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The heat conductivity v of insulating erystals bebaves roughly
ap T-l (where T is absolute temperature) with a confficient which depends
on the details of anharmonie interactions and thus is not easy to
compute. This project has focussed on the came wher2z v is small indicating
large anharmonic scattering and correspondingly short phonon mean free patchs.
In this limit the magnitude ¢f k is similar to those found in glasses
(i.e. 1 WK, to within a factor of 3 or so). Long ago Kittell suggested
that the weak dependence of k on T in glasses arises because vibrational
energy propagates freely (as phonons) over distances (iL.e. mean free
paths, %) not much larger than intermolecular spacings. In this situation,
anharmonic scattering is not likely to cause much further degradation of
2, and thus &wconst instead of £mT_l, leaving knconst. More recently,

Slack2 and the author3 pointed out that even in’crystalline material,
anharmonic scattering could sometimes make & as short’as intermolecular
spacings,- and that experiments suggest the possibility that in these
circumstancesln behaves much as in glasses. This suggestion is equivalent
to saying that there is a lower limit, KmianBB/ha below which x nannot

be driven by any process: alloying, ;itrification, radiation damage, or
anharmonic thermal scattering.

This idea of a lower bound Knin clearly has adverse implications for the
ultimate efficiency of thermoelectric power generation. Therefore a principal
aim of this project was to discover whether experiment supported or denied
the existence of such a 1imit. No flrm conclusion has been reached. The
clearest evidence for "saturation' of x at a lower limit comes from

experiments on materials such as CuClé and adamautanes. These materials

quite clearly show KET-l at intermediate temperatures but K+constmkmin at



higher T. However, in both cases, the value of oin has & relatively
strong shift with pressure. The strong sensitivity of Kmin te small
changes in crystal properties suggests that there may still be ways
nvgilable to réduce £y L.e. that Kmin is not an impenetrable lower
bound. Further evidence is found in a variety of materials of which
ic26 ié a good example, where x in’the crystal near Tm (melting temperature)
still has a strong T-l variation, yet the liquid state value of is neither
greatly reduced nor much dependent on T. This behavior seems paradoxical;
Kliq should be not larger than Knin® Yet the solid has K%Kmin with no sign
of saturating. Deeper analysis of this situation is inhibited'by two
factors: (1) experimental values of k are particularly unreliable at
higher T or when k is small, ard (2) theory of rema;ns very poorly
developed. Two avenues have been explored with the alm of improving the
theoretical situation.

The first avenue 1s an attempt to provide a simple and reliable way
of estimating the coefficient of 77t in the law for good crystals:
k=A/T, This is explained in detail in the accompanying preprint.7 which
proposes a method of estimating F; the -mean scattering rate of phonons
by anharmonic interactions. From the law T=B/T it was Hoped that the
constant A=constXB could be evaluated. Our analysis shows that A is
up to an order of magnitude larger than expected from calculated values of
B. This discrepancy arises from a variety of sources which need a
detailed anharmonic caleculation to sort out. The author plans to do
such a calculation with R. Shukla next year.

The second avenué is computer simulation; Mountain and HcDonaldB
have succeeded in reproducing the law k=A/T by this method in a two

dimensional case. . The author has embarked on such calculations in



collaboration with a student, G. Chen, and with D. Emin of Sandia Labs.

The conclusion so far is that heat conductivity remains incompletely

understood; further experiments and theories are needed even to clarify

such a fundamental question as whether a lower limit Knin exists,

]
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ABSTRACT )

'ne rate Péj for o phonon to decay by lowest-order anharmonic
processea is proportional fo T for T>BD. The Bril%uuin-zone'avernge

T of er is discussed in detail. An approximate formula for T is found
which agrees accurately with an explicit calculation for an fcec erystal
with nearest neighbor Lennard-Jones interactions. The Brillouin-zone
average squared anharmonic matrix element is contained in a parameter
calle& 43 which is the sum of the squares of all third order force
constants. The other important parameter is w?, the mean square frequency
which is the trace of the dynamical matrix, or.the sum of all diagonal
(Kuacﬁ'ﬁ)) serond-order force constants. The result is a formula
?y(;?)l/2=CA3kBT/(;7)3 vhere C is (31/8)(d,/f,) and d, and f, are
complicated averapes over the harmonic frequency spectrum. To accuracy

of v30%, C can be replaced by 1. Thus T can be very easily estimated

when second and third order force constants are known, An "anharmonicity
temperature" eA is defined by the formula ?Y(ZFleZHT/BA. When TneA, the
broadening of the phonons is predicted te be as large on average as the
frequency, a signal that perturbation theory is no longer valid. The theory
1s applied to fcc crystals with Lennard-Jones potentials, and rocksalt-

structure crystals with Born-Mayer plus Coulomb potentials describing

annarmonic interactions, but a shell model describing harmonic properties,

In all cases BA is found to be only one to two times gfeater than the

melting temperature. This 1s compatible with experiment for rare gas crystals

but may overestimate the anharmonic strength in rocksali-structure ionic
(%)

taterials by as much 8s a factor of 2., An average decay rate T

extracted from experimental thermal conductivity is typically an order

of magnitude leps than T.
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. _ INTRODUCTION

In crystalline insulators which are not too anharmonic, a thermal
phonon (wl) decayal'2 primarily through third-order anharmonic coupling
(VS)’ by emitting or absorbing another thermal phonon (mz). In the
clessical regime (Tkﬁn) the probability is proportional to the thermal
occupancy of the second phonon, n(mz)WkBTfhmz, giving a decay rate Iy
increasing linearly with T. This paper explores ways of estimating T,
defined as the Erillouin-zone average of rlsr(gl,jl)' The motivation
is that T can be estimated in a simple way when information about V,
(such as a pair potential) is available, whereas Pl involves difficult
energy and momentum conservstion restrictions. Another motivation is
that information about phonon decay rates is neéded fpr analysis of other
processes, especially sound attenuation and heat conduction. The thermal
conductivityl ¥ involves a Brillouin zohe average 1/T of a reciprocal

scattering rate Pl 1 weighted by squared group velocities.

Our search for a simplified formula for I has been guided by analogous
results in the electron-phonon problgm3. In particular, the mean electron
scattering rate, 17?; in a metal with T>BD' is given byrZNAkBT/ﬁ, where
the electron-phonon coupling constant A has been extensively studied
because of its connection with the superconducting trans@tion temperature.
A formula for estimating A has been developed by Butler EE:EEJ!S following

pionzering work by McMillanG, Hopfield7, and Caspari and Gyorffys:
A = N(0)<I?>Mcw?> (1)

Our approximation for T is a close analog of this equation.
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In subacquenﬁ sections we derive our approximate formula, test
it for a nearcst-neighbor Lennard~Jones potential, and apply it to

rare gas cvystals and rocksalt structure crystals,

2. A.SUM ROLE RELATED.T0.T,

We dencte phonon quantum numbers (gl,jl) by Ql' and more simply,

by 1. The decay rate of a phonon in lcwest order isz'g

. = 27 ¢ - _
fir) n283|V3(l,2,3)| {{nyHn+1) 6 (o, “hu, -hw.)

1

+ 2(n2-n3)6(ﬁwl+ﬁwzdﬁw3)]. (2)

Mowmentum conservation restyictions on 32 and 83 are contained in the

anharmonic matrix element V3(1,2,3). We find it simplifies algebra not
to exploit translational invariance, but to work instead with general

harmonic elgenstates denoted by the label 1,

(2) 71 |

wiu (£,1) = ok (he2Dug @) R

(2) ~1/2 E
Kog' (222') = (1M, ) azn/anguann,s, (4)

Here & labels the atoms - it summarizes a vector ﬁno which locates the

equilibrium site, and an index a or b which denotes the atomic specles




at that site. Kég) is the coordinate space dyna ‘r~al matrix, and

ua(l.i) is the normalized eilgenvector of the ith mode. The normalization

and completeness relations are

*
jz:':uum(n,5.)um(z,_1) - 61_1 (5.

* " : '
Y = &
i uu(f.,i)ua(?. .l) 6“86«‘-2'. (6)
The crystal displacement operator GRu(E) is given in terms of the

dimensionless elgenvectors uu(i,i) by
- 1/2 7
§R_ (%) i“‘/mz‘”i) u, (L,4) ¢, (7)

where ¢i is the dimensionless field operator (ai+aI) and aI ie the

creation operator. When the states i are chosen to be eigenstates of

the translation operators, we write uy(%,1) as

_ i.Q.RL
ug(tit) = N2 (g1.a)e * 7 - (8)

vhere N is the number of unit cells in the crystal and a labels
the atoms in the unit cell, Whan eq. (8) is used in eqs}
(5,6), we recover the usual orthogonality and completeness relations for

the polarization vectors €.,. The field operator ¢, 6 becomes ¢_.=a +a+ .
o 1 Qi Qs Qi

4

In terms of the eigenvacto:é u,, the anharmonic matrix element

i’
V3(1,2,3) is defined by
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Hy = (/31 L v.(1,2,3)4, 6,9 (9)

1,2,3 1%2%3
3/2 ~1/2
V3(1,2,3) = z,sftzuChlz) (000 2 0,1)
o uB(z'.Z)UT(R'".:’)KO([:,),'.(!'."'p’-") (10}
Kapp (0,2 = Gttty )™M 20%e o, omy om0 )

A summation convention is used for repeated Greek subscripts. We are

interested in the high T limit of eq. (2), namely

- 3 ) .
I = (mig /A )2?3|v3(1,z.3)|2(w1/w2m3)

X [6(uy ~w,—y)+26 () H~w ) ], (12)

Notice that h™> in eq. (12) cancels against h3 in |V3|2 (eq, 10); eq.(12) is

clagsical. We would like to evaluate F=(3Na)"1xr Instead,we shall

l.

examine the sum

A, = (8/3W 4%
3 & 1,2,

[v5(2,2,3) [ 20,050, (13)
3

which can be related to T in roughly the same way that McMillan related

<I2> to A, Like <I%>, A, is surprisingly easy to evaluate. Because the

3

factor W W0 in (13) cancels against a factor in |V3|2 (eq.10), the

eigenstate labels (1,2,3) appear or:ly on the eigenvectors. The sums on

i1,2,3 are then performed by completeness (eq.6).giving the sum rule




I E P R S (A A O IR DL (14)
Lok',2%a,B,y Y
The quantity {$§g%(£,zt’gun2 quite generally {s short-ranged in |Rz-R£.| and

]Rz-Rmul; even for 1/r potentials, [K(3)]2 falls off as r'B. Thus, 1if

K(a) i knowm, Ay is easily evaluated, AB seems to be both a natural and

a simple measure of anharmonicity. .

In order to connect A, with T, we define two fairly complicated

quantities:
) 3y |2 -
Dr _ 1'2;3|V3(1,2,3)| w1m2w36(w1 W=ty 15)
3 v [
Eova(1,2,3) | 20w,
1,2,3 3 P T1273
L 2 . —t.) -
s = 1,2.3|V3(1,2,3)] m1m2w3[6(w1_2g_w3J+26(wl+m2 m3)] -'(15)
2 -1 vl -
1'£’3|V3(1,2,3)| wl(m2m3) [6(m1 w, m3)+25(ml+m2 ws)]
Using these and eq. (1l1), we get a rigorous formula for T at high T
Fz (N) L LT, = 3nk.TAD /8<ub> ., (17)
= OGNy} = BTy = 37kyTASD, r

The purpose of writing T this way is that AS is now fairly simple, and
the complexities have been displaced into quantities D3 and <w”>r which_
we hope to be able to evaluate approximately, by droppiﬁg the factor
195ty from numerator and denominator of eqs.(15,16). This

is known as tne "Peierls approximation” (see ref, 1 pp.3S-39). In the present

[vs(lozp.:}) '2“’

context it 1s somewnat uncontrolled, but will be tested. Then we get approximate

versions of D; and <w“>r, denoted D, and <w'>,
D, = © 8Que-u,~w)/ I 1 (18)
3 1,2,3 1 %2 3L2,3




L b
1,2,3[6(w1 w, w3)+26(w1+w2-w3)] (19)

cm“> - >
1,%,3ﬂm2w3) [5(“l'wsz3)+26(wl+w2-w3)]

T (3n1/8)k,T A3D3/<m">. , (20)

¥

The incerﬁreﬁntion nf 03 is that it mca;ures the average decay density of
acates,.that is, the number of processes avallable per unit frequency interval
for a phonon to decay into two phonons censerving only e¢nergy. The quantity
<w"> provides a measure of the typical value of the fartor (u2m3)2 which appears
in the denominator of eq.(16) when the symmetrized numerator W,y Wy, is used.
.wWe expect eqs. {(18,19) tq be moderaFely gqqd approximations to eqs.

(is;lﬁi Aoé because the weight factor IV3(1,2,35]2w1w2w3 is constant, but
instead because many states are summed both in the exact forms (15,16) and

in the approximate forms (18,19). We rely on the cancellation of errors which
are morc random than systematic. In the exact forms (15,16) the states are
restricted by momentum conservation but this is omirted in the approxiimate
forms., Of course momentum conservation is very iImportant in eq.(l12), and is

taken into account in the evaluation of A3 (eq.13) when'the exact result (14)

is used. _

- -

It is now cenvenient to rearrange eq. {20) in order to make geveral

dimensionless parameters, First, we introduce the msan Equare phonon

frequency "

Zs e - @™ kD (21)
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Here we arc using eoq. (3) and the fact that zwf 1s the sum of the edgen~
. 2 '
values of ihe dynamical matrix KiB)(t,a') (eq.4) and therefore nlyo equal
to the trace of the dynamical matrix. Using o2 we introduce dimensionless

versions of the paramatere D, and <u™>

s (7 1/2 ‘
5 <t/ (0T %
t
The decay rate is made dimensionless by normalizing to the rms frequency. E
T2 = (30/8) (455,001 (5B (24) *
w 3/ 42 A3t/ w7 '
3. NEAREST NEILGHDBOR LENNARD-~JONES MODEL
To illustrate and test our approximations, we chose a model crystal
with identical atoms interacting via the Lennsrd-Jones (LJ) potential
3
v(x) = 4el (/) = (o/0)%). (25)

For further simplification we let this act only on nearest neighbors (NNLJ
moedl). A rather similar model, but parametrized s0 as to apply to metallic
Pb, was treated in ref. 2 by methods somewhat similar to ours. The crystal
is assumed fec with nearest néighbor distance chosen to minimize v(r)

in eq. (25}, i.e, r0=21/6a where v(ro)-~5. To evaluate



4 u

’ ) t

w and “3 we ﬂeed exprcaaionn for the derivatives of the additive encrgy

of pair potentials:

2 (R, =Ry )(R ~R. )
= aai — -b2(2_2'|) 2Clln f-.RU lzzﬂ L'B - bl(R'_zl)GuB (268)
ko R'A ab k!
Ry ¥Ry rg®Ryry "3 |R Rz,[
'v
(R ; )6 +(R “R,1,76,. +(R )6
! z o LB R'B" “ya Ly 2'
t ot TR (26b)
v

These expressions are valid for 2'#2. When 2'=2, the corresponding expressions

are:
2 #2
| E/BREubRLB = ;? 9 E/BR BR I (27a)
7 .
] E/BR 3R233R = ﬁ_‘ 3 EfaRguaRz,BaRE,Y. {27b)

The coefficients bl’bz' a,,a, are

1l ov .
b1 e {28a)
b, = r<-b (28b)
2 3r 1
a,(r) = a_ b {28c)
Jr 1

aB(rJ a pl %; G% az(r){. (28d)
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From these formulas one can get a general expression for w? (eq. 21) and

A3 (eq. 14) for any material described by pair potentials (PP)

SIEp) =« ()L nglsz(n-zv)+3b1(z-z')]
Ty

Aa(PP)“(3N)-i$£.(Mzﬂf.)-l[n3(£—z')2+633(£-£')a2(£~£')+15n2(£-z'

For the NNLJ model these become:
w? (NNLJ) = (4/M) [b,+3b,] = 288¢ /21 o2

A, (NNLY) = (12/M3)[a§+6a

3a2+15a§] - ;3,903.438:2/M3a6

Equation (24) then becomes

‘F/(JE)IIZ(NNLJ) " (3n/8)(d3/f4)(149/123)(RBT/5).

The parameters d3 and f& were caleculated to 1% accuracy by numerical

evaluation using a tetrahedron program. The values obtained are d3=.095,

f4=.129, and d3/f4=.737. As a test, w2 was found to be 287.0(&:/21/3

agreeing well with the exact value of eq. (30). The corresponding value

of'F/dET)llz in the NNLJ model is 1.01(kgT/e).

(29a)

)2),
(29b)

(30)

(31)

(32)

Mo?),
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Our estimate of T involves the uncontrolled approximation of replacing
|V3[2h1w2w3 by 1 in going.from (15) and (16) to kl&) and (19). To test
this we have evaluated T directly from eq. (11) using the correct frequencies,
polarization.vectqrs, and matrix elements V3'of the NNLJ medel. Crystal
uomentum consergation was explicitly included, but the energy-conserving
¢ function was replaced by a Lorentzian Im(x—iG)'ljn of width comparable to the
finite mesh size increment Aw-ldwldQ]AQ. Using 4000 k-points in the |
Brillouin zone sums, the answer was f/(;5)1/2=1.08(kBT/e). This answer
was stable to about 5% under changes in mesh size and 6. The good agreement

with our approximate answer, l.Ol(kBT/s), exceeds reasonable expectations

and must be fortuitous. We do not expect the accuracy of eq. (24) to be

better than 20-30%.
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4, FULL LENNARD-JONES MODEL

The purpose of truncating the (6-12) potential at nearest neighbors
in the previous section was ounly to reduce the computer time needed to

calculate the matrix element V, in the exact calculation. Our approximate
formulas are as easy to' evaluate with gll neighbors as they are for first

neighbors only. We need the lattice sums

Z

£ a%|s|® (33)

where d is the nearest neighbor distance and % runs over lattice vectors.

For an fce lattice, the values of Zn needed here are ZS=12.8019. 214=12'0590'
. . - o '

Zl8 12,0130, 224 12,0015, and 230 12.002, Then A3 and w® can be evaluated

from eqs. (30,31):

W m (Bclﬂoz)pB[ZZpﬁzla-SZS] (34)

6

12, 271605

= 2 3 18 [ ¥
ch, = (Bc/Mo2)3(18p"°) [85750 72, 242202 ) (35)

vhere p=0/d. In classical approximation at T=0 the atoms are stationary

and minimize the total energy. This occurs at p=p0=c/do where do/a=(2212/26)1/6
=1.0902. At this value of p, the dimensionless anharmonic parameter
eAsldzi)sequals 0.7172, The values of (ds'fk) have been evaluated to 1%
accuracy with a tetrahedron program. Results are shown in column 1 of

table 1. The width~-to-frequency racio'F/d;f)l/? is 0.76(kBT/c), 25%

smaller than in the NNLJ model. This is still a remarkably large number,
Rare gas crystals have melting‘temperatures Tmm0.7(£/kB) at 1 atwosphere,

In our notation I'==2ImI is the full width at half maximum for a Lorentzian

lineshape. Thus the average phonon width at T=Tm is predicted to be V507
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of the rns freqqency. This is sO largé thntﬂ at least for a significant
subset of the phonons, 2nd order perturbation théory can no longer be

accuréte and quite probably we are outside the radius of convergence of
the perturbation.seriea. Bohlinlo found by direct evaluation of eq. (2)
. that LA phonons in Ne at T=4.7K (bbodt 25% of Tm) had widths T as large
as 40~50% of the frequency. The failure of second-order th!émodynamic

perturbation thgory for T%Tm/3 ha& been noted by Klein gg,g;,ll, and has
recently been examined to higher order by Shukla and Cowley.l2 Neutron

experiment:sl3 in Kr have seen values of FQ comparable ‘to wQ for zone

boundary LA phonons at T close to Tt Molecular dynamics simulations14
of 5(Q,w) for LJ systems have also seen broad zone boundary LA response
functions near Tm. One can then ask whether sccond order perturbation
theory gives qualitatively correct trends eveg in tﬁe regime quwq where
the justifications for perturbation theory fail. We are not able to answer
this quantitatively, but published dispersion curves, lineshapes, and
simulations all sugpest that ill-defined phonons with T'w are rarer than
our estimate gives, In other Qords, the actual behavior of the strongly
anharmonic system tends to give quasi-particle-like response even when
perturbation theory says that the quasi-particle picture should no lenger
be valid. The other possibility is that ill-defined lineshapes are less

likely to abpear in publication than well-defined ones, and that our

estimates remain reasonably accurate even near Tm.

The source of the large anharmonicity lics in the stecp and one-aided
nature of the r-l2 potential used to model the large repulsions when closed
shells overlap, combined with the softness of the potential for r&rmin.

5
These factors also cause a large thermal expansion of A3% at Tm which,

o
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: A
significantly alterg.che phonon responée at higher T, 1In fig. 1..5?‘15
plotted versus d/o, showing a dramatic downward shift when d/o increases
by 32, Thus it is important to use the corrected harmonic frequencies
at temperature T (quaéi—hatmonic model), and the corrected anharmonic
,matrig eiemen:s.. The measure Aa of anharmonicity also deéreases drama~-
tically as d/¢ incrgnses, but not as rapildly as (w?) 3 decreases, so that
the d?mensioﬁless factor cA3/(57)3 is qui;e strongly increasing as d/g
increases, as seen in £ig, 1.'-We have recal;ulated all parameters
. at dfo=1,12, and the results are in column 2 of table 1. The width~to-
frequency ratio ?7(;531/2 becomes l.26(kBT/c), 66% higher than at
d/o=1.09. Thus using the quasi~harmonic approximation as a basis for
doing perturbation theory only makes the anomalous magnitude of
FY(;I)IIZ more serious.. ‘ i

Finally we turn to thermal conductivity x. From Boltzmann theory

we obtain

-1 -1
= (VI) " L fw v, S V., (=3n./3

K (VT) e wQ Qx thmqr le( nQ/ in) (36)
where V 1s the volume, Q is short for phonon wavenumber and branch Sj, va
i1z the group velocity 3mQ/3Qx, and "q is the equilibrium Bose-Einstein
distribution. In relaxation~time approximation, the scattering operator
SQQ' is PéK)GQQ' where the superscript ¢ reminds us that this differs

somewhat from the quagi-particle scattering rate rq. especially in that

N processes (non-Umklapp) are not fully effective in damping the heat flow.

At T>0D, nQIis kBT/th and (365 becomes

-1
L vzr(“)

n 1 .
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Thus we define '

T o 5 Ve ' (38)

v a2 3 8

L")

/7% = ev/nig VF (39)
where N ig the number of 'atoms. The experimental value of ¥ for Ar at
high T can be expressed asl6

1k = (5.3x20" 2t/ 29273 2y, - (40)

“The number 5.3%10'"2 comes from constant volume measurements by Clayton and
Batchelder.17 No other rare gas solids have been measured systematically
at constant volume, but the trends suggest that eq., (40) should be reasonably

-

accurate for ali of them. .
We have calculated v2=24,5¢/M for LJ crystals-at d/o=1.09 and vial4, 2e/M
at d/o=1.12. Using the former value as more representative of the constant

volume 'conditions of ref. 16, and the value we=449.2 €/Md? obtained from

eq. (34) at d/0=1.09, we find
A Ty S . 087 (i T/€) | (41)

Thus P(K) is less by a factor of 9 than the theoretical value of T.

Three causes contribute to this discrepancy. (1) Since P(K) is
defined by an average of l/Pq, it weights small values of FQ most strongly
(occurring for small Q acoustic phonons). This is reinforced by the

weighting factor of vé‘in eq. (37). (2) Umklapps contribute fully to

F(K) and T'_, but N-processes occur more weakly in Pé‘). This should

Q Q’
contribute less than a factor of 2 to the discrepancy. (3) As previously




1
It

mentioned, quasiparticles may be better elementary excitations than
perturbation theory says they should be, This idea is supported by the

data of ref, 17. In cases where quesi-particle approximation is known

18,19

to fail, k seems to saturate rather than decveasing

as T°*, The date of ref. 17 obey k=T

at & value x
m
1

in
quite well,

It 1is not poésible without detailed calculations to further subdivide
the cause of the large difference between P(K) and T, The most detailed
calculation to datézo seems to agree well with ref. 17 but not to shed

much light on this question.
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' 5,  BORN-MAYER MODEL FOR ROCKSALT STRUCTURE ,

Rocksalt (NaCl) structure compounds have been the subject of much
21-26

theoraetical work, and there exist data on phonon linewidths in NaCl

and on the therﬁal conductivity27 of several compounds in the group.
Anharmonicity in these materials at TﬁGOOK.iB weaker than in the rare gas
crystals near their melting points, allowing greater confidence in pertur-
bation theory. Qur starting point is a Born-Mayer-type pair potentialza,
consisting of a Coulomb term and a nearest-neighbor repulsive exponential.

It is well known that the phonon dispersion qu is not very wgll fitted by
such potentials, especially the optie phonons, but it is believedza that the
anharmonic part of the interatomic force 15 adequately treated in this way.
Thus, we will calculate A3 from this pair potential, and take quantities

like the mean square frequency and group velocity from shell models that have
been previously fitted to detalled spectral datazg. This model potential

has the advantage of permitting us to work out closed form expressions for
most of the interesting quantities, and to make direct comparison to other
calculationsza. The Born~-Mayer parameters will be taken from standard fits
to the lattice constant and compressibility; one could trivially extend our
results to a three-parameter model by introducing a non-integer effective
charge, as when, for example, one also wishes to fit to the total binding

energy.

For a rocksalt-structure crystal in which the atoms carry charges iZe,

the pair interaction is taken to be

(42)

Z,Z,.e2 o0 /0
bR ) = - 2 _sce Y
Togt



| . )

The second term approximates the overlap repulsion between adjncent
atoms, with C, p being chosen to fit a given compound. This term is
assumed (as part of the model and not as an additional approximation) to

b~ nonzero only for nearest neighbors. The cohesive cnergy per particle is

given by

-
u TN 2?2' (L, 2") (43)

where the sum is over all sites of the lattice except that R¥L'., Now let r,

be the nearest neighbor distance, equal to a/2 where a is the lattice constant.

Cutting off the second term at nearest neighbors and introducing the

Madelung constant.a=1.744..., we have

2.2 -r_/p
U(r ) = - 2287 L 6ca O, (44)
o] r
0

The lattice is stable for that value of T, which satisfies

az?e? o 2 -ro/p
o - G “3)

Taking derivatives of ¢, we calculate the quantities 8518, of (28a,b):

2 -
S ST S ik 1 LN - SN S T T AL
a,(L,01) & = " = 5 plam— + == G5+ Je
2" 22! Yogr Pragr Tog!
(46a)
' 152 2 ,el. -r,, /P
R i el M L e LI
2a 28! 25’ Bt Preet (46b)
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where it is again understood that when lattice sums are taken, the
exponential terms only include necarest neighbors. We can also work out

a Born-Mayer expression for the wean square frequency using eqs. (28,29)
N A

-ro/p

Py RS2 SR RN Y S
Ch e (47)
By the relation (45) all long-range terus are eliminated from (47), which

0

becomes a purely nearest-neighbor quantity} this sum rule™ is simply a result

of the coulomb potential’'s satisfying Laplace's equation.
We next evaluate A3, starting from expression (29). The lattice sums

over the long-range Coulomb terms need to be done with some care; the

result is
3 1 .1 .4152%4 s¢ 122%2 ¢
A G=+i)
30 MMM UM i 8 8 rg )
r /o =2r /p
1 3 3 0 c?,1 6 12, 6 0
T T + ettt 450 ¢
P xp g p2p" prg gp rd -
- chc
4524 “g 1 1 1 1
* (G = 2) 2 (b ) (48)
r8 16 M, M_T MM
fecc sc
where ZB =12,8019... and ZB w6,9458... are the lattice sums defined in

eq. (33), but specifically for face-carntered and simple cuble, respectively.

Since the last term turns out tc be small (for realistic parameters) and ch

is only 16% greater than the nearest neiphbor value, 6, we see that A3 is
dominated by the nearest neighbor force even in the case of long-ranged Coulomb

potentials.

It is instructive to compare our wZ with the same quantity calculated from

detailed models that closely fit the experimental wq' Using the shell modelza




2)

for NaCl, for example, we have obtained the density of states F{w) and
from it calculated w?, The result is ﬁ371/2/k3~212.5k, while our
Born-Mayer mode} glves h;fl/zlkn-225.ﬁk‘ This 6% discrepancy in the

rms frequency becomes a 40% discrepancy in d;f)a which is needed in eq. 24,
The agreement is less pood, if we examine G?niﬁﬁ)lafzﬂﬁuch characterizes
the shape of the spectrum. The NaCl Born-Mayer potential gives 0,291,
while the numerical result from the shell model is 0.523. The large error
is not surprising in view of the well-known underestimation of optic '
frequencles in the simple model. Thus, it is preferable to use F(w) from
the full (shell model plus tetrahedron brogram) esalculation to get the
factors dy £, and 2Z in (24). 1t is no more work to do this, since

even with the Born-Mayer potential the full F(w) (as distinct from its
first few moments) would have to be calculated numerically to get d3 and
f4. In the process of doing this we have also numerically ecalculated
reliable values for the mean square phonon velocity vZ of (38).

We have obtained results for LiF, NaF, NaCl, KCl, KBr and MgO, these

being representative (highly ionic) rocksalt-structure materials for which

27 have been done; phonon linewldth

measurements appear to be available only for Nacl.z*-26

good thermal conductivity measurements
In Table II our
value of FY;Ei/Z for NsCl 15 compared with the measured ratios Fq/wQ for
several phonons. Our results for E?, A3. VE, and T are given in Table II1I,
together with the experimental thermal conductivities of all six materials,
énd the values of F(K) derived fFom them,

For NaCl, our value of ?757&/2 is bigger by factors between 1.2 and 7

than the various experimental ratios. Unlike the case of argon, one cannot

ascribe this disagreement to a breakdown in perturbation theory, since our

predicted relaxation times at toom temperature are an order of magnitude smaller

than the corresponding frequencies. Eldridge and Stah124, with a similar pair



)

potential and shell model, obtained phonon li?euhapea in reasonablo quéc;unt
with experiment. - Thus we would erpect our value of F/(;E)llz to be reliab’

It is conceivable that many phonons, an yet unwcnahrcd, may have large values

of I'.. Another possible explanation is that our neglect of momentum conscrvation

Q

is a poor approuximation to make in the decay of the optic phonons, which have large

regions of flat dispersion where enexgy conservation is casily sntisfiedal.

-

Table III also shows scattering rates P(K) derived from measured thermal
conductivities k using eq. (39). The values of PGK) are almost all an order
of magniéude or more smaller than the theoretical T values, similar to the
case of rare gas cvystals, Six possible causes of thé discrepancy are:

(1) possible inadequacy of the Borm-Mayer model; (2) inaccuracy of the
approximations leading to eq. (24); (3) failure of perturbation theory;}

(4) genuine differences between F(K) and T arising from the suppression of
Unklapp scatccringaz'in I‘K); (5) penuine differences between P(“) and T
arising from the blas in eq. (37) toward long-wavelength acoustic branches
with 1arge-vQ and small Pé”); {6) experimental uncertainty in x, especially
from possible failure to subtract radiative transport.

We believe the differences are genuine. Umklapp's (cause no. (4))
probably account for a factor of two and most of the rest is cause no. (5)
~ the va.iations of rgj with branch Sj are quite extreme and different methods
of averaging can generate an order of magnitude difference. This can be seen
by a study of table II and comparison with r’“’/(ﬁi)l’z in table III. Reasons
(1-3) are ruled out by the successza'ZA of anharmonic perturbation theory
based on Born-Mayer potentials for individual widths rqj. and by the tnst
we performed on our approximatio;s in sec. I1I. Experimental accuracy is

alwaws a problem in measurements of k, but this is likely to play only a

minar role here.
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6. CONCLUSION

1t 1s sppropriate to emphasize the virtue of F/G;T)llz 48 a measure
of anharmonicity. Unlike the usual measures, i.e, Griineisen parameters and
thermal expnn;ion, which mcosure long-wavelength anharmonic effects, F'probcs
all wavelengths democratically. The fact that T does not accurately predict

any particular width PQ and that T overestimates the heat conduction scattering
rate P(K) does not invalidate our argument. The abillty to estimate T easily
may provide a new perspcctivé-on the problem of anharmonicity, and should
accurately indicate the adequacy or inadequacy of anharmonic perturbation
theory.

A convenient way to reexpress the information in T is to define an
"anharmonicity temperature" 0, as the temperature where T is as large as

1/2

(w?) and perturbation theory fails:

T2 T/8,. (49)

This definition assumes that T>6D and that perturbation theory in lowest

order gives the dominant behavior. For the Lennard-Jones crystal, BA is
1.3Zc/kB based on the zero temperature nearest neighbor distance, 1,0%a, or
0.796/kB based on a high T distance, 1.l20. Thus BA is higher than the melting
temperature TM%0.7£/kB, but only by a factor ~l.1-1.9., 8imilarly for NaCl
structure, table IIL shows that BA is typically 1-2 times larger than TM'

The highly anharmenic nature of these materials when T%TM iz not widely

appreciated.

»
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‘ Finally, given the 20-30% uncertainty we ascribe to our eq. (24) for
T/ 7y/2 ,

I/{w?)™"", the difficulty of evaluvating dq and f4, and the unpredictability
of PQJ and P(”), it becomes appropriate to offer a simpler formula. The

factor'ﬁalfﬁ is given for various cases in tables I and III. From these

numbers we can expect d3/f4 to be moderately insensitive to details. The

factor (3ﬂ/8)(d3/f4) in eq. (24) can be xeplaced by 1 with an error typically

£20%; in the extreme case of KBr, the error is a factor of 2. Then eq. (24)

is replaced by
¥ i 1/2 - AL
P/(w2)™'" = T/e, ¥ AgkpT/(w2)®. (50)

The parameters of this formula, AB and ;7, are numbers which can be estimated
on the back of an evnelope when a model is available, and provide a

surprisingly simple and accurate way of characterizing anharmonicity,
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TABLE 1. Calculations for Lennard-Jones Potentilals
of the Parameters Entering Eq. (24),
Full LJ NN Model
d/o 1.0902 1.12 1.1225x=22/6
eA3/(Z;2‘)3 0.7172 1.2774 1,1641
dy 0.127 0.114 0.095
£, 0.141 0.136 0.129
* .8 L]
d3/f4 0.90 0.84 0.74
T/ (Ez')u2 0.76kBT/= 1.26k;T/e 1.01k T/e
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Linewidths of Measured Phonons in NaCl

*
at 290K

TABLE II.
at 300K. Our Theoretical Value of
TY(EY)lfz at This Temperature is 0.186.
Phonon q Tq/wq References
1.0 0 ~n0,11 21
LA 21 (1,0,0) ~0.05 22
3a e )
1.0 several n0.16 23
TO 0 0.025* 24
TO 0 0.04 25
TO 0 n0. 04 26
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FLGURE CAPTION

Fig. 1: The lower curve is the Lennard-Jones (6-12) potential versus
r/o éor a range of separations near the minimum at rmin/o-21/6
=1.1225, The upper curves give dimensioélesa measures of the
mean square frequency w? and the anharmonic parameter A3/63?)3

* versus d/o where d is the nearest neighbor spacing. In

classical approximation at T=0, d/o takes the value doluw(2212/26)1/6

=1.0902,
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