & 0.179 \\ -0.240 & 0.035 \\ -0.117 & -0.124 \\ -0.179 & -0.058 \\ -0.036 & -0.241 \\ 0.184 & 0.223 \\ -0.056 & 0.249 \\ 0.225 & 0.106 \\ -0.036 & -0.195 \\ -0.034 & 0.023 \\ -0.036 & -0.195 \\ -0.034 & 0.023 \\ -0.036 & -0.195 \\ -0.034 & 0.023 \\ -0.034 & 0.023 \\ -0.034 & 0.023 \\ -0.035 & -0.182 \\ -0.035 & -0.186 \\ -0.037 & -0.024 \\ 0.220 & -0.098 \\ 0.144 & -0.205 \\ 0.131 & -0.048 \\ -0.027 & 0.024 \\ 0.220 & -0.098 \\ 0.144 & -0.205 \\ 0.157 & 0.196 \\ 0.126 & 0.031 \\ -0.226 & 0.0087 \\ -0.216 & 0.148 \end{array}$	4.40 2.12 3.307 2.30	1.03 0.983 2.45 3.91 1.69 1.61 1.13 1.11 2.03 2.222 1.24 1.63 1.34 1.63 1.35 1.24 1.422 1.63 3.33 6.46 1.29 1.27 1.462 1.63 3.33 6.46 1.29 1.27 1.462 1.63 3.33 6.46 1.29 1.27 1.462 1.63 3.33 6.46 1.29 1.27 1.462 1.63 3.31 6.05 1.77 1.84 1.67 1.79 1.31 1.07 1.51 1.037 1.403 1.997 1.358 8.91 1.203 1.720 1.403 1.997 1.650 1.720 1.403 1.997 1.403 1.997 1.200 1.54 <
50 0.075 0.075	-0.197 -0.218	4.06 2.30	1,17 1,15

Table 5.1.12 Simulation Table for Second Degree Full Model versus Second Degree Reduced Model

.

1

4 Ł

L

2010

Sŧ	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
12345678901234567890123456789012	$\begin{array}{c} 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.001\\ 0.001 & -0.010\\ 0.010 &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 5.1.13 Low Frequency Table for Second Degree Full Model versus Second Degree Reduced Model

were met. But, in this case the full model has only fourteen terms which is not unreasonably large. The true usefulness of the reduction method will appear when used on models with many nonlinear terms. With this in mind, the third degree approximation of this same two state system is studied.

5.1.2 DEGREE THREE APPROXIMATION

In this example, the third degree approximation now has 34 terms corresponding to the products

> x1, x2, u1, u2, x1x1, x1x2, x2x2, x1u1, x1u2, x2u1, x2u2, u1u1, u1u2, u2u2, x1x1x1, x1x1x2, x1x2x2, x2x2x2, x1x1u1, x1x1u2, x1x2u1, x1x2u2, x2x2u1, x2x2u2, x1u1u1, x1u1u2, x1u2u2, x2u1u1, x2u1u2, x2u2u2, u1u1u1, u1u1u2, u1u2u2, u2u2u2.

The appendix contains the locally optimum, third degree model to be used as the starting model for the reduction. See Figure 5.1.19 for the original third degree model and the "first pass" reduction test. Note the model is identified using initial state conditions (0.001, -0.001). It also uses as control input excitations the same sum of two sinusoids, although with different amplitudes and frequencies,

 $u_1(t) = 0.055 \sin(2\pi t \cdot \phi_1) \div 0.055 \sin(2\pi t \cdot 2\phi_1)$

 $u_2(t) = 0.0325 \sin(2\pi t \cdot \phi_2) + 0.0325 \sin(2\pi t \cdot 2\phi_2)$

where $\phi_1 = 0.5090$ and $\phi_2 = 2.0098$.

Directing our attention to the reduction test and the terms with changes in errors of magnitude less than 4, it is found that 18 terms can be omitted. The remaining 16 terms are

ENTER INITIAL CONDITIONS FOR THE 2 STATES: 0.0010 -0:0010

ENTER SAMPLING FARAMETERS: APPROXIMATION DEGREE # SAMPLE FOINTS INTERVAL BETWEEN SAMPLES INTEGRATION STEPSIZE 100 3 0.0400 0.0050

SHOULD THE EXCITATION BE SINUSOIDAL OR COSINUSOIDAL?[5/C]: IDENTIFICATION WILL BE DONE WITH SINES. ENTER THE NUMBER OF (CO)SINUSOIDS FER INFUT: ENTER THE 4 INITIAL INPUT AMPLITUDES: 0.55000000000000002E-01 0.325000000000002E-01 ENTER THE 2 FREQUENCY WEIGHTS: 0.5090 2.0098

SHOULD THE IDENTIFICATION BE PERFORMED USING DATA THAT IS REDUCED?LY/NJ: N

- ENTER OFTIMIZATION OFTION: 1 NO OFTIMIZATIONS 2 AMPLITUDES ONLY 3 FREQUENCIES ONLY 4 INITIAL CONDITIONS ONLY 5 AMPLITUDES AND FREQUENCIES 6 AMPLITUDES AND INITIAL CONDITIONS 7 FREQUENCIES AND INITIAL CONDITIONS 8 AMPLITUDES, FREQUENCIES, AND INITIAL CONDITIONS 1

0

DO YOU WISH TO NORMALIZE THE DATA?CY/NJ:

THE MATRIX OF SAMPLED MONOMIAL TERMS 34 ROWS AND 100 COLUMNS. HAS

NUMBER OF TIMES COST FUNCTION WAS EVALUATED: WOULD YOU LIKE TO SEE PLOTS OF THE INPUTS? IF SO, LINE UP THE CARRIAGE.

TSO SPEAKEASY III PI+ 9:57 PM FEBRUARY 22, 1984 :_SIZE=500;GET IDENT;IDENT;QUIT

EXECUTION STARTED

PARTITION NUMBER 1. FRIITION (A 2 BY 2 ARRAY)

Figure 5.1.19a Full Third Degree Model and Reduction Test (First Pass)

CRISING CONTRACTOR

·99967 1.0002
WITH EIGENVALUES; VALUES (A VECTOR WITH 2 COMPONENTS) 49874+.86767149874867671
PARTITION NUMBER 2. PRTITION (A 2 BY 2 ARRAY) .0019891 .99779 -1.0001 -6.2231E-7
PARTITION NUMBER 3. PRTITION (A 2 BY 3 ARRAY) 190240123650034771 .036033 .0022184 1.5017E-4
PARTITION NUMBER 4. PRTITION (A 2 BY 4 ARRAY) -4.0692 .026129 .0279090078805 .021083 .002591 .0026825 .0035398
PARTITION NUMBER 5. PRTITION (A 2 BY 3 ARRAY) 0039675 .0071601012386 99787 .0010537 7.4681E-4
PARTITION NUMBER 6. FRIITION (A 2 BY 4 ARRAY) .70548 1.6627 3.3163 .78087 22236684 -1.26243395
PARTITION NUMBER 7. PRTITION (A 2 BY 6 ARRAY) .62145613662522376455 .4472467544 28909025264054730582020486460056896
PARTITION NUMBER 8. PRTITION (A 2 BY 6 ARRAY) -3.548810235 .41411 .16518 .036896 .075615 17155 .96002044252055923035393013022
FARTITION NUMBER 9. PRTITION (A 2 BY 4 ARRAY) 187380320690251019747 517490163280190480011802
S (A 34 COMPONENT ARRAY) 12.581 8.5987 7.997 6.0242 4.3769 4.1246 3.1931 2.9288 2.6574 2.5454 2.1057 1.8416 1.5116 1.4722 1.3897 1.3138 1.1668 .99995 .92334 .82698 .76732 .71888 .5978 .53451 .40492 .35004 .32218 .20171 1.8144 .11826 .023934 .04584 .084429 .063016 THE MAXIMUM SINGULAR VALUE:
THE MINIMUM NONZERO SINGULAR VALUE: MIN = .023934
AND THEIR RATIC: RTIO = 525.67

Figure 5.1.19b Full Third Degree Model and Reduction Test (First Pass)

Ĺ

WANT TO TRY REDUCTION TEST?CY/N3: Y

FULL S' FULL S	YSTI TATI	EM ERRO E ERROI)R: \S:	208 152	.5798 .0251	56,554	7
TERM: CHANGE CHANGE	NI MI	X: SYSTEI STATE	L COL 1 ERROF ERROR!	LUMN R: B:	#: 1. 273.282 226.003	20 11 47	7,2809
TERM: CHANGE CHANGE	IN IN	SYSTER STATE	2+ COI 1 ERROF ERROR	LUMN 71 51	#: 2, -18,893 -16,998	34 30 -1	L•8954
TERM: CHANGE CHANGE	IN IN	U: SYSTEN STATE	L. COL 1 ERROF ERRORS	LUMN St	#: 3. −25.43: 0.045	17 50 -25	5.4768
TERM: CHANGE CHANGE	IN IN	U SYSTEN STATE	2 COL 1 ERROL ERROR	LUMN R	#: 4, 14,08: 14,08:	26 26 -(0.0000
TERN: Change Change	IN IN	X1.X SYSTEN STATE	L COL ERROL ERRORS	LUMN 3 5	4: 5. 12.25 11.63	73 18 (0.6225
TERM: Change Change	IN IM	X1.X2 SYSTER STATE	2+ COL 1 ERROI ERRORS	LUMN	#: 6, -0,915 -0,869	52 97 -(.0455
TERM: Change Change	IN IN	X2.X2 SYSTEN STATE	2+ COL 1 ERROH ERRORS	-UMN	‡: 7. 0.271 0.267	15 71 (0.0044
TERM : Change Change	IN IN	X1.UI SYSTEN STATE	I COL I ERROF ERRORS	UMN	#: 8. 48.061 48.006) 33 (.0556
TERM: CHANGE CHANGE	IN IN	X1.U2 SYSTEN STATE	2. COL ERROF ERRORS	LUMN	非: 9, −0,025 −0,037	50 73 ().0123
TERM: Change Change	IN IN	X2.U1 SYSTEN STATE	I COL I ERROF ERROFS	LUMN	#: 10. -0.361 -0.349	5 75 -{	.0120
TERM: CHANGE CHANGE	IN IN	X2.U2 SYSTEN STATE	2. COL 1 ERROF ERRORS	.UMN ? : 5 :	*: 11. -0.000 -0.017	51 76 0	.0114
TERM: CHANGE CHANGE	IN IN	U1.U1 SYSTEP STATE	- COL ERROP ERRORS	UMN	#: 12, -30,363 -0,034	18 18 -30	.3290
TERM: CHANGE CHANGE	IN IN	U1.U2 SYSTEP STATE	ERROR ERROR	UMN	*: 13. -0.016 -0.004	4 5 -0	.0119
TERM: CHANGE CHANGE	IN IN	U2.U2 SYSTEM STATE	L COL ERROR ERRORS		*: 14. 0.377 0.359	¹² 9 0	,0173
TERM: CHANGE CHANGE	LX NI NI NI	.X1.X1 SYSTEN STATE	ERROR	LUMN	*: 15. -29.908 -27.956	1 -1	.9520

Figure 5.1.19c Full Third Degree Model and Reduction Test (First Pass)

Ŀ

ORIGINAL PACE 10 OE POOR QUALITY

TERM: X1.X1.X2. COLUMN 1: 14. CHANGE IN SYSTEM ERROR: 134.7215 CHANGE IN STATE ERRORS: 122.4539 14 9676 TERM: X1.X2.X2. COLUMN ***:** 17. CHANGE IN SYSTEM ERROR: -77.4448 CHANGE IN STATE ERRORS: -75.6628 -1.7820COLUMN #: 18. RROR: 79.0131 RORS: 69.5179 9.4952

TERM: X2.X2.X2. COLUM CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: TERM: X1.X1.U1. COLUMN **‡**: CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: 19. 7.9639 7.8924 TERM: X1.X1.U2. COLUMN #: CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: 20. 1.5089 TERM: X1.X2.U1. COLUMN #: CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: 21. 1.7702 1.6826 TERM: X1.X2.U2. COLUMN **#**: CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: 22. 2.6437 2.5047 TERM: X2.X2.U1. COLUMN **#**: CHANGE IN SYSTEM ERPOR: CHANGE IN STATE ERRORS: 23. 2.3302 TERM: X2.X2.U2. COLUMN #: 24. CHANGE IN SYSTEM ERROR: 5.6993 CHANGE IN STATE ERRORS: 5.7065 TERM: X1.U1.U1. COLUMN #: 25. CHANGE IN SYSTEM ERROR: 57.3052 CHANGE IN STATE ERRORS: 58.0436 TERM: X1.U1.U2. COLTMN #: 26. CHANGE IN SYSTEM ERROR: -2.3094 CHANGE IN STATE ERRORS: 0.0114 TERM: X1.U2.U2. COLUMN #: 27. CHANGE IN SYSTEM ERROR: -8.95 CHANGE IN STATE ERRORS: -8.67 -8.9582 -8.6700 TERM: X2.U1.U1. CGLUMN #: 28. CHANGE IN SYSTEM ERROR: 1.18 CHANGE IN STATE ERRORS: 0.75 1,1869 0,7543 TERM: X2.U1.U2. COLUMN #: 29. CHANGE IN SYSTEM ERROR: -0.0037 CHANGE IN STATE ERRORS: 0.2052 TERM: X2.U2.U2. COLUMN *: 30. CHANGE IN SYSTEM ERROR: 2.7262 CHANGE IN STATE ERRORS: 2.5737 TERM: U1.U1.U1. COLUMN #: 31. CHANGE IN SYSTEM ERROR: -20.7670 CHANGE IN STATE ERRORS: -2.2527 TERM: U1.U1.U2. COLUMN #: CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: 32. 0.2494 0.2183

Figure 5.1.19d Full Third Degree Model and Reduction Test (First Pass)

0.0715

-0.1108

0.0876

0.1390

-0.3789

-0.0071

-0.7384

-2,3208

-0,2882

0.4325

-0.2090

0.1524

-18.5142

0.0311

TERM:U1.U2.U2.COLUMN I:33.CHANGE IN SYSTEM ERROR:-0.3957CHANGE IN STATE ERRORS:-0.2063TERM:U2.U2.U2.COLUMN 1:34.CHANGE IN SYSTEM ERROR:0.2591CHANGE IN STATE ERRORS:0.2608-0.0016

DO YOU WANT TO RESPARD ANY TERMS AND RE-OPTIMIZETEY/ND: Y

HOW MANY TERMS WILL BE KEPT? 16

ENTER THE COLUMN NUMBERS OF COLUMNS WHICH ARE TO BE KEPT, ENTRY OF COLUMN NUMBERS WILL TAKE PLACE IN BLOCKS OF 10, WHEN ASKED, ENTER A AS AN ARRAY WITH A MAXIMUM OF TEN ELEMENTS. A = ARRAY(10:1,2,3,4,5,8,12,15,16,17)

A = ARRAY(6:18,19,24,25,27,31)

MANUAL MODE SPACE USED 113 K NOW, 138 K PEAK, SIZE 500 K DO YOU WISH TO SAVE THIS MODEL?EY/NJ:N DO YOU WISH TO IDENTIFY ANOTHER MODEL?EY/NJ:N

Figure 5.1.19e Full Third Degree Model and Reduction Test (First Pass)

Constant, Posta (11 Vie Roce Cuality)

.

x1, x2, u1, u2, x1x1, x1u1, u1u1, x1x1x1, x1x1x2, x1x2x2, x2x2x2, x1x1u1, x2x2u2, x1u1u1, x1u2u2, u1u1u1.

These terms are kept and a new local optimum is found. Optimization over frequencies yielded $\phi_1 = 0.3950$ and $\phi_2 = 1.3506$. Se% Figure 5.1.20 for the "second pass". Note that the IMSL optimization routine ended with a "terminal error". This error (IER = 130) is an IMSL provided error check to insure that roundoff error does not become excessive. Note further that a FORTRAN error message summary is provided. In this instance error 208 was encountered 34 times. Error 208 is an underflow error and indicates that an internal variable was less than 10^{-78} . The standard fixup is to set that variable to zero, which is perfectly acceptable.

The "second pass" reduction test indicates that another 3 terms are fairly insignificant. This brings the total number of terms to 13. They are

> x1, x2, u1, u2, x1u1, u1u1, x1x1x1, x1x1x2, x2x2x2, x1x1u1, x2x2u2, x1u1u1, u1u1u1.

Again, only these 13 terms are kept and a locally optimum frequency set is determined. The model is identified and a reduction test performed. (See Figure 5.1.21 for this "third pass".) The reduction test indicates that term 19 $(x_1x_1u_1)$ could be removed, but after execution of the "fourth pass", the model simulations showed that the 12 term model was not acceptable. So the 13 term model is the final model, and the final reduction is 21 terms removed out of a possible 34; a 62% reduction.

ENTER INITIAL CONDITIONS FOR THE 2 STATES: 0,0010 -0.0010ENTER SAMPLING PARAMETERS: APPROXIMATION DEGREE # SAMPLE POINTS INTERVAL BETWEEN SAMFLES INTEGRATION STEPSIZE 0.0400 0.0050 100 3 SHOULD THE EXCITATION BE SINUSOIDAL OR COSINUSOIDAL?[5/C]: IDENTIFICATION WILL BE DONE WITH SINES. ENTER THE NUMBER OF (CO)SINUSOIDS PER INPUT: ENTER THE **4 INITIAL INPUT AMPLITUDES:** 0.5500000000000002E-01 0.3250000000000002E-01 ENTER THE 2 FREQUENCY WEIGHTS: 0.5090 2.0078 SHOULD THE IDENTIFICATION BE PERFORMED USING DATA THAT IS REDUCED?[Y/N]; ENTER OFTIMIZATION OFTION: 1 - NO OFTIMIZATIONS 2 - AMPLITUDES ONLY 3 - FREQUENCIES ONLY 4 - INITIAL CONDITIONS ONLY 5 - AMPLITUDES AND FREQUENCIES 6 - AMPLITUDES AND INITIAL CONDITIONS 7 - FREQUENCIES AND INITIAL CONDITIONS 8 - AMPLITUDES, FREQUENCIES, AND INITIAL CONDITIONS 3 ENTER THE TRACE OF THE COVARIANCE MATRIX: 0.999999999999999954E-06 ENTER THE OPTIMIZATION METHOD: 1,2,3 OR 4 ENTER # OF SIGNIFICANT DIGITS FOR CONVERGENCE, MAXIMUM # OF FUNCTION CALLS, AND THE ZXMIN OPTION # (0,1,2,3) 2 200 2 10 CALLS OF FCN..... 0.52531470+00 0.2009603D+01 THE CONDITION NUMBER: 0.152D+10 OBJECTIVE FUNCTION VALUE: 0.5532D+04 20 CALLS DF FCN..... THE PARAMETERS: 0.5254612D+00 0.2008699D+01 THE CONDITION NUMBER: 0.152D+10 DBJECTIVE FUNCTION VALUE: 0.5516D+04 30 CALLS OF FON.... THE FARAMETERS: 0.51998210+00 0.19898390+01 THE CONDITION NUMBER: 0.1450+10 OBJECTIVE FUNCTION VALUE: 0.53160+04

Figure 5.1.20a Reduced Third Degree Model and Reduction Test (Second Pass)

40 GALLS OF FCN.... THE PARAMETERS: 0.5039734D+00 0.1890305D+01 THE CONDITION NUMBER: 0.123D+10 OBJECTIVE FUNCTION VALUE: 0.4721D+04 50 CALLS OF FCN.... THE PARAMETERS: 0.4076332D+00 0.1414816D+01 THE CONDITION NUMBER: 0.470D+09 OBJECTIVE FUNCTION VALUE: 0.2133D+04 *** TERMINAL ERROR - (IER = 130) FROM IMSL ROUTINE ZXMIN

DO YOU WISH TO NORMALIZE THE DATA?IY/NJ:

THE MATRIX OF SAMPLED MONOMIAL TERMS HAS 16 ROWS AND 100 COLUMNS.

NUMBER OF TIMES COST FUNCTION WAS EVALUATED: 52 THE OFTIMUM FREQUENCIES ARE: FREQ(1)= 0.395 FREQ(2)= 1.351 FREQ(3)= 0.000 WOULD YOU LIKE TO SEE PLOTS OF THE INPUTS? IF SO, LINE UP THE CARRIAGE.

MESSAGE SUMMARY: MESSAGE NUMBER - COUNT 208 34 TSO SPEAKEASY III FI+ 10:59 PM FEBRUARY 22, 1984 :_SIZE=500;GET IDENT;IDENT;QUIT EXECUTION STARTED COLSKEPT (A 16 COMPONENT ARRAY) 1 2 3 4 5 8 12 15 16 17 18 19 24 25 27 31

FARTITION NUMBER 1. FRTITION (A 2 BY 2 ARRAY) -1.9999 -3.0002 1.0011 .99978

...WITH EIGENVALUES: VALUES (A VECTOR WITH 2 COMPONENTS) -.50005+.86841i -.50005-.86841i

PARTITION NUMBER 2. FRIITION (A 2 BY 2 ARRAY) 6.5116E-4 .99902 -.99844 -.0013877

PARTITION NUMBER 3. PRTITION (A 2 BY 3 ARRAY) -.028226 0 0 -.093347 0 0

Figure 5.1.20b Reduced Third Degree Model and Reduction Test (Second Pass)

FARTITION NUMBER 4. FRTITION (A 2 BY 4 ARRAY) -4.0367 0 0 -.062668 0 0 0 õ FARTITION NUMBER 5. FRIITION (A 2 BY 3 ARRAY) -.0022205 0 0 -1.0093 0 0 FARTITION NUMBER 6. FRTITION (A 2 BY 4 ARRAY) -.91373 .39023 .40494 -.40803 .48991 -1.1593 -.11776 .55633 PARTITION NUMBER 7. PRTITION (A 2 BY 6 ARRAY) .11824 0 0 +049393. 0 0 +58555 0 Ó 0 Ō .62134 FARTITION NUMBER 8. PRTITION (A 2 BY 6 ARRAY) -3.9208 0 .028512 .48114 0 .12065 0 0 0 0 0 0 FARTITION NUMBER 9. FRTITION (A 2 BY 4 ARRAY) -.058225 0 0 -.57913 0 0 0 0 S (A 16 COMPONENT ARRAY) 11.449 7.1423 6.0617 1.1688 1.1436 .8219 5,0361 2.7425 2.088 1.9426 1.3796 .56891 .034909 .31614 17437 +084743 THE MAXIMUM SINGULAR VALUE: MAX = 11.449 THE MINIMUM NONZERO SINGULAR VALUE: MIN = .034909 ***AND THEIR RATIO: RTIO = 327.96 WANT TO TRY REDUCTION TEST?EY/N3: Y FULL SYSTEM ERROR: FULL STATE ERRORS: 138,4610 70,3943 68.0666 TERN: X1. COLUMN #: CHANGE IN SYSTEM ERROR: 1 CHANGE IN STATE ERRORS: 1 105.5239 109.8157 -4.2918TERM: X2. COLUMN **#**: 2. CHANGE IN SYSTEM ERROR: 234.7848 CHANGE IN STATE ERRORS: 194.0638 40.7210 TERM: U1. COLUMN **\$:** 3. CHANGE IN SYSTEM ERROR: -41.7820 CHANGE IN STATE ERRORS: -0.0060 -41.7761 TERM: U2. COLUMN #: CHANGE IN SYSTEM ERROR: -: TERM: -16,5398

Figure 5.1.20c Reduced Third Degree Model and Reduction Test (Second Pass)

1

CHANGE	IH	STATE	e erri	DRS:	-1	5,560	2	0.0204		
TERM: CHANGE CHANGE	IN IH	X1.) SYSTE STATE	K1. EN ERI E ERRI	COLUMN ROR: ORS:	ŧ;	5. 3.091 0.062	3	3,0289		
TERM: CHANGE CHANGE	או או	X1.1 SYSTI STATE	J1. EM ERI E ERRI	COLUMN ROR: DRS:	#: 11 11	8. 3.919 4.350	3 7	-0.7314		
TERM: CHANGE CHANGE	IN IN	U1.0 SYSTE STATE	J1. EM ERI E ERRI	COLUMN KOR: DRS:	†: −1	12. 9.954 0.027	- 0	19.9276		
TERN: CHANGE CHANGE	X N N N	SYST SYST STAT	(1. EM ERI E ERRI	COLUMN ROR: ORS:	‡; 1	15. 4.476 5.127	7 2 ~	10.6505		
TERM: CHANGE CHANGE	X IN IN	SYSTI STATI	k2. Em eri E erri	COLUMN ROR: DRS:	ŧ: _	16. 2.546 5.628	3	-8.1746		•
TERM: CHANGE CHANGE	X1 IN IN	SYSTE SYSTE	(2. Em Eri E Erri	COLUMN ROR: DRS:	‡: 	17. 1.481 3.645	23	2,1641		
TERM: CHANGE CHANGE	X2 MI NI	2.X2.X SY5TE STATE	(2. 1 Em Eri E Err(COLUMN ROR: DRS:	#: -	18. 2.772 7.233	2	10.0051		
TERM: CHANGE CHANGE	X1 IN IN	SYSTI STATI	J1. EM ERI E ERRI	COLUMN ROR: DRS:	‡: -	19. 7.191 0.617	ž	7,7985		
TERM: Change Change	X2 IN IN	2.X2.1 SYSTE STATE	j2. i Em Eri E Erri	COLUMN ROR: DRS:	封: 	24. 6.036 0.931	7	-5.1057	·	
TERM: Change Change	נא או או	SYSTE SYSTE STATE	J1. (M ERF ERR(COLUMN YOR: DRS:	*: 1	25. 9.4809 1.971(7)	-2.4901		•
Term: Change Change	X1 IN IN	.U2.U SYSTE STATE	J2. (M ERF ERR(COLUMN ROR: DRS:	*: -	27. 1.2073 0.1620	ž >	-1,3695		
term: Change Change	UU NI NI NI	.U1.U SYSTE STATE)1. (EM ERF E ERRO	COLUMN KOR: IRS:	#: -2;	31. 4.7953 0.7590	<u>,</u>	25.5545		
DO YOU	WAN	IT TO	DISC	ARD ANY	TEI	rms af	ID RE-O	PTIMIZE?	'EY/N3:	Ŷ
HOW MAN	ד צו	ERMS	WILL	BE KEF	'T? :	13				
ENTER THE COLUMN NUMBERS OF COLUMNS WHICH ARE TO BE KEPT. ENTRY OF COLUMN NUMBERS WILL TAKE PLACE IN BLOCKS OF 10. WHEN ASKED, ENTER A AS AN ARRAY WITH A MAXIMUM OF TEN ELEMENTS. A = ARRAY(1,2,3,4,8,12,15,16,18,19)										
A = ARR	AY (24,25	5,31)						·	

(6

> MANUAL MODE SPACE USED 70 K NOW, 81 K PEAK, SIZE 500 K

DO YOU WISH TO SAVE THIS HODEL?[Y/N]:N

DO YOU WISH TO IDENTIFY ANOTHER MODEL?CY/NJ:N

Figure 5.1.20d Reduced Third Degree Model and Reduction Test (Second Pass)

ENTER INITIAL CONDITIONS FOR THE 2 STATES; 0,0010 -0,0010 ENTER SAMPLING PARAMETERS: APPROXIMATION DEGREE + SAMPLE FOINTS INTERVAL BETWEEN SAMPLES INTEGRATION STEPSIZE 100 0.0400 0.0050 3 SHOULD THE EXCITATION BE SINUSOIDAL OR COSINUSOIDAL?[5/C]: IDENTIFICATION WILL BE DONE WITH SINES. ENTER THE NUMBER OF (CO)SINUSOIDS PER INPUT: ENTER THE 4 INITIAL INFUT AMFLITUDES: .0.55000000000000002E-01 0.325000000000000002E-01 ENTER THE ENTER THE 2 FREQUENCY WEIGHTS: 0.3950 1.3506 SHOULD THE IDENTIFICATION BE PERFORMED USING DATA THAT IS REDUCED? CY/NJ: ENTER OFTIMIZATION OFTION: IMIZATION UFILON: 1 - NO OFTIMIZATIONS 2 - AMPLITURES ONLY 3 - FREQUENCIES ONLY 4 - INITIAL CONDITIONS ONLY 5 - AMPLITURES AND FREQUE CIES 6 - AMPLITURES AND INITIAL CONDITIONS 7 - FREQUENCIES AND INITIAL CONDITIONS A MENTIONE FREQUENCIES, AND INITIAL - AMPLITUDES, FREQUENCIES, AND INITIAL CONDITIONS 8 ENTER THE TRACE OF THE COVARIANCE MATRIX: 0.99999999999999954E-06 ENTER THE OPTIMIZATION METHOD: 1,2,3 OR 4 ENTER # OF SIGNIFICANT DIGITS FOR CONVERGENCE, MAXIMUM # OF FUNCTION CALLS, AND THE ZXMIN OFTION # (0,1,2,3) 2 200 10 CALLS OF FCN..... 0.3986263D+00 0.1343124D+01 THE CONDITION NUKBER: 0.400D+08 OBJECTIVE FUNCTION VALUE: 0.1685D+03 20 CALLS OF FCN.... THE FARAMETERS: 0.39918380+00 0.13521940+01 THE CONDITION NUMBER: 0.3970+08 OBJECTIVE FUNCTION VALUE: 0.16810+03 30 CALLS OF FCN..... THE FARAMETERS: 0.39916420+00 0.1352155D+01 THE CONDITION NUMBER: 0.397D+08 OBJECTIVE FUNCTION VALUE: 0.1681D+03

Figure 5.1.21a Reduced Third Degree Model and Reduction Test (Third Pass)

40 CALLS OF FCN.... THE PARAMETERS: 0.3991505D+00 0.1352110D+01 THE CONDITION NUMBER: 0.397D+08 OBJECTIVE FUNCTION VALUE: 0.1681D+03 CONVERGENCE WAS ACHIEVED AND NO ERRORS OCCURRED.

DO YOU WISH TO NORMALIZE THE DATA?EY/NJ:

THE MATRIX OF SAMPLED MONOMIAL TERMS HAS 13 ROWS AND 100 COLUMNS.

NUMBER OF TIMES COST FUNCTION WAS EVALUATED: 48 THE OPTIMUM FREQUENCIES ARE: FREQ(1)= 0.399 FREQ(2)= 1.352 FREQ(3)= 0.000 WOULD YOU LIKE TO SEE PLOTS OF THE INFUTS? IF SO, LINE UP THE CARRIAGE.

MESSAGE SUMMARY: MESSAGE NUMBER - COUNT 208 55 TSO SPEAKEASY III PI+ 11:30 PM FEBRUARY 22, 1984 :_SIZE=500;GET IDENT;IDENT;GUIT EXECUTION STARTED COLSKEPT (A 13 COMPONENT ARRAY) 1 2 3 4 8 12 15 16 18 19 24 25 31 FARTITION NUMBER 1. PRTITION (A 2 BY 2 ARRAY) -1.9999 -2.9999 .99957 .99945 ...WITH EIGENVALUES: VALUES (A VECTOR WITH 2 COMPONENTS) -.50021+.86582i -.50021-.86582i FARTITION NUMBER 2. PRTITION (A 2 BY 2 ARRAY) 6.3827E-4 .99898 -.99849 -.0014354 PARTITION NUMBER 3. PRTITION (A 2 BY 3 ARRAY) 0 0 0 PARTITION NUMBER 4.

PARTITION NUMBER 4. FRIITION (A 2 BY 4 ARRAY) -4.0226 0 0 -.026954 0 0

C - 2

Figure 5.1.21b Reduced Third Degree Model and Reduction Test (Third Pass)

PARTITION NUMBER 5. PRTITION (A 2 BY 3 ARRAY) -5.5226E-4 0 0 -1.0026 0 0 FARTITION NUMBER 6. FRTITION (A 2 BY 4 ARRAY) -1.2411 .15993 0 -.1 -.26768 -.91146 0 ... - .5407 .77552
 PARTITION NUMBER 7.

 PRTITION (A 2 BY 6 ARRAY)

 -.063216 0 0

 .20884 0 0
 .073678 0 .68143 0 0
 FARTITION NUMBER 8.

 FRTITION (A 2 BY 6 ARRAY)

 -4.0074 0
 0

 .27416 0
 0
 0 0 Ō 0 0 PARTITION NUMBER 9. PRTITION (A 2 BY 4 ARRAY) -.978589 0 0 -.66691 0 0 0 Ō 5 (A 13 COMPONENT ARRAY) 9.8648 7.1115 6.0803 4.9378 2.4718 1.9875 1.3949 1.2823 1.1637 .95869 .56438 .26112 .16092 THE MAXIMUM SINGULAR VALUE: MAX = 9.8648 THE MANIMUM NUMPERO STUDUE AR UNLESS THE MINIMUM NONZERO SINGULAR VALUE: MIN = .16092 ...AND THEIR RATIO: RTIO = 61.303 WANT TO YRY REDUCTION TEST?EY/N3: Y FULL SYSTEM ERROR: FULL STATE ERRORS: 133.9531 70.3439 63,6092 TERM: X1. COLUMN \$: 1. CHANGE IN SYSTEM ERROR: 121.0994 CHANGE IN STATE ERRORS: 85.4754 35.6240 TERM: X2. COLUMN ***:** 2. CHANGE IN SYSTEM ERROR: 222.9544 CHANGE IN STATE ERRORS: 220.0404 2.9140 TERM: U1. COLUMN *: 3. CHANGE IN SYSTEM ERROR: -37.8873 CHANGE IN STATE ERRORS: -0.0055 -37,8818 TERM: U2. COLUMN #: 4. CHANGE IN SYSTEM ERROR: -15.6390 CHANGE IN STATE ERRORS: -15.6634 0.0243 COLUMN 4: 8. ROR: 123,9281 TERM: X1.U1. COLUM CHANGE IN SYSTEM ERROR:

Figure 5.1.21c Reduced Third Degree Model and Reduction Test (Third Pass)

90

L

CALCENAL FROM HI

CHANGE IN STATE ERRORS! 124.1291 -0.2010TERM: U1.U1. COLUMN I: 12. CHANGE IN SYSTEM ERROR: -27.5552 CHANGE IN STATE ERRORS: -0.0115 -27+5438 TERM: X1.X1.X1. COLUMN #: 15. CHANGE IN SYSTEM ERROR: 15.9879 CHANGE IN STATE ERRORS: 15.2055 0.7824 TERM: X1.X1.X2. COLUMN 1: 16. CHANGE IN SYSTEM ERROR: 16.6559 CHANGE IN STATE ERRORS: 0.5196 16,1362 TERM: X2.X2.X2. COLUMN *****: 18, CHANGE IN SYSTEM ERROR: -8.7379 CHANGE IN STATE ERRORS: -4.3799 -4.3580 TERM: X1.X1.U1. COLUMN #: CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: 19. 1.9149 0.4854 1,4295 TERM: X2.X2.U2. COLUMN *****: 24. CHANGE IN SYSTEM ERROR: -5.8982 CHANGE IN STATE ERRORS: -1.3748 -4.5234 TERM: X1.U1.U1. COLUMN **‡**: 25. CHANGE IN SYSTEM ERROR: 7.7140 CHANGE IN STATE ERRORS: 7.7567 -0.0427TERM: U1.U1.U1. COLUMN #: CHANGE IN SYSTEM ERROR: -: CHANGE IN STATE ERRORS: 1: 31. -25.8595 0.9593 -26.8188 DO YOU WANT TO DISCARD ANY TERMS AND RE-OPTIMIZE?CY/NJ: N MANUAL MODE SPACE USED 62 K NOW, 71 K PEAK, SIZE 500 K

NO YOU WISH TO SAVE THIS MODEL?EY/NJ:N

DO YOU WISH TO IDENTIFY ANOTHER MODEL?CY/NJ:N

Figure 5.1.21d Reduced Third Degree Model and Reduction Test (Third Pass)

Now all that remains is simulation to bear out the model's validity. First we test against the full second degree model and the error ratio for each state is the mean square of the reduced third degree over the mean square error of the full second degree. In each of the following tables MODEL1 is the second degree model and MODEL2 is the reduced third degree. The first two tables (Table 5.1.14 and Table 5.1.15) and their corresponding plots display the behavior when excitation parameters are chosen close to the origin. The following three tables stretch the initial conditions and amplitudes farther from the origin. From this set of data, it is clear that the reduced third degree model outperforms the full second degree. Table 5.1.19 is a table including randomly chosen amplitudes and frequencies. The corresponding figures (Figures 5.1.29 and 5.1.30) show a worst case and a typical plot of model behavior. The final two tables show the low frequency and d.c. behavior of the two models. Again a definite improvement is observed.

Now, comparison against the full degree three model is in order. The error ratios for each state are now the mean square error of the reduced model over the mean square error of the full third degree approximation. The first table (Table 5.1.22) and its corresponding set of plots (Figure 5.1.34) show the typical comparison of model behavior near the origin. The next two tables move the control amplitudes farther out. Throughout these tables, the reduced model behavior is quite good and sometimes even better than that of the full model, but the reduced model went unstable as the amplitudes reached ± 0.6 , while the full model remained stable and did well (see the appendix). Table 5.1.25 is another random table with amplitudes in the range (-0.4, 0.4) and frequencies in the range (2,6). Table 5.1.26 is a low frequency table and Table 5.1.27 is a table of random steps. In these cases, we note that re-

3Ŧ	INTITAL CONDITIONS	AMPLICUES	FREQUENCIES	ERRUK KATIUS
123456789012345678901234567890123353333333333333333333333333333333333	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 5.1.14

.....

Ī

1.14 Simulation Table for Degree Reduced Model

Simulation Table for Second Degree Full Model versus Third

OF POOR QUALITY

94

ľ

.

-

L

.

L'ENER.

ORIGINAL PASE DI OF POOR QUALITY

S# INITIAL CONDITION	S AMPLITUDES	FREQUENCIES	ERROR RATIOS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 5.1.15 Simulation Table for Second Degree Full Model versus Third Degree Reduced Model

Ĩ

Ċ

 \square

24 1M11	TAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
1234567890112345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.518E-01 0.453E-01 0.384E-01 0.351E-01 0.181E-01 0.231E-01 0.234E-01 0.260E-01 0.43E-01 0.391E-01 0.576E-01 0.391E-01 0.569E-01 0.394E-01 0.391E-01 0.373E-01 0.432E-01 0.373E-01 0.432E-01 0.373E-01 0.541E-01 0.437E-01 0.541E-01 0.437E-01 0.544E-02 0.727E-02 0.644E-02 0.727E-02 0.644E-02 0.644E-02 0.217E-01 0.169E-01 0.256E-01 0.187E-01 0.476E-01 0.201E-01 0.476E-01 0.201E-01 0.476E-01 0.178E-01 0.388E-01 0.178E-01 0.363E-01 0.181E-01 0.363E-01 0.181E-01 0.363E-01 0.181E-01 0.363E-01 0.195E-01 0.363E-01 0.181E-01 0.363E-01 0.181E-01 0.363E-01 0.181E-01 0.363E-01 0.181E-01 0.365E-01 0.255E-01 0.365E-01 0.377E-01 0.552E-01 0.235E-01 0.447E-01 0.243E-01 0.567E-01 0.243E-01 0.467E-01 0.233E-01 0.467E-01 0.233E-01 0.467E-01 0.233E-01 0.467E-01 0.233E-01 0.467E-01 0.232E-01 0.467E-01 0.232E-01 0.467E-01 0.232E-01 0.467E-01 0.232E-01 0.467E-01 0.232E-01 0.7532E-01 0.443E-01 0.7532E-01 0.443E-01 0.7532E-01 0.224E-01 0.7532E-01 0.443E-01 0.7532E-01 0.443E-01 0.7532E-01 0.224E-01 0.7532E-01 0.224E-01 0.7532E-01 0.478E-01 0.7532E-01 0.224E-01 0.7532E-01 0.22

Degree Reduced Model

Table 5.1.16 Simulation Table for Second Degree Full Model versus Third

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
	1234567890123456789012222222222222333	$\begin{array}{c} 0.025 & 0.025 \\ 0.025 & 0.025 \\ 0.025 & 0.025 \\ 0.025 & 0.025 \\ 0.025 & -0.025 \\ 0.025 & -0.025 \\ 0.025 & -0.025 \\ 0.025 & -0.025 \\ 0.025 & 0.025 \\ 0.0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.518E-01 & 0.282E-01 \\ 0.566E-01 & 0.295E-01 \\ 0.103 & 0.583E-01 \\ 0.109 & 0.631E-01 \\ 0.485E-01 & 0.309E-01 \\ 0.485E-01 & 0.309E-01 \\ 0.865E-01 & 0.578E-01 \\ 0.922E-01 & 0.630E-01 \\ 0.922E-01 & 0.630E-01 \\ 0.902E-01 & 0.563E-01 \\ 0.902E-01 & 0.563E-01 \\ 0.957E-01 & 0.612E-01 \\ 0.957E-01 & 0.612E-01 \\ 0.957E-01 & 0.609E-01 \\ 0.760E-01 & 0.553E-01 \\ 0.268E-01 & 0.158E-01 \\ 0.268E-01 & 0.158E-01 \\ 0.33E-01 & 0.198E-01 \\ 0.231E-01 & 0.379E-01 \\ 0.572E-01 & 0.504E-01 \\ 0.235E-01 & 0.175E-01 \\ 0.522E-01 & 0.504E-01 \\ 0.522E-01 & 0.504E-01 \\ 0.522E-01 & 0.441E-01 \\ 0.522E-01 & 0.143E-01 \\ 0.534E-01 & 0.334E-01 \\ 0.534E-01 & 0.534E-01 \\ 0.534E-0$

Table 5.1.17 Simulation Table for Second Degree Full Model versus Third Degree Reduced Model

100

ORIGINAL PAGE 19 OF POOR QUALITY

Π

ST INTITUT CONDITIONS	ARPLICUDES	FREQUENCIES	ERFOR RAILOS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 5.1.18 Simulation Table for Second Degree Full Model versus Third Degree Reduced Model

<u>.</u>

Ē

- The second

Π

 $\left[\right]$

Π

.....

N.S.

Į

51 1	NITIAL C	UNUITIONS	ANPL	TIONES	FREQUE	NCIES	ERROR	RATIOS
123456780012345678900123456789001234567890012345678900123456789000000000000000000000000000000000000		$\begin{array}{c} -0.050\\ -0.055$	$-0.02074472463222416220261423549905417300841132002290659\\-0.000125330721622000000000000000000000000000000000$	$\begin{array}{c} 0.251\\ -0.2082\\ 0.1723\\ 0.2141\\ -0.26988\\ -0.22344\\ -0.229382\\ -0.229993\\ -0.229993\\ -0.229993\\ -0.229993\\ -0.229993\\ -0.229993\\ -0.229993\\ -0.229993\\ -0.229993\\ -0.229993\\ -0.229993\\ -0.229993\\ -0.229993\\ -0.229993\\ -0.229993\\ -0.2293\\ -0.2222\\ -0.2222\\ $	3352444433244244444344234553552225424543452444452325424 460881355431960999975871044235329939941000186990100072624 324444332442444443442345535552225424543452444452325424	3242345424422235555522442343434323324422352552256906155809 719,033355478889,244,05334289,930554313137885531667911136825 739,872240601398113539741708071667111895502266906155809 11,36825	0.127 0.621 E-02 0.705E-01 0.863E-01 0.777E-01 0.224E-01 0.227E-01 0.227E-01 0.279E-01 0.279E-01 0.277E-01 0.277E-01 0.277E-01 0.277E-01 0.4455E-01 0.128E-01 0.128E-01 0.128E-01 0.128E-01 0.128E-01 0.227E-01 0.4455E-01 0.128E-01 0.227E-01 0.4455E-01 0.227E-01 0.445E-01 0.227E-01 0.227E-01 0.445E-01 0.227E-01 0.227E-01 0.445E-01 0.2385E-01 0.2385E-01 0.2385E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.2578E-01 0.456E-01 0.	0.111 0.42E-02 0.623E-02 0.309E-01 0.576E-01 0.125E-01 0.167E-01 0.167E-01 0.167E-01 0.433E-02 0.433E-02 0.433E-02 0.433E-01 0.454E-01 0
rabte :	5°T°TA	Simulation Degree Redu	Table Iced Mo	ior Second del	Degree	e rull Mo	del versu	s Third

the with the second states of the

-10---3

STRIES 21

e.

₹ -7

240 TINE (SEC) 360 ×10××-2 480

120

106

)**.**

1

R

onginal page is Of poor quality

Figure 5.1.30 Simulation Number 46 of Table 5.1.19

S₽	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	- ERROR RATIOS
1234567890123454789012222222333	$\begin{array}{c} 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.010 & -0.010 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.304 0.161 0.259 0.140 0.180 0.111 0.993E-01 0.767E-01 0.748E-01 0.220E-01 0.58E-01 0.212E-01 0.348E-01 0.121E-01 0.974E-01 0.226E-01 0.974E-01 0.226E-01 0.880E-01 0.230E-01 0.659E-01 0.203E-01 0.659E-01 0.203E-01 0.459E-01 0.367E-01 0.586E-01 0.367E-01 0.586E-01 0.367E-01 0.305 0.160 0.260 0.139 0.180 0.110 0.469E-01 0.207E-01 0.598E-01 0.207E-01 0.598E-01 0.207E-01 0.598E-01 0.207E-01 0.592E-01 0.105E-01 0.592E-01 0.105E-01 0.592E-01 0.217E-01 0.604E-01 0.134E-01 0.749E-01 0.134E-01 0.749E-01 0.134E-01 0.749E-01 0.355E-01 0.749E-01 0.355E-01 0.525E-01 0.355E-01

Table 5.1.20 Low Frequency Table for Second Degree Full Model versus Third Degree Reduced Model \Box

Figure 5.1.31 Simulation Number 3 of Table 5.1.20

Figure 5.1.32 Simulation Number 21 of Table 5.1.20

.

5 ‡ IV	NITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
5 123456789012345678901234567890123456789012 111111111112222222222233333333333444	$\begin{array}{c} \text{AITIAL CONDITIONS}\\ 0.000 0.010\\ -0.006 0.004\\ 0.007 0.006\\ 0.006 0.007\\ -0.004 0.001\\ 0.006 0.003\\ -0.009 -0.003\\ -0.009 -0.003\\ -0.000 0.002\\ 0.009 -0.008\\ -0.000 0.002\\ 0.007 -0.008\\ 0.005 -0.008\\ 0.005 -0.008\\ -0.007 0.006\\ -0.007 0.006\\ -0.007 0.006\\ -0.007 0.006\\ -0.003 -0.003\\ 0.003 -0.003\\ 0.004 -0.003\\ -0.003 -0.003\\ 0.004 -0.003\\ -0.003 -0.002\\ -0.003 -0.004\\ -0.003 -0.007\\ -0.002 -0.002\\ -0.003 -0.007\\ -0.002 -0.002\\ -0.003 -0.002\\ -0.003 -0.002\\ -0.009 0.002\\ -0.009 0.002\\ -0.009 -0.002\\ -0.009 -0.005\\ -0.001 -0.007\\ -0.002 -0.005\\ -0.001 -0.007\\ -0.002 -0.005\\ -0.001 -0.005\\ -0.001 -0.005\\ -0.001 -0.005\\ -0.001 -0.005\\ -0.001 -0.005\\ -0.001 -0.005\\ -0.009 -0.006\\ 0.001 -0.007\\ -0.008 -0.005\\ -0.009 -0.006\\ 0.001 -0.007\\ -0.008 -0.005\\ -0.009 -0.006\\ -0.009 -0.006\\ -0.009 -0.006\\ -0.009 -0.006\\ -0.009 -0.006\\ -0.009 -0.005\\ -0.000 -0.001\\ -0.008 -0.005\\ -0.009 -0.006\\ -0.009 -0.005\\ -0.009 -0.004\\ -0.008 -0.005\\ -0.009 -0.005\\ -0.009 -0.004\\ -0.008 -0.005\\ -0.009 -0.004\\ -0.008 -0.005\\ -0.009 -0.004\\ -0.008 -0.005\\ -0.009 -0.004\\ -0.008 -0.005\\ -0.009 -0.004\\ -0.008 -0.005\\ -0.009 -0.004\\ -0.008 -0.005\\ -0.009 -0.004\\ -0.008 -0.005\\ -0.009 -0.005\\ -0.0$	$\begin{array}{c} \text{AMPLITURES} \\ \hline \text{-0.022} & -0.008 \\ \text{c.008} & -0.011 \\ \hline \text{-0.010} & 0.017 \\ \hline \text{0.022} & -0.010 \\ \hline \text{-0.018} & -0.003 \\ \hline \text{-0.021} & -0.005 \\ \hline \text{0.012} & 0.018 \\ \hline \text{-0.021} & 0.024 \\ \hline \text{0.004} & 0.003 \\ \hline \text{-0.009} & -0.013 \\ \hline \text{0.011} & 0.011 \\ \hline \text{c.017} & 0.002 \\ \hline \text{-0.019} & -0.010 \\ \hline \text{0.022} & -0.018 \\ \hline \text{-0.005} & -0.0046 \\ \hline \text{-0.018} & 0.009 \\ \hline \text{0.015} & 0.021 \\ \hline \text{0.015} & 0.021 \\ \hline \text{0.017} & 0.017 \\ \hline \text{-0.016} & -0.008 \\ \hline \text{0.019} & 0.006 \\ \hline \text{-0.010} & 0.007 \\ \hline \text{0.010} & -0.015 \\ \hline \text{-0.001} & -0.015 \\ \hline \text{-0.001} & -0.015 \\ \hline \text{-0.002} & 0.012 \\ \hline \text{-0.002} & 0.014 \\ \hline \text{-0.002} & 0.012 \\ \hline \text{-0.004} & 0.023 \\ \hline \text{-0.023} & 0.014 \\ \hline \text{-0.024} & 0.024 \\ \hline \text{-0.024} & 0.024 \\ \hline \text{-0.025} & 0.020 \\ \hline \text{-0.004} & 0.025 \\ \hline \text{-0.011} & -0.009 \\ \hline \text{-0.020} & 0.012 \\ \hline \text{-0.004} & 0.024 \\ \hline \text{-0.024} & 0.024 \\ \hline \text{-0.024} & 0.024 \\ \hline \text{-0.024} & 0.024 \\ \hline \text{-0.011} & -0.009 \\ \hline \text{-0.011} & -0.009 \\ \hline \text{-0.011} & -0.009 \\ \hline \text{-0.011} & 0.009 \\ \hline \text{-0.011} & 0.0006 \\ \hline \hline \text{-0.010} & 0.011 \\ \hline \ \text{-0.006} \\ \hline \hline \text{-0.010} & 0.011 \\ \hline \hline \ \text{-0.006} \\ \hline \hline \ \text{-0.010} & 0.009 \\ \hline \hline \ \ \ \end{tabula}$	FREQUENCIES 0.00 0.00 0.00 0.	ERRORRATIOS 4.29 7.10 0.721 0.424 1.15 0.737 $0.756E-02$ $0.405E-02$ 3.59 4.02 6.46 10.7 1.96 1.79 4.47 4.25 $0.340E-01$ $0.194E-01$ 0.432 0.334 0.792 0.796 $0.117E-01$ $0.466E-02$ 2.74 3.75 $0.237E-02$ $0.146E-02$ 35.1 41.4 $c.275$ 0.189 5.37 5.41 4.07 5.92 4.12 3.51 1.32 1.15 $0.391E-02$ $0.151E-02$ 1.25 0.789 $0.575E-01$ $0.309E-01$ 0.258 0.142 46.4 21.0 0.887 0.556 40.2 34.2 1.59 1.07 0.956 0.616 18.9 1.93 4.64 3.73 2.39 1.48 0.242 0.119 1.88 1.49 0.637 0.415 0.743 0.449 0.592 0.376 1.26 0.832 0.362 0.192 1.16 0.742
40 41 42 43 45 45 45 47 45	$\begin{array}{c} 0.003 & -0.007 \\ -0.000 & 0.004 \\ 0.008 & -0.005 \\ -0.007 & -0.008 \\ 0.003 & -0.007 \\ 0.001 & 0.007 \\ -0.008 & 0.004 \\ -0.001 & -0.002 \\ -0.007 & 0.009 \end{array}$	$\begin{array}{c} -9.011 & 0.009 \\ 0.011 & -0.006 \\ -0.010 & 0.010 \\ 0.012 & -0.021 \\ -0.021 & 0.015 \\ -0.016 & 0.012 \\ 0.005 & 0.015 \\ 0.015 & 0.010 \\ 0.015 & 0.010 \\ 0.018 & -0.002 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
49 50	0.006 -0.005 -0.006 0.003	0.004 0.008 -0.011 -0.021		2.03 1.60 4.09 4.17

Table 5.1.21 Step Response Table for Second Degree Full Model versus Third Degree Reduced Model

Figure 5.1.33 Simulation Number 15 of Table 5.1.21

Sŧ	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
1034560888888888888888888888888888888888888	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.75 & 1.00 \\ 0.75 & 1.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 5.1.22Simulation Table for Third Degree Full Model versus ThirdDegree Reduced Model

ORIGINAL PAGE 13 OF POOR QUALITY

114

ţ,

-

 $\left[\right]$

İ

•

S# INITIAL CUNDITIONS	ANTLITUES	FREQUENCIES	ERROR RHIIUS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2.00 & 1.00 \\ 2.00 & 1.00 \\ 2.00 & 1.00 \\ 2.00 & 1.00 \\ 2.00 & 1.00 \\ 2.00 & 1.00 \\ 2.00 & 1.00 \\ 2.00 & 1.00 \\ 2.00 & 1.00 \\ 2.00 & 1.00 \\ 1.00 \\ 2.00 & 1.00 \\ 1.00 \\ 2.00 & 1.00 \\ 1.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 5.1.23 Simulation Table for Third Degree Full Model versus Third Degree Reduced Model

115

ORIGINAL PAGE 'ES' OE POOR QUALITY

Figure 5.1.36 Simulation Number 44 of Table 5.1.23

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S# INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERRO	R RATIOS
- OT - AIATO - AIAAA AIAAA AIAAA AIAAA AIAAA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2.00 & 1.00 \\ 2.00 & 1.$	$\begin{array}{c} 2,12\\ 2,71\\ 4,94\\ 1,87\\ 2,94\\ 1,87\\ 2,94\\ 1,87\\ 2,94\\ 1,23\\ 3,12\\ 3,12\\ 3,11\\ 1,23\\ 3,41\\ 2,34\\ 1,12\\ 3,49\\ 1,12\\ 3,12\\$	$\begin{array}{c} 0.478\\ 0.497\\ 0.698\\ 0.814\\ 0.395\\ 0.555\\ 0.555\\ 0.648\\ 0.417\\ 0.429\\ 0.606\\ 0.709\\ 0.333\\ 0.467\\ 0.549\\ 0.1102\\ 0.231\\ 0.299\\ 0.801E-01\\ 0.920E-01\\ 0.165\\ 0.224\\ 0.894E-01\\ 0.165\\ 0.224\\ 0.894E-01\\ 0.165\\ 0.225\\ 0.596E-01\\ 0.165\\ 0.255\\ 0.596E-01\\ 0.162\\ 0.181\\ \end{array}$

Table 5.1.24 Simulation Table for Third Degree Full Model versus Third Degree Reduced Model

N

S4	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
5 123456789012345678901234567890123456789012345678	$\begin{array}{c} \text{INITIAL CONDITIONS} \\ \begin{array}{c} -0.050 & -0.050 \\ -0.050 & -0.$	ANPLITUDES -0.401 0.128 0.160 0.133 0.442 -0.320 -0.085 -0.051 0.182 0.441 0.027 0.306 0.027 0.306 0.027 0.325 -0.315 -0.431 0.244 0.131 0.244 0.131 0.233 0.208 -0.308 0.001 -0.368 0.140 -0.084 -0.285 0.299 -0.147 0.319 -0.159 -0.319 -0.159 -0.319 -0.159 -0.319 -0.159 -0.319 -0.159 -0.319 -0.363 -0.239 -0.343 -0.173 0.414 -0.347 -0.064 0.423 0.153 0.041 0.365 -0.262 0.126 -0.127 -0.433 0.021 0.365 -0.225 0.329 0.020 -0.008 0.402 0.083 0.370 -0.250 0.151 -0.250 0.394 0.139 0.386 -0.324 0.336 0.368 -0.429 -0.317	FREQUENCIES 24488603688973007914462830055554344455244455224455224455224455224455224455224455224455224558875524455224558071622	ERRORRATIOS1.41 0.485 0.557 0.503 0.885 0.273 $0.273E-01$ $0.420E-01$ 2.41 2.10 0.190 0.214 0.190 0.214 0.274 0.233 1.09 0.677 1.57 1.04 1.62 0.799 1.48 0.572 $0.376E-02$ $0.143E-01$ 1.57 0.807 0.321 0.537 0.937 0.472 0.765 0.572 1.96 1.85 1.51 0.635 0.548 0.322 1.22 0.365 $0.858E-02$ $0.103E-01$ 1.33 0.813 $0.574E-01$ $0.790E-01$ 0.555 0.392 $0.260E-01$ $0.414E-01$ 1.34 1.48 $0.391E-01$ $0.887E-01$ $0.127E-02$ $0.504E-02$ 1.38 0.475 1.07 0.358
56789012345 44445	$\begin{array}{c} -0.050 & -0.050 \\ -0.050 & -0.050 \\ -0.050 & -0.050 \\ -0.050 & -0.050 \\ -0.050 & -0.050 \\ -0.050 & -0.050 \\ -0.050 & -0.050 \\ -0.050 & -0.050 \\ -0.050 & -0.050 \\ -0.050 & -0.050 \\ -0.050 & -0.050 \\ -0.050 & -0.050 \end{array}$	$\begin{array}{c} 0.386 & -0.324 \\ 0.251 & -0.342 \\ 0.336 & 0.368 \\ -0.429 & -0.317 \\ -0.418 & 0.328 \\ 0.133 & -0.319 \\ -0.096 & 0.362 \\ -0.156 & -0.370 \\ 0.334 & -0.431 \\ -0.202 & -0.451 \\ -0.449 & -0.451 \end{array}$	2.07 4.78 3.66 2.50 3.15 3.15 3.49 3.00 3.39 4.70 4.08 2.46 4.10 3.13 4.73 2.74 3.78 3.74 3.78 3.74	1.07 1.03 0.467 1.03 0.467 1.07 0.358 1.14 0.937 0.928E-01 0.937 0.928E-01 0.168 0.870E-01 0.872E-1 0.800 0.367 0.884 0.496 1.45 0.367 0.358 0.467 0.9358 0.467 0.937 0.928 0.928 0.00 0.467 0.467 0.937 0.928 0.928 0.00 0.872 0.872 0.875 0

Table 5.1.25 Simulation Table for Third Degree Full Model versus Third Degree Reduced Model

Figure 5.1.39 Simulation Number 3 of Table 5.1.25

122

Ŀ.

 \Box

S# INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 5.1.26 Low Frequency Table for Third Degree Full Model versus Third Degree Reduced Model

Figure 5.1.40 Simulation Number 3 of Table 5.1.26

ļ

ORIGINAL PAGE IS

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sŧ	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
44 0+003 -0+007 -0+021 0+015 0+00 0+00 0+780E-01 0+278E- 45 0+004 0+007 -0+014 0+012 0+00 0+00 0+117 0+401E-	\$ 123456789012345678901232222222222856789012345678901234 \$ 1234567890123345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789001234567890012345678900123456789001234567890012345678900123456789001234567890012345678900123456789001234567890012345678900123456789000000000000000000000000000000000000	INITIAL CONDITIONS 0.000 0.010 -0.006 0.004 0.009 0.006 0.006 -0.007 -0.004 0.001 0.009 -0.003 -0.009 -0.003 -0.000 0.002 0.009 -0.008 0.005 -0.008 0.005 -0.008 -0.007 0.005 -0.007 0.005 -0.007 0.005 -0.007 0.005 -0.003 -0.003 0.008 -0.005 0.003 -0.003 0.003 -0.003 0.003 -0.003 0.004 -0.005 0.003 -0.004 -0.003 -0.004 0.008 -0.005 0.007 -0.002 -0.007 0.007 -0.009 0.007 -0.000 0.000 0.0000 0.0000 -0.000 0.000 0.0000 0.0000 -0.000 0.	AMPLITUDES -0.022 -0.008 0.008 -0.011 -0.010 0.017 0.022 -0.010 -0.018 -0.003 -0.021 -0.005 0.012 0.024 0.004 0.003 -0.009 -0.013 0.011 0.011 0.017 0.002 -0.019 -0.010 0.022 -0.018 -0.001 -0.020 -0.018 0.009 0.015 0.021 0.007 0.017 -0.018 0.009 0.015 0.021 0.007 0.017 -0.014 -0.012 0.010 -0.008 0.019 0.006 -0.010 0.007 0.014 -0.012 0.010 -0.009 -0.015 -0.015 -0.004 0.023 -0.012 0.015 -0.004 0.024 -0.022 0.014 -0.022 0.014 -0.023 0.006 -0.012 0.012 -0.024 0.024 -0.024 0.024 -0.024 0.024 -0.024 0.024 -0.024 0.024 -0.015 0.014 -0.024 0.024 -0.025 -0.018 -0.024 0.024 -0.025 -0.018 -0.019 -0.019 -0.010 -0.019 -0.010 -0.025 -0.010 -0.025 -0.004 -0.025 -0.005 -0.020 -0.005 -0.020 -0.005 -0.020 -0.005 -0.020 -0.005 -0.009 -0.018 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.025 -0.018 -0.018 -0.019 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.025 -0.010 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.010 -0.025 -0.010 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.010 -0.025 -0.010 -0.010 -0.025 -0.010 -0.025 -0.010 -0.025 -0.010 -0.010 -0.010 -0.025 -0.010 -0.010 -0.010 -0.025 -0.010 -0.010 -0.025 -0.010 -0.025 -0.010 -0.	FREQUENCIES 0.00 0.00 0.00 0.00	ERRORRATIOS 0.105 $0.383E-01$ 5.67 9.18 0.119 $0.446E-01$ 0.136 $0.644E-01$ 0.137 $0.478E-01$ 0.137 $0.478E-01$ 0.144 $0.457E-01$ $0.510E-01$ $0.179E-01$ 0.273 0.107 0.346 0.153 19.5 7.18 1.40 2.19 0.115 $0.398E-01$ $0.288E-01$ $0.143E-01$ 8.16 4.11 0.740 0.2455 0.137 $0.439E-01$ 17.3 5.51 15.8 8.09 0.137 $0.460E-01$ 0.553 1.47 0.227 $0.749E-01$ 2.91 2.87 5.69 9.72 5.21 2.40 7.88 9.36 6.99 3.40 0.133 $0.486E-01$ 0.592 $0.225E-01$ $0.432E-01$ $0.225E-01$ $0.464E-01$ $0.163E-01$ $0.464E-01$ $0.163E-01$ 0.429 0.167 0.201 $0.740E-01$ 0.155 $0.647E-01$ 0.155 $0.647E-01$ 0.174 $0.647E-01$ 0.1854 $0.678E-01$ $0.740E-01$ $0.740E-01$ 0.1854 $0.678E-01$
44 -0.008 0.004 0.005 0.015 0.00 0.00 7.61 3.71 47 -0.001 -0.002 0.015 0.010 0.00 3.31 1.07 48 -0.007 0.009 0.018 -0.002 0.00 1.11 0.993 49 0.006 -0.005 0.008 0.000 3.94 27.1	4234 4234 4567 4989	$\begin{array}{c} -0.000 & -0.004 \\ 0.008 & -0.005 \\ -0.007 & -0.008 \\ 0.003 & -0.007 \\ 0.001 & 0.007 \\ -0.008 & 0.004 \\ -0.001 & -0.002 \\ -0.007 & 0.009 \\ 0.006 & -0.005 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.00 \\ 0.$	0.185 0.678E-01 0.824 0.566 0.780E-01 0.278E-01 0.117 0.401E-01 7.61 3.71 3.31 1.07 1.11 0.993 39.4 27.1

Table 5.1.27 Step Response Table for Third Degree Full Model versus Third Degree Reduced Model

126

-

Figure 5.1.42 Simulation Number 13 of Table 5.1.27

į.

duced model behavior is actually better than the full model behavior. So a compromise between the full and reduced models is met, the full model is stable for bigger amplitudes (that is, a larger region of stability), but the reduced model has better low frequency behavior. It is not the purpose here to resolve this decision, but rather to demonstrate that a significantly reduced model can approximate the full model without much loss of higher degree dynamics. Indeed, this was shown.

5.2 THREE STATE, THREE INPUT SYSTEM

Π

Π

the second

In this example, the second degree approximation of a third degree, strictly polynomial, three state system is identified and reduced. The system is

 $\dot{x}_{1} = -\frac{1}{2}x_{1} + u_{3} - 4x_{2} - 2x_{1}x_{3} + x_{2}u_{1},$

 $+ 3x_{1}x_{2}x_{3} + 8x_{3}u_{1}u_{2} - 5u_{3}$,

 $x_2 = -x_2 + u_1 + 3x_1x_2 - 2x_2x_3 + u_1u_2$

 $\begin{array}{r} 3 \\ + 3x_1 - 2x_2x_3 + 4x_2u_2, \end{array}$

 $\dot{x}_3 = -\frac{3}{2} x_3 + u_2 - 5x_2x_3 + u_1u_3 - 2x_3u_2$ $+ 8x_1^3 - 2x_1x_2^2 + 3x_1u_1 .$

Again the origin is the point of expansion since it is a stable, equilibrium point. The full second degree approximation will contain terms associated with the following 27 products

> x1, x2, x3, u1, u2, u3, x1x1, x1x2, x1x3, x2x2, x2x3, x3x3, x1u1, x1u2, x1u3, x2u1, x2u2, x2u3, x3u1, x3u2, x3u3, u1u1, u1u2, u1u3, u2u2, u2u3, u3u3.

A good full model was identified at the initial state conditions (0.03, 0.04, 0.04), and excited with inputs

 $u_1(t) = 0.025 \cos(2\pi t \cdot \phi_1),$ $u_2(t) = 0.015 \cos(2\pi t \cdot \phi_2),$ $u_3(t) = 0.02 \cos(2\pi t \cdot \phi_3),$

where (ϕ_1, ϕ_2, ϕ_3) were determined via optimization to be (0.7099, 1.9618, 2.9415) given the starting frequencies (0.75, 1, 3). This starting model and its corresponding reduction test appear in Figure 5.2.1. Directing our attention to this reduction test, we note that there are 11 second degree terms which appear to be good candidates for removal. Note also that the 3 linear input terms appear relatively insignificant, but it was already decided that the linear terms (both state and input terms) should be kept to preserve good local behavior. The 11 terms removed from the model structure are

x1u1, x1u2, x1u3, x2u2, x2u3, x3u1, x3u3, u1u1, u2u2, u2u3, u3u3.

Note that all terms corresponding to the squares of the states were kept. These terms seem to reflect the appearance of the third degree system nonlinearities. This behavior was also noted in [2] where the example was first studied. The significance of these terms is obvious.

After removal of the set of 11 terms, re-identification was performed. The same initial state conditions and input amplitudes were used, and an optimization over frequencies was performed. The starting frequencies were those used to identify the full model and the local optimization routine yielded a frequency set very near the original set. Again, this bodes well, ENTER INITIAL CONDITIONS FOR THE 3 STATES: 0.0300 0.0400 0.0400

ENTER SAMPLING PARAMETERS: APPROXIMATION DEGREE # SAMPLE FOINTS INTERVAL BETWEEN SAMPLES INTEGRATION STEPSIZE 0.0600 0.0075 100 2

SHOULD THE EXCITATION BE SINUSOIDAL OR COSINUSOIDAL?[5/C]: IDENTIFICATION WILL BE DONE WITH COSINES. ENTER THE NUMBER OF (CO)SINUSOIDS PER INPUT:

ENTER THE ENTER THE 3 FREQUENCY WEIGHTS: 0.7099 1.9618 2.9415

SHOULD THE IDENTIFICATION BE PERFORMED USING DATA THAT IS REDUCED?CY/NJ: М

ENTER OPTIMIZATION OPTION: 1 - NO OFTIMIZATIONS 2 - AMPLITUDES ONLY 3 - FREQUENCIES ONLY

1

- FREQUENCIES UNLT - INITIAL CONDITIONS ONLY - AMPLITUDES AND FREQUENCIES - AMPLITUDES AND INITIAL CONDITIONS - FREQUENCIES AND INITIAL CONDITIONS - AMPLITUDES, FREQUENCIES, AND INITIAL CONDITIONS 8

٥

DO YOU WISH TO NORMALIZE THE DATA?LY/NJ:

THE MATRIX OF SAMPLED MONOMIAL TERMS HAS 27 ROWS AND 100 COLUMNS.

NUMBER OF TIMES COST FUNCTION WAS EVALUATED:

WOULD YOU LIKE TO SEE PLOTS OF THE INPUTS? IF SO, LINE UP THE CARRIAGE.

TSO SPEAKEASY III FI+ 11:13 FM FEBRUARY 29, 1984 LSIZE=500;GET IDENT;IDENT;QUIT

EXECUTION STARTED

Figure 5.2.1a Full Second Degree Model and Reduction Test (First Pass)

FARTITION NUMBER 1. FRIITION (A 3 BY 3 ARRAY) -,50043 -2,9762E-4 -.0028604 -6.0605E-4 -.99939 4.3545E-4 -6.5976E-5 -5.3277E-4 -1.4982 ...WITH EIGENVALUES: VALUES (A VECTOR WITH 3 COMPONENTS) -1.4982 -.99939 -.50043 PARTITION NUMBER 2. FRIITION (A 3 BY 3 ARRAY) 9.1863E-5 -6.8572E-4 .9969 .99983 -3.1204E-5 -1.928E-5 4.0466E-6 .99868 -1.1076E-6 PARTITION NUMBER 3. PRTITION (A 3 BY 6 ARRAY) .053613 .037125 -1.7381 -3.9029 -.49871 .084004 3.0326 -.15235 -.042012 -1.9158 .097414 .23472 -.21056 -.10562 -5.2205 •3702? •054736 • .37405 PARTITION NUMBER 4. PRTITION (A 3 BY 9 ARRAY) ROW 1 -.028705 -.042196 -.040007 1.0099 .022295 .0030023 .071073 ROW 2 -.0035305 .012927 .022232 .0044049 -.0032042 -.014618 -.058518 ROW 3 .0079307 -.033548 -.0011774 .0056223 .034948 -2.0196 -.0037745 .011026 +019238.0044049 -.0032042 -.018316 -.010389 +0045049 -+049517 PARTITION NUMBER 5. PRTITION (A 3 BY 6 ARRAY) .0071867 .01124 -4.6141E-5 .0028277 -.0026629 .99769 .001181 .020343 .01167 -.0027814 .9962 -.0015025 -.0037576 -.01968 -2.9842E-4 -.0010876 -.0041424 -.0015666 S (A 27 COMPONENT ARRAY) 10.112 7.5281 7.4573 7.3082 3.5474 3.5094 2.6157 2.5262 .51718 .48339 .43195 .39965 .044619 .025358 .029926 THE MAXIMUM SINGULAR VALUE: MAX = 10.112 THE MINIMUM NONZERO SINGULAR VALUE: MIN = .02758 5.5485 2.4238 .31808 5.0816 1.1098 .30539 4.972 .82666 .17233 .55558 .15784 MIN = +025358 ...AND THEIR RATIO: RTIO = 398.76 WANT TO TRY REDUCTION TEST?EY/N1: Y FULL SYSTEM ERROR: FULL STATE ERRORS: 328.5908 139.9642 40.8687 147,7579 TERM: X1. COLU CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: COLUMN #: 1. RRDR: -29.4887 -29,4959 0.0107 -0.0035TERM: X2. COLUMN #: 2. Figure 5.2.1b Full Second Degree Model and Reduction Test

(First Pass)

132

1. Andrews

CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: 26.2132 26,2604 -0.0286 TERM: X3. COLUMN 1: 3. CHANGE IN SYSTEM ERROR: -55.0800 CHANGE IN STATE ERRORS: -0.1408 -0.0054-54,9338 TERN: U1. COLUMN #: CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: -4. 6.0935 0.0001 6.0933 0,0001 TERN: U2. COLUMN **#:** 5. CHANGE IN SYSTEM ERROR: -3.9866 CHANGE IN STATE ERRORS: 0.0002 0.0002 -0.0001 -3,9866 TERM: U3. COLUMN #: 6. CHANGE IN SYSTEM ERROR: 0.9497 CHANGE IN STATE ERRORS: 0.9499 -0.0001 -0.0000 TERM: X1.X1. COLUMN #: CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: 6.0076 2.7131 -1.0940 4.3885 TERM: X1.X2. COLUMN #: 8. CHANGE IN SYSTEM ERROR: 18.7248 CHANGE IN STATE ERRORS: 1.8695 6.0373 10.8180 ***:** 9. -66.5199 -60.3416 1,6895 -7.8678 TERM: X2.X2. COLUMN #: 10. CHANGE IN SYSTEM ERROR: -125.1554 CHANGE IN STATE ERRORS: -120.9146 0.5453 -4.7861 TERM: X2.X3. COLUMN #: CHANGE IN SYSTEM ERROR: -9 CHANGE IN STATE ERRORS: -1 ***:** 11, -93.8660 -19.7353 33.1097 -107,2404 TERM: X3.X3. COLUMN #: 12. CHANGE IN SYSTEM ERROR: 25.6494 CHANGE IN STATE ERRORS: 13.1292 -0.4948 13.0150 TERM: X1.U1. COLUMN #: 13. CHANGE IN SYSTEM ERROR: -0.0621 CHANGE IN STATE ERRORS: -0.2455 0.0428 0.1405 TERM: X1.U2, COLUMN #: 14. CHANGE IN SYSTEM ERROR: 0.2876 CHANGE IN STATE ERRORS: 0.0456 0.0120 0.2300 TERM: X1.U3. COLUMN #: 15. CHANGE IN SYSTEM ERROR: 0.5E CHANSE IN STATE ERRORS: 0.56 0,5834 0.0031 0.0146 TERM: X2.U1. COLUMN #: 16. CHANGE IN SYSTEM ERROR: 16.1320 CHANGE IN STATE ERRORS: 16.0601 -0,0387 0.1105 TERM: X2.U2. COLUMN #: 17. CHANGE IN SYSTEM ERROR: -0.1156 CHANGE IN STATE ERRORS: -0.0386 0+0019 -0.0788 TERM: X2.U3. COLUMN #: 18. CHANGE IN SYSTEM ERROR: -0.1334 CHANGE IN STATE ERRORS: -0.1107 -0.0002 -0,0225 TERM: X3.U1. COLUMN #: 19. CHANGE IN SYSTEM ERROR: -0.6325

Figure 5.2.1c Full Second Degree Model and Reduction Test (First Pass)

CHANGE	IN	STATE ERRORS:	0,2598	0.0735	-0.9658
TERM: CHANGE CHANGE	IN IN	X3.U2. COLUMN SYSTEM ERROR: STATE ERRORS:	1: 20, 8,5980 -0,0023	0,0002	8,6001
TERM: CHANGE CHANGE	IN IN	X3.U3. COLUMN SYSTEM ERROR: STATE ERRORS:	\$: 21. -0.4704 -0.5187	0.0362	0,0121
TERM: Change Change	IN IN	U1.U1. COLUMN SYSTEM ERROR: STATE ERRORS:	#: 22. 0.7705 0.3057	0.0370	0,4278
TERM: Change Change	IN IN	U1.U2. COLUMN SYSTEM ERROR: STATE ERRORS:	‡: 23, -22,4779 -0,0165	-22.4503	-0.0111
TERM: Change Change	IN IN	U1.U3. COLUMN SYSTEM ERROR: STATE ERRORS:	*: 24. -21.4666 0.0001	0.0028	-21,4695
TERM: Change Change	IN IN	U2.U2. COLUMN SYSTEM ERROR: STATE ERRORS:	*: 25. -0.1601 0.1269	-0.2379	-0.0492
TERM: Change Change	IN IN	U2.U3. COLUMN SYSTEM ERROR: STATE ERRORS:	*: 26. 0.0087 0.0146	-0.0017	-0.0042
TERM: Change Change	IN IN	U3.U3, COLUMN System Error: State Errors:	#: 27. -0.9049 -0.8697	0.0129	-0.0481

DO YOU WANT TO DISCARD ANY TERMS AND RE-OFTIMIZE?[Y/N]: Y

HOW MANY TERMS WILL BE KEPT? 16

ENTER THE COLUMN NUMBERS OF COLUMNS WHICH ARE TO BE KEPT. ENTRY OF COLUMN NUMBERS WILL TAKE PLACE IN BLOCKS OF 10. WHEN ASKED, ENTER A AS AN ARRAY WITH A MAXIMUM OF TEN ELEMENTS. A = ARRAY(10:1:1.2.3.4.5.6.7.8.9.10)

A = ARRAY(6:11,12,16,20,23,24)

MANUAL MODE SPACE USED 99 K NOW, 118 K PEAK, SIZE 500 K DO YOU WISH TO SAVE THIS MODEL?CY/NJ:N DO YOU WISH TO IDENTIFY ANOTHER MODEL?CY/NJ:N

Figure 5.2.1d Full Second Degree Model and Reduction Test (First Pass)
since we do not wish much change. The resulting sixteen term model and its reduction test appear in Figure 5.2.2. With the exception of the linear control inputs, there are only two terms which appear to be the next candidates for removal. They are the x_1x_1 term and the x_3u_2 term. These terms were removed and the model was re-identified, but simulations showed too much decline in model performance, especially in the third state. (This loss of performance in the third state might have been anticipated since the error test for the third state for each of the two terms contained a more significant entry.) So, we take the 16 term model as the final one. The reduction then is 11 terms removed out of a possible 27; a 41% reduction.

Simulation will be presented in the same fashion as the presentation made for the previous example of second degree model reduction. That is, several tables of simulations of the exact linear model versus the second degree reduced model are given. Following that, simulation tables for the second degree full model versus the second degree reduced model are presented. In all cases, each table is followed by at least one set of plots picked as a representative of those simulations in the table. To facilitate the output, only two of the three states are shown. Usually this includes a worst case and a typical comparison plot.

Tables 5.2.1 through Table 5.2.5 are simulation tables of the exact linear model versus the reduced second degree model. In each of these tables MODEL1 refers to the reduced model, and the error ratio is the mean square error of the reduced model over the mean square error of the linear model. The linear model for this system is

$$\mathbf{L}_{10} = \begin{bmatrix} -0.5 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1.5 \end{bmatrix}, \quad \mathbf{L}_{01} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

Table 5.2.1 and Table 5.2.2 contain simulations which hold the frequencies constant while the cosinusoidal input amplitudes are varied along with the initial conditions. Table 5.2.3 studies the models at higher frequencies. Table 5.2.4 varies the control amplitudes and frequencies while holding the initial conditions constant. Note that the third state error ratio of simulation 3 indicates that the linear model outperformed the reduced model. This does not cause much concern as the plot shows the two curves are actually very close. Table 5.2.5 is a low frequency table. The corresponding plots show a typical step response and the worst case response to a very low frequency input. Despite an occasional simulation instance, in each of the five tables, the reduced second degree model outperforms the linear model satisfactorily.

As the final test, the reduced model is compared against the full second degree model from which it was obtained. Now in these tables the labels MODEL1 and MODEL2 refer to the full and reduced models respectively. The error ratios are the mean square errors of the reduced model over the mean square error of the full model. The same five tables of simulations as were calculated previously will be run here. To review, Table 5.2.6 and Table 5.2.7 vary the initial conditions and input amplitudes while the frequencies are held constant. Table 5.2.8 contains simulations of higher frequencies. Table 5.2.9 varies the frequencies while the initial state conditions are held constant. Finally Table 5.2.10 demonstrates the low frequency behavior of the models. Note that in all cases the 16 term model is a good approximation of the full 27 term model. Again it appears that the reduction method works quite well as both of the criteria for judging reduced models were met.

ENTER INITIAL CONDITIONS FOR THE 3 STATES: 0.0400 0.0300 0.0400 ENTER SAMPLING PARAMETERS: APPROXIMATION DEGREE # SAMPLE POINTS INTERVAL BETWEEN SAMFLES INTEGRATION STEPSIZE 2 100 0.0600 0.0075 SHOULD THE EXCITATION BE SINUSOIDAL OR COSINUSOIDAL?[S/C]: IDENTIFICATION WILL BE DONE WITH COSINES. ENTER THE NUMBER OF (CO)SINUSOIDS PER INPUT: 1 NTER THE 3 INITIAL INPUT AMPLITUDES: 0.249999999999999996E-01 0.15000000000000003E-01 0.20000000000000004E-01 ENTER THE ENTER THE 3 FREQUENCY WEIGHTS: 0.7099 1.9618 2 0.7099 2.9415 SHOULD THE IDENTIFICATION BE PERFORMED USING DATA THAT IS REDUCED?[Y/N]: ENTER_OPTIMIZATION OPTION: 1 ~ NO OPTIMIZATIONS 2 ~ AMPLITUDES_ONLY. 2 - AMPLITUDES ONLY 3 - FREQUENCIES ONLY 4 - INITIAL CONDITIONS ONLY 5 - AMPLITUDES AND FREQUENCIES 6 - AMPLITUDES AND INITIAL CONDITIONS 7 - FREQUENCIES AND INITIAL CONDITIONS 8 - AMPLITUDES, FREQUENCIES, AND INITIAL CONDITIONS 3 ENTER THE TRACE OF THE COVARIANCE MATRIX: 0.99999999999999954E-06 ENTER THE OPTIMIZATION METHOD: 1,2,3 OR 4 ENTER # OF SIGNIFICANT DIGITS FOR CONVERGENCE, MAXIMUM # OF FUNCTION CALLS; AND THE ZXMIN OPTION # (0,1,2,3) 2 200 2 - 20 CALLS OF FCN..... THE PARAMETERS: 0.7076123D+00 0.1970220D+01 0.2940915D+01 THE CONDITION NUMBER: 0.313D+08 DBJECTIVE FUNCTION VALUE: 0.1669D+04 - 40 CALLS OF FCN..... 0770873390400 0,19696630401 0,29417480401 THE CONDITION NUMBER: 0,3130408 OBJECTIVE FUNCTION VALUE: 0,16680404 60 CALLS OF FCN..... THE PARAMETERS: 0.7086491D+00 0.1969523D+01 0.2941611D+01 THE CONDITION NUMBER: 0.313D+08 OBJECTIVE FUNCTION VALUE: 0.1668D+04 Figure 5.2.2a Reduced Second Degree Model and Reduction Test (Second Pass)

CONVERGENCE WAS ACHIEVED AND NO ERRORS OCCURRED.

DO YOU WISH TO NORMALIZE THE DATA?CY/NJ:

THE MATRIX OF SAMPLED MONOMIAL TERMS HAS 16 ROWS AND 100 COLUMNS.

NUMBER OF TIMES COST FUNCTION WAS EVALUATED: 68 THE OPTIMUM FREQUENCIES ARE: FREQ(1)= 0.709 FREQ(2)= 1.970 FREQ(3)= 2.942 WOULD YOU LIKE TO SEE PLOTS OF THE INPUTS? IF SO, LINE UP THE CARRIAGE.

TSO SPEAKEASY III PI+ 3:02 PM MARCH 2, 1984 :_SIZE=500;GET IDENT;IDENT;QUIT EXECUTION STARTED COLSKEPT (A 16 COMPONENT ARRAY) 1 2 3 4 5 6 7 8 9 10 11 12 16 20 23 24

FARTITION NUMBER 1. PRTITION (A 3 BY 3 ARRAY) -.5004 -4.9738E-4 -.0035303 -3.633E-4 -.99922 .0011023 .0022912 -9.4237E-4 -1.499

...WITH EIGENVALUES: VALUES (A VECTOR WITH 3 COMPONENTS) -1.499 -.99922 -.50041

PARTITION NUMBER 2. PRTITION (A 3 BY 3 ARRAY) 1.0112E-5 -8.3356E-4 .99691 .99981 2.3861E-5 -1.6467E-4 1.1036E-5 .99857 8.323E-7

PARTITION NUMBER 3. PRTITION (A 3 BY 6 ARRAY) -9.8639E-5 .14795 -1.6646 -3.9437 .11372 2.9703 -.27546 -.05058 -.18827 .42369 .074939 -.20082

PARTITION NUMBER 4. PRIITION (A 3 RY 9 ARRAY)			• • • • • •		•••
ROW 1 0	0	,79666	• () • • • • • • • • •	<u>0</u>	0
R0# 2 - 0 0	0	0021199	0	0	0
ROW 3 0 0 0	0	0082638	0	0	0

-.55746 -1.7861

-5.174

.39095 .028917

19199

PARTITION NUMBER 5. PRTITION (A 3 BY 6 ARRAY) 0 .016329 9.8794E-4

Figure 5.2.2b Reduced Second Degree Model and Reduction Test (Second Pass) 1

1

*****7

.99372 -.0011691 3.1774E-4 .99658 0 0 0 0 Ö Ô ۵ S (A 16 COMPONENT ARRAY) 7.3001 6.6372 7.0392 7.1091 1.3379 .80738 .3557 .24935 THE MAXIMUM SINGULAR VALUE: MAX = 7.3001 THE MINIMUM NONZERO SINGULAR VALUE: MIN = .028725 4.9926 4.8108 1.9791 1,3043 .052128 .028725 .036267 .18817 ...AND THEIR RATIO: RTIO = 254.14

WANT TO TRY REDUCTION TEST?CY/N3: Y FULL SYSTEM ERROR: FULL STATE ERRORS: 326.9198 37.8868 149.3960 TERM: X1. COLUMN #: 1. CHANGE IN SYSTEM ERROR: -29.0252 CHANGE IN STATE ERRORS: -29.1570 0.0061 0,1258 TERM: X2. COLUMN #: 2. CHANGE IN SYSTEM ERROR: 25.4363 CHANGE IN STATE ERRORS: -0.0310 25.5185 -0.0513 TERM: X3. COLUMN #: 3. CHANGE IN SYSTEM ERROR: -55.9796 CHANGE IN STATE ERRORS: -0.1721 -55.7944 -0.0130TERM: U1. COLUMN #: CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: 6.4543 0.0000 6.4541 0.0002 TERM: U2. COLUMN #: 5. CHANGE IN SYSTEM ERROR: -4.0565 CHANGE IN STATE ERRORS: 0.0010 0.0001 -4.0576 - TERM: U3, COLUMN #: 6, CHANGE IN SYSTEM ERROR: 0.8909 CHANGE IN STATE ERRORS: 0.8917 -0.0009 0.0000 TERM: X1.X1. COLUMN #: 7, CHANGE IN SYSTEM ERROR: -9.7038 CHANGE IN STATE ERRORS: -0.0049 -1.3848 -8,3140 TERM: X1.X2. COLUMN #: 8. CHANGE IN SYSTEM ERROR: 34.5059 CHANGE IN STATE ERRORS: 7.4622 6.9057 20.1380 TERM: X1.X3. COLUMN #: CHANGE IN SYSTEM ERROR: -CHANGE IN STATE ERRORS: --51.6266 -57.5502 3,0254 2,8983 TERN: X2.X2. COLUMN #: 10. CHANGE IN SYSTEM ERROR: -127.9159 CHANGE IN STATE ERRORS: -119.4493 0.6269 -9.0936 TERM: X2.X3. COLUMN #: CHANGE IN SYSTEM ERROR: -10 CHANGE IN STATE ERRORS: -2 11. -101.3486 -21.7269 29.1325 -108.7542TERM: X3.X3. COLUMN #: 12. CHANGE IN SYSTEM ERROR: 20.1306 CHANGE IN STATE ERRURS: 13.7498 -0.2507 6+6315

Figure 5.2.2c Reduced Second Degree Model and Reduction Test

(Second Pass)

TERM:
CHANGE IN SYSTEM ERROR:
IN STATE ERRORS:
CHANGE IN STATE ERRORS:
N SYSTEM ERROR:
CHANGE IN STATE ERRORS:
N SYSTEM ERROR:
N SYSTEM ERRORS:
N STATE ERRORS:
N STATE ERRORS:
N STATE ERRORS:
N STATE ERRORS:
N SYSTEM ERROR:
N SYSTEM ERROR

DO YOU WISH TO SAVE THIS MODEL?EY/NJ:N DO YOU WISH TO IDENTIFY ANOTHER MODEL?EY/NJ:N

Figure 5.2.2d Reduced Second Degree Model and Reduction Test (Second Pass)

140

|

ORIGINAL PAGE TH OF POOR QUALITY

[]

A CONTRACTOR

1.1

 \prod

 \int

 \Box

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	St	INITIAL CONDITI	IONS	ANPLITUDES	FREQUENCIES		ERROP, PATIOS	
	1734567890123415678901234	0.1009E-02 0.1000E-02 0.1009E-02 0.1000E-02 0.1009E-02 0.1000E-02 0.1009E-02 0.1000E-02 0.1000E-02 0.5000E-02 -5000E-02 0.5000E-02	0.1005E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 1000E-02 1000E-02 1000E-02 1000E-02 1000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4513E-01 0.1161 · 1 0.3476E-01 0.7869 0.6895E-02 0.7869 0.6895E-02 0.1195E-01 0.4107E-01 0.4107E-01 0.426E-01 0.425E-01 0.4356E-02 0.1155E-01 0.1556 0.3714E-01 0.3540E-01 0.7727 0.9207E-02 0.4116F-01	0.2112E-02 0.1327E-02 0.359E-03 0.2225E-02 0.2225E-02 0.2275E-02 0.1012E-02 0.1012E-02 0.5755E-02 0.9590E-03 0.9590E-03 0.2224E-02 0.2214E-02 0.2214E-02 0.1107E-01 0.374E-01 0.374E-01 0.374E-02 0.374E-02 0.1107E-01 0.374E-02 0.2202E-03 0.4442E-03 0.2274E-02 0.2202E-02 0.2202E-02 0.1107E-01 0.374E-02 0.2202E-03 0.2274E-02 0.2200E-03 0.2202E-03 0.203E-03 0	0.1085E-0 0.2244E-0 0.2247E-0 0.2247E-0 0.2247E-0 0.22426E-0 0.2286E-0 0.2286E-0 0.2286E-0 0.2128E-0 0.2128E-0 0.2150E-0 0.2552E-0 0.2552E-0 0.2552E-0 0.2380E-0 0.2786E-0 0.2786E-0 0.2798E-0 0.279

Table 5.2.1 Simulation Table for Linear Model versus Second Degree Reduced Model

Sŧ	INITIAL CONDITI	lons	ANPLITUDES	FREDUENCIES		ERROR RATIOS	
s 1234567890123456789012	INITIAL CONDITI 5000E-025000E-02 5000E-025000E-02 5000E-025000E-02 5000E-025000E-02 5000E-025000E-02 5000E-025000E-02 5000E-025000E-02 5000E-017500E-01 7500E-017500E-01 7500E-017500E-01 7500E-017500E-01 7500E-017500E-01 7500E-017500E-01 7500E-017500E-01 7500E-017500E-01 0.7500E-017500E-01 0.7500E-017500E-01 0.7500E-017500E-01 0.7500E-017500E-01 0.7500E-017500E-01 0.7500E-017500E-01 0.7500E-017500E-01 0.7500E-017500E-01 0.7500E-017500E-01 0.7500E-017500E-01 0.7500E-017500E-01 0.7500E-017500E-01 0.7500E-017500E-01 0.7500E-017500E-01	IDHS 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-01 -7500E-	AMPLITUDES 0,010 -0.010 -0.010 -0.010 -0.010 0.010 0.050 0.050 0.050 -0.050 0.050 -0.050 -0.075 -0.075 -0.075 0.025 -0.075 0.050 -0.075 0.050 -0.025 0.010 -0.010 -0.010 -0.010 -0.010 0.010 -0.050 0.050 -0.050 -0.075 0.050 -0.050 -0.075 0.050 -0.050 -0.075 0.050 -0.050 -0.075 0.050 -0.050 -0.075 0.050 -0.055 0.025 -0.075 0.055 0.010 -0.010 0.010 -0.050 0.050 0.050 -0.050 0.050 0.055 0.010 -0.010 0.010 -0.050 0.050 0.050 -0.050 0.050 0.050 0.050 -0.050 0.050 0.050 0.050 -0.050 0.050 0.050 0.050 -0.050 0.050 0.050 0.050 0.050 -0.050 0.050	FREDUENCIES 0.50 0.60 0.70 0.50 0.60 0.70	0.4602E-01 0.5347E-01 0.4424E-01 0.36147E-01 0.8405 0.9917E-02 0.1243E-01 0.23075E-01 0.3249E-01 0.3249E-01 0.4145EE-01 0.4145EE-01 0.4145EE-01 0.4145EE-01 0.4127E-01 0.4127E-01 0.4127E-01 0.5672E-01 0.5672E-01 0.5512E-02	ERROR RATIOS 0.1368E-01 0.3101E-02 0.9840E-03 0.1070E-02 0.2018E-02 0.3634E-02 0.3634E-02 0.3634E-02 0.3194E-01 0.4343E-01 0.4343E-01 0.24554 0.1010 9.24554 0.10100 0.10100 0.10100 0.10100 0.1010000000000	C.1667E-01 0.1762E-02 0.2125E-0 0.1333E-0 0.1333E-0 0.1333E-0 0.1737E-02 0.3028E-02 0.4372E-01 0.4272E-01 0.4272E-01 0.3834E-02 0.3834E-02 0.3834E-02 0.3834E-02 0.38337 0.15977 0.15977 0.4772E-01
23	0.7500E-017500E-01 0.7500E-017500E-01 7500E-017500E-01	7500E-01 7500E-01	-0.050 0.025 0.075 0.075 0.050 -0.025	0.50 0.60 0.70 0.50 0.60 0.70	0.5075E-01 0.78575-02	0.4430E-02 0.1121E-01	0.1886
26	7509E-01 0.7500E-01 7509E-01 0.7500E-01 7509E-01 0.7590E-01	7500E-01 7500E-01 7500E-01	-0.010 -0.010 -0.010 -0.010 -0.010 0.010 0.050 0.050 0.050 -0.050 0.050 -0.050	0.50 0.60 0.70 0.50 0.60 0.70 0.50 0.60 0.70	0.2036E-01 0.2132E-01 0.1147E-01	0.1374E-01 0.1471E-01 0.1471E-01	0.8833E-03 0.8417E-02
29 20 31	7500E-01 0.7500E-01 7500E-01 0.7500E-01 7500E-01 0.7500E-01	7500E-01 7500E-01 7500E-01	-0.075 -0.075 -0.075 0.025 -0.075 0.050 -0.050 0.025 0.075	0.50 0.40 0.70 0.50 0.60 0.70 0.50 0.60 0.70	0.4237E-01 0.2552E-01 0.1671E-01	0.1182E-01 0.1267E-01 0.1289E-01	0.5298E-01 0.2356E-02 0.1007E-01
32	7500E-01 0.7500E-01	7500E-01	0.075 0.050 -0.025	0.50 0.60 0.70	0.2057E-01	0.1128E-01	0.1657E-01

Table 5.2.2 Simulation Table for Linear Model versus Second Degree Reduced Model

1.1

1

Figure 5.2.3 Simulation Number 6 of Table 5.2.1

142

Π

Figure 5.2.4 Simulation Number 15 of Table 5.2.2

St	INI	INITIAL CONDITIONS			LITUDES	FREQUENCIES		ERROR RATIOS		
1234567890112345	0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01	0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01	0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01	0.050 0.050 0.050 0.075 -0.075 -0.075 -0.075 -0.050 0.050 0.050 0.050 -0.075 -0.075	0.050 0.050 0.050 0.050 0.050 0.050 0.055 -0.050 0.025 -0.050 0.025 -0.050 0.025 -0.050 0.025 0.050 0.050 0.050 0.050 0.050 0.055 0.0550 0.055 0.0550 0.055 0.0550 0.055 0.0550 0.055 0.0550 0.055 0.0550 0.055 0.0550 0.055 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.055	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7639E-03 0.999972-04 0.5218E-03 0.1297E-02 0.2859E-02 0.2859E-02 0.2859E-02 0.1139E-02 0.1743E-01 0.308E-01 0.7705E-01 0.1710E-61 0.48380E-02	0.1131E-01 0.2269E-02 0.1303E-01 0.1274E-01 0.2857E-02 0.2857E-02 0.4268E-02 0.4268E-02 0.36452-7i 0.436452-7i 0.436452-7i 0.63945E-01 0.1444E-01 0.2242E-01	0.6534E-02 0.5413E-02 0.5413E-02 0.1011E-01 0.9397E-02 0.3840E-01 0.3840E-01 0.331E-01 0.331E-01 0.331E-01 0.331E-01 0.331E-01 0.331E-01 0.331E-01 0.331E-01 0.331E-01 0.303E-01 0.4197E-01 0.302E-01	
13	5000E-01	5000E-01	5000E-01	-0.075	0.025 -0.050	1.50 1.00 0.50 .	0.1750E-01	0.2464F-01	0.57/2F-01	

Table 5.2.3 Simulation Table for Linear Model versus Second Degree Reduced Model

58	INITIAL CONDITIONS		ONS	AH	PLITUDE	S	FREQUENCIES		ERROR RATIOS	
1234567B90112	0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01	0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01	0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.075 0.075 0.075 0.075 0.075	0.050 0.050 0.050 0.050 0.050 0.025 0.025 0.025 0.025 0.025	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4668E-03 0.2041E-01 0.7300E-02 0.4319E-03 0.1455E-02 0.4847E-02 0.8773E-01 0.2047E-02 0.9068E-03 0.2984E-03 0.2984E-03	0.2337E-01 0.3175E-01 0.1147E-01 0.1215E-01 0.2027E-01 0.7085E-01 0.7085E-01 0.174 0.1754E-01 0.2819E-01 0.2819E-01 0.2663E-01	0.1146E-01 0.5587E-02 1.038 0.1388E-01 0.2464E-02 0.4997E-02 0.1341E-02 0.7137E-01 0.6591E-02 0.7651E-02 0.7651E-02

Table 5.2.4 Simulation Table for Linear Model versus Second Degree Reduced Model

Sŧ	INITIAL CONDIT	IONS	AMPLI PUDES	FREQUENCIES	ERROR RATIOS	
1234567890123456789012	0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.1000 0.1000 0.1000 0.1000 0.100	0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1508E-03 0.2628E-01 0 0.1754E-01 0 0.1754E-01 0 0.053E-03 0.1754E-01 0 0 0.1053E-02 0.1238E-01 0 0 0.2579 0.5215 0 0 0 0.805YE-02 0.5644E-02 0 3025E-01 0 0.4314E-01 0.3524E-01 0 3226E-01 0 0.2200E-01 0.3278E-01 0 3254E-01 0 0.1710E-02 0.3354E-01 0 3254E-01 0 0.1710E-02 0.3354E-01 0 3274E-01 0 0.1710E-02 0.3354E-01 0 3274E-01 0 0.3721E-02 0.3246E-01 0 0 0 0.3724E-01 0.3246E-01 0 0 0 0.3724E-02 0.3246E-01 0 0 0 0.3724E-01 0.3204E-01 0 0 0 0.3205E-01 0.1830 0 0 0 <td>), 3399), 1457 ,4224 ,4259), 7814 ,7137 1,414 ,5143E-01), 35045E-01), 3147E-01), 3147E-01), 4469), 6230 ,7801 ,8639), 6639), 6639), 6639), 6639), 6639), 6639 1,8639), 6639 1,863</td>), 3399), 1457 ,4224 ,4259), 7814 ,7137 1,414 ,5143E-01), 35045E-01), 3147E-01), 3147E-01), 4469), 6230 ,7801 ,8639), 6639), 6639), 6639), 6639), 6639), 6639 1,8639), 6639 1,863

Table 5.2.5 Low Frequency Table for Linear Model versus Second Degree Reduced Model

N EUSE

Figure 5.2.6 Simulation Number 3 of Table 5.2.4

Ŀ

CIRCUT

- Andrews

Figure 5.2.7 Simulation Number 1 of Table 5.2.5

Figure 5.2.8 Simulation Number 16 of Table 5.2.5

Colores -

Şł	Ini	TIAL CONDITIO	DNS	ANFLITUDES	FREQUENCIES		ERROR RATIO	JS
1234567890112345678901234	0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.5000E-02 0.5000E-02 0.5000E-02	0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02	0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 0.1000E-02 1000E-02 1000E-02 1000E-02 1000E-02 1000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02	$\begin{array}{c} 0.010 \ -0.010 \ -0.010 \ -0.010 \ -0.010 \ -0.010 \ -0.010 \ -0.010 \ -0.010 \ -0.010 \ -0.050$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.006 1.039 1.335 0.7310 1.105 0.9179 0.5525 1.143 0.5525 1.143 0.5525 1.143 0.5260 1.280 0.7105 1.280 0.9181 0.5461 1.662 1.621 1.255 0.7654 0.5546 0.5556 0.55460000000000000000000000000000000000	0.5139 2.517 0.2341 0.6318 0.5635 0.5275 0.575 0.588 0.6354 2.150 0.2373 0.6385 0.5625 0.2625 0.5741 1.603 1.155 1.759 0.2226 0.6887 0.5909 0.22706 0.5444 1.5544	0.9057 1.742 0.43757 0.5476 0.1459 1.4459 1.4459 0.4400 0.5489 0.1455 5.172 7.107 1.4655 5.172 7.107 0.2552 0.2552 0.1587 0.7739

Table 5.2.6 Simulation Table for Second Degree Full Model versus Second Degree Reduced Model

Sŧ	INITIAL CONDIT	IONS	AMPLITUDES	FREDUENCIES		ERROR RATIO)\$
1234567891011213456789201112234567789201		0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-01 7500E-01	0.010 -0.010 -0.010 0.010 -0.010 -0.010 0.050 -0.010 -0.010 0.055 -0.075 -0.075 0.025 -0.075 -0.075 0.025 -0.075 -0.025 0.075 -0.025 -0.025 0.075 -0.025 -0.025 0.010 -0.010 -0.010 0.050 0.050 -0.050 -0.050 0.050 -0.050 -0.050 0.025 0.055 0.075 -0.075 -0.075 0.075 -0.075 -0.075 0.025 -0.075 -0.075 0.025 -0.050 -0.050 -0.050 0.050 -0.050 -0.050 0.050 -0.050 -0.050 0.050 -0.050 -0.050 0.050 -0.050 -0.055 0.050 -0.055 0.025 -0.075 -0.075 0.025 -0.075 -0.075 0.025 -0.050 -0.055 0.050 -0.050 -0.055 0.055 0.050 -0.055 0.055 0.055 0.025 0.055 0	$\begin{array}{ccccc} 0.50 & 0.60 & 0.70 \\ 0.50 & 0.60 & 0.70 $	1.185 0.9711 1.298 0.7292 1.066 0.4557 0.5734 1.054 1.054 1.054 1.055 1.087 1.007 1.087 1.	0.4755 0.9145 0.1848 0.5173 0.4213 0.3061 0.5255 1.314 0.5945 0.6114 0.5945 0.6114 0.5948 0.6737 0.6393 0.6693 0.6493 0.7591000000000000000000000000000000000000	0.3688 0.6242 0.3612 0.2126 0.4112 0.1510 0.6750 0.6442 0.6172 0.6003 0.6201 0.6169 0.6371 0.5352 0.5363 0.6442 10.62 9.474 5.753 0.6442 10.62 9.474 5.753 12.22 12.22 12.22 12.22 12.22 12.22 0.9461E-02 0.9461E
32	-,7500E-01 0,7500E-01	-7500E-01	0.075 0.050 -0.025	0.50 0.60 0.70	0.6189	0.6525	0.91276-01

Table 5.2.7 Simulation Table for Second Degree Full Model versus Second Degree Reduced Model

ORIGINAL PAGE IS

OF POOR QUALITY.

NAY NECONCENS

Figure 5.2.9 Simulation Number 2 of Table 5.2.6

150

Figure 5.2.10 Simulation Number 17 of Table 5.2.7

S	IHI	TIAL CONDITI	DHS	AH	PLITUCES	FREDUENCIES		ERROR RATI	DS
123456789011234	0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01	0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01	0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01	0.050 0.050 0.055 0.075 -0.075 -0.075 0.050 0.050 0.050 0.050 0.050 0.055 0.055 0.055 0.055 0.055 0.055 0.055	0.050 0.050 0.050 0.050 0.050 0.050 0.025 0.050 0.025 -0.050 0.025 -0.050 0.025 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	$\begin{array}{c} 1.00 \ 2.00 \ 1.00 \ 2.00 \ 2.00 \ 2.00 \ 2.00 \ 1.50 \ 1.$	1.934 0.2240 1.329 1.727 1.193 1.134 1.394 1.215 1.194 1.182 1.165 1.157	1.705 1.844 1.616 1.433 2.044 1.903 1.792 0.4919 0.4525 0.4456 0.5661 0.5661 0.5661 0.5194	1,37: 1,17: 1,48: 1,73: 1,57: 2,11: 2,10: 0,467: 0,364: 0,364: 0,518:
15	5000E-01	- S000E-01	5000E-01	-0.075	0.025 -0.030	1.50 1.00 1.50	0.9804	0.5222	0.4765

Table 5.2.8 Simulation Table for Second Degree Full Model versus Second Degree Reduced Model

Sŧ	Ini	INITIAL CONDITIONS			AMPLITUDES		FREQUENCIES	ERROR RATIOS		
1234567890	0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01	0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01	0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01 0.7500E-01	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0 0.050 0 0.050 0 0.050 0 0.050 0 0.050 0 0.055 0 0.075 0 0.075 0 0.075 0	.050 .050 .050 .050 .050 .025 .025 .025	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5774 1.043 1.143 1.229 1.167 1.169 0.6098 1.080 0.9867 0.9867	1.440 1.476 0.8409 1.374 1.188 1.408 1.368 1.368 1.935 1.278 1.376	2,418 0,9911 2,006 1,437 1,689 1,111 2,778 1,140 2,955 1,404
11 12	0.7500E-01 0.7500E-01	0.7500E-01 0.7500E-01	0.7500E-01 0.7500E-01	0.050	0.075 0	.025	1.00 0.50 0.25	1.074 0.9951	1.363	1.650

Table 5.2.9 Simulation Table for Second Degree Full Model versus Second Degree Reduced Model

5\$	Ini	TIAL CONDITI	DNS	AMPLITUDES	FREQUENCIES		ERROR RATIO	15
1234567890112345678901	0.5000E-01 0.5000E-010	0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.10000 0.1000 0.1000 0.10000 0.1000 0.1000	0.5000E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1327E-01 0.2240E-01 0.1406 0.2674 0.8874 0.9950 1.997 1.328 1.347 1.351 1.175 0.5224E-01 0.8691E-01 0.8691E-01 0.8243 0.7764 1.038 0.7764	0.9726 1.009 1.091 1.143 0.9328 0.9016 0.9788 2.440 1.459 1.158 0.7408 0.9651 0.9788 0.9651 0.9788 0.9653 0.9572 0.9535 1.527 1.733 0.7334	0,386 1,400 3,750 0,650 0,650 1,553 1,24 1,300 0,659 0,438 0,438 0,438 0,438 0,339 0,339 0,339 0,4380,038 0,438 0,438 0,4380,038 0,438 0,4380,038 0,438 0,4380,038 0,438 0,4380,038 0,438 0,4380,038 0,438 0,4380,038 0,438 0,438 0,4380,038 0,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,438 0,438 0,4380,438 0,438 0,438 0,438 0,438 0,4380,438 0,438 0,438 0,438 0,438 0,438 0,438 0,438 0,438 0,438 0,438 0,438 0,438 0,438 0,438 0,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,438 0,4380,438 0,438 0,4380,438 0,43800000000000000000000000000
22	1000	0.1000	⊷.1000	0.025 0.075 0.050	0.10 0.10 0.10	0.8177 -	ð. KNRA	6. 4427

Table 5.2.10 Low Frequency Table for Second Degree Full Model versus Second Degree Reduced Model

Figure 5.2.11 Simulation Number 16 of Table 5.2.8

Figure 5.2.12 Simulation Number 9 of Table 5.2.9

2

[]

Figure 5.2.13 Simulation Number 16 of Table 5.2.10

5.3 THREE STATE, TWO INPUT SYSTEM

In this section the degree two approximation of a three state, two input system is studied. The system of three differential equations is again chosen to have the origin as a point of stable equilibrium from which it will be perturbed. The set of three equations is

$$\begin{aligned} \mathbf{x}^{2} &= -\mathbf{x}_{1} + \cosh(\mathbf{x}_{1}) + \sinh(\mathbf{x}_{2}) - u_{1}e^{-u_{2}} + u_{2} \\ &+ \mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}_{3} - e^{-\mathbf{x}_{3}} \\ &+ \mathbf{x}_{1}\mathbf{x}_{2}\mathbf{x}_{3} - e^{-\mathbf{x}_{3}} \\ &- 2u_{1}^{2} + \mathbf{x}_{2}\mathbf{x}_{3}, \\ \mathbf{x}_{2} &= -\frac{1}{2}\mathbf{x}_{2} + 6x_{1}^{2} - 2e^{-\mathbf{x}_{3}} - \frac{2}{\mathbf{x}_{2}\mathbf{x}_{3}} + \mathbf{x}_{1}u_{2}e^{-\mathbf{x}_{3}} \\ &- \sinh(\mathbf{x}_{2}) - \sinh(4\mathbf{x}_{3}) + 2u_{1} + 3u_{1}u_{2} + 2, \end{aligned}$$

+
$$\cosh(x_3)$$
 + x_1u_2 - $\frac{1}{2}u_2$ + u_2^2 .

The second degree expansion contains 20 terms corresponding to the products

x1, x2, x3, u1, u2, x1x1, x1x2, x1, x2, x3, u1, u2, x1x1, x1x2, x1, x3, x2x2, x2x3, x3x3, x1u1, x1u2, x2u1, x2u2, x3u1, x3u2, u1u1, u1u2, u2u2.

An acceptable model was identified at the initial conditions (0.01, 0.04, -0.02). And the input excitations are

$$u_1(t) = 0.025 \sin(2\pi t \cdot \phi_1) + 0.025 \sin(2\pi t \cdot 2\phi_1),$$

$$u_2(t) = -0.03 \sin(2\pi t \cdot \phi_2) - 0.03 \sin(2\pi t \cdot 2\phi_2).$$

Where (ϕ_1, ϕ_2) was determined by local optimization to be (1.9941, 1.5518) from the starting frequencies (2.0, 1.6). This model and the corresponding reduction test appear in Figure 5.3.1.

ENTER INITIAL CONDITIONS FOR THE 3 STATES: 0.0100 0.0400 -0.0200 0.0100 ENTER SAMPLING PARAMETERS: APPROXIMATION_DEGREE # SAMFLE FOINTS INTERVAL BETWEEN SAMPLES INTEGRATION STEPSIZE 100 0.0400 0.0050 2. SHOULD THE EXCITATION BE SINUSOIDAL OR COSINUSOIDAL?[5/C]: IDENTIFICATION WILL BE DONE WITH SINES. ENTER THE NUMBER OF (CO)SINUSOIDS PER INPUT: 2 ENTER THE ENTER THE 2 FREQUENCY WEIGHTS: 1.9941 1.5518 SHOULD THE IDENTIFICATION BE PERFORMED USING DATA THAT IS REDUCED?CY/NJ: N ENTER OPTIMIZATION OPTION: 1 - NO OPTIMIZATIONS 2 - AMPLITURES ONLY 3 - FREQUENCIES ONLY 4 - INITIAL CONDITIONS ONLY 5 - AMPLITURES AND FREQUENCIES 6 - AMPLITURES AND INITIAL CONDITIONS 7 - FREQUENCIES AND INITIAL CONDITIONS 8 - AMPLITURES, FREQUENCIES, AND INITIAL CONDITIONS 1 BO YOU WISH TO NORMALIZE THE DATA?EY/NJ: THE MATRIX OF SAMPLED MONOMIAL TERMS HAS 20 ROWS AND 100 COLUMNS.

NUMBER OF TIMES COST FUNCTION WAS EVALUATED: WOULD YOU LIKE TO SEE PLOTS OF THE INPUTS? IF SO, LINE UP THE CARRIAGE.

TSO SPEAKEASY III PI+ 8:14 PM FEBRUARY 22, 1984 :_SIZE=500;GET IDENT;IDENT;RUIT EXECUTION STARTED

FARTITION NUMBER 1. FRIITION (A 3 BY 3 ARRAY)

> Figure 5.3.1a Full Second Degree Model and Reduction Test (First Pass)

-.99992 .99726 1.0047 -.0072833 -1.4999 -2.0127 -.0022769 .0019061 -1.9879 ...WITH EIGENVALUES: VALUES (A VECTOR WITH 3 COMPONENTS) -1.9676 -1.5126 -1.0075 PARTITION NUMBER 2. PRTITION (A 3 BY 2 ARRAY) -.99886 .99926 1.9965 .0011641 4.1191E-5 -.49957 PARTITION NUMBER 3. PRTITION (A 3 BY 6 ARRAY) .47926 .060162 -.28906 -.043156 -1.0172 -.44303 -.44635 -.24907 1.2155 -+14853 -1.416 -3.8262 -.44303 .0076769 .0016053 .83691 PARTITION NUMBER 4. PRTITION (A 3 BY 6 ARRAY) .021255 -.046279 .025311 .060328 1.04 .04484 -6.1793E-4 .069515 -.13033 .19197 -.012593 .05819 ~,022372 -.37207 ,0082058 1.009 +010457 +05819 4.9249 PARTITION NUMBER 5. PRTITION (A 3 BY 3 ARRAY) -1.9896 1.0341 .0023039 .0063837 -.0042395 -.0059681 -8.9742 3.753E-4 1.0006 S (A 20 COMPONENT ARRAY) 9.7773 6.9733 6.7771 4.317 1.5996 1.3777 1.023 .91586 .36988 .22983 .072894 .13248 THE MAXIMUM SINGULAR VALUE: MAX = 9.7773 THE MINIMUM NONZERO SINGULAR VALUE: MIN = .072894 3,7318 3,5834 ,81555 ,6472 3,5834 3,0317 1,8302 +50885 .44339 MIN = .072894 RTIO = 134.13 WANT TO TRY REDUCTION TEST?CY/NJ: Y FULL SYSTEM ERROR: FULL STATE ERRORS: 2375,2090 229,7720 750,5278 1394.9093 TERM: X1. COLUMN #: 1. CHANGE IN SYSTEM ERROR: -76.4391 CHANGE IN STATE ERRORS: -78.0076 1,9494 -0.3809 COLUMN #: 2. ROR: 281.7762 RORS: 90.6889 TERM: X2. COLUM CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: 191.0099 0.0774 TERM: TERM: X3. COLUMN #: 3. CHANGE IN SYSTEM ERROR: -81.4371 CHANGE IN STATE ERRORS: -66.0698 -66.0678 -166,4523 151,0850 Figure 5.3.1b Full Second Degree Model and Reduction Test (First Pass)

1.04

The second

Π

original page is of poor quality

TERM (CHANCE CHANGE	IN IN	U1, COLUMN SYSTEM ERROR! STATE ERRORS!	1: 4, -5.8238 -10.2078	4.3847	-0.0008				
TERM: CHANGE CHANGE	IN IN	U2, COLUMN SYSTEM ERROR: STATE ERRORS:	₽; -20,3200 -3,172%	-0+0723	-22,1175				
TERM: CHANGE CHANGE	IN IN	X1.X1. COLUMN SYSTEM ERROR: STATE ERRORS;	*: 6. -576.5861 37.3129	-679.8017	63,9026				
TERM: CHANGE CHANGE	N IN	X1.X2. COLUMN SYSTEM ERROR: STATE ERRORS:	*: 7. 3.2733 2.3766	3.7719	-2.8752				
TERK: Change Change	IN IN	X1.X3. COLUMN SYSTEM ERROR: STATE ERRORS:	\$: 8. -52.8012 11.4518	-81.3662	17,1132				
TERM: CHANGE CHANGE	IN IN	X2.X2. COLUMN SYSTEM ERROR: STATE ERRORS:	‡: 9. −10.0474 −21.7582	11.6903	0.0185				
TERM: CHANGE CHANGE	IN IN	X2.X3. COLUMN SYSTEM ERROR: STATE ERRORS:	*: 10. -90.7143 -49.0030	-41,7053	-0.0030				
TERM: CHANGE CHANGE	IN IN	X3:X3: COLUMN SYSTEM ERROR: STATE ERRORS:	*: 11. 207.7640 -6.7590	205,9084	8.6146				
TERM: Change Change	IN IN	X1.U1 COLUMN SYSTEM ERROR: STATE ERRORS:	‡: 12. −1.5119 0.3419	-i.7045	-0.1493				
TERM: Change Change	IN IN	X1.U2. COLUMN SYSTEM ERROR: STATE ERRORS:	*: 13. 19.4381 0.5890	-33+6165	43,4656				
TERM: Change Change	IN IN	X2.U1. COLUMN SYSTEM ERROR: STATE ERRORS:	*: 14, -0,2625 0,6134	-0+8328	-0+0450				
TERM: CHANGE CHANGE	IN IN	X2.U2. COLUMN SYSTEM ERROR: STATE ERRORS:	*: 15. 2.6908 0.0156	3,0345	-0.3592				
TERM: CHANGE CHANGE	IN [.] IN	X3.U1. COLUMN SYSTEM ERROR: STATE ERRORS:	*: 16. 2.2068 -1.7913	3.7189	0.2792				
TERM: CHANGE CHANGE	IN IN	X3.U2. COLUMN SYSTEM ERROR: STATE ERRORS:	‡: 17. -55.0940 -0.5280	-9,1829	-45,3831				
TERM: CHANGE CHANGE	IN IN	U1.U1. COLUMN SYSTEM ERROR: STATE ERRORS:	*: 18. -1282.1752 -153.6015	-0,8254	-1127.7482				
TERM: CHANGE CHANGE	IN IN	U1.U2. COLUMN SYSTEM ERROR: STATE ERRORS:	*: 19. -15.4678 -15.5732	0.0976	0.0077				
TERM: CHANGE CHANGE	IN IN	U2.U2. COLUMN SYSTEM ERROR: STATE ERRORS:	4: 20. 105.8121 0.1749	0.8234	104,8139				
F	Figure 5.3.1c Full Second Degree Model and Reduction Test (First Pass)								

160

i.J

DO YOU WANT TO DISCARD ANY TERMS AND RE-OPTIMIZETCY/N3: Y HOW MANY TERMS WILL BE KEPT? 15

ENTER THE COLUMN NUMBERS OF COLUMNS WHICH ARE TO BE KEPT. ENTRY OF COLUMN NUMBERS WILL TAKE FLACE IN BLOCKS OF 10. WHEN ASKED, ENTER A AS AN ARRAY WITH A MAXIMUM OF TEN ELEMENTS. A = ARRAY(10:1,2,3,4,5,6,8,9,10,11)

A = ARRAY(5:13,17,18,19,20)

MANUAL MODE SPACE USED 82 K NOW, 95 K PEAK, SIZE 500 K DO YOU WISH TO SAVE THIS MODEL?[Y/N]:N DO YOU WISH TO IDENTIFY ANOTHER MODEL?[Y/N]:Y

> Figure 5.3.1d Full Second Degree Model and Reduction Test (First Pass)

From the reduction test, there are 5 columns of the model which appear to be relatively insignificant. They are

x1x2, x1u1, x2u1, x2u2, x3u1.

These terms were removed and another optimization over frequencies was performed. This time, given the starting frequency set (1.994, 1.5518), the routine converged to frequencies (2.005, 1.553). This model and the reduction test appear in Figure 5.3.2. The test indicates that there remain no terms whose effect is negligible. From this point, reduction can proceed with careful choice of any term to be removed. For the purpose of demonstration, though, we accept the 5 term reduction as the final one. This is a 25% reduction and again all linear terms were kept.

With the model identified, simulation remains. As in the previous section, for the purpose of presentation only two of the three states will be plotted for any given simulation. Those chosen are generally a worst case and a typical plot. The first five tables and their corresponding plots are simulations of the exact linear model versus the reduced second degree model. Again the ratio is the mean square error of the reduced model over the mean square error of the linear approximation. In this case, the exact linear model appears

 $\mathbf{L}_{10} = \begin{bmatrix} -1 & 1 & 1 \\ 0 & -1.5 & -2 \\ 0 & 0 & -2 \end{bmatrix}, \quad \mathbf{L}_{01} = \begin{bmatrix} -1 & 1 \\ 2 & 0 \\ 0 & -0.5 \end{bmatrix}.$

Table 5.3.1 and Table 5.3.2 show the simulation data for moderately sized excitations. Table 5.3.3 stretches the amplitudes out further than the previous tables. In Table 5.3.4 random excitations were chosen. The initial conditions were chosen in the range (-0.075, 0.075). And the cosinusoidal input

ENTER INITIAL CONDITIONS FOR THE 3 STATES: 9.0100 0.0400 -0.0200 ENTER SAMPLING PARAMETERS: APPROXIMATION_DEGREE ¥ SAMPLE FOINTS INTERVAL BETWEEN SAMFLES INTEGRATION STEPSIZE 100 0.0400 0,0050 2 SHOULD THE EXCITATION BE SINUSOIDAL OR COSINUSOIDAL?ES/C1: IDENTIFICATION WILL BE DONE WITH SINES. ENTER THE NUMBER OF (CO)SINUSOIDS PER INPUT: 2 NTER THE 4 INITIAL INPUT AMPLITUDES: 0.24999999999999996E-01 -0.2999999999999999997E-01 ENTER THE ENTER THE 2 FREQUENCY WEIGHTS: 1.9941 1,5518 SHOULD THE IDENTIFICATION BE PERFORMED USING DATA THAT IS REDUCED?[Y/N]: ENTER OPTIMIZATION OPTION: 1 - NO OPTIMIZATIONS 2 - AMPLITUDES ONLY 3 - FREQUENCIES ONLY 4 - INITIAL CONDITIONS ONLY 5 - AND THE CONDITIONS ONLY 5 - AMFLITUDES AND FREQUENCIES 6 - AMFLITUDES AND INITIAL CONDITIONS 7 - FREQUENCIES AND INITIAL CONDITIONS 8 - AMPLITUDES, FREQUENCIES, AND INITIAL CONDITIONS 3 ENTER THE TRACE OF THE COVARIANCE MATRIX: 0.99999999999999954E-06 ENTER THE OFTIMIZATION METHOD: 1,2,3 OR 4 ENTER # OF SIGNIFICANT DIGITS FOR CONVERGENCE, MAXIMUM # OF FUNCTION CALLS, AND THE ZXMIN OFTION # (0,1,2,3) 2 200 2 10 CALLS OF FCN..... THE PARAMETERS: 0.20028400+01 0.15507550+01 THE CONDITION NUMBER! 0.7220+08 OBJECTIVE FUNCTION VALUE: 0.95560+03 20 CALLS OF FCN..... THE PARAMETERS: _0.2004800D+01 0.155 0.200480000+01 0.15527820+01 THE CONDITION NUMBER: 0.7210+08 OBJECTIVE FUNCTION VALUE: 0.95510+03 30 CALLS OF FCN.... THE PARAMETERS: 0.2004831D+01 0.1552813D+01 THE CONDITION NUMBER: 0.720D+08 OBJECTIVE FUNCTION VALUE: 0.95510+03 Figure 5.3.2a Reduced Second Degree Model and Reduction

Test (Second Pass)

40 CALLS OF FCN..... THE FARAMETERS: 0.2004810D+01 0.1552773D+01 THE CONDITION NUMBER: 0.721D+08 DBJECTIVE FUNCTION VALUE: 0.9551D+03

CONVERGENCE WAS ACHIEVED AND NO ERRORS OCCURRED.

DO YOU WISH TO NORMALIZE THE DATA?EY/NJ:

THE MATRIX OF SAMFLED MONOMIAL TERMS HAS 15 ROWS AND 100 COLUMNS.

NUMBER OF TIMES COST FUNCTION WAS EVALUATED: 47 THE OPTIMUM FREQUENCIES ARE: FREQ(1)= 2.005 FREQ(2)= 1.553 FREQ(3)= 0.000 WOULD YOU LIKE TO SEE PLOTS OF THE INPUTS? IF SO, LINE UP THE CARRIAGE.

MESSAGE SUMMARY: MESSAGE NUMBER - COUNT 208 33 TSO SPEAKEASY III FI+ 9:26 PM FEBRUARY 22, 1984 :_SIZE=500;GET IDENT;IDENT;QUIT EXECUTION STARTED COLSKEPT (A 15 COMPONENT ARRAY) 1 2 3 4 5 6 8 9 10 11 13 17 18 19 PARTITION NUMBER 1. PRTITION NUMBER 1. PRTITION (A 3 BY 3 ARRAY) -.99758 .99746 1.006 -.0081558 -1.5014 -2.0171 -.0025067 9.6701E-4 -1.9909

...WITH EIGENVALUES: VALUES (A VECTOR WITH 3 COMPONENTS) -1.9736 -1.5101 -1.0082

PARTITION NUMBER 2. PRTITION (A 3 BY 2 ARRAY) -.99869 .99925 1.9967 .0015374 -7.3392E-6 -.49957

PARTITION NUMBER 3. FRTITION (A 3 BY 6 ARRAY) .4238 0 -.56573 -.43827 1.2253 -.20865 6.0525 0 -1.1585 -.10333 -.88992 -3.875 .58506 0 -.13797 .024684 .040922 .78135

FARTITION NUMBER 4.

Figure 5.3.2b

Reduced Second Degree Model and Reduction Test (Second Pass)

20

-

PRTITION (A 3 BY 6 ARRAY) 0 -.040326 0 0 1.0415 0 000 -.015627 .061985 0 1 0 G 1,0091 0 Ô. 4.9553 PARTITION NUMBER 5, PRTITION (A 3 BY 3 ARRAY) -1.9891 1.0348 ,0031636 .0041551 -.0061485 -.0015756 -8.9747 -2.4192E-4 1.0005 S (A 15 COMPONENT ARRAY) 9.5482 6.7397 5.7757 4.2381 3.6701 3.5553 2.9761 1.2907 1.4226 .80701 .72912 .4787 .41589 .0802 .28158 THE MAXIMUM SINGULAR VALUE: MAX = 9.5482 THE MINIMUM NONZERO SINGULAR VALUE: MIN = .0802 ...AND THEIR RATIO: RTIO = 119.06 WANT TO TRY REDUCTION TEST?LY/N3: Y FULL SYSTEM ERROR: FULL STATE ERRORS: 2360.2953 227.9609 1394,6509 737.6836 TERM: X1. COLUMN 4: 1. CHANGE IN SYSTEM ERROR: -75.2443 CHANGE IN STATE ERRORS: -76.9824 2.1605 -0.4224 TERM: X2. COLUMN #: 2. CHANGE IN SYSTEM ERROR: 276.6712 CHANGE IN STATE ERRORS: 89.9027 186.7268 0.0416 TERM: X3. COLUMN **#:** 3. CHANGE IN SYSTEM ERFOR: -73.4891 CHANGE IN STATE ERRORS: -65.3272 -162.6399 154.4780 COLUMN #: 4. ROR: -7.9837 TERM: U1. COLU CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: -10.6276 2+6437 0.0001 TERM: U2. COLUMN #: 5. CHANGE IN SYSTEM ERROR: -26.4766 CHANGE IN STATE ERRORS: -4.3680 -0.0868 -22.0218 TERM: X1.X1. COLUMN #: 6. CHANGE IN SYSTEM ERROR: -566.2388 CHANGE IN STATE ERRORS: 32.1767 -668.7979 70.3824 TERM: X1.X3. COLUN CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: COLUMN #: 8. RROR: -62.6014 RORS: 22.6173 -90.5377 5,3191 COLUMN **\$:** 9. RROR: -16.5149 PORS: -21.149B TERM: X2.X2. COLUT CHANGE IN SYSTEM ERROR: CHANGE IN STATE ERRORS: 4+5312 0.1037 TERM: X2.X3, COLUMN **#:** 10. CHANGE IN SYSTEM ERROR: -76.0134 CHANGE IN STATE ERRORS: -48.6315 -27,2563 -0.1257 -48+6315 X3.X3. COLUMN #: 11. TERM:

Figure 5.3.2c Reduced Second Degree Model and Reduction Test (Second Pass)

CHANGE IN SYGTEM ERROR: CHANGE IN STATE ERRORS: 204.0818 204.6296 8.7610 TERM: X1.U2. COLUMN !: 13. CHANGE IN SYSTEM ERROR: 14.3135 CHANGE IN STATE ERRORS: 0.5307 -30.3198 44,1017 TERM: X3.U2. COLUMN 4: 17. CHANGE IN SYSTEM ERROR: -43.2243 CHANGE IN STATE ERRORS: -0.3695 1.5486 -44.4034 TERM: U1.U1. COLUMN 4: 18. CHANGE IN SYSTEM ERROR: -1270.6057 CHANGE IN STATE ERRORS: -152.7579 -0.5303 -1137.3176 TERM: U1.U2. COLUMN #: 19. CHANGE IN SYSTEM ERROR: -16.7355 CHANGE IN STATE ERRORS: -16.8697 0.1380 -0.0037 TERM: U2.U2. COLUMN \$: 20. CHANGE IN SYSTEM ERROR: 104.62 CHANGE IN STATE ERRORS: 0.23 104.6273 0.2396 0.2167 104.1710

DO YOU WANT TO DISCARD ANY TERMS AND RE-OPTIMIZE?EY/NJ: N MANUAL MODE SPACE USED 68 K NOW, 80 K PEAK, SIZE 500 K DO YOU WISH TO SAVE THIS MODEL?EY/NJ:N DO YOU WISH TO IDENTIFY ANOTHER MODEL?EY/NJ:N

Figure 5.3.2d

Reduced Second Degree Model and Reduction Test (Second Pass) 1

•

58	IHI	TIAL CONDITIO	ENC	AHPLI	TUDES	FREQUE	NCIES	ERROR RATIOS		TIOS	
5 17345678901234567850123456785	1411 0.5000E-01	0.5002E-01 0.5002E-01 0.5002E-01 0.5002E-01 0.5002E-01 0.5002E-01 0.5002E-01 0.5002E-01 0.5002E-01 0.5002E-01 0.5002E-01 0.5002E-01 0.5002E-01 0.5002E-01 0.5002E-01 -5002E-	0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 0.500E	6,0750 0,0750 -0,0750 -0,0750 -0,0750 -0,1550 0,1550 0,1550 0,1550 0,1550 0,1550 0,1550 0,1550 0,0750 -0,1550 0,0750 0,1550 0,0750 -0,1550 0,0750 -0,1550 0,0750 -0,1550 0,0750 -0,1550 0,0750 -0,1550 0,0750 -0,1550 0,0750 -0,1550 0,0750 -0,1550 0,0750 -0,075	0.0750 -0.0750 0.0750 0.0750 0.0750 0.1500 0.1500 -0.0750 -0.0750 -0.0750 -0.0750 -0.0750 -0.0750 -0.1500 0.1500 -0.0750 -0.0750 -0.0750 -0.0750 -0.0750 -0.1500 0.1500 -0.0750 -0.0750 -0.0750 -0.1500 0.1500 0.1500 -0.0750 -0.0750 -0.1500 0.0750 -0.1500 0.0750 -0.0750 -0.0750 -0.0750 -0.0750 -0.0750 -0.0750 0.0750 0.0750	72222200000000000000000000000000000000	1111 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1155	0,1259 0,9749E-01 0,1073 0,1116 0,1112E-01 0,1112E-01 0,1112E-01 0,1112E-01 0,1112E-01 0,1578-02 0,9706E-03 0,1537E-02 0,9706E-03 0,1578-02 0,9706E-03 0,1578-01 0,98453E-02 0,9801E-02 0,9801E-02 0,9801E-02 0,9801E-02 0,9801E-02 0,1574E-01 0,1550E-01 0,1550E-02 0,4325E-02 0,5555E-02 0,5555E-02 0,5555E-02 0,5555E-02 0,5555E-02	0.3897E-02 0.3371E-02 0.3371E-02 0.3353E-02 0.3354E-02 0.4354E-02 0.4282E-02 0.4282E-02 0.4282E-03 0.4282E-03 0.4282E-03 0.1289E-03 0.1289E-03 0.1289E-03 0.1289E-03 0.5117E-03 0.5053E-02 0.5053E-02 0.5053E-02 0.1274E-02 0.1274E-02 0.4525E-02 0.4525E-02 0.4525E-02 0.4525E-02 0.4525E-02 0.4525E-02 0.4525E-02 0.4553E-02 0.4554E-02 0.4554E-02 0.4554E-02 0.4554E-02 0.4554E-02 0.4554E-02 0.4554E-02 0.4554E-02 0.4554E-02 0.4554E-02 0.4554E-02 0.4554E-02 0.5554E-020	0.4924E-04 0.7374E-04 0.7374E-04 0.363E-03 0.3714E-03 0.3714E-03 0.3714E-03 0.3744E-03 0.7052E-04 0.667E-04 0.667E-04 0.667E-04 0.667E-04 0.3702E-03 0.3902E-03 0.3974E-03 0.3974E-03 0.4305E-03 0.4305E-03 0.4372E-04 0.5742E-04 0.3772E-04 0.3777E-04 0.3777E-04 0.3777E-04 0.3777E-04	
ij	0.5000E-01	5000E-01	5000E-01	-0.1500	0.1500	2.00	1.50	0.16778-01	0.6147E-02	0.32446-03	
	TA-1000000001		-A.10002-01	-0.1000		U	10.00	VII/2C-VI	VADIOC_VC	U+31/3E-V3	

Table 5.3.1 Simulation Table for Linear Model versus Second Degree Reduced Model

51	INITIAL CONDITIONS		AMPLITUDES	FREDUENCIES	EFROR RATIOS		
5 12345678901234567890123456789012345678901234567890123456789012345678901233456789012334567890123345678	INITIAL CONDITI 5000E-01 0.5000E-01 5000E-01 000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01	0NS 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 5000E-01 5000E-01 5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 5000E-01 0.5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01	AHPLITUDES 0.0750 0.0750 -0.0750 -0.0750 -0.0750 -0.0750 0.1500 -0.1500 -0.1500 -0.1500 -0.1500 -0.1500 -0.1500 -0.1500 -0.1500 -0.1500 0.0750 -0.0750 0.0750 -0.0750 0.1500 -0.1500 -0.1500 -0.1500 -0.1500 -0.1500 -0.1500 -0.1500 -0.0750 -0.0750 0.0750 -0.0750 0.0750 -0.0750 0.0750 -0.0750 0.0750 -0.0750 0.0750 -0.0750 0.1500 0.1500 -0.1500 0.1500 -0.1500 0.1500 -0.1500 0.1500 -0.1500 0.1500 -0.1500 0.1500 -0.1500 -0.1500 0.0750 -0.0750 -0.0750 -0.0750 -0.0750 -0.0750 -0.0750 -0.075	FREQUENCIES 2.00 1.50 2.00	ERGOR RATIOS 0.2436E-02 0.9744E-03 0.2327E-02 0.9892E-03 0.1817E-02 0.98764E-03 0.2815E-02 0.9712E-03 0.1319E-01 0.4376E-02 0.1404E-01 0.4376E-02 0.1404E-01 0.4376E-02 0.1348E-01 0.4376E-02 0.1348E-01 0.1376E-02 0.1348E-01 0.1376E-02 0.1576E-01 0.1523E-02 0.178E-01 0.5579E-02 0.178E-01 0.5579E-02 0.178E-01 0.55712E-02 0.178E-01 0.1523E-02 0.178E-01 0.15712E-03 0.1774E-01 0.5712E-02 0.178E-01 0.1957E-03 0.1022E-01 0.1957E-03 0.1025E-01 0.1957E-03 0.1036E-01 0.1957E-03 0.1036E-01 0.1957E-03 0.1264E-01 0.4128E-02 0.2536E-01 0.4128E-02 0.2536E-01 0.4037E-02 0.2536E-01	0.1277E-03 0.1805E-03 0.355E-03 0.3802E-03 0.3802E-03 0.3860E-03 0.39840E-03 0.4372E-04 0.4577E-04 0.4577E-04 0.4577E-04 0.4577E-03 0.4577E-03 0.577E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.5717E-03 0.4213E-03 0.5712E-03 0	
28 29 30 31	5000E-015000E-01 5000E-015000E-01 5000E-015000E-01 5000E-015000E-01	-,5000E-01 -,5000E-01 -,5000E-01 -,5000E-01	-0.0750 -0.0750 0.1500 0.1500 0.1500 -0.1500 -0.1500 0.1500	2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.50 2.00 1.59	0.1937 0.2981E-02 0.4082E-01 0.5966E-02 0.3671E-01 0.5954E-02 0.3639E-01 0.5942E-02	0.8209E-04 0.4294E-03 0.4218E-03 0.4218E-03	
32	50005-0150005-01	5000F-01	-0.1500 -0.1500	2.00 1.50	0.40576-01 0.60236-02	0.4341E-03	

Table 5.3.2 Simulation Table for Linear Model versus Second Degree Reduced Model

Figure 5.3.3 Simulation Number 4 of Table 5.3.1

168

UNIGINAL PAGE 18 OF POOR QUALITY,

51	INITIAL CONDITIONS		ANFLITUPES	FREQUENCIES	EREOR RATIOS		
5# 12345-57890112545	INITIAL CONDIT: 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-011000E-01 0.1000E-011000E-01 0.1000E-011000E-01 0.1000E-011000E-01 0.1000E-011000E-01 0.1000E-011000E-01 0.1000E-011000E-01 0.1000E-011000E-01 0.1000E-011000E-01 0.1000E-011000E-01 0.1000E-011000E-01 0.1000E-011000E-01 0.1000E-011000E-01	0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 1000E-01 1000E-01 1000E-01 1000E-01 1000E-01 1000E-01	AMFLITUPES 0.2009 0.2000 0.2009 -0.2000 -0.2000 -0.2000 0.3009 -0.3000 0.3009 -0.3000 -0.3009 -0.3000 -0.3009 -0.3000 0.2009 -0.2000 -0.2009 -0.2000 -0.2009 -0.2000 -0.2009 -0.2000 0.3000 -0.3009 0.3000 -0.3009 0.200	FREQUENCIES 2.10 1.60 2.10 1.60 2.10 1.60 2.10 1.60 2.10 1.60 2.11 1.60 2.10 1.60	ZEEGR RATIOS 0.3361E-01 0.1697E-01 0 0.3526E-01 0.1739E-01 0 0.3512E-01 0.1739E-01 0 0.3526E-01 0.1729E-01 0 0.3526E-01 0.1647E-01 0 0.3526E-01 0.1729E-01 0 0.7376E-01 0.9237E-01 0 0.7920E-01 0.9442E-01 0 0.7362E-01 0.1791E-01 0 0.37472E-01 0.1791E-01 0 0.3747E-01 0.1775E-01 0 0.3747E-01 0.1775E-01 0 0.3747E-01 0.1775E-01 0 0.3631E-01 0.9735E-01 0 0.8128E-01 0.9735E-01 0	.1118E-0: .1117E-0: .1112E-0: .5608E-0: .5614E-0: .5614E-0: .5647E-0: .547E-0: .1124E-0: .1124E-0: .1124E-0: .1124E-0: .5648E-0: .5648E-0: .5648E-0:	
147.0% 01210 1210 1210 100 100 100 100 100 100	0.1007E-01 - 1600E-01 -1000E-01 - 1600E-01	1002E-01 0.1002E-01 0.1002E-01 0.1002E-01 0.1002E-01 0.1002E-01 0.1002E-01 0.1002E-01 0.1002E-01 1002E-01 1002E-01 1002E-01 1002E-01 1002E-01 1002E-01 1002E-01 1002E-01 1002E-01	$\begin{array}{c} -0.3000 & -0.3000\\ 0.2000 & -0.3000\\ 0.2000 & -0.2000\\ -0.2000 & 0.2000\\ -0.2000 & 0.2000\\ -0.2000 & -0.2000\\ -0.3000 & -0.3000\\ -0.3000 & -0.3000\\ -0.3000 & -0.3000\\ -0.3000 & -0.2000\\ 0.2000 & -0.2000\\ -0.2000 & -0.2000\\ -0.2000 & -0.2000\\ -0.2000 & -0.2000\\ -0.2000 & -0.2000\\ -0.3000 & -0.300\\ -0.3000 & -0.300\\ -0.3000 & -0.300\\ -0.3000 & -0.3$	$\begin{array}{c} 2.10 \\ 2.10 \\ 1.60 \\ 1.60 \\ 1.$	0.81142-21 0.9334E-01 0 0.76446-70 0.9436E-01 0 0.3923E-01 0.1452E-01 0 0.3938E-01 0.1452E-01 0 0.3938E-01 0.1573E-01 0 0.3847E-01 0.9299E-01 0 0.8347E-01 0.9299E-01 0 0.8347E-01 0.9279E-01 0 0.8347E-01 0.9279E-01 0 0.8347E-01 0.9279E-01 0 0.3849E-01 0.1772E-01 0 0.3892E-01 0.1722E-01 0 0.3978E-01 0.1722E-01 0 0.3978E-01 0.1722E-01 0 0.9782E-01 0.9173E-01 0 0.9782E-01 0.9173E-01 0 0.9782E-01 0.9173E-01 0 0.9782E-01 0.9173E-01 0 0.9782E-01 0.9173E-01 0 0.928E-01 0.9174E-01 0	.5620E-02 .5704E-02 .1133E-02 .1132E-02 .1130E-02 .5645E-02 .5645E-02 .5645E-02 .5645E-02 .5645E-02 .1133E-02 .1133E-02 .1133E-02 .5450E-02 .5450E-02 .5450E-02	

Table 5.3.3 Simulation Table for Linear Model versus Second Degree Reduced Model

SI	INITIAL CONDITIONS		AMPLITUDES	FREQUENCIES	ERFOR RATIOS	•	
e 123454789612345458901232222232	INITIAL COMDITI 3562E-016893E-01 6859E-016326E-01 0.7050E-012930E-02 4633E-021106E-01 4432E-01 0.2906E-01 0.43442E-01 0.2906E-01 0.4345E-017135E-01 0.4345E-017135E-02 0.3747E-017135E-02 0.3747E-01 0.2707E-01 0.6943E-01 0.2707E-01 0.6943E-01 0.3707E-01 4572E-013124E-01 4572E-013124E-01 0.4943E-01 0.3078E-02 4555E-013124E-01 0.4943E-01 0.3104E-01 3734E-010237E-01 0.55110E-02 0.7248E-01 4572E-01 0.3104E-01 7214E-01 0.3104E-01 7214E-01 0.3104E-01 7214E-01 0.3104E-01 7214E-01 0.3251E-01 0.5610E-01 0.3104E-01 7214E-01 0.3251E-01 0.56464-013533E-01 0.3251E-01 0.3251E-01 0.3251E-01 0.3251E-01 0.3251E-01 0.3251E-01 0.3251E-01 0.3251E-01 0.3251E-01 0.3251E-01 0.3251E-01 0.3251E-01 0.3271E-014486E-01	0HS 0.2058E-02 2545E-01 0.4701E-01 3541E-01 4348E-01 4348E-01 0.3014E-01 0.2795E-01 0.2795E-01 0.4525E-01 0.3025E-01 0.3025E-01 0.4396E-01 0.3397E-01 0.4379E-01 0.4379E-01 0.4379E-01 0.4379E-01 0.4379E-01 0.4379E-01 0.4379E-01 0.4379E-01 0.4354E-01 0.5739E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4558E-01 0.4559E-01 0	AMPLITUDES 0.1068 -0.2188 -0.0475 0.1321 0.3566 -0.1954 -0.2272 -0.0739 0.1073 0.0379 0.2190 -0.2008 0.0304 0.0827 -0.1409 0.1952 0.1417 -0.2474 0.2217 -0.0448 0.2317 -0.0448 0.2317 -0.0448 0.2317 -0.0448 0.2317 -0.0448 0.2317 -0.0448 0.2317 -0.0448 0.2317 -0.0448 0.2317 -0.0448 0.2317 -0.0448 0.0328 -0.1487 -0.2164 0.0507 -0.2164 0.0507 -0.2164 -0.2463 0.2219 0.1643 0.2219 0.1643 0.0951 0.0494 0.1115 0.1216 -0.4952 -0.1008 0.0527 -0.1140 0.0552 -0.0861 0.0973 0.1462 -0.0274 0.1687 -0.2352	FREQUENCIES 3.43 2.72 4.64 2.21 1.97 1.07 3.09 1.79 1.76 4.81 3.09 1.79 1.76 3.42 3.42 3.90 4.78 3.47 1.20 4.76 1.20 4.76 3.83 1.79 4.70 4.88 4.72 3.83 1.79 4.70 4.88 4.74 3.83 1.40 4.88 4.32 3.47 2.87 1.68 4.88 4.42 4.91 3.63 3.68 4.42 4.91 4.62 1.43 4.37 4.98 4.62 1.97 4.62 1.97 4.62 1.98 4.62 1.97 4.88 4.88 4.42 4.91 3.63 3.88 4.62 1.97 4.62 1.97 4.62 1.97 4.62 1.98 4.62 1.98 4.62 1.97 4.62 1.98 4.62 1.98 4.62 1.97 4.88 4.88 4.42 4.91 3.63 3.68 4.62 1.98 4.62 1.98 4.62 1.97 4.62 1.97 4.62 1.97 4.62 1.97 4.62 1.98 4.88	ERFOR RATIOS 0.3651E-02 0.8129E-03 0.7719E-02 0.1853E-02 0.2206 0.9431E-01 0.6521E-01 0.3432E-01 0.4521E-01 0.3432E-01 0.4534E-01 0.5527E-01 0.6306E-02 0.2537E-02 0.7539E-02 0.2537E-02 0.5711E-01 0.3202E-01 0.5904E-01 0.4115E-01 0.3002E-02 0.51397E-04 0.1019FE-01 0.4135E-04 0.1019FE-01 0.2421E-01 0.4533E-01 0.1122E-01 0.4533E-01 0.2721E-01 0.4533E-01 0.2721E-01 0.4533E-01 0.2721E-01 0.4533E-01 0.2721E-01 0.4533E-01 0.2721E-01 0.4533E-01 0.2721E-03 0.3529FE-01 0.2741E-03 0.3529FE-01 0.2729FE-03 0.3529FE-01 0.2207FE-01 0.3754E-02 0.7729FE-03 0.2704E-01 0.2207FE-01	0.4054E-03 0.1349E-01 6.5847E-03 0.1644E-02 0.9641E-04 0.1593E-02 0.3248E-03 0.3248E-03 0.3248E-03 0.3248E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1243E-03 0.1252E-03 0.4752E-03 0.4752E-03 0.4752E-02	
1000000000		4984E-01 8601E-62 1621E-02 0.3802E-01 0.6202E-01 9008E-02	-0.2467 -0.1628 0.0480 0.2168 -0.1399 0.2236 -0.1398 0.2165 0.1904 -0.1361	2,28 4,73 2,94 4,74 2,18 4,87 1,25 3,95 4,97 3,22 1,74 3,32	0.33492-01 0.3952-62 0.69622-01 0.4398E-01 0.9457E-02 0.35922-02 0.4001E-02 0.2530E-02 0.1781E-01 0.4495E-02 0.4070E-01 0.1617E-01	0.4357E+03 0.2364E+02 0.8389E-04 0.3971E-03 0.5732E-03 0.8504E+03	
35	9.2569E-014823E-02	636EE-01	0.0349 -0.1240	3.92 2.27	0.79092-01 0.36272-01 0.60215-01 0.2646	0.2417E-02 0.4562E-03	

Table 5.3.4 Simulation Table for Linear Model versus Second Degree Reduced Model

A distance of the second s

La series de la se

The market with

1000

and the second se

Figure 5.3.6 Simulation Number 3 of Table 5.3.4

•

-

A LINE COLORING

Luciana -

in the second

amplitudes and frequencies were chosen in the ranges (-0.25, 0.25) and (1,5) respectively. Finally, Table 5.3.5 tests the d.c. and low frequency behavior of the models. In all cases, the reduced model outperforms the linear model.

As the final test of model degradation, the same simulations are performed for the full second degree model versus the reduced second degree model. Again in each of the five tables, the error ratio is the mean square error of the reduced model over the mean square error of the full model. In brief, Table 5.3.6 and Table 5.3.7 contain excitations of moderate size, while Table 5.3.8 moves the amplitudes out farther away from the origin. Table 5.3.9 is a table of randomly chosen excitations, and Table 5.3.10 is a low frequency test. Note in all cases, with the exception of the Table 5.3.10, the error ratios are near unity. This implies that almost no information was lost with the removal of the five terms. In Table 5.3.10, it appears that the third state has been hurt the most by the reduction, but Figure 5.3.14 shows that even a worst case example is not bad. All things considered, the reduction, although only five terms, has tested out well.

5.4 REMARKS

In this chapter three examples are studied to demonstrate the reduction method. For each example system, a reduction of the second degree model is carried out, and for the first example, the degree three approximation is also reduced. In each exercise the reduction method yields a smaller model while retaining the nonlinearities associated with the additional degree of approximation.

As a note on the computation involved in the reduction fast, it is worth mentioning that the current version of the reduction test software is written

ORIGINAL PAGE SE

FROTLEM SUMMARY FROTLEM SUMMARY CONFIGURATION: TRUEALINEAR, HOPELI 4 CF STATES: 3 4 CF TERMS IN HODEL 1: 15 DEGREE CF AFFROMMATION: 2 SIMULATION WITH COSINE FROMMATICA WITH COSINE

12	INI	TIAL CONDITIO	Difs	AMPLITUDES	FREQU	ENCIES	1	ERROR RATIOS	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.500E	0.5600E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-02 0.5500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.50	6.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01	$\begin{array}{c} 9.0100 \\ 9.0100 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -0.0750 \\ -$		0.01300100013001300130013001300130013001	$\begin{array}{c} 0.54435-02\\ 0.64095-02\\ 0.45955-01\\ 0.64595-02\\ 0.57315-02\\ 0.57315-02\\ 0.57515-02\\ 0.5575-01\\ 0.45955-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5575-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-02\\ 0.5555-$	0,1433E-02 0,1433E-02 0,1453E-02 0,1453E-02 0,1453E-04 0,1453E-04 0,1453E-04 0,1535E-04 0,1535E-04 0,1535E-02 0,1535E-02 0,1535E-02 0,1535E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02 0,1555E-02	0.96562-03 0.75292-03 0.35742-03 0.437322-02 0.437322-02 0.437322-02 0.437322-02 0.437322-02 0.437322-02 0.437322-02 0.437322-02 0.437322-02 0.437322-02 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.437322-03 0.435322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.455322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03 0.55322-03
<b>.</b>	STAART AI	110000-02	10005-01	0.2000 -0.20	00 0103	0.03	0.14/7	0,69536-02	0,3039E-02

Table 5.3.5 Low Frequency Table for Linear Model versus Second Degree Reduced Model

.

# ORIGINAL PACY'S



Figure 5.3.8 Simulation Number 10 of Table 5.3.5

176

194

-



.

Ĵ

Γ

· ·

and the second

and the second se

THE REAL

Concession of the local division of the loca



Figure A.33 S#5, Table A.18: Compare to Figure A.30



Figure 5.3.9 Simulation Number 33 of Table 5.3.5

Original page is Of poor quality <u>í |</u>

## ORIGINAL PAST IS OF POOR QUALITY

#### FADELEM SUPARY FADELEM SUPARY CONFIGURATION: TRUE, HODELS: HODEL2 4 OF STATES: 3 4 OF IMPUTS: 2 4 OF TERMS IN HODEL 1: 20 DEGREE OF APFROXIMATION: 2 4 OF TERMS IN MOREL 2: 15 DEGREE OF AFFROXIMATION: 2 SUMMATION WITH COSTME

[]

 $\prod$ 

# 

58	INITIAL CONDITIONS		AMPLITUUES	FREQU	FALUULALILS		EEEBE ERTIOS		
5 1213454789011213453789012034537893	0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-01 0.5008E-010	0.5000E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 0.500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01 500E-01	0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5900E-01 0.5900E-01 0.5900E-01 5000E-01 5000E-01 5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 0.5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 5000E-01 500E	0.0750 0.00 0.0750 -0.00 -0.0750 -0.00 -0.0750 -0.00 -0.0750 -0.00 -0.1500 -0.11 -0.1500 -0.11 -0.1500 -0.11 -0.1500 -0.00 -0.0750 -0.00 -0.0750 -0.00 -0.0750 -0.00 -0.1500 -0.11 -0.1500 -0.10 -0.0750 -0.00 -0.0750 -	750 2.09 750 2.00 759 2.00 500 2.00 500 2.00 500 2.00 500 2.00 500 2.00 759 2.00 500 2.00 759 2.00 750 2.00	1.550 1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.550 1.1.5500 1.1.5500 1.1.5500 1.1.5500 1.1.5500 1.1.5500 1.1.5500 1.1.5500 1.	1.434 1.530 1.562 1.567 1.627 1.627 1.627 1.627 1.6764 0.8499 1.910 1.910 1.910 1.910 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774	1.132 1.220 1.220 1.219 1.219 1.333 1.332 1.332 1.330 1.472 1.386 1.514 1.347 1.366 1.514 1.349 1.352 1.335 1.463 1.468 1.579 1.575 1.346 1.341 1.347 1.347 1.346 1.341 1.347 1.346 1.341 1.347 1.346 1.341 1.346 1.341 1.347 1.346 1.341 1.347 1.346 1.346 1.341 1.346 1.346 1.346 1.346 1.346 1.346 1.346 1.346 1.346 1.346 1.346 1.346 1.346 1.346 1.346 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.346 1.347 1.347 1.347 1.346 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.347 1.257 1.277 1.2777 1.2777	2.821 2.523 2.624 1.008 1.007 0.5474 0.5474 0.5474 0.5474 0.5740 0.5740 0.5740 0.5740 0.5740 0.5740 0.5740 1.437 1.435 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1.145 1
12	0.5000E-01	5000E-01	5000E-01	-0.1500 -0.1	500 2.00	1,50	1.634	1.246	1.059

Table 5.3.6Simulation Table for Second Degree Full Modelversus Second Degree Reduced Model

Table 5.3.7 Simulation Table for Second Degree Full Model versus Second Degree Reduced Model



٤.

• X = *

<u>*</u> `^

-1





180

ł

I

.

## ORIGINAL PACE IS OF POOR QUALITY



[I]

1

Π

Γ

Π

Π

Π



ORIGINAL PAGE IR OF POOR QUALITY

***************************************
FROFLEN SUMMARY
CONFIGURATION: TRUE, HODEL1, MODEL2
I OF STATES: 3
OF INPUTS: 2
I OF TERHS IN KODEL 1: 20
DEGREE OF APPROXIMATION: 2
I OF TERMS IN HODEL 2: 15
DEGREE OF AFFROXIMATION: 2
SINULATION WITH COSINE
***************************************

Sł	INITIAL CONDITIONS		AMPLITUDES		FREQUENCIES		ERFOR RATIOS		i
12345678901123456789012334567890	0.1000E-01 0.1000E 0.1000E-01 0.1000E 0.1000E-01 0.1000E 0.1000E-01 0.1000E 0.1000E-01 0.1000E 0.1000E-01 0.1000E 0.1000E-01 0.1000E 0.1000E-011000E 0.1000E-011000E 0.1000E-011000E 0.1000E-011000E 0.1000E-011000E 0.1000E-011000E 0.1000E-011000E 0.1000E-011000E 0.1000E-011000E 0.1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000E-011000E 1000	01 0.1009E-01 01 0.1009E-01 01 0.1000E-01 01 0.1000E-01 01 0.1000E-01 01 0.1000E-01 01 0.1000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 01 0.1000E-01 01 000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011000E-01 011	6.07 L1 0.2060 0.2600 -0.2000 0.3600 0.3600 0.2000 0.2000 0.2000 0.2000 0.2000 0.3000 -0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.22000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 00	0.2000 -0.2000 2.2000 0.2000 -0.3000 -0.3000 -0.3000 -0.3000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 -0.200	2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10	HLIES 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	1.820 1.780 1.780 1.629 1.761 1.701 1.700 1.762 1.705 1.777 1.777 1.779 1.810 1.754 1.760 1.754 1.760 1.759 1.759 1.759 1.759 1.759 1.759 1.759 1.759 1.701 1.761 1.761 1.761 1.761 1.761 1.761 1.761 1.761 1.760 1.759 1.761 1.760 1.760 1.760 1.760 1.760 1.760 1.760 1.754 1.760 1.760 1.760 1.760 1.760 1.760 1.760 1.760 1.760 1.760 1.760 1.760 1.760 1.779 1.779 1.810 1.760 1.750 1.779 1.779 1.779 1.770 1.779 1.779 1.770 1.779 1.770 1.770 1.779 1.779 1.770 1.779 1.770 1.770 1.770 1.779 1.770 1.770 1.770 1.779 1.770 1.779 1.770 1.770 1.779 1.770 1.770 1.779 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770 1.770	LEADR KAILDS 1.298 1.297 1.297 1.299 1.303 1.156 1.153 1.154 1.298 1.298 1.298 1.298 1.298 1.298 1.298 1.298 1.298 1.298 1.298 1.298 1.298 1.303 1.155 1.153 1.155 1.153 1.155 1.153 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.155 1.304 1.302 1.302 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.308 1.	1.111 1.111 1.111 1.110 1.100 1.117 1.120 1.120 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127 1.127
31	1000E-011000E- 1000E-011000E-	011000E-01 011000E-01 011000E-01	-0.3000	0.3000	2.10 2.10 2.10	1.60	1.704 1.704 1.760	1.154 1.154 1.159	1.200 1.203 1.193

Table 5.3.8 Simulation Table for Second Degree Full Model versus Second Degree Reduced Model

50	INITIAL CONDIT	IONS	AMPLITUDES	FREQUENCIES		ERROR RATIOS	i
5 123456789012345578901234567890	INITIAL CONDIT. 3562E-016893E-01 6659E-016320E-01 0.7052E-012950E-02 4633E-021106E-01 3905E-01 0.1766E-01 4442E-01 0.2990E-01 0.4164E-027165E-01 0.3455E-016817E-02 0.3747E-01 0.2379E-01 0.4943E-01 0.2379E-01 0.6894E-01 0.2379E-01 0.6494E-01 0.3374E-02 4657E-013124E-01 3726E-026579E-03 7052E-013124E-01 3726E-02 0.7216E-01 0.5510E-02 0.7266E-01 4697E-01 0.2372E-01 0.5510E-02 0.7266E-01 4697E-01 0.2372E-01 0.5510E-01 0.3272E-01 0.5561E-01 0.5746E-01 7456E-01 0.6746E-01 7456E-01 0.5746E-01 0.3171E-014866E-01 7419E-013320E-01 0.3679E-013220E-01 0.3679E-013220E-01 0.4637E-01 0.5320E-01 0.4637E-01 0.5320E-01	LDNS 0.2058E-02 .2565E-01 0.6901E-01 .3541E-01 .434BE-01 .434BE-01 .7432E-01 0.3014E-01 0.2795E-01 0.3014E-01 0.3025E-01 0.3025E-01 0.3025E-01 0.3025E-01 0.3091E-01 0.3091E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.4018E-01 0.401	AHPLITUDES           0.1068         -0.2188           -0.0366         -0.1964           -0.2272         -0.0738           0.1093         -0.0394           -0.2272         -0.0738           0.1093         -0.0394           0.2190         -0.2008           0.0304         0.0827           -0.1407         -0.2474           -0.2217         -0.0445           -0.2317         -0.0048           0.1325         -0.0328           0.1525         -0.0328           0.1525         -0.0328           -0.0645         -0.0531           -0.0513         -0.1143           -0.2216         0.1649           -0.0533         -0.1143           -0.2216         0.1643           -0.0513         -0.1143           -0.2164         0.0577           -0.0745         -0.0818           -0.2218         0.1643           -0.2218         0.1643           -0.1204         -0.1140           -0.1457         -0.1140           -0.1457         -0.1140           -0.0452         -0.0851           -0.1877         -0.1463	FEEQUENCIES         3.43       2.72         4.66       2.21         1.97       1.07         3.26       4.81         3.09       1.79         1.76       3.42         3.42       3.90         4.78       3.69         2.87       1.75         1.20       4.76         3.141       1.74         3.131       1.79         4.70       4.88         2.751       1.76         4.32       3.47         2.75       1.76         4.78       3.47         2.78       1.68         3.44       1.88         4.73       3.47         2.75       3.47         4.78       3.42         3.46       1.48         1.14       3.12         4.98       4.62         1.43       4.91         2.19       3.54         4.42       4.91         4.42       4.91         2.197       4.82         2.28       4.73         2.94       4.74         2.97       4.74	1.202 1.766 2.110 1.824 0.5718 1.824 0.5674 1.785 1.785 1.785 1.785 1.671 1.832 1.832 1.832 1.859 1.849 1.559 1.849 1.559 1.3869 1.781 1.380 0.9722	ERROR RATIOS 1.184 0.7579 1.783 1.759 1.574 1.574 1.574 1.574 0.5023 1.305 1.305 1.305 1.229 1.136 1.229 1.136 1.287 1.340 2.154 0.6855 1.267 1.246 1.730 1.3267 1.246 1.730 1.3267 1.246 1.730 1.3267 1.246 1.730 1.3267 1.246 1.270 1.3267 1.270 1.3267 1.270 1.3267 1.227 1.227 1.227 1.227 1.227 1.227 0.6770 1.187 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.2267 1.2267 1.2267 1.2267 1.2267 1.2267 1.2267 1.2267 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.227 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.228 1.22	1.518 2.755 0.9404 1.1377 1.1377 1.1377 1.265 1.127 1.265 1.127 1.265 1.127 1.265 1.125 1.155 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.265 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.265 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.255 1.2555 1.2555 1.2555 1.2555 1.25555 1.
121212	0.4539E-01 0.2203E-01 4102E-015523E-01 7302F 01 0.6745E-01 5007E-013751E-01 0.2445E-013751E-01	0.3802E-01 0.6202E-01 9008E-02 0.5766E-01	-0.1399 0.2236 -0.1598 0.2165 0.1994 -0.1361 0.2419 -0.2383	1,25 3,95 4,97 3,22 1,74 3,32 3,10 1,46 7,97 2,27	1.535 1.877 1.765 1.748	1,168 1,345 1,291 1,291	1.05 1.27 1.15 1.19

Table 5.3.9 Simulation Table for Second Degree Full Model versus Second Degree Reduced Model



and the second second

No.

In the second seco

Law Care

CALIFORNIA,





Figure 5.3.13 Simulation Number 18 of Table 5.3.9

### ORIGINAL PAGE 2 OF POOR QUALITY

# 

50	INITIAL CONDITI	ohs	AHFLITUDES	FREQUENCIES		ERROS RATIOS	
5 1234567890123456789012345678901234567890	INITIAL CONDITI 9,5990E-02 0,500E-02 0,5900E-02 0,500E-02 0,5900E-02 0,500E-02 0,5000E-02 0,500E-02 0,5000E-02 0,500E-02 0,5000E-02 0,500E-02 0,500E-02 0,500E-02 0,500E-02 0,500E-02 0,500E-02 0,500E-02 0,500E-02 0,500E-02 0,500E-02 0,500E-02 0,500E-02 0,500E-02 0,500E-02 0,500E-02 -5000E-02 0,500E-02 -5000E-01 -,1000E-01 0,1000E-01 -,1000E-01 0,1000E-01 -,1000E-01 0,1000E-01 -,1000E-01 0,1000E-01 -,1000E-01 0,1000E-01 -,1000E-01 0,1000E-01 -,1000E-01 -,1000E-01 -,1000E	0HS 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.5000E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02 0.500E-02	hHFLITUDES           0.0100         0.0100           0.0100         0.0100           0.0100         0.0100           0.0100         0.0100           0.0150         -0.0750           -0.0750         -0.0750           0.1000         0.1000           0.1600         0.1000           0.1600         0.1000           0.1600         0.1000           0.2000         -0.2000           0.2000         -0.2000           0.2000         -0.2000           0.2000         -0.2000           0.2000         -0.2000           0.2000         -0.2000           0.2000         -0.2000           0.0100         0.0100           0.0100         0.0100           0.0100         0.0100           0.0100         0.1000           0.1000         0.1000           0.1000         0.1000           0.2000         -0.2000           0.2000         -0.2000           0.2000         -0.2000           0.2000         -0.2000           0.0100         0.0100           0.0100         0.0100           0.0100	FREQUENCIES           0.01         0.03           0.03         0.03           0.04         0.03           0.05         0.03           0.01         0.01           0.03         0.03           0.04         0.01           0.05         0.03           0.04         0.01           0.05         0.03           0.06         0.00           0.01         0.01           0.02         0.03           0.03         0.03           0.04         0.01           0.05         0.03           0.06         0.01           0.03         0.03           0.04         0.04           0.05         0.05           0.06         0.01           0.03         0.03           0.04         0.04           0.05         0.05           0.06         0.01           0.05         0.03           0.063         0.03           0.063         0.03           0.061         0.01           0.063         0.03           0.063         0.03           0.063	1.221 1.221 1.221 0.5556 0.5556 0.5355 0.5355 0.5355 0.55759 0.55759 0.55759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.5555759 0.555759 0.555759 0.5555759 0.5555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.555759 0.55575900000000000000000000000000000000	ERSOR RATIOS 0, S027 0, S022 0, S023 0, S025 1, S025 0, S025 1, S025 1, S025 0, S025 1, S025 0, S025 1, S025 1	0.2235 0.4012 9.7934 108.8 55.59 14.52-01 0.1037 1.527 0.7287 0.7287 0.7287 0.7287 0.7354 143.97 15.972-01 0.57735 0.57754 143.97 15.972-01 0.57735 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0.7287 0
40 41 42 43 45 45 45 45 45 45	1000E-011000E-01 1000E-011000E-01 1000E-011000E-01 1000E-011000E-01 1000E-011000E-01 1000E-011000E-01 1000E-011000E-01 1000E-011000E-01	-,1000E-01 -,1000E-01 -,1000E-01 -,1000E-01 -,1000E-01 -,1000E-01 -,1000E-01 -,1000E-01	-0.0750 -0.0750 -0.0750 -0.0750 0.1050 -0.0750 0.1050 0.1050 0.1050 0.1050 0.1050 -0.1050 0.1050 -0.2000 0.2000 -0.2000 0.2000 -0.2000	0,05 0,01 0,03 0,00 0,00 0,01 0,01 0,01 0,00 0,00	0,5509 0,7402 1,023 0,5709 0,5134 1,139 0,5416 0,5500 0,8577	0.1372 0.1762 0.2443 0.4252 0.5383 1.046 1.337 1.362 1.346	151.5 74.96 17.22 0.5225E-01 0.5964E-01 1.405 6.7390 0.7290 0.7290

Table 5.3.10 Low Frequency Table for Second Degree Full Model versus Second Degree Reduced Model



Figure 5.3.14 Simulation Number 16 of Table 5.3.10



Figure 5.3.15 Simulation Number 36 of Table 5.3.10

in the FORTRAN based language SPEAKEASY. While SPEAKEASY makes the iterative elimination of rows and columns a trivial task, it is (being a very high level computer language) inherently slow. A reduction test about the size of those presented here, would take, on the average, about 5 minutes of cpu time. This time of execution might be shortened singificantly if future versions of reduction software are written directly in FORTRAN. This may even become necessary as model size increases, but for the initial efforts contained herein, the slow execution is accepted.

188

#### CHAPTER VI

#### CONCLUSIONS

The primary goal of this thesis was to initiate studies of and develop a methodology for the size reduction of the nonlinear models generated in the tensor framework. This goal was accomplished using an idea based on the error inherent in the model due to the least squares fit of the data. The iterative reduction scheme was developed primarily by logical argument and intuition. Based on the reasoning, a loose step by step reduction methodology was formulated. Using the reduction technique, system identification and reduction were carried out for several examples. In all cases the results were good and demonstrated that a reduced model can be identified which retains influential higher order nonlinearities while discarding the insignificant ones in an effort to decrease the size of the model.

Based on the encouraging nature of the results documented here, further research into the following ideas is warranted. First, with respect to this particular reduction method, Desrochers has suggested that cost functions can be implemented to select the appropriate terms in the appropriate combinations so as to aid in the omitting of terms. Perhaps his optimization ideas may be modified to fit this particular problem formulation as was his idea for model reduction.

A second suggestion has to do with extending the model reduction technique to the layered model identification approach. This identification scheme has been studied in [14] and concerns itself with modelling the error in some model approximation with the addition of another degree of nonlinearity. The outlook for this identification technique is promising.

The current reduction method could be modified to enable a layer by layer reduction. Or if an entire layered model is to be reduced, provisions would have to be made to save the data from each previously modelled layer, as the current reduction method requires it for the error test. In either case, the application of the reduction test to the layered modelling approach is a problem that deserves study.

In sum, based on the findings of this thesis, further research is justified not only in the extension of the reduction method to other identification approaches, but also into the improvement and advancement of the current reduction scheme.

#### APPENDIX A [See Acknowledgments, page iii] NONLINEAR TENSOR MODELS: A CASE STUDY

#### A.1 INTRODUCTION

Ŕ

So often schemes for various procedures in nonlinear system theory such as parameter estimation, inverse systems, and so on, are discussed, whether it be in textbooks or technical papers, but are left void of any substantial convincing proof of validity or utility. Indeed, even some of the simplest of nonlinear systems present problems which require extensive illustration of a technique to produce an acceptable level of reliability. It is this proofin-the-pudding spirit to which we adhere in this report to study the tensor parameterization approach.

Let us begin by presenting the nonlinear system to be modeled. Two coupled nonlinear differential equations given by

$$x_{1} = u_{2}\cosh(x_{1}x_{2}) - 3\sinh(x_{2}) - e \sinh(2x_{1})$$

$$u_{1}u_{2} \qquad u_{1}$$

$$x_{2} = \sinh(x_{2}) + e \qquad \sinh(x_{1}) - e \quad u_{1}\cosh(x_{1}^{2})$$

serve as our example system, where as usual  $x_1$  and  $x_2$  represent the states,  $x_1$ and  $x_2$  their time derivatives, and  $u_1$  and  $u_2$  the system inputs. In order to utilize the tensor parameterization modeling approach, the allowable input set must be bounded in some reasonable sense, particularly for low frequency cases. In fact, the system (A.1.1) exhibits finite escape for a relatively small step input in the first input channel. The L₁₀ matrix (that is, the matrix of parameters associated with linear terms in x alone) of the linear approximation for (A.1.1),

$$\dot{x}_1 = u_2 - (2x_1 + 3x_2)$$
  
 $\dot{x}_2 = x_1 + x_2 - u_1,$  (A.1.2)

(A.1.1)

has characteristic values

$$\lambda_{1} = -\frac{1}{2} \pm j \sqrt{3/2}, \ i = 1, 2.$$
 (A.1.3)

Transient responses to step inputs are of five to six seconds in duration. Note further that the origin, (x,u) = 0, is a stable equilibrium point.

In the section to follow specifics relative to the actual identification scheme are discussed, and we comment on the extensive software capabilities which have been developed to facilitate these modeling studies. Following this are two sections illustrating a second degree approximation model and a third degree approximation model. Verification studies in the form of simulation tables and representative plots make up the bulk of these sections. In the final section we discuss some further considerations of these particular models, and dwell on possibilities for improved performance.

#### A.2 ALGORITHM AND SOFTWARE CONSIDERATIONS

The overall modeling procedure can be separated into three basic stages: problem formulation, model identification, and model verification. In the first stage, the system is formulated in the differential equation description; in the general case we assume this form of system description, and assume that all states are measurable. Most of the software for the overall numerical procedure is involved in the second stage, model identification, where much attention is paid to exciting the system to be measured with the "best" input. That is, it is crucial to produce independent data in the sampling procedure. The final stage, model verification, requires numerous simulation studies and comparative error analyses. One basic course of action in these studies is to emphasize a region of model validity, or region of acceptable performance; the burden of proof, then, lies in showing that as the degree of the model gets larger, so does the region of validity. It is important to note from the onset that the overshadowing spirit in these modeling studies is to regard the system to be modeled as a "black box" whose dynamics are known to us only by way of state trajectory response curves resulting from various input excitations. We therefore view the system (A.1.1) in this light and attempt to construct a model consisting of a system of nonlinear differential equations, each of which being a truncated series expansion with tensor coefficients.

Consider the nonlinear dynamical equation

1

11

a'

$$x = f(x,u),$$
 (A.2.1)

which is the general expression for (A.1.1), for  $f : X \times U + X$ , X the ndimensional state space and U the m-dimensional input space. Using the tensor parameterization in an expansion for the right side of (A.2.1) such as

 $f(x,u) = \begin{bmatrix} L_{10} & L_{01} & L_{20} & L_{11} & L_{02} & L_{30} & \dots \end{bmatrix} x_s, \quad (A.2.2)$ where the vector  $x_s$  contains symmetric powers of x and u,

 $x_s = (x, u, x \lor x, x \lor u, u \lor u, x \lor x \lor x,...)^T$ , (A.2.3) the true system (A.2.1) may be integrated, and solutions sampled, to form the matrix equation, arising from (A.2.2), as

$$X = LX_{S}$$
 (A.2.4)

Here the matrices X and  $X_s$  each have p columns, p being the number of samples taken, where the elements of X are derivative estimates of the states taken along the state trajectories for some input. A lexicographic ordering algorithm is used for forming the matrix  $X_s$  from (A.2.3). Critical parameters in the formulation of (A.2.4) are model degree, sampling interval, the total experiment time, integration stepsize (since the derivatives are to be estimated, a reasonably small stepsize must be used to ensure accuracy), and most important, the choice of input. This leads us to the identification stage of the procedure.

With regard to the matrix Equation (A.2.4), the problem of identifying the model parameters embodied in the matrix L is a straightforward exercise using linear least squares techniques. Indeed, this is one of the primary organizational advantages of the tensor parameterization. The difficulty arises, however, in the procedure used to choose the input to excite enough of the nonlinear modes of the system. A linear combination of sinusoids forms the general structure of the input,

$$u_{j} = \sum_{i=1}^{r} c_{ij} \sin \omega_{ij} t$$
,  $j = 1, 2, ..., m$ , (A.2.5)

where the cij are input amplitudes and

$$\omega_{11} = (2\pi f_1)1,$$
 (A.2.6)

for the frequency  $f_j$  in hertz. The design of the inputs (A.2.5) is carried out through use of optimization techniques where the quadratic data matrix M (analogous to the information matrix in the information theoretic approach to optimal input design) is made small in some sense. The cost criterion chosen here for accomplishing this is given by

$$J = tr (M^{-1}),$$
 (A.2.7)

so that the design problem may be simply stated as

$$u = \frac{\min}{u} \{J\}, \qquad (A.2.8)$$

for u an element of some admissible set of input trajectories.

A brief discussion of the software package used in this overall scheme will aid in clarifying these procedures. The routine used for formulating Equation (A.2.4) for the least squares identification of L has the following program inputs:

- initial state conditions
- integration stepsize

- model approximation degree
- number of samples (h)
- number of sinusoids per input (r)
- input amplitudes (cij)
- input frequencies (f₁)
- optimization option
- optimization method with associated parameters.

The optimization option is a selection parameter by which the user may choose to optimize over input amplitudes, input frequencies, initial state conditions, or any combination thereof. With the optimization method parameter the user has a choice of two techniques each for the constrained or unconstrained optimization problem. For reasons to be explained later, we concern ourselves here with the unconstrained problem such as that given in (A.2.8). One method choice employs the conjugate gradient approach to nonlinear optimization. The main advantage of this technique is that it provides a fast rate of convergence without need for storage of any large matrices. But since this indirect optimization approach requires either a good estimate of the cost function gradient or a closed form solution thereof, it is not employed in the example of this case study. Instead, a direct method approach to solution of (A.2.8) is used via a routine from the IMSL support software on the IBM 370/3033. In this technique, the quasi-Newton method, it is assumed that the gradient vector and the Hessian matrix exist, but the user is not required to supply formulas for their evaluation. Several free parameters may be specified for use of this routine, such as maximum number of cost function evaluations (to limit CPU time), convergence criterion, and choice of the initial Hessian matrix.

Once all program inputs are specified for the equation formulation, the input design begins with an integration of the true system; a fourth order Runge Kutta algorithm is used for this purpose. The data matrix M is formed initially with the start-up values, and then with values returned by the optimization routine for each subsequent evaluation of the cost function. Typical optimizations require anywhere from 50 to 150 evaluations of the cost function. The IMSL routine has a built-in stopping mechanism in the event that further progress is impossible. For instance, the iterative procedure may be terminated if it is determined that roundoff errors become dominant. Otherwise, the routine either terminates with convergence (according to a prespecified threshold) or when the user-specified maximum number of cost function calculations has been reached. Along with the value of the objective function, an important quantity to observe in this iterative procedure is the condition¹ number of the data matrix. It is clear that as the matrix approaches a singular matrix the reliability of the optimization deteriorates. For purposes of accuracy, double precision is used throughout.

Once the matrix Equation (A.2.4) is loaded, using data resulting from the designed input, linear least squares is performed to produce the parameters which comprise the nonlinear model. A singular value decomposition routine for solution of simultaneous matrix equations, from the SPEAKEZY library on the IBM 370/3033, is used for this purpose and returns the singular values of  $X_g$  so that its condition number may be calculated. This serves as another measure of the independence of the sampled data. It should be noted that in this identification step, prior to entering the SPEAKEZY routine, the user is given the option to normalize the data in  $X_g$  in order to enhance the capabilities of the numerical routines which follow. When this is done, the result from the SPEAKEZY routine (that is, the matrix L in (A.2.4)) is then transformed back in a reverse process.

¹Recall that the condition number of a matrix is simply the ratio of the largest to smallest singular value of the matrix. An EISPAK SVD routine is used in this application.

196

.

i

The verification stage of the overall procedure is carried out by way of two separate routines in two separate computing environments. To take advantage of the speed and efficiency of the IBM 370/3033, the large exhaustive simulation exercises are done there, while the graphics capabilities and immediate turn-around time opportunities afforded by the DEC PDP 11/44 are utilized for interactive viewing of response curves and hardcopy plotting. In either case, comparative studies are done for model performance.

Simulation parameters (that is, initial state conditions, input amplitudes, and input frequencies) are loaded into a sequential data set for the bulk simulation exercises. The user specifies the system configuration as true system versus either one or two models of the system. These systems are then integrated, again using a fourth-order Runge Kutta algorithm, only now calculations are carried out in single precision for added speed.

If two models are compared against the true system, an error analysis is performed in which a ratio of mean square errors over the integration interval is calculated. To clarify this, consider the discrete version of our problem and suppose that  $x_j(k)$  represents the jth state of the true system solution,  $xl_j(k)$  the jth state of the first model solution and  $x2_j(k)$  the jth state of the second model solution, each at the timepoint k. Then for the jth state the error ratio  $\varepsilon_1$  is given by

$$\varepsilon_{j} = \frac{\sum_{k=1}^{q} (x_{j}(k) - x_{j}^{2}(k))^{2}}{\sum_{k=1}^{q} (x_{j}(k) - x_{j}^{1}(k))^{2}}, \qquad (A.2.9)$$

where q is the total number of time steps in the simulation interval. Therefore, in view of (A.2.9), if

is true, the second model has outperformed the first model in the jth state for that particular set of simulation parameters. In this way a region of model validity may be mapped out when a sufficient about of simulation results has been generated. Typical simulation tables, as we shall see in the sections to follow, consist of initial state conditions and input amplitudes which increase in some organized fashion about the equilibrium point values. Frequencies of the inputs are also varied, typically from 0 to 10 hertz. Another good test of model region employed throughout the validation studies uses randomly generated (within specified limits) simulation parameters.

Since no one error criterion tells the entire story for any given simulation, another measure is used for these comparative studies. The maximum absolute error over both models compared is multiplied by the total number of time steps q; this value is retained as the error normalization factor (enf). Then the normalized errors

$$\varepsilon_{i_j} = \frac{\sum_{k=1}^{q} (x_j(k) - x_{i_j}(k))^2}{enf},$$
(A.2.11)

$$\varepsilon_{2j} = \frac{\sum_{k=1}^{q} (x_j(k) - x_{2j}(k))^2}{enf},$$
 (A.2.12)

are printed out for each state, for each simulation, in tabular form. These individual errors alert the user to a situation in which, for instance, an error ratio near unity results but when both model errors are unacceptable. The relative size of the enf, along with the individual normalized errors (A.2.11) and (A.2.12), gives added insight to accompany the error ratio analyses. In general, the larger the enf is, the more relative significance the error ratio carries.

 $\epsilon_{\rm f} < 1$ 

#### (A.2.10)

198

The final and most revealing test for model performance lies in the viewing of state trajectories for simulation parameters within the regions of interest. For this purpose the DEC PDP11/44 computing system is used with the Tektronix 4025A video graphics terminal to display plots for various simulation parameter sets. While the actual time involved for simulations is longer on this machine than on the IBM 370/3033, the trade-off in turnaround time for interactive and hardcopy plotting is worthwhile.

While practical limitations prohibit a truly exhaustive search of regions of validity, the combination of results from simulation studies such as these gives a reasonably complete picture of model performance. An illustration of these ideas appears in the section to follow for the comparative study of a second degree approximation model of the system (A.1.1) versus a linear approximation model, as given in (A.1.2).

#### A.3 SECOND DEGREE MODELING

1

an Campany

1000

TEN L'ELENGS

No.

NACES OF

LOPERATE ST

Constant and

attender o

We return now to the original system (A.1.1) for this case study, and illustrate the application of the model formulation, identification, and verification as described in the preceding section.

With an integration timestep of 0.005 seconds the system is integrated with initial conditions of 0.005 and -0.005 for  $x_1$  and  $x_2$ , respectively, and sampled every 0.04 seconds for 100 points. A second degree truncation approximation will be considered first, so that the nonlinear model has a total of 28 parameters, 14 for each equation. The input for this model identification consists of a sum of two sinusoids whose amplitudes are held constant at 0.025; after a few trials it was determined that these amplitudes give very good results. Optimization is done over the input frequencies, and the

startup values are set at 0.75 and 1.0 hertz for u₁ and u₂, respectively. After 62 evaluations of the cost function convergence is achieved with a cost function reduction of approximately 35%. At this point a local optimization is achieved and the final values of the frequencies are 0.742 and 0.902. The parameters which result from the least squares identification using the data generated with these inputs are shown in Figure A.1, separated according to the individual  $L_{1j}$  partitions as depicted in (A.2.2). The eigenvalues of  $L_{10}$ are within one percent of those in (A.1.3), and notice that  $L_{10}$  and  $L_{01}$  embody almost exactly the parameters of the linear approximation (A.1.2). We also make note of the fact that the condition number of the matrix  $X_s$  for this application is approximately 19, well within the bounds dictated by limits of double precision calculations. In fact, condition numbers of this magnitude are about as small as can be expected, indicating to a degree the independence of the data achieved with the designed input.

For purposes of comparison a linear model as given in the exact expression (A.1.2) is integrated (forming the solution x1(k) in (A.2.9)) alongside the second degree model of Figure A.1 (forming the solution x2(k) in (A.2.9)). We note that if the identification were to be carried out for the linear approximation as with the second degree approximation, the resulting parameters would be practically identical to those of the exact expression.

In the pages to follow we offer numerous simulation results in the form of tables and plots, as discussed in the preceding section. The scheme for displaying these results, in this section and the next, is explained in the following.



Figure A.1 Second Degree Model

A table is given and accompanied by plots corresponding to one or more simulations, identifiable by the associated number given leftmost in the table. Each table offers different combinations of input amplitudes and frequencies, and initial state conditions. And, as mentioned in the last section, several sets of randomly generated simulation parameters are given. An effort is made to display typical as well as unusual behavior exhibited in the error ratio result.

As an example, recalling from (A.2.9) that if the error ratio for a particular state in a given simulation is less than one, we conclude that the second model (in this case the second degree approximation) outperforms the first model (the linear approximation). There may be cases such as simulations 1, 10, 19, and 28 of Tables A.1, A.2, and A.3 for zero input amplitudes in which the error ratios are very large, indicating that the mean square error for the linear model is several orders of magnitude smaller than that of the second degree model. A view of the state trajectories given in Figure A.2 (for simulation 1 in Table A.1), however, illustrates the fact that all three solution curves--true, linear, and second degree--lie atop one another. make use of another analysis tool we note that the error normalization factor (enf) for each state in this simulation is of the order of  $10^{-8}$ . But the enf for simulation 12 from Table A.1, whose solution curves are shown in Figure A.3, is of the order of  $10^{-1}$  in each state. This serves to reinforce the statement we made earlier concerning the enf: In general, the larger the enf is, the more relative significance the error ratio carries.

As a final note, we point out that the simulations for the first five tables represent data from integrations out to six seconds. For lower frequency inputs though, as in the final three Tables A.6, A.7, and A.8, the simulations are for integrations out to ten seconds.

### ORIGENAL PAGE IS OF POOR QUALITY

# 

5\$	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
5 123456789012345678901234567890127 1111111112222222222223557	$\begin{array}{c} 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & 0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & -0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\ -0.001 & 0.001 \\$	$\begin{array}{c} \text{AMPLITURES}\\ 0.000 & 0.000\\ 0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & 0.050\\ 0.150 & -0.150\\ 0.150 & -0.150\\ -0.150 & -0.150\\ -0.150 & -0.150\\ -0.150 & 0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.150 & 0.150\\ -0.150 & 0.150\\ -0.150 & 0.150\\ -0.150 & 0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.150 & -0.150\\ -0.150 & 0.150\\ -0.150 & -0.150\\ -0.150 & -0.150\\ -0.150 & -0.150\\ -0.150 & 0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.050\\ -0.050 & -0.05$	0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75       1.00         0.75	ERROR FAILOS 0.105E+07 0.839E+06 0.639E-05 0.658E-04 0.967E-05 0.951E-04 0.536E-05 0.247E-04 0.266E-05 0.247E-04 0.492E-03 0.236E-02 0.393E-03 0.311E-02 0.610E-03 0.389E-02 0.610E-03 0.389E-02 0.610E-05 0.454E-04 0.993E-05 0.101E-03 0.499E+07 0.604E+07 0.499E-05 0.455E-04 0.216E-05 0.185E-04 0.570E-03 0.266E-02 0.647E-03 0.266E-02 0.647E-03 0.430E-04 0.518E-05 0.482E-04 0.518E-05 0.482E-04 0.546E-05 0.482E-04 0.546E-05 0.482E-04 0.546E-05 0.482E-04 0.546E-05 0.482E-04 0.546E-05 0.489E+07 0.689E+07 0.688E+07 0.630E-05 0.604E-04 0.542E-05 0.482E-04 0.542E-05 0.488E+07 0.630E-05 0.604E-04 0.542E-05 0.284E-02 0.549E+07 0.688E+07 0.630E-05 0.604E-04 0.542E-05 0.2525E-04 0.211E-05 0.210E-04
34 35 36	-0.001 0.001 -0.001 0.001 -0.001 0.001	0.150 -0.150 -0.150 -0.150 -0.150 0.150	0.75 1.00 0.75 1.00 0.75 1.00	0.396E-03 0.319E-02 0.897E-03 0.478E-02 0.650E-03 0.403E-02

Π

٩, 

.

Table A.1 Linear vs. Degree 2: Constant input frequencies



1 - 2848C





A

### ORIGINAL PASE IS OF POOR QUALINY

# 

58	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
123456789012345678901234567890123456	$\begin{array}{c} 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.00$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.$	$\begin{array}{c} 0.172E+04 & 0.187E+04 \\ 0.117E-04 & 0.139E-03 \\ 0.133E-04 & 0.121E-05 \\ 0.102E-04 & 0.138E-03 \\ 0.636E-05 & 0.515E-04 \\ 0.320E-03 & 0.165E-02 \\ 0.313E-03 & 0.263E-02 \\ 0.313E-03 & 0.317E-02 \\ 0.493E-03 & 0.317E-02 \\ 0.496E+04 & 0.486E+04 \\ 0.353E-05 & 0.257E-04 \\ 0.353E-05 & 0.257E-04 \\ 0.301E-05 & 0.259E-02 \\ 0.529E-03 & 0.369E-02 \\ 0.559E-03 & 0.369E-02 \\ 0.559E-03 & 0.464E-04 \\ 0.937E+05 & 0.116E-03 \\ 0.157E-04 & 0.161E-03 \\ 0.157E-04 & 0.161E-03 \\ 0.580E-03 & 0.448E-02 \\ 0.580E-03 & 0.482E-02 \\ 0.580E-03 & 0.482E-02 \\ 0.869E+04 & 0.944E+04 \\ 0.963E-05 & 0.772E-04 \\ 0.461E-05 & 0.572E-04 \\ 0.461E-05 & 0.314E-04 \\ 0.478E-03 & 0.229E-02 \\ 0.334E-03 & 0.229E-02 \\ 0.334E-03 & 0.298E-02 \\ 0.334E-03 & 0.298E-02 \\ 0.597E-03 & 0.434E-02 \\ 0.667E-03 & 0.414E-02 \\$

Table A.2 Linear vs. Degree 2: Constant input frequencies

and in


5#	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
1234567890123456789012345678901234567890123456	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 & 1.00 \\ 0.775 $	142. $150.$ $0.200E-04$ $0.243E-03$ $0.212E-04$ $0.171E-03$ $0.205E-04$ $0.298E-03$ $0.150E-04$ $0.974E-04$ $0.244E-03$ $0.121E-02$ $0.246E-03$ $0.225E-02$ $0.361E-03$ $0.215E-02$ $0.361E-03$ $0.215E-02$ $0.361E-03$ $0.215E-02$ $0.361E-03$ $0.225E-02$ $0.361E-03$ $0.215E-02$ $0.361E-03$ $0.323E-02$ $178.$ $192.$ $0.541E-05$ $0.358E-04$ $0.266E-04$ $0.327E-03$ $0.909E-05$ $0.892E-04$ $0.631E-03$ $0.429E-02$ $0.678E-03$ $0.429E-02$ $0.678E-03$ $0.429E-02$ $0.684E-03$ $0.408E-02$ $0.664E-03$ $0.408E-02$ $0.664E-04$ $0.375E-03$ $0.220E-04$ $0.334E-03$ $0.410E-04$ $0.375E-03$ $0.220E-04$ $0.334E-03$ $0.410E-04$ $0.763E-03$ $0.598E-02$ $0.107E-01$ $0.124E-02$ $0.598E-02$ $0.732.$ $784.$ $0.145E-03$ $0.598E-02$ $0.732E-04$ $0.123E-03$ $0.331E-05$ $0.502E-04$ $0.441E-03$ $0.285E-02$ $0.704E-03$ $0.285E-02$ $0.704E-03$ $0.389E-02$ $0.704E-03$ $0.389E-02$

Table A.3 Linear vs. Degree 2: Constant input frequencies

208

i



E

[.1 1.1

ſ Ł

ĺ.

 $\Box$ 

. .

+10r+-3

SIALES

1.5 ı

3





Sŧ	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
\$ 12345478901234547890123456789012345 11111111111222222222233333333333	INITIAL CONDITIONS 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 -0.025 0.025 -0.025 0.025 -0.025 -0.025 0.025 -0.025 0.025 -0.025 0.025 -0.025 -0.025 -0.025 -0.025 -0.025 0.025 -0.025 0.025 -0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0	AMPLITUDES 0.100 0.100 0.100 -0.100 -0.100 0.100 0.100 -0.100 0.100 -0.100 0.100 -0.100 -0.100 0.100 -0.100 -0.100 0.100 -0.100 0.100 -0.100 -0.100 -0.100 0.100 -0.100 0.100 -0.100 0.100 -0.100 0.100 -0.100 0.100 -0.100 0.200 -0.200 0.200 -0.200 0.2	FREQUENCIES 2.00 1.00 2.00 1.00	ERROR RATIOS 0.466E-03 0.190E-02 0.421E-03 0.206E-02 0.384E-03 0.159E-02 0.344E-03 0.159E-02 0.207E-03 0.926E-03 0.238E-03 0.121E-02 0.276E-03 0.121E-02 0.276E-03 0.873E-03 0.164E-03 0.873E-03 0.164E-03 0.852E-03 0.172E-03 0.806E-03 0.135E-03 0.828E-03 0.121E-02 0.484E-02 0.135E-02 0.561E-02 0.146E-02 0.561E-02 0.146E-02 0.551E-02 0.134E-02 0.687E-02 0.134E-02 0.649E-02 0.134E-02 0.106E-01 0.318E-02 0.106E-01 0.318E-02 0.115E-01 0.429E-02 0.115E-01 0.429E-02 0.815E-02 0.171E-02 0.815E-02 0.171E-02 0.815E-02 0.172E-02 0.1815E-02 0.171E-02 0.9794E-02 0.208E-02 0.106E-01 0.703E-02 0.185E-01 0.703E-02 0.239E-01 0.703E-02 0.239E-01 0.703E-02 0.239E-01 0.865E-02 0.379E-01 0.865E-02 0.379E-01 0.445E-02
557890123 333341234 4455	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	$\begin{array}{c} -0.300 \\ 0.300 \\ 0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.103E-01 0.47E-01 0.191E-01 0.541E-01 0.196E-01 0.541E-01 0.238E-01 0.633E-01 0.217E-01 0.644E-01 0.147E-01 0.473E-01 0.135E-01 0.481E-01 0.181E-01 0.553E-01 0.157E-01 0.556E-01 0.278E-01 0.683E-01 0.272E-01 0.713E-01
47 48	-0.025 -0.025 -0.025 -0.025	-0.300 0.300 -0.300 -0.300	2,00 $1.002,00$ $1,00$	0,339E-01 0.791E-01 0.310E-01 0.806E-01

Table A.4 Linear vs. Degree 2: Constant input frequencies

210

20. JOAN

1000 Hill







Figure A.7 S#31, Table A.4

212

1.1.1

 $\Box$ 

Т Г

Table A.5 Linear vs. Degree 2: Constant initial conditions with randomly generated amplitudes and frequencies ORIGINAL PASE 13 OF POOR QUALITY



Figure A.8 S#9, Table A.5

214

ACRESS IN LAST

A CTUT & ...

and the second second

---



[A | | 4 i

1

Π

 $\Box$ 

Sŧ	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
12345678901234567890123456789012	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.265E-03 & 0.242E-03\\ 0.251E-03 & 0.224E-03\\ 0.210E-03 & 0.193E-03\\ 0.104E-03 & 0.778E-04\\ 0.408E-02 & 0.341E-02\\ 0.372E-02 & 0.305E-02\\ 0.272E-02 & 0.240E-02\\ 0.302E-01 & 0.397E-01\\ 0.320E-01 & 0.387E-01\\ 0.320E-01 & 0.387E-01\\ 0.420E-01 & 0.490E-01\\ 0.227E-01 & 0.201E-01\\ 0.227E-01 & 0.490E-03\\ 0.169E-03 & 0.169E-03\\ 0.153E-03 & 0.169E-03\\ 0.169E-03 & 0.125E-03\\ 0.254E-03 & 0.234E-03\\ 0.262E-03 & 0.359E-02\\ 0.389E-02 & 0.315E-02\\ 0.389E-02 & 0.315E-02\\ 0.389E-01 & 0.369E-02\\ 0.388E-01 & 0.383E-01\\ 0.338E-01 & 0.204E-01\\ 0.359E-03 & 0.157E-03\\ 0.152E-03 & 0.157E-03\\ 0.157E-03 & 0.157E-03\\ 0.157E-03 & 0.157E-03\\ 0.127E-03 & 0.225E-03\\ 0.225E-03 & 0.225E-03\\ 0.127E-03 & 0.225E-03\\ 0.225E-03 & 0.225E-03\\ 0.127E-03 & 0.225E-03\\ 0.225E-03 & 0.2$

Table A.6 Linear vs. Degree 2: Low frequency inputs

THE REAL PROPERTY OF





$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4445444205544525435556244545454153665545453465545545545545545545545545545545555455554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554554555455455455545554555455545554555455545554555455545554555455545554555455545554555455545554554554554555455545554555455545554555455545554555455545554555455545554555455545554555455545554555455545554555455545554555455545554555455545555

.

• ;

.

Table A.7 Linear vs. Degree 2: Step inputs with randomly generated initial conditions and input amplitudes

218

1

l line

### ORIGINAL PAGE IS OF POOR QUALITY



200 400 600 TINE (SEC) *10***-2 Figure A.11 S#29, Table A.7 800

e 1 5

Л









東京

Į.

-----

Π

Sŧ	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
\$ 123456789012345678901234567890123333333333333333	INITIAL CONDITIONS -0.043 -0.033 0.030 0.034 0.019 0.024 -0.046 -0.014 -0.010 0.025 -0.017 0.003 -0.020 -0.039 -0.030 0.044 -0.047 -0.033 0.002 0.015 0.043 -0.001 0.043 -0.001 0.044 0.034 -0.033 -0.001 0.049 0.016 -0.024 0.011 -0.024 0.011 -0.024 0.011 -0.024 0.011 -0.024 0.015 0.049 -0.009 0.048 -0.045 0.049 -0.007 0.049 -0.007 0.016 -0.014 0.037 -0.049 -0.038 0.049 -0.038 0.049 -0.038 0.049 -0.039 -0.049 -0.040 0.012 -0.021 -0.017 0.017 -0.017 0.012 -0.032	$\begin{array}{r} \text{AMPLITURES} \\ -0.070 & -0.009 \\ -0.028 & -0.065 \\ -0.017 & -0.028 \\ -0.022 & -0.010 \\ -0.020 & -0.054 \\ 0.014 & 0.023 \\ 0.020 & -0.052 \\ -0.048 & -0.069 \\ -0.019 & 0.073 \\ -0.038 & -0.069 \\ -0.018 & -0.036 \\ 0.020 & -0.074 \\ 0.048 & 0.058 \\ -0.051 & -0.071 \\ -0.015 & -0.031 \\ -0.069 & 0.052 \\ -0.019 & -0.068 \\ 0.034 & -0.054 \\ -0.019 & -0.068 \\ 0.034 & -0.054 \\ -0.019 & -0.068 \\ 0.034 & -0.054 \\ -0.019 & -0.068 \\ 0.034 & -0.054 \\ -0.019 & -0.068 \\ 0.034 & -0.054 \\ -0.025 & 0.040 \\ 0.031 & -0.036 \\ -0.025 & 0.040 \\ 0.031 & -0.036 \\ -0.025 & 0.040 \\ -0.040 & -0.045 \\ -0.069 & -0.046 \\ -0.040 & -0.037 \\ -0.040 & -0.037 \\ -0.023 & -0.058 \\ -0.049 & -0.016 \\ \end{array}$	FREQUENCIES 0.00 0.00 0.00 0.00	ERRORRATIOS $0.483E-02$ $0.501E-02$ $0.207E-04$ $0.746E-05$ $0.896E-05$ $0.302E-05$ $0.145E-04$ $0.402E-05$ $0.542E-04$ $0.489E-04$ $0.223E-05$ $0.116E-05$ $0.126E-02$ $0.119E-02$ $0.456E-04$ $0.287E-04$ $0.420E-04$ $0.275E-04$ $0.420E-04$ $0.275E-04$ $0.420E-05$ $0.107E-05$ $0.279E-05$ $0.107E-05$ $0.279E-05$ $0.107E-05$ $0.127E-02$ $0.124E-04$ $0.104E-03$ $0.645E-03$ $0.640E-05$ $0.231E-01$ $0.938E-05$ $0.238E-05$ $0.674E-02$ $0.727E-04$ $0.128$ $0.156$ $0.103E-03$ $0.727E-04$ $0.128E-03$ $0.722E-04$ $0.128E-03$ $0.722E-04$ $0.128E-03$ $0.722E-04$ $0.128E-03$ $0.722E-04$ $0.128E-03$ $0.722E-04$ $0.128E-03$ $0.792E-01$ $0.138E-03$ $0.792E-01$ $0.138E-03$ $0.792E-04$ $0.128E-03$ $0.198E-03$ $0.172E-02$ $0.232E-04$ $0.232E-03$ $0.203E-03$ $0.282E-04$ $0.259E-04$ $0.282E-04$ $0.259E-04$ $0.282E-04$ $0.259E-04$ $0.138E-03$ $0.138E-03$ $0.282E-04$ $0.259E-04$ $0.253E-05$ $0.264E-05$ $0.138E-03$ $0.264E-05$ $0.138E-03$ $0.264E-05$ $0.138E-03$ $0.264E-05$
38 39 40 41	$\begin{array}{c} 0.014 & -0.048 \\ -0.012 & -0.032 \\ 0.019 & 0.004 \\ -0.030 & 0.017 \\ 0.029 & -0.020 \end{array}$	-0.037 -0.038 -0.040 -0.016 -0.008 0.013 -0.061 -0.064 0.070 0.014	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.253E-05 0.284E-05 0.196E-03 0.199E-03 0.355E-04 0.286E-04 0.549E-04 0.719E-04 0.218 0.273
434456789	$\begin{array}{c} 0.026 & -0.023 \\ 0.032 & 0.047 \\ -0.040 & 0.024 \\ 0.042 & -0.014 \\ -0.030 & 0.027 \\ 0.027 & 0.044 \\ 0.017 & -0.042 \\ -0.024 & -0.034 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.556E-01 0.665E-01 0.524E-05 0.259E-05 0.137E-03 0.126E-03 0.560E-01 0.680E-01 0.696E-06 0.618E-06 0.375E-03 0.614E-03 0.278E-05 0.343E-05 0.108E-02 0.102E-02
50	A10*0- CF0*018	-0.075 0.067	A*A6 8*66	0+332E-01 0+249E-01

Table A.8 Linear vs. Degree 2: Step inputs with randomly generated initial conditions and input amplitudes



Figure A.13 S#13, Table A.8

-----

0.5

### A.4 THIRD DEGREE MODELING

The second degree model clearly has a larger region of acceptable performance than the linear approximation, as is evident from the verification studies in the preceding section. In this section we take the identification scheme one step further and construct a third degree truncation approximation using the same procedure.

With an integration timestep of 0.005 seconds the original system is integrated with initial conditions of 0.001 and -0.001 for x1 and x2, respectively, and sampled every 0.04 seconds for 100 points. The input for this model identification consists of a sum of two sinusoids whose amplitudes are held constant at 0.055 and 0.0325 for u1 and u2, respectively. Optimization is done over the input frequencies with startup values of 1 and 2 hertz. After 53 evaluations of the cost function convergence is achieved with a cost function reduction of approximately 98%. At this point a local optimum is achieved and the final values of the frequencies are 0.509 and 2.010. For this third degree model with 68 parameters (34 for each equation), the result of the least squares identification using the data generated with these inputs is given in Figure A.14. The condition number of the matrix X_s in this case is about 526, still well within the limits of double precision computations. One would expect that this number be higher than in the second degree model case (recall, there it was 19) since for this identification there are roughly 2.5 times the parameters and thus 2.5 times the data to manipulate.

In this case the comparison studies are done for the model of Figure A.14 versus the second degree model of the previous section. All of the tables to follow, then, have as the first model (that is, solution xl(k) in (A.2.9)) the second degree model of Figure A.1, and have as the second model (that is,

$$L_{10} = \begin{bmatrix} -1.998 & -3.001 \\ 0.999 & 1.000 \end{bmatrix} \quad L_{01} = \begin{bmatrix} 0.002 & 0.998 \\ -1.000 & -0.000 \end{bmatrix}$$

$$L_{20} = \begin{bmatrix} -0.190 & -0.012 & -0.003 \\ 0.036 & 0.002 & 0.000 \end{bmatrix} \quad L_{02} = \begin{bmatrix} -0.004 & 0.007 & -0.012 \\ -0.998 & 0.001 & 0.001 \end{bmatrix}$$

$$L_{11} = \begin{bmatrix} -4.069 & 0.026 & 0.028 & -0.008 \\ 0.021 & 0.003 & 0.003 & 0.004 \end{bmatrix}$$

$$L_{30} = \begin{bmatrix} 0.705 & 1.663 & 3.316 & 0.781 \\ -0.222 & -0.668 & -1.262 & -0.339 \end{bmatrix}$$

$$L_{21} = \begin{bmatrix} 0.621 & -0.614 & -0.252 & -0.765 & 0.447 & -0.675 \\ -0.289 & -0.025 & -0.055 & -0.058 & -0.049 & -0.006 \end{bmatrix}$$

$$L_{12} = \begin{bmatrix} -3.549 & -0.102 & 0.414 & 0.165 & 0.037 & 0.076 \\ -0.172 & 0.960 & -0.044 & -0.056 & -0.035 & -0.013 \end{bmatrix}$$

Figure A.14 Third Degree Model

224

**** ノミ

Π

The second second

ŝ

solution x2(k)) the third degree model of Figure A.14. Thus, an error ratio less than one indicates that we have succeeded in expanding the region of acceptable behavior by adding more terms in the higher degree approximation.

Ιf,

In the first three tables of this section--A.9, A.10, and A.11 (repeated simulation parameters of Tables A.1, A.2, and A.3)--we find that the third degree model outperforms the second degree model almost uniformly. This of course is an added bonus since these simulation parameters are close to the point of expansion. That is, with these relatively small amplitudes we would hope that the third degree model at least match the performance of the second degree model. Notice, though, that as the input amplitudes get larger the comparative performance for the third degree model improves. One simulation is plotted from each table, revealing that the two models are very close in performance.

The next three tables--A.12, A.13, and A.14--offer simulations with fixed frequencies which progressively stretch the region of operation in terms of the input amplitudes and initial state conditions. While it is clear from the plots which follow that these simulation parameter sets push the second degree model beyond an acceptable region, we note that at the upper end (that is, for input amplitudes of 0.5 and 0.6) we have reached the practical limits of validity for the third degree model performance. Table A.15 offers randomly generated input amplitudes, between -0.3 and 0.3, and input frequencies between 2 and 6 hertz. More of the same type of behavior is observed.

The simulations represented in these first seven tables of this section were all carried out from zero to six seconds, even though some of the plots extend much further. For the final two tables--A.16 and A.17--simulations are carried out to ten seconds. These tables represent simulations for low fre-

quency inputs (including the DC case) and contain identical parameter sets as those in Tables A.6 and A.7 of the last section. These simulations point out the fact that in general, for low frequencies, the third degree model performance is about equal with that of the second degree model. We include plots of two of the worst case results (in terms of the error ratios) in Figure A.30 and Figure A.32. Notice that while the second degree model outperforms the third degree model in these plots, each model exhibits fairly good performance for the worst case. This fact is brought out in the individual error normalization factors as well. In the next section we address this minor difficulty which arises for low frequency inputs.

Sŧ	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
123456789012345678901222222222233333333333	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table A.9 Degree 2 vs. Degree 3: Constant input frequencies





-

<u>i</u>

### ORIGINAL FAGE 13 OF POOR QUALITY

## 

St	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
123456789012345678901234567890123456	$\begin{array}{c} 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & 0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ 0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & -0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\ -0.005 & 0.005 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.75\\ 1.00\\ 0.75\\ 1.00\\ 0.75\\ 1.00\\ 0.75\\ 1.00\\ 0.75\\ 1.00\\ 0.75\\ 1.00\\ 0.75\\ 1.00\\ 0.75\\ 1.00\\ 0.75\\ 1.00\\ 0.75\\ 1.00\\ 0.75\\ 1.00\\ 0.75\\ 1.00\\ 0.75\\ 1.00\\ 0.75\\ 1.00\\ 0.75\\ 1.00\\ 0.75\\ 5.5\\ 1.00\\ 0.00\\ 0.75\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table A.10 Degree 2 vs. Degree 3: Constant input frequencies



Figure A.16 S#26, Table A.10: Compare to Figure A.4

ORIGINAL PAGE IS'

230

-

Î

### ORIGINAL PAGE LO OF POOR QUALITY

## 

Û

İ

•

Π

Ū

(annual state

Sŧ	INITIAL CONDITIONS.	AMPLITUDES	FREQUENCIES	ERROR RATIOS
123456789011234567890122222222222233333333333	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.00 \\ 0.75 & 1.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table A.11 Degree 2 vs. Degree 3: Constant input frequencies

Origanal Prez 12 Of Poor Quality







232

11

d i

line a





### ORIGINAL PAGE 2 OF POOR QUALITY

## 

5#	INITIAL CUNDITIORS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
1234567890123456789012222222333333333344444444444	$\begin{array}{c} 0.025 & 0.025 \\ 0.025 & 0.025 \\ 0.025 & 0.025 \\ 0.025 & -0.025 \\ 0.025 & -0.025 \\ 0.025 & -0.025 \\ 0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025 \\ -0.025 & -0.025$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table A.12 Degree 2 vs. Degree 3: Constant input frequencies

234

Same and

200

TELEVISION IN

Market J











Figure A.20 S#31, Table A.12: Expanded view of Figure A.19

1

Sec. 1



Figure A.21 S#42, Table A.12

237

Sł	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
12345678901234567890123456789012334567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678900123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890012345678900123456789001234567890012345678900123456789000000000000000000000000000000000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.50\\ 0.50\\ 0.50\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550\\ 0.550$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table A.13 Degree 2 vs. Degree 3: Constant input frequencies

Π

ORIGHAL PARE A





ORIGINAL PAGE 12 OF POOR QUALITY

KALLER ALL STATES

3. 20





240

E Star

### ORIGANAL PAGE DI OF POOR QUALITY





4

*****

1177781

CONDITIONO

Table A.14 Degree 2 vs. Degree 3: Constant input frequencies

1221

à.










- Autoria

i.

Linger

hornes

### ORIGINAL PAGE 10 OF POOR QUALITY

## 

58 INITIAL CUNULTIONS	AMPLITUDES	FREUDENCIES	ERNUR KATTUS
S#         INITIAL         CUNDITIONS           1 $0.050 - 0.050$ $2$ 3 $0.050 - 0.050$ $3$ 4 $0.050 - 0.050$ $5$ 5 $0.050 - 0.050$ $5$ 6 $0.050 - 0.050$ $7$ 7 $0.050 - 0.050$ $7$ 9 $0.050 - 0.050$ $7$ 9 $0.050 - 0.050$ $10$ 10 $0.050 - 0.050$ $11$ $0.050 - 0.050$ $-0.050$ $11$ $0.050 - 0.050$ $-0.050$ $11$ $0.050 - 0.050$ $-0.050$ $11$ $0.050 - 0.050$ $-0.050$ $11$ $0.050 - 0.050$ $-0.050$ $11$ $0.050 - 0.050$ $-0.050$ $12$ $0.050 - 0.050$ $-0.050$ $22$ $0.050 - 0.050$ $-0.050$ $22$ $0.050 - 0.050$ $-0.050$ $23$ $22$ $0.050 - 0.050$ $23$ $23$ $0.050 - 0.050$ $24$ $24$ <td>$\begin{array}{c} \text{AMPLITODES} \\ \textbf{0.017} &amp; \textbf{0.277} \\ \textbf{-0.087} &amp; \textbf{0.063} \\ \textbf{0.204} &amp; \textbf{-0.277} \\ \textbf{-0.133} &amp; \textbf{-0.138} \\ \textbf{-0.076} &amp; \textbf{0.089} \\ \textbf{0.225} &amp; \textbf{0.215} \\ \textbf{-0.076} &amp; \textbf{0.004} \\ \textbf{0.209} &amp; \textbf{-0.246} \\ \textbf{-0.192} &amp; \textbf{0.261} \\ \textbf{-0.271} &amp; \textbf{0.201} \\ \textbf{0.138} &amp; \textbf{-0.091} \\ \textbf{0.249} &amp; \textbf{0.134} \\ \textbf{-0.234} &amp; \textbf{-0.139} \\ \textbf{-0.234} &amp; \textbf{-0.139} \\ \textbf{-0.234} &amp; \textbf{-0.139} \\ \textbf{-0.234} &amp; \textbf{-0.139} \\ \textbf{-0.235} &amp; \textbf{0.106} \\ \textbf{0.016} &amp; \textbf{-0.145} \\ \textbf{0.136} &amp; \textbf{0.162} \\ \textbf{0.274} &amp; \textbf{0.050} \\ \textbf{-0.132} &amp; \textbf{-0.138} \\ \textbf{-0.200} &amp; \textbf{0.079} \\ \textbf{0.132} &amp; \textbf{-0.129} \\ \textbf{0.023} &amp; \textbf{0.133} \\ \textbf{-0.202} &amp; \textbf{0.023} \\ \textbf{-0.130} &amp; \textbf{0.153} \\ \textbf{-0.0022} &amp; \textbf{-0.235} \\ \textbf{-0.073} &amp; \textbf{-0.004} \\ \textbf{-0.052} &amp; \textbf{0.239} \\ \textbf{-0.075} &amp; \textbf{-0.018} \\ \textbf{-0.269} &amp; \textbf{-0.294} \\ \textbf{0.131} &amp; \textbf{-0.294} \\ \textbf{0.131} &amp; \textbf{-0.281} \\ \textbf{-0.259} &amp; \textbf{-0.294} \\ \textbf{0.137} &amp; \textbf{-0.294} \\ \textbf{-0.025} &amp; \textbf{-0.294} \\ \textbf{-0.025} &amp; \textbf{-0.294} \\ \textbf{-0.025} &amp; \textbf{-0.294} \\ \textbf{-0.025} &amp; \textbf{-0.203} \\ \textbf{-0.137} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.203} \\ \textbf{-0.163} \\ \textbf{-0.013} \\ \textbf{-0.0145} \\ \textbf{-0.027} \\ \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.163} \\ \textbf{-0.013} \\ \textbf{-0.163} \\ \textbf{-0.014} \\ \textbf{-0.0145} \\ \textbf{-0.027} \\ \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.124} \\ \textbf{-0.025} &amp; \textbf{-0.163} \\ \textbf{-0.025} \\ \textbf{-0.163} \\ \textbf{-0.014} \\ \textbf{-0.025} \\ \textbf{-0.163} \\ \textbf{-0.014}$</td> <td>-Reduces       3573386         -9577386       3573386         -9577386       3573335         -9577386       357335         -9577386       357335         -9577386       357335         -9577386       357335         -9577386       357335         -9577386       357335         -9577386       357335         -9577386       357335         -9772386       357336         -98897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -997535       35737         -997535       35737         -997535       35737         -997535       35737         -9975338       35737         -9975</td> <td>ERROR         RAI105           0.558         1.02           0.110E-02         0.521E-03           0.124E-01         0.154E-01           0.456E-02         0.363E-02           0.196E-02         0.188E-02           0.103E-01         0.145E-01           0.456E-03         0.200E-03           0.225E-01         0.187E-01           0.126E-01         0.149E-01           0.126E-01         0.149E-01           0.126E-01         0.149E-01           0.357E-02         0.304E-02           0.636E-02         0.107E-01           0.806E-02         0.117E-01           0.267E-02         0.204E-02           0.419E-02         0.486E-02           0.728E-02         0.291           0.619E-02         0.486E-02           0.73E-02         0.112E-01           0.487E-02         0.592E-02           0.515E-02         0.592E-02           0.749E-01         0.140           0.751E-02         0.984E-02           0.457         0.885           0.740E-01         0.189E-01           0.143E-01         0.202E-01           0.235E-02         0.265E-02           0.246E-01</td>	$\begin{array}{c} \text{AMPLITODES} \\ \textbf{0.017} & \textbf{0.277} \\ \textbf{-0.087} & \textbf{0.063} \\ \textbf{0.204} & \textbf{-0.277} \\ \textbf{-0.133} & \textbf{-0.138} \\ \textbf{-0.076} & \textbf{0.089} \\ \textbf{0.225} & \textbf{0.215} \\ \textbf{-0.076} & \textbf{0.004} \\ \textbf{0.209} & \textbf{-0.246} \\ \textbf{-0.192} & \textbf{0.261} \\ \textbf{-0.271} & \textbf{0.201} \\ \textbf{0.138} & \textbf{-0.091} \\ \textbf{0.249} & \textbf{0.134} \\ \textbf{-0.234} & \textbf{-0.139} \\ \textbf{-0.234} & \textbf{-0.139} \\ \textbf{-0.234} & \textbf{-0.139} \\ \textbf{-0.234} & \textbf{-0.139} \\ \textbf{-0.235} & \textbf{0.106} \\ \textbf{0.016} & \textbf{-0.145} \\ \textbf{0.136} & \textbf{0.162} \\ \textbf{0.274} & \textbf{0.050} \\ \textbf{-0.132} & \textbf{-0.138} \\ \textbf{-0.200} & \textbf{0.079} \\ \textbf{0.132} & \textbf{-0.129} \\ \textbf{0.023} & \textbf{0.133} \\ \textbf{-0.202} & \textbf{0.023} \\ \textbf{-0.130} & \textbf{0.153} \\ \textbf{-0.0022} & \textbf{-0.235} \\ \textbf{-0.073} & \textbf{-0.004} \\ \textbf{-0.052} & \textbf{0.239} \\ \textbf{-0.075} & \textbf{-0.018} \\ \textbf{-0.269} & \textbf{-0.294} \\ \textbf{0.131} & \textbf{-0.294} \\ \textbf{0.131} & \textbf{-0.281} \\ \textbf{-0.259} & \textbf{-0.294} \\ \textbf{0.137} & \textbf{-0.294} \\ \textbf{-0.025} & \textbf{-0.294} \\ \textbf{-0.025} & \textbf{-0.294} \\ \textbf{-0.025} & \textbf{-0.294} \\ \textbf{-0.025} & \textbf{-0.203} \\ \textbf{-0.137} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.203} \\ \textbf{-0.163} \\ \textbf{-0.013} \\ \textbf{-0.0145} \\ \textbf{-0.027} \\ \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.163} \\ \textbf{-0.013} \\ \textbf{-0.163} \\ \textbf{-0.014} \\ \textbf{-0.0145} \\ \textbf{-0.027} \\ \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.124} \\ \textbf{-0.025} & \textbf{-0.163} \\ \textbf{-0.025} \\ \textbf{-0.163} \\ \textbf{-0.014} \\ \textbf{-0.025} \\ \textbf{-0.163} \\ \textbf{-0.014} $	-Reduces       3573386         -9577386       3573386         -9577386       3573335         -9577386       357335         -9577386       357335         -9577386       357335         -9577386       357335         -9577386       357335         -9577386       357335         -9577386       357335         -9577386       357335         -9772386       357336         -98897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -9897435       357337         -997535       35737         -997535       35737         -997535       35737         -997535       35737         -9975338       35737         -9975	ERROR         RAI105           0.558         1.02           0.110E-02         0.521E-03           0.124E-01         0.154E-01           0.456E-02         0.363E-02           0.196E-02         0.188E-02           0.103E-01         0.145E-01           0.456E-03         0.200E-03           0.225E-01         0.187E-01           0.126E-01         0.149E-01           0.126E-01         0.149E-01           0.126E-01         0.149E-01           0.357E-02         0.304E-02           0.636E-02         0.107E-01           0.806E-02         0.117E-01           0.267E-02         0.204E-02           0.419E-02         0.486E-02           0.728E-02         0.291           0.619E-02         0.486E-02           0.73E-02         0.112E-01           0.487E-02         0.592E-02           0.515E-02         0.592E-02           0.749E-01         0.140           0.751E-02         0.984E-02           0.457         0.885           0.740E-01         0.189E-01           0.143E-01         0.202E-01           0.235E-02         0.265E-02           0.246E-01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.201 0.228 0.085 0.163 0.023 0.013 0.237 -0.286 -0.027 0.092 0.100 -0.207 0.263 0.168 0.280 0.070 -0.081 -0.161	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.104E-01 0.129E-01 0.115E-01 0.144E-01 0.134E-01 0.120E-01 0.230E-01 0.284E-01 0.143E-01 0.167E-01 0.162E-01 0.167E-01 0.106E-01 0.183E-01 0.923E-02 0.175E-01 0.113E-01 0.150E-01

Table A.15 Degree 2 vs. Degree 3: Constant initial conditions with randomly generated amplitudes and frequencies





ORIGHVAL PACE IS

246

500

and the second

and M. of

1

Non-



Ţ

Figure A.27 S#19, Table A.15





S#41, Table A.15 Figure A.28

248

-

 $\square$ 

Service 1



н 1 0 н н ~ Ц 65 ч



Figure A.29 S#41, Table A.15: Expanded view of Figure A.28

Sŧ	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERKOF	R RATIUS
12345678901254567890123456789012	$\begin{array}{c} 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.001 \\ 0.001 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.010 \\ 0.010 & -0.001 \\ 0.000 & -0.000 \\ 0.000 & -0.000 \\ 0.000 & -0.000 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 0.000	0000077173343112100000771733431121

Table A.16 Degree 2 vs. Degree 3: Low frequency inputs

ALL NOT

Ne-----

CHILL I

Ţ,



Г. Г.

, [_____;

Ţ.

Π

Γ

Transfer to

All and the second second

A Law Law

in the second

- Holes

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se











-

÷

Ĵ

1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1. State 1.

į.

Sŧ	INITIAL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
1234567890123456789012222222222222223333344444444444450789012345678901234567890123456789012345678901234567890	$\begin{array}{c} 0.000 & 0.010 \\ -0.006 & 0.004 \\ 0.009 & 0.006 \\ 0.006 & -0.007 \\ -0.004 & 0.001 \\ 0.006 & 0.003 \\ -0.009 & -0.003 \\ -0.009 & -0.003 \\ -0.009 & -0.008 \\ 0.005 & -0.008 \\ 0.005 & -0.008 \\ -0.007 & 0.007 \\ -0.001 & 0.005 \\ -0.007 & 0.006 \\ -0.003 & -0.003 \\ -0.003 & -0.003 \\ -0.003 & -0.003 \\ -0.003 & -0.003 \\ -0.003 & -0.003 \\ -0.003 & -0.003 \\ -0.003 & -0.002 \\ -0.003 & -0.002 \\ -0.003 & -0.002 \\ -0.003 & -0.002 \\ -0.003 & -0.002 \\ -0.003 & -0.002 \\ -0.003 & -0.002 \\ -0.003 & -0.002 \\ -0.003 & -0.007 \\ -0.003 & -0.002 \\ -0.003 & -0.007 \\ -0.009 & -0.007 \\ -0.0009 & -0.007 \\ -0.0009 & -0.007 \\ -0.0000 & -0.007 \\ -0.0001 & -0.007 \\ -0.0001 & -0.007 \\ -0.0005 & -0.005 \\ -0.009 & -0.008 \\ -0.009 & -0.006 \\ -0.009 & -0.005 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0008 & -0.007 \\ -0.0$	$\begin{array}{c} -0.022 & -0.008 \\ 0.008 & -0.011 \\ -0.010 & 0.017 \\ 0.022 & -0.010 \\ -0.018 & -0.003 \\ -0.021 & -0.005 \\ 0.012 & 0.018 \\ -0.021 & 0.024 \\ 0.004 & 0.023 \\ -0.009 & -0.013 \\ -0.009 & -0.010 \\ 0.017 & 0.002 \\ -0.019 & -0.010 \\ 0.015 & 0.021 \\ -0.018 & 0.009 \\ -0.018 & 0.009 \\ -0.018 & 0.009 \\ -0.015 & 0.021 \\ 0.005 & -0.018 \\ -0.005 & -0.018 \\ -0.005 & -0.018 \\ -0.005 & -0.017 \\ -0.018 & 0.009 \\ -0.018 & 0.009 \\ -0.018 & 0.009 \\ -0.019 & 0.006 \\ -0.010 & -0.012 \\ 0.019 & 0.006 \\ -0.010 & -0.012 \\ 0.010 & -0.012 \\ -0.001 & -0.012 \\ -0.001 & -0.012 \\ -0.001 & -0.012 \\ -0.001 & -0.012 \\ -0.003 & 0.007 \\ -0.012 & 0.012 \\ -0.003 & 0.008 \\ -0.0024 & 0.024 \\ -0.023 & 0.014 \\ -0.004 & 0.022 \\ -0.005 & 0.020 \\ -0.0011 & -0.002 \\ -0.0011 & -0.002 \\ -0.0011 & -0.002 \\ -0.0011 & -0.002 \\ -0.0012 & -0.015 \\ -0.0110 & 0.012 \\ -0.0012 & -0.021 \\ -0.005 & 0.012 \\ -0.0011 & -0.008 \\ -0.011 & -0.008 \\ -0.0012 & -0.021 \\ -0.005 & 0.015 \\ -0.011 & -0.008 \\ -0.008 \\ -0.011 & -0.008 \\ -0.008 \\ -0.011 & -0.008 \\ -0.008 \\ -0.011 & -0.008 \\ -0.008 \\ -0.011 & -0.0012 \\ -0.008 \\ -0.011 & -0.0012 \\ -0.008 \\ -0.011 & -0.0012 \\ -0.0010 \\ -0.0010 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0000 \\ -0.000$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table A.17 Degree 2 vs. Degree 3: Step inputs with randomly generated initial conditions and input amplitudes

### ORIGINAL PAGE IS



Figure A.32 S#1, Table A.17

· · · · ·

: 1

Land .

### A.5 CONCLUSIONS

In this case study we have demonstrated the nonlinear multilinear modeling scheme by way of a two state, two input example system. We began by describing the ways in which the tensor parameterization transforms the nonlinear system into a least squares problem through optimal design of the experimental, measured data. Verification studies were performed with various error analyses to test the region of accentable performance for the resulting model, usually in reference to a lower degree approximation model. While no strict definition of "region" has been given to this point, it is clear that for this example the range of permissible inputs (that is, those which result in acceptable state trajectories) increases as the degree of the approximation model increases. This concept is of course intuitively appealing and in harmony with the implications of Taylor's theorem. The actual implementation is not, however, a trivial exercise when one considers the various software pieces which make up the overall package.

There remain in general several issues concerning the current limitations of the software and numerical routines involved in this procedure. And there remains in particular, for this example, an issue of some concern for model behavior for low frequency inputs. We address this latter issue first by offering a simple means by which the results may be improved.

Recall that the third degree model of the preceding section represents an identification over a four second timespan; 100 samples were taken, spaced evenly in time at 0.04 second intervals. A look at Figure A.30 indicates that the model solution breaks away from the true solution trajectory in each state early in the transient portion of the curve, around the three to four second mark. With this in mind, a re-identification is attempted, this time for

data sampled at 0.06 intervals so that a six second timespan is utilized in an effort to capture more transient information. The final values for the input frequencies from the previous optimization (0.509 and 2.01 hertz) are used now as startup values, everything else being the same. After 60 evaluations of the cost function the final values for the frequencies are 0.351 and 1.33 hertz, the cost function undergoing a 57% reduction. We offer one final table, Table A.18, to illustrate the results for this re-identification, a repeat of Table A.16. For purposes of comparison the identical procedure described above for re-optimization, re-identification is carried out on the second degree model of Section A.3. Both models show modest improvement over their predecessors², but, as evidenced by Table A.18 compared now against Table A.16, we have improved the low frequency performance of the third degree model a considerable amount. Figure A.33 displays the results of a simulation parameter set which may be compared with Figure A.30. We remind the reader that this simulation represents one of the worst case parameter sets from the table; in the majority of the plots for this table all three curves practically lie atop one another.

As alluded to earlier, the versatility of the software is not currently being exercised. For instance, all of the optimizations for the design of the input are done over the input frequencies, basically because the software package is limited to unconstrained optimizations. Attempting unconstrained optimizations over input amplitudes often results in overly large amplitudes in one or both input channels. Currently, the choice of amplitudes for the identifications is arrived at after a few trial identifications. One method for determining how large these amplitudes should be is to observe the re-

²Resimulation of several tables from Section A.4 illustrate this fact.

256

 $\prod$ 

11 28.

Sŧ INITI	AL CONDITIONS	AMPLITUDES	FREQUENCIES	ERROR RATIOS
1234567890100000000000000000000000000000000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table A.18A repeat of Table A.16 for improved<br/>models: Degree 2 vs. Degree 3

ORIGINAL PAGE IS OF POOR QUALITY

1 N N



Figure A.33 S#5, Table A.18: Compare to Figure A.30

11 1 1000

sulting parameters in the matrices  $L_{10}$  and  $L_{01}$ ; if these parameters stray too far from the values found for a linear model, local performance will deteriorate.

Another limiting factor of the software currently being used is inherent to the IMSL optimization routine. This quasi-Newton method for finding the optimum parameters in the nonlinear programming problem usually results in local optimum values. Therefore, the choice of startup values for the identification has some influence on the final answer. In the example of this case study, however, the choice of startup frequencies is governed by two factors: 1) knowledge of the speed of response of the system being sampled, and 2) sampling parameters in the identification. We make note of the fact that choice of initial conditions for the identification in this example has a relatively small effect on the result.

We close this case study by commenting on the results of the models discussed in Sections A.3 and A.4 in terms of the so-called region of validity. For simplicity, let us define a "region" in the u1-u2 plane as a square whose area is given as the square of some input amplitude. Thus, we speak of regions in terms of maximum input amplitudes.

At low frequencies (that is, up to about 0.1 hertz) both models have roughly the same region of validity, since both perform about the same for input amplitudes out to about 0.075 in magnitude. For higher frequencies, however, we can give some idea for the difference in size of the region in the u1-u2 plane, in terms of amplitudes, in which each model has acceptable behavior. The performance of the second degree model begins to deteriorate for amplitudes out to about 0.2 in magnitude; recall, for example, Figure A.7. The performance of the third degree model is still very good in this region;

compare Figure A.16 to Figure A.4 for amplitudes of magnitude 0.15. In fact, as the plots and simulations from Tables A.14 and A.15 reveal, the third degree model performs well for regions out to amplitude magnitudes of 0.4 and greater. Simply put, then, the third degree model has a region of validity which is at least four times larger than that of the second degree model. A similar measure could be made for the second degree model in terms of the linear approximation. Future software considerations involve a way of graphically displaying these regions as a function of the mean square errors and the error normalization factors. This of course would require a strict definition of when a model's performance is "acceptable".

260

Ĭ

### REFERENCES

- G.F. Franklin and J.B. Powell, <u>Digital Control of Dynamic Systems</u>. Reading, Massachusetts: Addison-Wesley, 1980.
- S. Yurkovich, "Application of Tensor Ideas to Nonlinear Modeling and Control", M.S. Thesis, Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, January 1981.
- T.A. Klingler, "Nonlinear Modeling of a Turbofan Jet Engine: A Tensor Method Application", M.S. Thesis, Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, August 1982.
- 4. W.H. Greub, Multilinear Algebra. New York: Springer-Verlag, 1967.
- T.A. Klingler, S. Yurkovich, and M.K. Sain, "An Application of Tensor Ideas to Nonlinear Modeling of a Turbofan Jet Engine", <u>Proceedings</u> Thirteenth Pittsburgh Conference on Modeling and Simulation, April 1982.
- 6. S. Cohen and S. Pieper, "The Speakeasy III Reference Manual", Speakeasy Computing Corporation, Chicago, Illinois, 1979.
- S. Yurkovich, "Multilinear Modeling and Linear Analysis of Nonlinear Systems", Ph.D Dissertation, Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, May 1984.
- 8. G.C. Goodwin and R.L. Payne, <u>Dynamic System Identification: Experiment</u> Design and Data Analysis. New York: Academic Press, 1977.
- 9. R. Bellman, <u>Introduction to Matrix Analysis</u>. New York: McGraw-Hill, 1960.
- 10. C.L. Lawson and R.J. Hanson, <u>Solving Least Squares Problems</u>. Englewood Cliffs, N.J.: Prentice-Hall, 1974.

**61**32

- 11. A.J. Laub, "Linear Multivariable Control. Numerical Considerations", Presented at the American Mathematical Society Short Course on Control Theory, Providence, R.I., August 1978.
- V.C. Klema and A.J. Laub, "The Singular Value Decomposition: Its Computation and Some Applications", <u>IEEE Transactions on Automatic Control</u>, Vol. AC-25, No. 2, April 1980.
- 13. A.A. Desrochers, "Optimal Model Reduction for Nonlinear Systems", Proceedings of the Joint Automatic Control Conference, June 1980.
- 14. L.H. McWilliams, "Nonlinear Models by Layered Tensors", M.S. Thesis, Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, May 1984.

- 15. "IBM 370/3033 Nonlinear Modelling/Simulation Software", S. Yurkovich, D.J. Bugajski, and T.A. Klingler, Control Systems Technical Note #7, Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, March 1984.
- 16. "DEC PDP 11/44 Nonlinear Model Simulation Software", D.J. Bugajski, S. Yurkovich, and T.A. Klingler, Control Systems Technical Note #8, Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, March 1984.

Ì

------

- 305 - 202

н С.

.

The second