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The hent conductivity r of insulating crystals behaves roughly

as T-1 (where T is absolute temperature) with a confficient which depends

on the details of anharmonic interactions and thus is not easy to

compute. This.project has focussed on the case where r, is small indicating

large anharmonic scattering and correspondingly short phonor. mean free paths.

In this limit the magnitude of r is similar to those found in glasses

(i.e. til W/mK, to within a factor of 3 or so). Long ago Kittel1 suggested

that the weak dependence of r on T in glasses arises because vibrational

energy propagates freely (as phonons) over distances (i.e. mean free

paths, 1) not much larger than intermolecular spacings. In this situation,

anharmonic scattering is not likely to cause much further degradation of

1, and thus Xveonst instead of VvT 1 , leaving Kticonst. More recently,

Slack  and the author  pointed out that even in crystalline material,

anharmonic scattering could sometimes make 1 as short as intermolecular

spacings,-and that experiments suggest the possibility that in these

circumstances r behaves much as in glasses. This suggestion is equivalent

to saying that there is a lower limit, rminrykBB/ha below which r cannot

be driven by any process: alloying, vitrification, radiation damage, or

anharmonic thermal scattering.

This idea of a lower bound 
rmin 

clearly has adverse implications for the

ultimate efficiency of thermoelectric power generation. Therefore a principal

aim of this project was to discover whether experiment supported or denied

the existence of such a limit. No firm conclusion has been reached. The

clearest evidence for "saturation" of r at a lower limit comes from

experiments on materials such as CuCl 4 and adamantane 5 . These materials

quite clearly show K=T
-1
 at intermediate temperatures but r+const tir

min
 at



5	 ^
2

r

higher T. However, in both cases, the value of 
KIll1f1 

has a relatively

strong shift with pressure. The strong sensitivity of Kmin to small

changes in crystal properties suggests that there may still be ways

available to reduce K. i.e. that Kmin is not an impenetrable lower

bound. Further evidence is found in a variety of materials of which

?a	ice  is a good example, where K in the crystal near Tg 	 p
M

(meltin temperature)

still has a strong T-1  variation, yet the liquid state value of K is neither

greatly reduced nor much dependent on T. This behavior seems paradoxical;

Kliq should be not larger than 
Kmin' 

yet the solid has 
K%Kmin 

with no sign

of saturating. Deeper analysis of this situation is inhibited by two

factors: ('_) experimental values of K are particularly unreliable at

higher T. or when K is small, and (2) theory of K remains very poorly

developed. Two avenues have been explored with the aim of improving the

theoretical situation.

The first avenue is an attempt to provide a simple and reliable way

of estimating the coefficient of T-1  in the law for good crystals:

K=A/T. This is explained in detail in the accompanying preprint, which

proposes a method of estimating P, the-mean scattering rate of phonons

by anharmonic interactions. From the law C=B /T it was hoped that the

constant A=constxB could be evaluated. Our analysis shows that A is

up to an order of magnitude larger than expected from calculated values of

B. This discrepancy arises from a variety of sources which need a

detailed anharmonic calculation to sort out. The author plans to do

such a calculation with R. Shukla next year.

The second avenue is computer simulation. Mountain and McDonald8

have succeeded in reproducing the law K=A /T by this method in a two

dimensional case. The author has embarked on such calculations in
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collaboration with a student, G. Chen, and with D. Emin of Sandia Labs.

The conclusion so .far is that heat conductivity remains incompletely

understood; further experiments and theories are needed even to clarify

such a fundamental question as whether a lower limit Kmin exists.
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ABSTRACT

Tne rate I' Pi for a phonon to decay by lowest-order anharmonic

procecsea is proportional I:o T for T>8 D . The Brillouin-zone average

f of rQj is discussed in detail. An approximate formula for P 1s found

which agrees accurately with an explicit calculation for an fee crystal

with nearest neighbor Lennard-Jones interactions. The Brillouin-zone

average squared anharmonic matrix element is contained in a parameter

called A3 wh'ich is the sum of the squares of all third order force

constants. The other important parameter is WTI  the , mean square frequency

which is the trace of the dynamical matrix, or the sum of all diagonal

(Koa (ti,ti)) second-order force constants. The result is a formula

f/(w^)
l/2

 =CA 3kBT/(w Z ) 3 where C is (37Y/8)(d3 /f 4 ) and d3 and f4 are

complicated averages over the harmonic frequency spectrum. To accuracy

of P00%, C can be replaced by 1. Thus f can be very easily estimated

when second and third order force constants are known. An "anharmonicity

temperature" e  is defined by the formula I/ (w ) 2' /2-T/B A . When T=O A' the

broadening of the phonons is predicted to be as large on average as the

frequency, a signal that perturbation theory is no longer valid. The theory

is applied to fee crystals with Lenuard-Jones potentials, and rocksalt-

structure crystals with Born-Mayer plus Coulomb potentials describing

anharmonic interactions, but a shell model describing harmonic properties.

In all cases BA is found to be only one to two times greater than the	
_

melting temperature. This is compatible with experiment for rare gas crystals

but may overestimate Oe anharmonic strength in rocksalt-structure ionic

materials by as much as a factor of 2. An average decay rate r(K)

extracted from experimental thermal conductivity is typically an order

of magnitude less than P.



INTRODUCTION

,j
In crystalline insulators which are not too anharmonic, a thermal

phonon (w1) decays 
1,2 

primarily through third -order anharmonic coupling

(V3), by emitting or absorbing another thermal phonon (w2). In the

y	 classical regime (TtOD) the probability is proportional to the thermal

occupancy of the second phonon, n(w 2)MkBT/hw2 , giving a decay rate rl

increasing linearly with T. Th:ts paper explores ways of estimating f,

defined as the Brillouin-zone average of rl	 ^=r(Ql j l). The motivation
It,

is that f can be estimated in a simple way when information about V3

(such as a pair potential) is available, whereas r  involves difficult

energy and momentum conservation restrictions. Another motivation is

that information about phonon decay rates is needed for analysis of other

processes, especially sound attenuation, and heat conduction. The thermal

conductivity) K involves a Brillouin zone average 1/r of a reciprocal

scattering rate ri 1 weighted by squared group velocities.

Our search for a simplified formula for f has been guided by analogous

results in the electron -phonon problem3 . In particular, the mean electron

scattering rate, 1/t, in a metal with T>O D , is given by 27TXkBT/t , where

the electron-phonon coupling constant x has been extensively studied

because of its connection with the superconducting transition temperature.4

A formula for estimating X has been developed by Butler e't .al. , 5 following

pioneering work by McMillan 6 , Hopfield7 , and Gaspari and Gyorffyb:

X - N(0)<12>%M<w2>	 (1)

^t

i

i

Our approximation for r is a close analog of this equation.



in subsequent sections we derive our approximate formula, test 	 1

it for a nearest -neighbor Lennard-Jones potential, and apply it to

rare gas crystals and rocksalt s tructure crystals.

2. A.SUM RDLE , RELATED . TQ.r

We denote phonon quantum numbers (Q l ,i l) by Ql , and more simply,

by 1. The decay rate of a phonon in lowest order is2,9

fir ° n E (V 3 (1,2,3)1 2 ((n2+n3+1)6(`jwlInW2 4W3)
2,3

+ 2(n2-n3 )6(twI+tW2 -11w3)}.	 (2)

Momentum conservation restrictions on Q 2 and Q3 are contained in the

anharmonic matrix element V 3 (1,2 , 3). We find it simplifies algebra not

to exploit translational invariance, but to work instead with general

harmonic eigenstates denoted by the label i,

I
wiva (R r i) = E Ka$2) ( R,R^)ug'(R ,i)	 (3)

R,6

Kas) (R,R^)	 (MRM2,)-1/2a2p/aRRaDBR,s. 	 (4)

Here R labels the atoms - it summarizes a vector R 10 which locates the

equilibrium site,, and an index a or b which denotes the atomic species
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at that site. K (2) is the coordinate space dyna ' ^al matrix, and

%(I l i) is the normalized eigenvector of the i th mode. The normalization

and completeness relations are

R Saua( R ,i) ua ( R ,J) ° 61j	 (5),

It
E ua(1,1)us(f'1'i) a 6a8 6 LE I 	(6)i

The crystal displacement operator 6Ra (R) is given in terms of the

dimensionless eigenvectors ua (R,i) by

6Ra (R) = E(t/2MRw1) 1/2ua (R,i)^i	(7)
i

where 0i is the dimensionless field operator (ai+ai)  and aii s the

creation operator. When the states i are chosen to be eigenstates of

the translation operators, we write ua ( R ,i) as

i•Q•R

ua( R 1 1 ) ° N-1/2ca(Qj.a)e v tiR
	

(8)

where N is the number of unit cells in the crystal and a labels

the atoms in the unit cell. Whan eq. (8) is used in eqs.

(5 1 6)0 we recover the usual orthogonality and completeness relations for

the polarization vectors co . The field operator ¢ i becomes 0Qj=aQj+aQj.
IV, ti ti

In terms of the eigenvectors u i , the anharmonic matrix element

V3 (1,2,3) is defined by

t
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(1

^'1A	 (1/3:) I V3(1,2,3)41f243	 (9)
1„203

V3(1,2,3) .	 E	 (t /2)3/2(w1w2w3)-1/2uo(R,l)
to j%iR oo

x u0(R,.2)uY(R",3)K(3)(R,k',R") 	 (10)

K(3)(R0R^0k^^) e (MRMR tMR ii) -1/2a3E/ aRRo aRR , 6 aRR„Y . • (11)

A summation convention is used for repeated Greek subscripts. We are

interested in the high T limit of eq. (2), namely

r1 = (
nkBT/t3 ) E IV3(1,2,37I2(w1/w2w3)

2,3

X [6(w
1
 - w2-w3)+26(w1+w2-w3)]. 	 (12)

Notice that 'h-3 in eq. (12) cancels against t 3 in I V3I 2 (eq. 10); eq.(12) is

classical. We would like to evaluate F=(3N a) -1Ef1 . Instead,we shall

examine the sum

A3 E (B/3Na 3 ) E IV 3 (1,2,3) I 2wIw2w3	 (13)

1,2,3

which can be related to P in roughly the same way that McMillan related

<12 > to X. Like <I2>, A3 is surprisingly easy to evaluate. Because the

factor w1w?w3 in (13) cancels against a factor in IV 3 I 2 (eq.10), the

eigenstate labels (1,2,3) appear only on the eigenvectors. The sums on

1,,2,3 are then performed by completeness (eq.6).giving the sum rule

.
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A - (3N 
)-1	 E	 [Ke(aY(L^R,,Rn)j2.

3	 a	
t o il o il ' ,a,D,Y

(14)

The quantity (Ka(3)(R,R',R" )j2 quite generally is short-ranged in IRR RR ,I and

IRR-RR„I; even for 1/r potentials, ( K (3) j 2 falls off as r-8 . Thus, if

K(3) is known, A3 is easily evaluated. A3 seems to be both a natural and

a simple measure of anharmonicity.

In order to connect Az with T, we define two fairly complicated

quantities.

Dr	 1.2	
6(

3 IV3 (1,2,3)I 2wlw2w3 wi w2-w)3	
(15)

3 
a	

E I
V 3( 1 , 2 , 3) I 2w1w2w-

1,2,3

> Q .1.2.3IV3
(1,2, 3 ) I2wlw2w3(6(w^ w2-w3)+26(wl+w2-w3)j

<W4 > 	 (16)
r	

E IV3 (1,2,3)I 2wl (w2w3 )
-1 (6(wl ..w?-w3)+26(wl-Rd -w3))

1,2,3

Using these and eq. (11), we get a rigorous formula for r at high T

I' _ (3Na)-1 1 rl	30RTA3D3/8<w 4 > r .
	

(17)

The purpose of writing T this way is that A 3 is now fairly simple, and

the complexities have been displaced into quantities D 3 and <w4 > r which

we hope to be able to evaluate approximately, by dropping the factor

IV 3 (1,2,3)I 2wIW2w3 from numerator and denominator of egs.(15,16). This

is known as toe "Peierls approximation" (see ref. 1 pp-3S-39). In the present

Then we get approximatecontext it is somewhat uncontrolled, but will be tested.

versions of D3 and <w 4 > r , denoted D3 and <w4 >,

D3 a	 E 6(w -Ww2-w3)/ E 1
1,2,3	 1,2,3

(18)
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E [6(ww -w )+26(w +w -w )]
<w4> 0 ,11 2 -3	 1-	 3	 (19)

E ;wywi)-2(6(wl-w2-w3)+26(
1,2,3	

wl+w2-w3))

P ry (3n/8)y A3D3/<w4> . 1 	(20)

The interpretation of D3 is that it measures the average decay density of

states, that is, the number of processes available per unit frequency interval

for a phonon to decay into two phonons conserving only energy. The quantity

<w4 > provides a measure of the typical value of thr. fartor (u2W 3 ) 2 which appears

in the denominator of eq.(16) when the symmetrized numerator w lw2w3 is used.

.-Mc expect eqs. (18,19) to be moderately good approximations to eqs.

(15,16) not because the weight factor IV3 (1,2,3jl 2wIw2w3 is constant, but

instead because many states are summed both in the exact forms (15,16) and

in the approximate forms (18,19). We rely on the cancellation of errors which

are more random than systematic. In the exact forme (15,16) the states are

restricted by momentum conservation but this is omitted in the approxitnate

forms. Of course momentum conservation is very important in eq.(12), and is

taken into account in the evaluation of A 3 (eq.13) when the exact result (14)

is used.

It is - now coavenient to rearrange eq. (20) in order, to make several

dimensionless parameters. First, we introduce the mean square phonon

frequency 77

w2 = (3Na)-1 1 wl .. (3Na)-lZ Kua) ( R . f ) .	 (21)

,'
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Here we are using eq. (3) and tRle fact that Ew2 is the sum of the eigen-

valuos of Lhe dynamical matrix Kap ) (t,8') (eq.4) and therefore also equal

to the trace of the dynamical mnLrix. Using w2 we introduce dimensionless

versions of the paramntere D 3 and <w4>

d3 = (w
T

) 1/2D3	 (22)

f4 = <wl>/(wT)2.	 (23)

The decay rate is made dimensionless by normalizing to the rms frequency.

C/(w2)3,/2 . (31j/8)(d 3 /f4)A3kBT /(72 ) 1.	(24)

3. NEAREST NEIGHBOR LENNARD-JONES MODEL

To illustrate and test our approximations, we chose a model crystal

with identical atoms interacting via the Lennard-Jones (LJ) potential

v(r) - 4cf(o/r) 12-(o/r) 6 1. 	(25)

For further simplification we let this act only on nearest neighbors (NNLJ

moedl). A rather similar model, but parametrized so as to apply to metallic

Pb, was treated in ref. 2 by methods somewhat similar to ours. The crystal

is assumed fee with nearest neighbor distance chosen to minimize v(r)

in eq. (25), i.e, r
og2

1/6a where v(r o)--c. To evaluate
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cj)7 and A 3 we need expressions for the derivatives of the additive energy

of pair potentials:

a2E -b (
R-1^) (R1a-81,a) (R18-R1,8) - b (1-1

1 ) 6	 (26a)
DRRaDRR ,p	 2	 ryR-R	

1	 as

a 3E, (RIa-R 11a
)(R1BR1,8)(R1Y-R1,Y)

DRtoaRR,daRZ , Y - a3 (A. N 
) 1 3RZ-R1,

v A,

(RRa-RR'a ) 68 
+(R18-RR , B )6 a

+(R1 -R1 , )6^

+ a2 (rV	 )	 R ,_
R	 (26b)

R 1
v ti

These expressions are valid for 1'¢9. When 1'-1, the corresponding expressions

are:

R
a 2E/3R1a RRto - E 32E / aRtaaRR,O

1

R

a 3E/aRRa DR18 aR1y - 
R' a

3E/3R to DR1,8aRR,Y.

(27a)

(27b)

The coefficients blob 
29 

a2 , a3 are

b - 1 av_
1	 r ar

a
b 2

-r 
arbl

a2 (r) - ar bl

a
3 
(r)a 

r2 ar (r a2 
(0)

(28a)

(28b)

(28c)

(28d)
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From these formulas one can get a general expression for wT (eq. 21) and

A3 (eq. 14) for any material described by pair potentials (PP)

.

wy(PP) - (3N) -1 EM-1[b2(R-R')+3b1(R-R')]
Li t t k 

(29a)

A3 (PP)- (3N ) 	 (HI M 2 -1Ia3(R-R')2+6a3(R-V)a2(R-V)+15a2(R-k,)2].

(29b)

For the NNLJ model these become:

W2 (NNLJ) - (4/M)[b2+3b 1] - 288c/2 1/3Mo2	(30)

A3 (NNLJ) - (12/M 3 )[a3+6a3a 2+15a2] - 13 1 903,488c 2 /M 30 6	(31)

Equation (24) then becomes

r/(wr) 112 (NNLJ) - (3n/8)(d 3 /f4)(149/128)(kBT/c).	 (32)

The parameters d 3 and f 4 were calculated to 1% accuracy by numerical

evaluation using a tetrahedron program. The values obtained are d3=.095,

f4-.129, and d3 /f 4=.737. As a test, m was found to be 287.0(c/21/3MO2),

agreeing well with the exact value of eq. (30). The corresponding value

of I' /(WT) 1/2 in the NNLJ model is 1.01(kBT/c).
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Our estimate of f involves the uncontrolled approximation of replacing
'	 1

.	 1	 1

IV31Zw1w2w3 by 1 in going.from (15) and (16) to (18) and (19). To test

this we have evaluated f directly from eq. (11) using the correct frequencies,

polarization vectors, and matrix elements V 3 of the NNLJ model. Crystal

momentum conservation was explicitly included, but the energy-conserving

I	 6 function was replaced by a Lorentzian Im(x-i6) -1/n of width comparable to the
't

finite mesh size increment Aw-ldw/dQIAQ. Using 4000 k-points in the

1lrillouin zone sums, the answer was t /(w2) 1/2=1.08(kIIT /c). This answer

^	 was stable to about 5% under changes in mesh size and 6. Theg	 good agreement
1I	 4	 1(

i

with our approximate answer, 1.01 (k$T/t), exceeds reasonable expectations 	
I

ii

and must be fortuitous. We do not expect the accuracy of eq. (24) to be

better than 20-30X.

1

4
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4. FULL LENNARD-JONES MODEL

The purpose of truncating the (6-12) potential at nearest neighbors

in the previous section was only to reduce the computer time needed to

calculate the matrix element V3 in the exact calculation. Our approximate

formulas are as easy to evaluate with rill neighbors as they are for first

neighbors only. We need the lattice sums

Z =_ E do/Ikl n	(33)
n Roo	 v

v
where d is the nearest neighbor distance and R runs over lattice vectors.

v

For an fcc lattice, the values of Z  needed here are Z 8=12.8019, Z14=1;.0590,

Z1B 12.0130, 224 12.0015, and Z30 12.002. Then A3 and	 can be evaluated

from eqs. (30,31):

WY - (8c/Mo2 ) p8 [ 22p6Z 14-5Z 8 1 	 (34)

cA3 - (8c/Mo 2 ) 3 (18P 18)[8575P 12230
-2716p6Z24+2 20218 1	 (35)

where p=o/d. In classical approximation at T-0 the atoms are stationary

and minimize the total energy. This occurs at p=p o=o/d o where do/o=(2Z12 /Z 6)1/6

-1.0902. At this value of p, the dimensionless anharmonic parameter

tA3 m 2 ) 3 equals 0.7172. The values of (d 3 ,f4 ) have been evaluated to 12

accuracy with a tetrahedron program. Results are shown in column 1 of

table 1. The width-to-frequency ratio t/(w 
)1/2 

is 0.76(k8T/t), 25%

smaller than in the NNLJ model. This is still a remarkably large number.

Rare gas crystals have melting temperatures Tm -0.7(c/ka ) at 1 atmosphere.

In our notation r=-2Imt is the full width at half maximum for a Lorentzian

lineshape. Thus the average phonon width at T=Tm is predicted to be ti50X
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of the rms frequency. This is so large that, at least for a significant

subset of the phonons, 2nd order perturbation theory can no longer be

accurate and quite probably we are outside the radius of convergence of

the perturbation series. Bohlin
10
 found by direct evaluation of eq. (2)

that LA phonons in Ne at T-4.7K (about 25% of Tm) had widths r as large

as 40-50% of the frequency. The failure of second-order thermodynamic

perturbation theory for Tk.Tm/3 had been noted by Klein et.al. 11 , and has

recently'been examined to higher order by Shukla and Cowley. 12 Neutron

experiments 13 in Kr have seen values of r Q comparable-to wQ for zone

boundary LA phonons at T close to Tm . Molecular dynamics simulations14

of S(Q,w) for LJ systems have also seen broad zone. boundary LA response

functions near Tm . One can then ask whether second order perturbation

theory gives qualitatively correct trends even in the regime C QtiwQ where

the justifications for perturbation theory fail. We are not able to answer

this quantitatively, but published dispersion curves, lineshapes, and

simulations all suggest that ill-defined phonons with r rtw are rarer than

our estimate gives. In other words, the actual behavior of the strongly

anharmonic system tends to give quasi-particle-like response even when

perturbation theory says that the quasi-particle picture should no longer

be valid. The other possibility is that ill-defined lineshapes are less

likely to appear in publication than well-defined ones, and that our

estimates remain reasonably accurate even near Tm.	
;4t

The source of the large anharmonicity lies in the steep and one-sided

nature of the r 
12 

potential used to model the large repulsions when closed

shells overlap, combined with the softness of the potential for r'urmin'

These factors also cause a large thermal expansion 15 of ti3Z at T  which,
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significantly alters the phonon response at 'higher T. In fig. 10 W 2 is

plotted versus d/o, showing a dramatic downward shift when d/o increases

by 3%. Thus it is important to use the corrected harmonic frequencies

at temperature T (quasi-harmonic model), and the corrected enharmonic

.matrix elements.. The measure A3 of anharmonicity also decreases drama-

tically as d/o increases, but not as rapidly as (w2')3 decreases, so that

the dimensionless factor cA3/(wT) 3 is quite strongly increasing as d/o

increases, as seen in fig. L - We have recalculated all parameters

at d/o-1.12, and the results are in column 2 of table 1. The width-to-

frequency ratio I/(w2)
1/2

 becomes 1.26(kBT/t), 66% higher than at

d/c-1.09. Thus using the quasi-harmonic approximation as a basis for

doing perturbation theory only makes the anomalous magnitude of

T/(w
7

) 1/2 more serious..

Finally we turn to thermal conductivity K. From Boltzmann theory

we obtain

K e (VT)-1 E 'hW vQxSQQ'mQ'vQ'x(- an4/awQ,)	 (36)
QQ'

where V is the volume, Q is short for phonon wavenumber and branch Qj, vQt

is the group velocity awQ/aQx , and n  is the equilibrium Bose-Einstein

distribution. In relaxation-time approximation, the scattering operator

SQQ , is r (K) 6QQ , where the superscript K reminds us that this differs

somewhat from the quasi-particle scattering rate f Q , especial,ly in that

N processes (non-Umklapp) are not fully effective in damping the heat flow.

At T>BD , nQ is kBT/twQ and (36) becomes

1
Kro3 kB Q QvIQK) '(37)
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Thus we define

fl v

4P V

2	
(38)

where N is the number ofatoms. The experimental value of K for At at

high T can be expressed as 16

11K - (5.3 x10 2)M
1/2d2 e

-3/2T. 	 (40)

'The number 5.3 x10 2 comes from constant volume measurements by Clayton and

Batchelder. 17 No other rare gas solids have been measured systematically

at constant volume, but the trends suggest that eq. (40) should be reasonably

accurate for all of them.

We have calculated v2-24.5c/M for LJ crystals at d/o=1.09 and vZ=14.2c/M

at d/ow1.12. Using the former value as more representative of the constant

volume conditions of ref. 16, and the value 7=449 . 2 c/Md2 obtained from

eq. (34) at d/a=1.09, we find

r(K)/(w2)1/2 - .087(kBT/e).
	

(41)

Thus f (K) is less by a factor of 9 than the theoretical value of r.

Three causes contribute to this discrepancy. (1) Since p(K) is

defined by an average of 1/rQ , it weights small values of 
r  

most strongly

(occurring for small Q acoustic phanons). This is reinforced by the

weighting factor of vQ in eq. (37). (2) Umklapps contribute fully to

fQK) , and.r., but N-processes occur more weakly in PQK ) . This should

contribute less than a factor of 2 to the discrepancy. (3) As previously.

(39)
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mentioned, quasiparticles may be better elementary excitations than

perturbation theory says they should be. This idea is supported by the

data of ref. 17. In cases where quasi-particle approximation is known

to fail, K seems to saturate18019 at a value Kmin rather than decreasing

as T7 	 The data of ref. 17 obey K-T 1 quite well.

It is not possible without detailed calculations to further subdivide

the cause of the large difference between r (K) and f. The most detailed

calculation to date 20 seems to agree well with ref. 17 but not to shed

much light on this question.

s

4 -t:	 air-"' ?+;
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5. UORN-BAYER MODEL FOR ROCKSALT STRUCTURE

Rocksalt (NaCI) structure compounds have been the subject of much

theoretical work, and there exist data on phonon linewidths in NaCl 21-26

and on the thermal conductivity27 of several compounds in the group.

Anharmonicity in these materials at %600K is weaker than in the rare gas

crystals near their melting points, allowing greater confidence in pertur-

bation theory. our starting point is a Born-Mayer-type pair potential 289

consisting of a Coulomb term and a nearest-neighbor repulsive exponential.

It is well known that the phonon dispersion wql is not very well fitted by

such potentials, especially the optic phonons, but it is believed 24 that the

enharmonic part of the interatomic force is adequately treated in this way.

Thus, we will calculate A3 from this pair potential, and take quantities

like the mean square frequency and group velocity from shell models that have

been previously fitted to detailed spectral data 29 . This model potential

has the advantage of permitting us to work out closed form expressions for

most of the interesting quantities, and to make direct comparison to other

calculations 24 . The Born-Mayer parameters will be taken from standard fits

to the lattice constant and compressibility; one could trivially extend our

results to a three-parameter model by introducing a non-integer effective

charge, as when, for example, one also wishes to fit to the total binding

energy.

For a rocksalt-structure crystal in which the atoms carry charges ±2e,

the pair interaction is taken to be

2ZiZi.e + C e-rRR, /P

rRR'

(42)

+t
i

F.

}

if
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The second term approximotes the overlap repulsion between adjncent

atoms, with C, p being chosen to fit a given compound. This term is

assumed (as part of the model and not as an additional approximation) to

b , nonzero only for nearest neighbors. The cohesive energy per particle is

given by

U . 2N r W ,R')
a l,R1

where the sum is over all sites of the lattice except that RJR'. Now let r
0

be the nearest neighbor distance, equal to a/2 where a is the lattice constant.

Cutting off the second term at nearest neighbors and introducing the

Madelung constant a=1.744..., we have

2 2	 -r /P
U(ro ) e - aZre + 6C e o	 (44)

o	 I

The lattice is stable for that value of r  which satisfies

aZ2e2	
ro	

-ra/P	 s

6Cp	 (p 
) 2 e	 (45)

Taking derivatives of ^, we calculate the quantities a 2 ,a 3 of (28a,b):

1
2

3e 4RZt'
C	 1 1)e-

r W /P
a 2 (C,R I ) o rl ^" _

rRR'

^' e _ +	 ( +

PRR' rRR, PrRR'	
r RR'

(46a)

1 v 111	 3	 3	 '(R R)	 +
15Z

RZ R' e2e C 1	 3 3	 -r it, 
/P

a	 P-	
ml'	 r'_2

_ P(P̂ +r
	

+PrRR')e
3	

1	
rERI

rER' it'
(46b)

(43)
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where it is again understood that when lattice sums are taken, the

exponential terms only include nearest neighbors. We can also work out

a Born-Mayer expression for the mean square frequency using eqs. (28,29)

-r /P
W (M++ ,̂- )P (P - ro)e	 ° .	 (47)

By the relation (45) all long-range terms are eliminated from (47), which

becomes a purely nearest-neighbor quantity; this sum rule 
30 

is simply a result

of the coulomb potential ' s satisfying Laplace's equation.

We next evaluate A3 , starting from expression (29). The lattice sums
I

over the long-range Coulomb terms need to be done with some care; the
f

result is
j,
r,

3	 1	 1	 15Z4 e 4 sc	 12Z2 e 2 C	
!!
i

A3 - 
M+r1- (

M+ + M_)i ro Z8	 r4	 P

	

o	
r

(^+ 3 + 3 )e-r°/P+ CZ(1^ +^_ + + 6 )e-2ro/P^

P	 rop ro	 PZ p	 p ro	 roP r°

4 4 
Z fcc	 r

+ 458 a B16 ( 1 _M ) 2(^ +M )	 (48)
ro	 + -	 + -

fcc

where Z8 =12.8019... and Z 8°=6.9458... are the lattice sums defined in

eq. (33), but specifically for face-cprtered and simple cubic, respectively.

Since the last term turns out to be small ( for realistic parameters) and Z8c

is only 16% greater than the nearest neighbor value., 6, we see I:hat A 3 is

dominated by the nearest neighbor force even in the case of long -ranged Coulomb

potentials.

It is instructive to compare our 72 with the same quantity calculated from

detailed models that closely fit the experimental w q . Using the shell mode124
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for NaCl, for example, we have obtained the density of states F(w) and

from it calculated wT. The result is IG71"AB-212 . 5K, while our

Born-Mayer model gives {1W	/kB"225 . 6K. This 6% discrepancy in the

rms frequency becomes a 40% discrepancy in (w y) 3 which is needed in eq. 24.

The agreement is less good, if we examine (w-̂)/wx2,which characterizes

the shape of the spectrum. The NaCl Horn -Mayer potential gives 0.291,

while the numerical result from the shell model is 0.523. The large error

is not surprising in view of the well-known underestimation of optic

frequencies in the simple model. Thus, it is preferable to use F(w) from

the full (shell model plus tetrahedron program) calculation to get the

factors d3 , f4 and wy in (24). I t is no more work to do this, since

even with the Born-Mayer potential the full F(w) (as distinct from its

first few moments) would have to be calculated numerically to get d 3 and

f4 . In the process of doing this we have also numerically calculated

reliable values for the mean square phonon velocity vT of (38).

We have obtained results for LIF O NaF, NaCl, KCI, KBr and MgO, these

being representative (highly ionic) rocksalt-structure materials for which

good thermal conductivity measurements 27 have been done; phonon linewidth

measurements appear to be available onl y for NaCl. 21-26 In Table II our

value of I'/^2 1/2 for NsCl is compared with the measured ratios r 4/wQ for

several phonons. Our results for w 2 , A3 , v2 , and r are given in Table III,

together with the experimental thermal conductivities of all six materials,

and the values of r (K) derived from them.

For NaCl, our value of r/w
21/2 is bigger by factors between 1.2 and 7

than the various experimental ratios. Unlike the case of argon, one cannot

ascribe this disagreement to a breakdown in perturbation theory, since our

predicted relaxation times at room temperature are an order of magnitude smaller

than the corresponding frequencies. Eldridge and Stahl 24 , with a similar pair

r

1

I



potential and shell model, obtained phonon lineshapen in reasonable agrcamant

with experiment. Thus we would expect our value of f/(w y) 1/2 to be reliabl

It is conceivable that many phonons, an yet unwensured, may have large values

of PQ . Another possible explanation is that our neglect of momentum conservation

is a poor approximation to make in the decay of the optic phonons, which have large

regions of flat dispersion whero energy conservation is easily satisfied 33.

Table III also shows scattering rates r (K) derived from measured thermal

conducts+'sties K using eq. (39). The values of r (K) are almost all an order

of magnitude or more smaller than the theoretical I values, similar to the

case of rare gas crystals, Six possible causes of the discrepancy are:

(1) possible inadequacy of the Horn-Mayer model; (2) inaccuracy of the

approximations leading to eq. (24); (3) failure of perturbation theory;

(4) genuine differences between f (K) and P arising from the suppression of

Umklapp scattering32 'in r(K) ; (5) genuine differences between r (K) and f

arising from the bias in eq. (37) toward long-wavelength acoustic branches

with large vQ and small r (K) ; (6) experimental uncertainty in K, especially

from possible failure to subtract radiative transport.

We believe the differences are genuine. Umklapp's (cause no. (4))

probably account for a factor of two and most of the rest is cause no. (5)

- the va:,intions of PQJ with branch Qj are quite extreme and different methods
N
	 PV

of averaging can generate an order of magnitude difference. This can be seen

by a study of table II and comparison with P' (K) /(wY)1/2 in table III. Reasons

(1-3) are ruled out by the success 23'24 of enharmonic perturbation theory

based on Horn-Mayer potentials for individual widths rQj, and by the Lost

we performed on our approximations in sec. III. Experimental accuracy is

always a problem in measurements of K, but this is likely to play only a

mit,)r role here.

,

N

22

I

}

i

.
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6. CONCLUSION

It is appropriate to emphasize the virtue of F/ (w ) 1/2 as a measure

of anharmonicity. Unlike the usual measures, i.e. Oriineisen parameters and

thermal expansion, which measure long-wavelength anharmonic effects, F probes

all wavelengths democratically. The fact that F does not accurately predict

any particular width r  and that F overestimates the heat conduction scattering

rate r fw) does not invalidate our argument. The ability to estimate F easily

may provide a new perspective on the problem of anharmonicity, and should

accurately indicate the adequacy or inadequacy of anharmonic perturbation
i

theory.

	

A convenient nay to reexpress the information in F is to define an 	 ?

"anharmonicity temperature" B A as the temperature where r is as large as
T 1/2	 f(W^)	 and perturbation theory fails:

r /(w^) l/2 '- T/8A .	 (49)

!	 1

This definition assumes that T>0 n and that perturbation theory in lowest

order gives the dominant behavior. For the Lennard-Jones crystal, 0 A is

based on the zero temperature nearest neighbor distance, 1.090, or1.32c/kB 

0.79c/kB based on a high T distance, 1.120. Thus 0A is higher than the melting

temperature TN%O.7t/kB , but only by a factor ti1.1-1.9. Similarly for NaCl

	

structure, tnble III shows that 6 A is typically 1-2 times larger than TN .	 j

The highly anharmonic nature of these materials when nT N is not widely

appreciated.
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Finally, given the 20-30% uncertainty we ascribe to our eq. (24) for

r/(w2 )
1/2

r the difficulty of evaluating u 3 and f4 , and the unpredictability

of rQj and r (K) it becomes appropriate to offer a simpler formula. The

factor d3/f4 is given for various cases in tables I and III. From these 	 !

i
numbers we can expect d 3 /f4 to be moderately insensitive to details. The

o	 factor (37r/8)(d 3 / f4 ) in eq. (24) can be replaced by 1 wi th an error typically

32OX; in the extreme case of KEr, the error is a factor of 2. Then eq. (24)
i

is replaced by

r/(w l )
1/2

 = T/BA 5f A3kBT/(w 2 ) b .
	 (50)

The parameters of this formula, A3 and wT, are numbers which can be estimated

on the back of an evnelope when a model is available, and provide a

surprisingly simple and accurate way of characterizing anharmonicity.
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TABLE 1. Calculations for Lennard-Jones Potentials
of the Parameters Entering Eq. (24).

d/o 1.0902 1.12

eA3 /(w ) 3 0.7172 1.2774

d 3 0.127 0.114

f
4

0.141 0.136

d 3 /f4 0.90 0.84

t/(w) 1/2 0.76kBT/e 1.26kBT/e

1.1225=21/6

1.1641

0.095

0.129

0.74

1.01kBTIC

,	 i
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TABLE II. Linewidths of Measured Phonons in NaCl
at 300K. Our Theoretical Value of

at This Temperature is 0.186.

Phonon q r /w
a	 4

References

LO 0 '60.11 21

LA
(11010) '60.05 22

3a

LO several '60.16 23

TO 0 0.025 24

TO 0 0.04 25

TO 0 '60.04 26

at 290K

1	 .
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FIGURE CAPTION

Fig. l:	 The lower curve is the Lannard-Jones (6-12) potential versus

r/a for a range of separations near the minimum at r min /o'21/6

1.1225. The upper curves give dimensionless measures of the

mean square frequency w T and the anharmonic parameter A3/(^^)3

versus d/o where d is the nearest neighbor spacing. In

classical approximation at T-0, d/a takes the value do/a-(2212/26)1/6

-1.0902.
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