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Abstract

The reusable life of the Space Shuttle Main Engine (SSME) is
influenced by the cyclic life of the regeneratively liquid cooled
main combustion chamber (MCC). Ouring an operational duty cycle the
MCC liner is subjected to a large transient thermal gradient that
imparts a high thermal cyclic strain to the limer hot gas wall. Life
predictions of such chambers have usually been based on low cycle
fatigue (LCF) evaluations. Hot-fire testing, however, has shown
significant mid-channel wall deformation and thinning during accrued
cyclic testing.
to be significantly accelerated at elevated temperatures.

An analytical method that models the cyclic creep phenomenon and
its application to thrust chamber life prediction is presented. The
chamber finite element geometry is updated periodically to account
for accrued wall thinning and distortion. Failure is based on the
tensile instability failure criterion. Cyclic 1life results for
several chamber life enhancing coolant channel designs are compared
to the typically used LCF analysis that neglects cyclic creep. The
results show that the usable cyclic creep life is approximately 30 to
308 of the commonly used LCF life.

This phenomenon is termed cyclic creep and appears

Introduction

ihe reusable life of the Space Shuttle Main Engine (SSME) and future
engines are greatly influenced by the cyclic life of several major
subjected to high temperature environments. The main
combustion chamber (MCC) liner is exposed to an environment that
produces a heat flux of approximately 100 BTU/inZ-sec in the life
limited throat region. To accommodate this high heat flux, the copper
base MCC liner is regeneratively cooled through integral rectangular
cooling channels. During operational duty cycles (missions) the MCC
liner hot gas wall experiences large thermal plastic cyclic. strains
resulting from a large transient thermal gradient. These cyclic
strains influence the fatigue life of the MCC limer hot gas wall.

Low cycle fatigue life is typically a function of the cyclic strain
the material properties and the operating temperature. The
theoretical reusable life is normally determined by the number of
strain cycles that can be accrued before initiation of surface
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cracks. - Hot-fire testing of channel wall combustors at Rocketdyne and
NASA Lewis Research Center (LeRC), however, indicates that fatigue is
not necessarily the dominate failure mode, . Significant mid-channel
permanent deformation and wall -thinning is witnessed during these
hot-fire tests. It is concluded that the failure mode ‘is one of
strength once the wall has thinned ‘to its critical: thickness. The
thinning phenomenon is termed. cyclic . creep .and appears to be
significantly accelerated at elevated temperatures. The sensitivity
of the phenomenon to surface  temperature is evidenced by * the
non-uniformity of channel wall deformation around the circumference of
the combustors.

In 1973, work began at LeRC to systematically investigate the problem
of thrust chamberlife.  The approach was: to use cyclic testing under
controlled conditions, and with a test procedure specifically designed
to study thrust chamber life, finite element analyses were performed
to compute strain range. Attempts were made to predict life assuming
low cycle thermal fatigue failure mechanics and using life data from
universal isothermal laboratory fatigue tests as a reference. This
life prediction procedure was generally unsuccessful. Consequently,
it was decided that an analytical method that models the observed
cyclic creep phenomenon was needed to improve life prediction
capability.

An analytical ~method was -developed that periodically- updates the
chamber finite element geometry to account for accrued wall thinning
and distortion. The methodology consists of analyzing the chamber
considering more increments in the duty cycle and geometric
deformation effects. The geometric deformation formulation allows the
analysis to adjust to small geometry changes that occur during each
duty cycle and are cumulative in nature. In order to minimize
computer time, an extrapolation procedure is utilized. To perform the
analysis, five duty cycles are sequentially analyzed and the change in
geometric shape 1is extrapolated to the deformation conditions 153
cycles futher on, e.g., 5 cycles + 15 cycles = 20 cycle condition.
Using the new geometry, additional duty cycles are analyzed and
another- extrapolated shape projection made. This - technique is
continued until failure occurs.  Failure is based on -the tensile
instability failure criterion. Cyclic creep life analysis results for
several chamber life enhancing designs, when compared to the typically
used low cycle fatigue (LCF) apalysis results, show that the usable
cyclic creep life is approximately 30 to 50% of the LCF life.
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STRUCTURAL ANALYSIS MODEL
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CYCLIC CREEP LIFE ANALYSIS SCHEMATIC
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MID-CHANNEL WALL PERMANENT DEFORMATION (THINNING)
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COMPARISON OF LIFE ENHANCED DESIGNS
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SUMMARY

# Analytical model provides a refined analysis

that models the observed failure mode

Predicted cyclic-creep life is typically

30 to 50% of the low-cycle-fatigue life

# The most feasible approach to increasing

SSME-MCC life is increasing the number of

coolant channels
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