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IN PLANE STRESS ANALYSIS

Summary

In light or the discussions concerning the "blowing up" of the UK

numerical results for the inplane stress calculations for silicon ribbon,

I hava decided to pre,are this report that ties (I hope) the loose ends

together.

The results obtained since January 1985 show that the "blowing up"

of computer solutions at least for smooth thermal orofiles, is indeed

a real physical phenomena. It is our view that they are precisely the

"Luder's band" described in the Mobil Solar Quarterly report to JPL

for January through March, 1984.

ANALYSIS

The inplane stresses that exist in a thin plate are governed by two

general equations (equilibrium and compatability). Equilibrium is used in

the form

a2oXX — 
a2 r

ax2 	ay 

which contains the normal stresses, axx and oyy . The coordinate system used

is shown in Fig. 1. Compatability is assumed in the form
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which contains the (total) strain rates e
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h = Nm be- Q/ kT B (,/J 2  - D 3Nm)/
3J2 Tom	 (5)

when Vi  > DAM , and the parameter J 2 is the second invariant of the deviatoric

stress tensor. If D3Nm > 3J 2 the value of h is zero.

The really novel and extremely important aspect of the Sumino--Haasen

a .

model is that the dislocation density chances where shown to vary according

to the relationship,

Nm = K1 Nm (T - DM M)X+me-Q/V
	 (6)

We now postulate that this same law applies to the situation that occurs

in ribbon growth. It will be shown below that having a changing dislocation

s

	 density is a major effect in modeling real material behavior for the silicon

used in solar cell applications.
	 in

r

The major assumption that we are making here is that silicon is assumed

to be isotropic in both its elastic and plastic constitutive relations.

Eq. (6) happens to fit into the general framework of internal variable

theories of viscoplasticity of Dillon and Kratochvil [3]. We sometimes change

the parameter K 1 in Eq. (6) to K 1 /10 in order to approximate a "shape factor"

for the ribbon. We now assume that the total strain rate s.. is the sum of

the elastic and plastic parts. Thus our constitutive equation is

I
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Steady State

We henceforth assume that the growth process is in a steady state. Thus

one can replace derivatives in time by those in the spatial coordinate x.

By combining Eqs. (2) and (7), in the steady state we obtain

2	 2	
1 fx 

a2 ExxPL	a2E PL	 a2ex PL

V (Q 
+ayy)	

aE0 T +	 (	 - + —y	- 2	 ) t du	 (8)
xx	
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where v is the pull speed, In deriving Eq. (8) we neglected spatial deriva-

tives of a and E. In the solution of Eqs. (8), we do allow a and E to vary

with temperature and hence w i th x. In earlier numerical work where da/dx

and dE/dx were retained this assumption was shown to be more than adequate.

When '.ire material is elastic, the solution of Eqs. (1) and (8) is readily

accomplished on the digital computer for a specified thermal profile. We have

also shown in previous reports that the more analytical procedures given in

Boley and Weiner are not adequate for the thermal profiles of interest in the

Mobil Solar and Westingnouse processes for growing silicon ribbon. In effect

these profiles change too rapidly in space for the Boley-Weiner 14] method to

yield good results. On the other hand if V 
2 
T is constant, the Boley-Weiner

method gives excellent agreement with the stresses obtained using finite

Jifferences and the digital computer. The ribbon has no external loads applied

to it so that stresses are due entirely to the thermal profile.

Dislocation Density

To th?s writer's knowledge this project is the first ever to use equa-

tior.s such as Eq. (6) for any manufacturing process. That is we explicitly

consider the changing internal structure and its effect on stresses and

strains tnat develop during the growth of ribbon.
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Most materials researchers normally use materials with large values of

the dislocation density. In this case changes in N do not drastically affect

the materiai response, Some solar cell researchers however believe that

electronic performan,:e is reduced if the cells have a large number of

active dislocations. Silicon people use words sL,ch as "dislocation free"

silicon for many applications. Certainly it appears that we should consider

"low" dislocation densities and one is then forced to consider that they also

change when silicon is subjected to stresses. In the growth processes, it is

clear that a constitutive model with a changing dislocation density is an

important improvement over a model that assumes Nm remains constant.

Westinghouse claims average values of N are 10 2 to 10 3 /cm 2 while Mobil

Solar material p robably contains 10
F,
 to 10 6/cm2 . These numbers apply to the

respective final prodLIcts in both cases.

As will be discussed below, to study how dislocations grow one needs to

assume the initial value of N at the melt interface, i.e. the value of N in

the solid state at a temperature equal to the solidifying temperature. It

turns out that this is a crucial assumption. We decided to try various valves

for N0 at the melt interface and to evaluate the validity by comparing the

predicted final values of N in the real product. Sometimes this is perfectly

satisfactory approach, However we encountered "instabilities" in the numerical

scheme and thus could not obtain valid solutions for all of the intended values

of No at the melt interface. This raised the question about the validity of our

entire numerical code.

Oxygen

While we do not explicitly show how in Eqs. (4) and (6,, our computer

programs also allow for using different (but uniform) values for the oxygen

content. Oxygen content is known to be different for float zone and CZ

I
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IN PLANE STRESS ANALYSIS

Summary

In light cf the discussions concerning the "blowing up" of the UK

numerical results for the inplane stress calculations for silicon ribbon,

1 have decided to {prepare this report that ties (I hope) the loose ends

together.

The results obtained since January 1985 show that the "blowing up"

of computer solutions at least for smooth thermal profiles, is indeed

a real physical phenomena. It is our view that they are precisely the

"Luder's band" described in the Mobil Solar Quarterly report to JPL

for January through March, 1984.

,MALfSIS

The inplane stresses that exist in a thin plate are governed by two

general equations (equilibrium and Compatability). Equilibrium is used in

the form

2	 2dQ2 
a 

ax	 ay

which contains the normal stresses, axx and ayy . The coordinate system used

is shown in Fig. 1. Compatability l5 ac.sumed in the form
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silicon and to be a major actor in their having differing properties. It is

probably different yet for the case of ribbon,

The old EFG thermal profile used is

T4 = 437c-1 .36x cosTrx + 1157e -
 • 066x

- 317e -.47 sin(2 + 6)

Tho modified EFG profile that is used is

T 5 = 437e
-1.36 

cos-,7x + 1157e .066x

1

I	 - 158.5e-.47x

We continue to use
	

± f1
n !

T3 = 1600e-' 0827x + 85e -5x cosnx

+ 75 sin(7rx/4) - 273

r

as the Westinghouse profile.

RESULTS

We assume thermal profiles which only vary with the distance x from the

melt interface. We write Eqs. (1) and (8) in their finite difference approx-

imations and treat the plastic incompatability integral in Eq. (8) as a pseudo
	 ,.

thermal field. We then solve Eqs. (1) and (8) by an iterative procedure. The

KOF
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first iteration is obtained by assuming that the material is elastic, and

hence the integral in Eq. (8) is zero. The stresses so obtained are then

used in Eqs. (5) and (6) to calculate the plastic strain rates and the dis-

location density Nm(x,y) as functions of spatial position. These new plastic

strain rates are then used in the integral in Eq. (8), and the whole process

repeated. In particular the Qyy stresses at x = 0 are determined in the

standard way. They are very large and do not relax very much from their

elastic values.

Usually 20 iterations suffices for excellent results. Typically values

of 3J 2 are of order 108 Pa, while changes in succeeding iterations are

usually only 10 2 Pa after ?0 iterations.

Typical results for the stresses and the dislocation density are shown

in Figs. 2-4. The dislocation density changes by six (or more) orders of

R

magnitude in Fig. (3). As shown in Fig. (2), the stresses eventually decrease

in magnitude and N increases so much that of the ribbon is elastic and Nm

#	 becomes zero.

The data in Fig. (3) show that the value of the melt interface dislocation

density that was used is (almost) ridicously small. On the other hand, the

final value appears to be representative of ribbon products inferring at least

that No is perhaps not too bad.

The plastic strain rates 
ExxPL 

are shown in Fig. 4. Due to the low values

of No , the plastic strain rates are almost always small compared to the elastic

strain rate. Moreover, one finds that the strain rates in the "cusp" region 	 •

shown in Fig. 4 are very sensitive to the value of N o assumed at the melt

interface, as can be seen by comparing with the second curve given in Fi g . 4.

2It is relevant that the numerical scheme does not converge for N o = 0.6/cm.

r



A review of the numLri , .I problem reveals that it is the plastic com-

patabilit;, integral in Eq. (8) which causes the solutions not to converge.

This can be understood in view of the "cusp" region in Fig. 4 and noting that

compatability requires spatial differentiation of the strain rates. When one

considers the basic meaning of compatability, namely that the velocities are

required to be single valued functions of space, one decides to look for

experimental data for multivalued displacements or velocities.

Such data exists in the Fig. 15 in the Mobil Solar report for January

through March of 1984 15] and has further been seen by us in EFG ribbo;:. In

some cases one can actually see large "jumps" in the deformation field indica-

ting multivalued displacements really do develop. According to personal

communication with Dr. J. Kalejs of Mobil Solar, these regions of "Luder's

bands" or some other forms of shear banding are developed at 1000°F at stresses

of about 25 MPa. Our calculations, show the initial strain rate cusp develops

at 1100°F or below and at stresses of 19.7 MPa or above.

EFG Thermal Profile

At this writing, we have obtained convergent solutions for the "old EFG'

thermal profile for the case where No = 1,25 x 10^ 13/cm2 . However we obtain

nicely convergent solutions for a modified EFG profile for larger values of

No . The dislocatiGo density at the melt interface for the modified EFG pro-

file to result in convergent solutions is much below the value of N o used in

the Westinghouse thermal profile. Numerical sulutions for the EFG profile

where No is close to the value which results in "unstable" solutions, shows

two regions of "cusps" developing in plastic strain rate field in this thermal

profile. The cusp near x = 0 is very large due to the very large values of

oyy 
at x = 0 in these profiles. Considerably more care is involved in getting

stable solutions with an EFG thermal profile as compared to the Westinghouse

one.

1
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Said differently, some computer solutions for EFG profile that blo•.0-up

are clue to the spacing used. However this is not normally the case with

the Westinghouse profile, Very very small spacings are needed near x = 0

to avoid blowing up for EFG. The root cause of this problem is the large

stresses there.

Inhomogeneoas plastic strain rates

Cusps in the plastic strain (rates) such as those shown in Fig. 4 occur

also in the case of localized necking of ductile materials. Our localization

is (probably) more accurately associated with shear b , nding than necking.

However the analysis below, which parallels that used in necking, is believed

to be useful in understanding the comp l exity of the phenoinend shown in Fig. 4.

One solves Eq. (3) for the stress and obtains

Q/kT•PL

The spatial derivative of the stress is

aT _ aT aN	 aT aT	 aT	
aePL

ax TN ax + ^ ax + at L ax	 (1G)

Since the process is a steady state one, we can write M/=x = I/v and

3T/M, aT/aT and aT/ae PL can be easily obtained from Eq. ( g ). Therefore Ne

have

DT _ aT N _ aT aT

De_	 ax aN v aT ax

ax	 aT	 (1')

aePL



If one were to consider necking for example, in a constant temperature test

in a material where the dislocation density is uniform and constant force,

then the R.H.S. of Eq. (11) is zero and the plastic strain rate is uniform

in space as well.

In the ribbon growing process however none of the terms on the R.H.S.

of the analogue of Eq. (11) vanish and the strain rate in nonuniform is

space. As shown in Fig. 4 there are regions where the strain rate is

several orders of magnitude larger than it is elsewhere in the ribbon. There

is no real simple interpretation of what causes the cusps to develop. Each
f

term in the analogue of Eq. (11) makes a contribution that adds together

to cause the "cusps". In the Westinghouse profile with a low melt face

dislocation density, N is also small near x = 0 and the first and last terms

on the R.H.S. of Eq. (11) tend to cancel one another. This keeps both

epL and 3c /ax small. As the dislocation density grows A does as well and

at x = 2.5 cm tha cusp has developed as shown in Fig. 4.	 4

The stresses in the (old) EFG profile are very large and nonuniform and

this in turn requires very small values of N in order to keep 
ePL 

from

getting lac_! and therefore inhomogeneous. Small values of N exist if very

small values of N o a re assumed at the melt interface.

The stresses ayy at x = 0

Hutchinson and Lambropoulos [6] used a finite element method to calculate

the stresses in ribbon. They assumed a constitutive equation of the power law

type and thereby :,ssume (in effect) that the dislocation density did not

change. They also assumed a y = 0 at the melt interface, x = 0. Subsequent

work by Hutchinson justified this assumption.

k
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Our analysis shows that the ayy stresses at x = 0, are in fact very large

and do not relax very much. An examination of the reason for tnis reveals

tnat it is because of the low values of N o assumed. Both analyses are in fact.

"correct" and the question is then which is applicable to the growth proccss.

W! belie-,e that our analysis -is mere applicable. We believe that the dis-

locatior density is indeed small and therefore one cannot assume it remains

constant.

Adaptive grids

In recent years, it has become good computing practice to let the sG?ution

of a problem help distribute the grid points in order to concentrate more

points in regions where rapid changes occur. We have incorporated that

practice in many of our calculations. Caution is required though lest, the

aspect ratio of the grid becomes unsatisfactory. Precautions such as using

adaptive grids change the exact values where solutions blow up, but not enough 	
I

to warrant discussion, at least for a Westinghouse profile.
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