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EFFECTS OF BEARING DEADBANDS ON BEARING LOADS
AND ROTOR STABILITY

John R. Glaese and Angelia P. Bukley
Control Dynamics Company
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Introducticn

The problem of determining bearing loads and
stability properties of rotating machines such as the
turbopumps used in high performance rocket engines
1ike the Space Shuttle Main Engine (SSME) is complex.
Very high speeds are attained with significant fluid
flows. As a consequence, bearing loads are poten-
tially high with subsynchronous whirling 1likely.
Typically, models used to analyze such systems are
very complicated and nearly impossible to use for
gaining insight into the basic phenomena involved.
Linear models containing large numbers of degrees of
freedom have been developed and applied to the analy-
sis with mixed success. A significant nonlinearity
is ignored by these models. The bearings typically
have clearances of the order of .0005"-.0025". Since
these machines are balanced to very high precision,
the eccentricity of the rotor, i.e. the distance be-
tween the rotor center of mass and its geometric axis
is of the same order or smaller in magnitude. Thus,
bearing clearances or deadbands as they are more typ-
ically called, significantly affect the dynamics of
these systems and must be taken into account. Taking
this nonlinearity into account makes the analysis of
the dynamics much more difficult. It is very de-
sirable to have a simplified model of a turbopump
which retains the significant driving forces known to
be present but readily lends itself to analysis.
Such a model is available and is usually referred to
as the Jeffcott model. We have modified this model
by adding deadband effects along with fluid seal
forces as currently understood. Further, we have
rewritten the equations of motion for the model in
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polar coordinates. This formulation is more naturally
suited to the symmetry of the problem because the
whirl orbits tend to be circular.

In addition to seal forces and deadbands, we
have added a constant side force to the model to
account for the likely misalignments between bearings
and seals and also to account for hydrodynamic forces
resulting from pumping fluids which may not be per-
fectly balanced due to slight imperfections in the
internal geometry of the pump. The side force and
deadband effects, working together, significantly
affect the stability properties of the system in an
interesting way. Stability may be enhanced under
proper combinations but 1is only local stability in
that it is possible to drive the system into insta-
bility by impulsive disturbances or Tlarge rotor
imbalances.

The Jeffcott rotor is closer to reality than it
may appear to the casual observer. Periodic synchro-
nous or nonsynchronous orbiting motions of the rotor,
referred to as whirls, are normally the motions of
the system exhibited. Such an orbital motion can be
described by a planar model. Thus, values for the
effective mass, stiffness, deadband and seal coef-
ficients can be found which will approximate the
behavior of the more complex models. While exact
frequencies of critical speeds and stability boun-
daries cannot be inferred from Jeffcott models, very
good qualitative behavior can be investigated with
these models and refined by higher fidelity hybrid
simulations. For this reason, we consider the
augmented Jeffcott model as the model of choice for
developing an  understanding of rotor  whirl
phenomena.

Force Models & System Equations of Motion

The assumed geometry for the derivation of the
equations of motion of the simple rotor model is
depicted in Figure 1. The vector r is the displace-
ment of the rotor center from its equilibrium posi-
tion (rotor at rest). The angle ¢ 1is the angle made
by r with the horizontal axis and is referred to as
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Figure 2. Vector force diagram,
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the whirl angle. The rotor eccentricity is repre-
sented by the vector e, the magnitude of which is
constant. The shaft speed is denoted by w and is
assumed constant for the analysis. The equations of
motion are derived in polar coordinates. The unit
vectors up, uy, and uy in the figure indicate the
polar coordinate reference frame.

The forces which must be considered in the for-
mulation of the equations of motion include bearing
forces, seal forces, imbalance forces, and side
forces. Figure 2 is a vector force diagram which in-
dicates the direction in which each of the various
forces acts. The turbopump rotors are maintained in
position by bearing forces. These bearing forces are
generated by a rather complex interaction involving
bending forces of the rotor shaft, the deformation of
the bearing balls or rollers, the motion and defor-
mation of the bearing races, the bearing retainers,
the bearing carriers, etc. For our purposes, we as-
sume that the bearing acts as a linear spring. How-
ever, clearances between bearing races and carriers
or shafts allow some small region of free motion of
the rotor shaft relative to its housing. For sim-
plicity, we idealize the bearing balls or rollers as
a uniform annular ring separating the rotor shaft and
housing. The bearing force curve is idealized for
the analysis as

{Kg(r_-gy_r) Irl>g
0 Irl<g

Fg = (1)

where Kg is the bearing stiffness and g is the dead-
band. ?f the magnitude of r is less than g, then the
bearing forces are assumed to be zero.

The fluid being pumped reacts upon the rotor
with forces that are dependent upon rotor position
and velocity and can be represented by linear models
for small displacements.l The seals prevent the high
pressure fluid from leaking away and also  generate
forces on the rotor which can be modeled Tlinearly.
The assumed form representing these forces is given

by
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Fseal = -CsF - Kgr + Qs uy x r + Cq ux x F (2)

where Kg is the seal stiffness, Cg is the seal damp-
ing coefficient, Qg is the cross coupling stiffness,
and Cy is the cross coupling damping. These forces
have the potential to drive whirl instability.

The force due to the mass eccentricity is a
rotating force whose magnitude varies as the square
of the rotor speed and is directed toward the rotor
center of mass. This force is potentially destruc-
tive and must be minimized by stringent balancing of
the turbopump rotors. The form of this force is

E.e = =M 0.!2 E_ (3)
with m representing the mass of the rotor. The
values of the parameters in the equations above are
chosen such that the system model is representative
of the SSME high-pressure oxygen turbopump. These
values are: Kg = 106 1bs/in; Kg = 2.0 x 105 1bs/in;
Cg = 200 1bs-sec/in; Co = 40 1bs-sec/in; Qs = Cguw/2
1bs/in; and m = 0.20422 1bs-secZ/in. Five deadband
values are considered and are 0.5, 1.0, 1.5, 2.0, and
2.5 mils. Two values of rotor eccentricity are also
used, they are 0.1 and 0.2 mils. Side force values
range from 600 to 1200 pounds in the investigation.

The force equation for the system may be written as
m(f + &) =7 Fj , (4)
i
with the summation representing the forces due to the
seals, bearings, and the side force. The vector
equation for the system is, therefore
mi = -Kg (r -gup) -Kg r - Cgf +
0s Ux X X +Cqux x ¥+ Fs + mu” e (5)

Performing the vector cross products and derivatives
indicated in equation 5 above, the following second
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order differential equations which describe the
system are obtained.

-KB Ks CS CQ FS

F=e—(rg) - —r-—p-—rp+—cosp +
m m m m m
.2 2
r¢“ + w’e cos (wt-¢) (6)
e QS CS . CQ i Fs 2%&
$ F e = e pF — == — SiNp - ——
m m m r m r
, (7)
w'e
+ — sin (wt - ¢)
r

Limit Cycle Analysis

Analysis of the system is more readily carried
out when the equations of motion are cast in state
variable form.

Let

pp = T pp=t p3=¢ p4 =¢  (8)
Then

P2 (9)

—(KB + Kg) Cs CQ
~————— Pp1 +Kgg - — P2 - — P1 P4
m m m

P1

P2
(10)

s
+ — €0S P3 + w2e cos (wt - p3) + pp + P42
m

P3 = P4 (11)
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. Qs Cs Cq P2 Fs
pg = — - — pg + - sin p3
i m m pi m p1

(12)
2
2
+ 25 sin (wt-p3) - PaP4
P1 P1

In this form, the system is amenable to solution by
numerical methods. Three different types of orbits
are observed when the system of equation is solved
for different values of deadband, side force, and
rotor eccentricity. These are referred to as A-type,
B-type, and C-type motion.2  Illustrations of the
three are shown 1in Figures 3 through 5. A-type
motion is periodic and does not encircle the origin.
B-type motion 1is nonperiodic and somewhat random in
nature. C-type is periodic and does surround the
origin. The A-type and C-type motions are limit
cycles. ,

To characterize the limit cycle motions present
in the rotor system, an algorithm has been developed
which will converge to a set of initial conditions
for the four system states which, when input into a
simulation of this system, will cause the system to
immediately exhibit the limit cycle behavior. The
algorithm is based on the fact that the function for
which the Timit cycle initial conditions are sought
is periodic. That is, the orbit comes back around to
the same point once each cycle. The idea is to
determine that such a point exists and the values of
the system states which satisfy this condition.

Given the state equations which describe the
system, a solution to the states may be obtained
through integration. The mathematical statement of
the problem is:

p = f (p,t) (13)

the solution to which is
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Figure 5. C-tyne rotor motion,
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t
p(t) =po+ [ f (p,7)dr (14)
0

where po is some initial state. It is desired to
determine the p, such that

plt) =po for t=T (15)
2n

where T = — s (16)
w

the period of the function. In other words, we wish
to determine pg so that the integral in Equation 14
is zero. The problem may be restated as

p(T) = po + g(p) . (17)

i

If g(p) can be driven to zero, then p(T) = pg

The function g(p) may be approximated to lst order by

g(p) =g (po) * cAp (18)

v‘o:
o o

Po

where Ap is some incremental change in the state vec-
tor p.  This is the quantity to be determined. It
will be added to the original state vector. Because
we wish g{p) to be zero, Equation 17 is rewritten as

0=g (po) +J - (p - po) (19)
where
Ap =P - Po (20)

and J is the Jacobian of g(p). The solution for ap

is
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ap = J3-1 (-g(po)) . (21)

A new set of initial states is formed as

Popew = Poold * 4P . (22)

For orbits which are C-type, another modification to
the algorithm is required. Because the whirl angle,
¢, is not periodic but increasing with time, this
method left unmodified will not converge to a solu-
tion. To force ¢ to appear to be periodic, the value
2n is subtracted from the ¢ component of the state
vector value at time t = T. This procedure will, in
fact, allow the algorithm to converge to a solution
to the C-type orbit initial conditions.

The plot of the limit cycle shown in Figure 3 is
obtained using the initial conditions obtained with
the algorithm described above. Figure 6 is a plot of
that same 1imit cycle including the transients that
occur when a simulation of the system is executed
with the initial conditions set at zero. Likewise,
the plot in Figure 5 is obtained using limit cycle
initial conditions obtained with the algorithm.
Figure 7 is a plot of the same orbit obtained from
zero initial conditions,

Stability Analysis

The approach taken in the determination of system
stability is to examine the equations of motion,
omitting the imbalance force terms. This procedure
greatly simplifies the analysis. Our studies indi-
cate that side forces and deadbands are influential
on local stability. Under the influence of a side
force, the rotor shifts to a position of equilibrium
when no imbalance is present. The addition of an
imbalance, 1in general, causes the rotor to whirl
about the equilibrium point. The position of the
equilibrium point is dependent upon the magnitude of
the side force, the deadband, and the stiffness coef-
ficients. The position of the equilibrium, with
respect to the deadband, determines the type of orbit
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in which the rotor will whirl. Generally, if the
equilibrium point is outside the deadband, the rotor
exhibits A-type motion with C-type motion resulting
if the equilibrium point is inside the deadband.

The two parameters defining the equilibrium point
are rg, the magnitude of the displacement of the
rotor center from the rest position, and ¢g, the
angle made by rg with the horizontal axis. If the
rotor is in equilibrium, then the forces in the
radial and transverse directions must both sum to
zero. Because they have been balanced by the side
force, force terms arising due to the spin of the
shaft have no influence on the equilibrium point.
The two equations defining the equilibrium point are,
therefore,

Kg (rg - g) + Kg rg = Fg c0s ¢g (23)

Qs ro = Fs sin ¢ (24)
where Fg is used to denote side force magnitude. If
we define Fp to be the side force in the radial
direction and Fy; to be the side force in the
tangential direction, then the following expression
is true.

Fs* = Fpo + Fy? (25)

Using equations 23 and 24 with equation 25 makes
possible the solution for rg which is

(KB+Ks)Kpg + \!FsZE(KB+KS)2+QSZ] - Qg’Kg*g?

(Kg + Kg)? + Qg2

(26)

m=

Note that when there is no deadband, any value of
side force will result in a positive solution for rg.
However, in the presence of a deadband, the magnitude
of the side force must be sufficient to push the
rotor out to the bearing or else the bearing stiff-
ness plays no role in the determination of rg. The
minimum side force required to overcome the seal
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stiffness is denoted Fgqry and is defined by the
expression

FSMIN = '\/ (Ks2 + Qsz)g2 . (27)

For any value of side force less than Fgyry, the
value of rg is the positive solution to Equation 26
with Kg set to zero. For cases in which the side
force 1s greater than Fgyiy and two positive solu-
tions result, then rp is equal to the larger of the
two values because it will lie outside the deadband
due to the side force being sufficient to move the
rotor to such a position. The angle ¢g is easily
obtained once the solution for rg is determined.

With the equilibrium points well in hand, we may
now proceed. Recall the vector equation which
describes the system. It is repeated here, with the
imbalance term omitted.

mi = -Kg(r - g) u (r - g) ep -Kgrep + Qsex x rer

- CgF + Coex x F (28)

We make the following definitions for r and ey,
r=ro+*s (29)
r=rg+ Sy (30)
er = er, * Sep (31)

where rg is the equilibrium position vector, ep, is
the unTt vector in the direction of rgy, and § and ser
are the perturbations associated with r and ep
respectively. The radial component of r with its
perturbation is Equation 30. Another way to express
& s

ro + 8§ "o § reg Vo

p— = + = - T e 8
lro + sl | rol | rol | rol?

+ e (32)

L =
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which is equivalent to:

8z

Er=8ry * & - (33)

"o

We now examine the nonlinear deadband term in
Equation 27. In the small and to a first order
approximation,

Kg (r-g) ulr-g e

(ro - @) (34)
= -Kproero * Kager, - Kpdyer, - Kp — 6284
o

with 6y and §, being the small perturbations about
the equilibrium. It follows, therefore, that in
terms of the perturbation variables, the system may
be expressed in the following form:

L4

m Yy _ KS + KB Q 6)1
[ -Q KS + KB (1 - go )
S Sz
Cs Cq y
- B L3 (35)
-CQ Cs 8z

g
Where gg = — .

To
The effects of side forces are now inherent in the
formulation. Stability may be assessed through exam-

ination of equation 35. State assigmments for the
perturbation variables are given below.
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X] = 8y X2 = 8y X3 = 84 X4 = §, (36)

Rewriting 34 in state variable format yields the
following differential equations.

= % (37)
. K Cs Qs CQ
Xg = = — X} - Xp = —— X3 - X4 (38)
m m m m
S (39)
. Qs C Ks + Kg (1 - go )
X = Xy + Q Xp - X3 (40)
m m m
Cs
-—x

m

The sum KB + Ks has been replaced by K for sim-

plicity's sake. The system matrix is formed as
before from which the characteristic equation is
derived by solving the determinant of [sI - A].

c Qs®
.2 s 2 s
P(s) = [s" + —s + K+ 4" - —]
m m
2 (41)
Cs Qs
[+ Zs+K- a%- —]
m m

The stability boundaries established are plotted in
Figure 8. Several interesting facts are observed
when this figure is examined. The stability boundary
for a deadband of zero is a constant 4848 radians/
second, the dashed curve in the figure. This is the
same stability boundary which may be established for
the simplest form of the system.d This frequency is
considered to be the global stability boundary. That
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is, the system is globally unstable when run at fre-
quencies higher than this value. Local stability, or
stability in the small, may be enhanced by other fac-
tors.

Notice that all five of the non-zero deadband stabi-
1ity curves are very similar in their general charac-
ter. The maxima appear at approximately the same
spin frequency as do their minima. We have shown
that these curves do, indeed, collapse into a single
curve when the system is nondimensionalized. To ac-
complish this, the units of displacement, force, and
time are modified 1in such a way that the system
parameters become unitless. Displacements are ex-
pressed in units of g, the deadband. Forces may be
expressed as the product of the seal stiffness and
deadband. Time is exzfgsggg_jg_jg;ps of the system
natural frequency is A/m/(Kg + Kg). Figure 9 is a
plot of the stability boundary for the normalized
system. With this curve and the given conversion
factors, one may determine the stability boundary for
any deadband value.

Bearing Loads Considerations

One of the major points of the study is to deter-
mine the effects of the system parameters on bearing
loads. If these loads become too large, the effects
are detrimental. Initially, we will look into this
matter using a system with no side forces present,
but with a rotor imbalance. We will then take into
consideration the added effects of a side force pre-
sent in the system.

Plotted in Figure 10 are the bearing loads which
result when the rotor eccentricity is 0.1 mils. The
deadband range is from 0.0 to 0.2 mils. The general
behavior is that the smaller deadband produces the
Targest bearing load. This makes sense because the
seal forces must be overcome before there is any
interaction between the rotor and the bearings. The
more distance between the rotor and the bearing there
is, the more effect the seal forces have. It has
been shown that if the rotor eccentricity is doubled,
the bearing loads also double if all other parameters
are left unchanged.3
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Bearing load analysis is performed for two non-
zero side force values. A value of side force is
chosen so that it is always greater than Fgyiy for
any of the five deadbands considered up to a fre-
quency of 5000 radians per second. Figure 11 is a
plot of the bearing loads for the deadbands of 0.5 to
2.5 mils for the side force of 1350 pounds. The max-
imum bearing loads occur at the system natural fre-
quency of approximately 2424 radians/second, the
smallest deadband producing the largest load. The
load curves are plotted only up to a shaft spin fre-
quency of 4000 radians because the system becomes
unstable for frequencies higher than that. The pres-
ence of the rotor eccentricity of 0.2 mils is respon-
sible for the unstable behavior.

A similar family of curves is produced when the
side force is increased to twice that of the "minimum"
side force, or, 2700 pounds. The plots of these
bearing loads are given in Figure 12. The same gen-
eral behavior is exhibited as before.  Instability
occurs somewhat sooner, at 3400 radians/second. The
l1oads are much greater, as well.

The curves presented were generated using the
simulation to determine the maximum rotor displace-
ment, after steady-state is achieved. Having this
value, it is a simple matter to compute the bearing
load. Equation 43 is used.

BFMAX = Kglrmax - 9) (43)
Conclusions

In the previous sections we have discussed the
modeling and analysis of the problem. It is now time
to review and summarize our results.

1. Observed 3 motion types called A, B, C;

A - Periodic but does not enclose origin, may
include higher harmonics;

B - Nonperiodic;

C - Periodic enclosing origin, synchronous or
nonsynchronous;
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2. Limit Cycle Algorithm developed and employed,
both A & C types observed.

3. Deadband does not affect stability-in-the-
large.

4. Stability-in-the-small are affected (enhanced)
by deadband and sideforce.

5. Bearing loads are largest for C-type motion.

6. Side force acting in concert with deadband
effects may either increase or decrease bearing
Toads.

7. Bearing loads in a stable pump are determined
primarily by rotor imbalance and side forces.

These results are quite significant in our under-
standing of the effects of bearing deadbands.
Harmonics of snychronous and nonsynchronous oscilla-
tions have been observed. This is clearly a nonlin-
sar effect. Stable 1limit cycle whirls have been
observed occurring at synchronous and nonsynchronous
rotor speeds in our results.

The limit cycle algorithm that we have developed
can be generalized to more complex turbopump models
with more degrees of freedom. It will be useful for
1oads analysis with nonlinear forces for rotor dyna-
mics and other applications. It is capable of con-
verging to periodic motions (solutions) which
generally result in the highest load-producing con-
ditions. ‘

Since stability-in-the-large is ultimately deter-
mined by behavior at extremely large amplitudes of
motion, deadband effects become negligible. Thus,
linear models remain adequate for analysis of global
stability properties. Stability-in-the-small is
significantly altered by the nonlinear effects of
deadbands. We have shown that sideforces can signi-
ficantly enhance stability provided imbalance offsets
and/or impulsive disturbances do not cause signifi-
cant displacement from the equilibrium position of
the rotor.

Bearing loads have been shown to be significantly
modified by deadband effects. Critical speeds are
altered. Loads may increase or decrease. The shape
of the critical response curve is altered with higher
lToading at lower frequencies due to the deadband.

364



These results have been obtained using a relati-
vely simple 2 degree-of-freedom model. This may lead
one to believe the results are not applicable to real
machines. This is not the case, however, and indeed
one can argue and demonstrate with more sophisticated
models that these effects are real. Since rotor
responses are most often periodic, such motions can
be described adequately by an effective mass
responding to effective stiffnesses and deadbands,
j.e., a 2-dimensional model. Thus, our results are
at least qualitatively valid for the description of
turbo-pump motions.
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