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Investigations were carried out to analyze various properties of materials em-
ploying computer simulation techniques based on semiempirical potential functions
which comprises two-body and three-body interactions, In the following three ‘self
contained’ chapters we outlined the basic procedures employed and the advances
made during this period .

The first chapter involves an analysis of the relationship between the thermo-
dynamic stability and the parameters of the semiempirical potential energy function
employed in the simulation calculations. It contains a detailed investigation of the
structural transformations from Diamond Cubic = f.tin and from Graphite =
Diamond Cubic which occur at high pressures. Also, in this chapter the surface
reconstruction of the (100, (110) and (111} planes for the diamond cubic crystal
was analyzed and a marked contraction of the first surface layer spacings was found.
Furthermore, it was found that the reduced surface tension, ", decreases with in-
crease of Z*, the three-body intensity parameter, for all three planes and falls in
the expected experimental range.

The second chapter involves a pararmetric analysis of the elastic constants and
the mechanical stability of cubic structures against all types of homogeneous elastic
deformations, The domain of absolute stability, involving simultaneous thermo-
dynamic and mechanical stability for fcc, bee, diamond cubic and simple cubic
structures were determined using a potential energy function based on two- and
three-body interactions.

In the last chapter, specific parameters involved in two-body plus three-body
semiempirical potential energy function for carbon, silicon and silicon carbide sys-
tems were calculated. Excellent reproduction for various energetics and structural
quantities were obtained.

These three chaplers were prepared as separate manuscripts and submitted for
publication.



Chapter 1

A STUDY QF CRYSTAL STABILITY AND SURFACE ENERGY
FOR DIAMOND CUBIC STRUCTUTRES




INTRODUCTION

From intermoiecular force studies, it io now knrmn that the overall
non-additive confiribution to the lattice energy is positive so that
analysis bssed on only pairwise additivity suggests a shallower inter~
molecular potential than the true value(l). Two body contributions alone
are also know to be categorically unable to even qualitatively describe
somy configurations of molecular clusters in the gas phaaecz) or the
general relaxation and reconstruction of fcec crystal surfaces‘s). In
addition, the many-body contribution has been shown to play a key role in

the stability of certain erystal structures(q).

In these recent analyses<2-4)

» a4 relatively simple potential energy
function (PEF), comprising only a two~body Mie~type potential plus a
three-body Axilrod-Teller-type potential, was found to be extremely
effective. In the present paper, this same parametric PEF 1s applied to
describe the bulk stability and surface energy for the diamond cubic
structure. To test the stability condition, the FCC, BCC, diamond cubie,
graphite and f-tin structures were considered. For the surface energy

study, only the (111), (100) and (110) planes of the diamond cubic

structure were congidered.
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ANALYTICAL PROCEDURE

The PEF, 6, is given as’®’

@ = ¢2 * ¢3 (1a)
where
NN r m r. n
i
by ™o ) E§H [n(;g") - m{;gm) ] (1b)
14] i} ij
and
N N N (1+ 3 cos 9 cos 9, cos 9 )
1
by =g ) Z 4 ] 3 k.. (le)
i k .
i T35 7 =30
In eq. (lb), iy ™ I;i - §1|, r  denotes the equilibrium atomic
separation distances, € 1s the two-body energy at rij =r, while the

exponents m and n account for the Fepulsive and attractive two-body
contriﬁutions renpectively. In eq. (le), 01, Bj. Gk and rij' £y ik
represent the angles and sides formed by three particles 1, j and k
while Z 15 the tliree body intensity parameter. In this general form, %
is a function of both the material parameters g, Ty Wy My Z and the
atomic configuration of the system.

Choosing m = 12 and n = 6, usiﬂg unitiess quantities, and lattice
sumg, the total reduced intepaction energy fer a crystalline structure, can
be written from eq. (1) as

) |
5 = % {Alz(r*')lz - 2A6(r?‘)6} + Z*Tk(r )2 (2a)

where the reduced quantities are defined as
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O m .—@. H r m ..2 3 Z = ..L (2b)
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Ero

and the lattice sums are

12451 Ty 6 451 Fiy
1 NN I1+3 ces 91 cos Bj cos Bk
™% il Y. ., T, 3 (2¢)
Jk (- L k)
Jek>1 d d d

with d denoting the nearest neighbor distance in the crystal. For each
chosen crystal structure, the lattice sums have unique values which are
listed in Table l.

The convergence of the two body lattice sums, Am, is rapid for large
m. Computed lattice sums A12 and A6 are in good agreement with the
results of Bell and Zucker for the BCC, FCC and HCP structures(s). The
sum Tk is very slowly converging.

The stability condition for a crystal at T = 0°K can be obtained by
considering 6€*fbv =0 or aaf/ad = 0 sginca the atomic volume v 1is
related te d by v = gd3 where g 18 a geométrical constant., Values of
g are tabulated in Table 1 for various crystals. Thus, the stability
condition becomes

* .12 * 6 3 & * 9
Alz(r )HL - Aﬁ(r ) +-§ z Tk(r )Y =0 ., (3)

The surface energy, o, per surface atom was calculated from

e

=1

¥
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where El is the total interaction energy for an atom located in the &'th
layer from the surface, Eo is the corresponding value for a layer far
ingide the crystal away from any influence due to the surface, M Jje the
.:otal number of surface layers considered in the calculation and Na is
the total number of atoms at the expected surface. At a finite
temperature, ¢ is expressed as the sum of two parts, %n and érel'
where O,n represents the surface energy for the atoms in unrelaxed

positions while arel is the change due to relaxation given by

M!
1
5 . =— J (AE, -~ AE)) . (5)
rel N o2 T2 0

Throughout this investigation, relaxations for M' = 2 and T = 298°K
with the remainder of the atoms fixed were performed using a Monte Carlo
technique based on the Metropolis approximation(l}.

RESULTS AND DISCUSSION

A, Structural Stability

¥
Using eqs. (2) and (3), minimum values of & , for various crystalline
* .
structures, were calculated as a function of Z  and are shown in Figure
1. We note that the more densely packed structures are favored at small

* *
2 and the more loosely packed structures at large Z . The diamond cubic

structure is the most stable in the ranmge 0.55 < Z* < 0.80. Including the



(4) that the HCP structure has the lowest

previous results of Halicioglu
. *
energy without the three body interaction (i.e., for Z = (), structural

atability appears to change in the following order with increasing Z*

HCP » FCC -+ DIA + GRAPH . (6)

we were unable to find any reglon of Z* where the BCC structure is the
most stable structure for m = 12 and n = 6; howevar, the BCC structure
becomes stable for other values of m and n.

Figure 2 shows our calculated results for ¢r as a function of atomic
volume for Z* = 0,3 (FCC most stable), Z* = 0.7 (DIA most stable and |
Z* = 11 (GRAPH most stable). We note that both the minimum energy and the
equilibrium volume, v*, (volume at ¢£1n) increase for all structures

7 *
as Z‘ increases. Table 2 1lists these numerieal values of Qmi and

n
v* for the diffefent structures. Consgiderable variation of these values
with Z* exists for ﬁhe FCC structure but not for the graphite structure.
From Fig. 2b we note that, for the stable dlamond structure, if v is
decreased by 14% or more (by increase of pressure) a phase traqsition is
expected to occur to the fA-tin structure. Likewige, from Fig. 2ec, one may
anticipate a graphite »+ diamond structural transition if v is decreased
by 19% or more. Thus, these parameteric studies lead to the conclusion
that, within the stability region of the diamond cubic or graphite
structure, the diamond cubic + 8-tin and the graphite + diamond cubic

gtructural transformations may be expected upon application of sufficient

external pressure.




Most group IV materials (C, Si, Ge, Sn) exhibit the diamond cubic
structure and their phase diagrams show that 51, Ge and Sn tend to form
the PB-tin structure under high pressurs. Furthezmore, the stable
structure for ¢ at NTP 1is the graphite structure which tends to
transform to the diamond cuble structure under sufficlently high pressure.

By evaluation of the eclastic¢ constants, the diamond cubic form has
been shown to be absolutely stable for Z* > 0,55 but unstable to shear
forces below this value. Thus, mechanical stability of this crystal
structure requires the presence of a many-body force. This study will be

published elsewhere(6).

B. Surface Energy

For the relaxation praocedure, the surface and bulk energies, o and
E0 were calculated for different Z* values ranging from 0.6 to 0.9 where
the diamond cubic structure is stable. The (111), (100) and (110) surface
planes were chosen for consideration and the top-most two surface layers
were relaxed to minimize o. The calculation system contained
approximately 280 atoms and considered about 10 atomic layers. In Table 3,

values of a 6 and o are given for these three orientations in

un’ “rel
reduced unite at various 2 . We note that the (111) has the lowest
surface energy while the (100) has the highest and that o decreases for
all three orientations as z* increases.
The top and side views of the (100), (110) and (111) planes with
Z* = 0,7 after relaxation are shown in Fig. 3. For all three surfaces, the

top layer exhibits a large contraction while changes in the second layer

relative to the bulk spacing are very small. The surface geometry after




relaxation was found to be relatively insensitive to Z* value in the
diamond cubic Jtability range. No change with relaxation was found for the
top view of the (111) and (110); however, the (100) exhibited dimer
formation. This reflects the relaxation energy, brel‘ which Tabla 3

ghows us 18 ~ 5 = 10 times larger for the (100} than either of the other
gurfacas. The reconstruction patterns for the (100), (110) and (1ll1)
surfaces are thus C{2 x 2), (1 x 1) and (1 x !) respectively.

In Pig. 4, the reduced surface energy g - |a/EO| and the bulk
energy, Eo, are plotted as a function of Z*. For all three orientatiuns,
c* was found to decrease monotonically with increase of z*. The bulk
energy, EO, exhibits the opposite trend with increasing Z*- Experimen~
tally, approximate values of reduced surface energy for Group IV elementa
(c, si, Ge and Sn) are in the range ~ 0.14 - 0.25 and these are within
the calculated range of Fig. 4. '

To estimate the “"relative” experimental surface energy, we take the
raw data of Table 4 for lattice constant, a5 surface energy, Y, and

enthalpy of formation at 298°K, Aﬂggs. Since the surface area per

surface atom a is given by 0.217 ag, 0.354 a% and 0,5 ag for the
(111), (110) and (100) planes respectively, we can define the reduced
surface energy by 06 = YE/ﬁHggg- Values of @ for the major orientations

and the average value 8 are given in Table 5.

CONCLUSIONS
Atomistic calculations using a two-body-only PEF are unable to predict
the relative stability for FCC, BCC, diamond cubic and graphite structures;

however, addition of a many~body term in the form of a three-body




contribution does allow such a prediction., The present calculaticns
predict that tﬁé structural stability order with incressing three-body
strength, Z°, is HCP + FCC + f-tin + Diamond + Graphite. In addition,
structural transformations from diamond cublc + 8-tin and graphite +
diamond cubic are predicted to occur by increases of pressure.

Multilayer surface relaxation of the principle oriuntations in the
diamond cublec structure shows marked contraction of the first interlayer
spacing for the (100, (110) and (111) with dimer formatiom on the (100) and
calculated surface energiles, a*, in the expected range for the experimental
valuesd.

This study emphasises the need for inclusion of multibody forces in
the PEF when dealing with both uXructural stability and surface energies of
non-close packed structures. The PEF employed in this study was a
particularly simple and useful one because it allowed ease and speed of

computation in lengthy iterative procedures.

10
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Table |

Lattice Sums for the Mie and Axilrod-Teller Potentials
Flus the Geometrical Constant, g, for Various Structures

FCC BCC DIA GRAPH f=tin
Ag 14,4481 | 12,2495 5.1153 3.3895 8.2864
Ay 12.1319 9.1141 4.0389 3.0092 5.4654
T, 19,1697 | 14.7719 1.6647 0.1010 7.0706
g# 0.70711| 0.7698 1.5396 3.067 0.9797
#T 6912 8192 5832 5040 7200

t dindicates the number of atoms which were considered

flg = v/d3.

compute the lattice sums.
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Table 2

. *
The minimum energles, cﬁin' and the equilibrium volume,
t

% #
v , for five different structures as a function of Z ,

z" ¢;1n/v* FG BCC D{ amond Graphite B-tin
°*1 ~3,8212 -3,7494 ~2.6086 -1.8731 ~3.4417
c.3 U°
v 0.8925 0.9051 1.4854 2.9105 1.0057
¢£in ~1.5849 -1.5871  ~1.9763 ~1.8265 ~1.7145
0.7 .
v 1.3065 1.3116 1.6562 2.9382 ° 1.3475
¢§1n -0.8073 -0.8165  =1.5188 ~1.7812 -0.9640
1.1 > |
C oy 1.7835  1.7806 1.8425 2.9662 1.7426

t All values ari reduced according to eq. (2).

13



Table 3

Celiculated surface energies of the low index planes

for the diamond cublc structure at several different 2Z* values.
z* (100) (110) (111)
Uun 0-8266 004374 . 2084
0.6 arel ~0.3624 -0,0298 -0.014
o 0.4342 0.4076 0.1944
Om 0.7426 0.3630 0.1696
0.7 rel =0,3714 ~0,0492 ~0,0292
a 0.3712 0.3138 0.1404
%m 0.6672 0.2978 0.1362
0.8 rel ~0.3872 ~0.075 -0.0406
g 0.2800 0.2228 0,0956
O 6,6010 0.2414 0.107
0.9 brel "'0-4152 -001114 -0.1006
ol 0.1854 0.130 0.0065
Total number of
atoms in the system 216 360 288
Total number of
atoms on the surface 18 30 48

14
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Table 4
Yrdup IV experimental data for lattice constant, a,,

surface energy, y, and bulk energy, Aﬂgga

Element aO(A) y(erga/cmz) Aﬂgga(eV/atom)

3.5668¢77 | 3760.0¢®) | 7.412¢10:1D)

cdiamond

51 5.43077) | 1389.08% | 4.673C10010)
Ge s.6574¢7) 975.5¢9) | 3.85(1%

Sn 6.4912¢77 822.0¢9 | 3.14¢12

15




Table 5

Reduced surface tension, 8, for Croup IV elements

2(111) (en®) 3(110) (cm®) 2(100) (en®) ,
9
Spocles (a1 | %o | %o
T8y | T2 1100ew Y"3(100) {eV)
27560 % 10°15 | 4.4979 % 10718 | 63610 % 10716
¢ 0.0873 | 0.1426 | 0.20167 | 0.1439
diamond
0.6472 1,057 1,4948
63853 % 1016 | 10027 x 167 | 1.4746 % 10°1°
st 0.11862| 0.1937 | 0.2739 | 0.1954
0.55432 0.90519 1,28014
6.9295 x 10°16 | 1.13157 % 16" | 1.600 x 107"
Go 0.10974| 0.17919 0.2536 | 0.18077
0.62248 0.6899 0.9755
9.1226 % 10°76 | 1.0897 % 1077° | 2.1068 x 10°"°
% 0.1693 | 0.2637 | 0.3047 | 0.2459
0.46867 0.76533 1,00237

16
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b,

FIGURE CAPTIONS

*
The minimum reduced energy, & , for FCC, BCC, diamond cubic (DIA) and
graphite (GRAH) structure as a function of the reduced three-body

*
parameter, Z , (m = 12, n = 6).

The reduced energy, ¢*. ag a function of the atomlic volume, V, for
FCC, BCC, DIA, GRAH and B~tin structures (m - 12, n = 6):

(a) for Z* = 0.3, within the stability region of FCC,

{b) for Z* = 0.7, within the stability reglon for DIA, and

*
(c) for Z = I,1, within the stability region for GRAH.

Surface geometries (top and side views) of (a) (100), (b) (110), and
(c) (l11) surfaces for the diamond cubic structure after multilayer
relaxation with Z* = 0,7 and Monte Carlo temperature of 298°K.
The numbers below the figures indicate the percent changes in

interlayer spacing.
*
Plot of the reduced surface energy, ¢ , for three different surfaces

and the bulk energy EO on a per atom basis in the DIA system as a

*
function of 2 at T = 298°K.

17
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Chapter 11

ABSOLUTE CRYSTAL STABILITY AND ELASTIC CONSTANTS
FOR CUBIC STRUCTUTRES

24



INTRODUCTION

Ina pruvfﬁua paper, the relative stability of various open crystal
gtructures wags shown to require a multi-body potential interaction in
addition to the usual two-body 1nteruction.(l) There, the mulci=body
term was chosen to be a simple three-body potential and a parametric
analysis was used. In the present work, thia analysis is extended to
examine the mechanical stability of various cubic structures against all
types of homogeneous elantic deformations. As a necessary precursor, a
parametric analysis of the elastic constants is obtained.

Using unitless quantities, a two-body Mic potential, a three-body
Axilrod-Teller potential and lattice sums of the energy, the total reduced
interaction energy, ¢*, for an atom im a particular crystalline structure

(1)

was shown to be given by

* * * * *
> = Ef%:HT (naCe )™ - uB(x )"} + 2 T, (T )? (la)
with
L0 _,*_ro * 2
o W F —d—,z -3 (1b)
Er
o
and

N N
A= ) (4" B = ) (3"

1 F1y P11y
1 NN (1 + 3 cos 91 cos Bi cos BjJ d .
T, == 0§ 1 . (led
k3 4] (ryy Ty 7yp)°
1351 iy
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Here, m, n, ¢ and r, are the usual two~body parameters while Z is the
three~body int;naity parameter and d 1is the nearest neighbor distance in
the crystal. For each chosen crystal structure, the lattice gums, A, B
and T, in egs. (1) have unique values and their computed values are
listed in Table 1 for the various cubic structures of interest to us in
this paper.

The equilibrium nearest neighbor distance, do’ at T = 0°K may be
found from eqs. (1) by requiring that the total energy be a minimum with

raspact to the nearest neighbor distance, d. As found enrliar(l), the

equilibrium equation is then written as

AP - By P e 18 R M p oM Lo (2)

Using eqs. (1) and (2) plus elasticity theory, the elastic constants,
mechanical stability conditions and the absolute stability conditions for

various crystal structures using this parametric potential may be obtained.

ELASTIC CONSTANTS
In any study of mechanical crystal stability the elastic counstants are
an essential quantity-(z) They way be calculated by applying a
homogeneous deformation to the crystal and comparing the stored energy
change with that predicted by linear continuum'elasricity theory. In this
procedure, the position of the 1'th atom is denoted by ﬁi in the final

&)

configuration. According to Wallace'“’, the change in distance between
any two atoms in a c¢rystal under homogeneous strain can be represented

using Fig. 1 by

26



. E (x:)z - E (xf)z + 2 E g Mg xf xf , (3)

where the indices «, B represent Cartesian coordinates and take on the
values x, v, zor 1, 2, 3, and the naﬁ are the Lagrangian strain

parameters.

The elastic constants at 0°K are defined as

32¢

r——— (4)
aﬂaﬂ anYB .nl !

1
Caﬂy& v (
where V denotes the volume of the crystal., These elastic constants are
calculated at the initial configuration, ?1, with the strain naﬂ being
measured from ;i and the derivativee all being evaluated at ;1‘

t.e., at n_, = 0. Using eqs. (1) and (4), the reduced elastic constants
af

*
may be written, using Caﬁyé = (V/Ne) C 5 a8

afy

* mun m *m mn n *.n
CaBy& " &4(u-n) (i+ D AaB‘rB(r > - 4(m~-n) (E+ D Baﬁyécr )
* * g
+ 2 Taﬁybcr ) I (5)

The lattice sums for the elastic counstants, Aaﬁyb’ Baﬁv& and TGBY5’
are developed in Appendix I, have been computed and are listed in Table 2
for various cuble structures.

There are 81 elements in the matrix [C:575} and, consideying the
strain and crystalline symmetries plus using the Voigt notationca) the

matrix of elastic constants for the cublc system becomes

27




. ™ * C* C* B
Cyy 12 12
* % *
G C;  Cp2 0
w* w
G 12 Cp
*
c (53
( pql (6)
*
¢, 0 0
0 o ¢ 0
4k
W
0 0 c,

*
In Eq. (6), there are three independent elastic constants; i.e, C;,,

* ‘ *
C12 and 044. It 18 well known that Fhe Cauchy relations, C12 - céd

for the cubic syastem, lold if ecach pair of atoms interact through a purely
central potential(S). This relationship can be seen in Table 2 for the
two-body part of the lattice sums for the elastic constants, i.e.;

A Of course, it does not hold for the three=body

12 ™ Mgy 8nd By = By
portion which i8 not a central potential.
Using eqs. (2) and (5) with m = 12 and n = 6, the elastic constants
*
c for the FCC, BCC, diamond cubic and simple cubic erystal structures

Pq
*
have been calculated as a function of 2 and are shown in Figs. 2.

Except for the C and 044 of the simple cubic structure, all the

12

*
elastic constants, (C 312' 044), decrease ag Z  inr~reages.

11’

28



ABSOLUTE CRYSTAL STABILITY
For a crystal to be stable against all elastic homogeneous deforma-
1
tions, the elastic strain energy, CGBYﬁ naﬂ nyé' mst be positive.
*
This condition requires that the matrix of elastic constants, [cpq], be
*
positive definite; l.e., all eigenvalues of the matrix {Cpq] are

(4)

positive. Thus, the condition for mechanical stability in the cubic

system 1s
€,y > 0; €, lclz|; Cuy > 05 ©

+ 2C,, > 0. (7

11 12

Calculated values of Ciy - IClZ' and (Cll + 2012)/3 for each structure
have heen plotted in Fig. 2 to assess the mechanical stability condition
via eq. (7).

For the FCC structure, a value of Z* < 0.5 satisfies the stability
condition giving an extended domain of absolute stability. We note that
this potential function gives no region of mechanical stability for the BCC

(6)

structure although in another study it was found that altering m and

n led to a stability domain for the BCC structure. We note also that,
without the three-body potentisl (Z* = 0), the diamond cubic and simple
cublc structureslare not stable. However, increasing the three-body
intensity parameter, Z*, to values greater than 2" ~ 0.5, one can
stabilize the diamond cubic structure. For th; aimple cubic structure, the

* .
elastic constants satisfy all the stabllity requirements for Z  values

in the range 0.45 < Z* < 0.73.

29



Using eqs. (1) and (2) and Figs. 2, both the thermodynamic stability
condition (minimum value of ¢f) and the mechanical stability condition
may be compared go that the domain of Z* providing absolute stability
for each cubic structure may be determined. These results are shown in
Fig. 3. From Fig. 3, we note that the FCC structure 1s absolutely stable
in the range 0 < Z* < 0.45, the BCC structure has no region of absolute
stability, the simple cublc structure is absolutely stable in the range
0.45 < Z* < 0.57 and the diamond cubic structure is absolutely stable in
the range Z* > 0.57. Of course, these ranges of absolute stability
depend on the choice of crystal structures used in the comparison and upon
the type of two-body and three-body potentials used in the potential energy
function. The use of different exponents (m and n} in the two-body

(7)

*
potential are known to influence the magnicude of & but their

variation has not been analyzed in the present investigation.

CONCLUSIONS

Atomilstic models based on two-body-only interactions (Z* = ()} cannot
be used to simulate the wvarious properties of open structures like the
diamond cubic structure because this structure is not mechanically . stable
under such conditions. Multinody interactions, or at lcast three-body
interactions, are absolutely necéssary to provide both thermodynamic and
mechanical stability for such open structures. The domain of absolute
stability fof each crystal structure can be found for a chosen potential

energy function and chosen list of comparison structures.
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Table 1

Lattice Sums of the Energy for Mie and Axilrod-Teller
potentials (m = 12 and n = 6)

% L1
FCC BCC DIA SC

B 14,4481 | 12.2495 5.1153 8.3994

A 12.1319 9.1141 4.0389 6.2021

19.1697 | 14.7719 1.6647 6.6138

a% ~ Diamond cublc structure.
~ Simple cubic structure.
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Table 2

Lattice Sums of Elastic Constants for FCC, BCC, Simple Cubic (SC)
and Diamond Cubic (DIA) Structures (m = 12, n = 6),

A () Byy(Byyyy) T3 (T 0y)
AL (A n,) B, (B, ,,) TnlT 100)
Structure 1281122 12'%1122 1241122
A,4(A303) By (By323) T44(Tp323)
qu(others) qu(others) qu(others)
8.1510 10.1074 274.7199
4.0124 4.,4705 172.4297
FCC |
4,0124 4.4705 57.0059
0.0 0.0 0.0
5.0125 8.1746 222,0875
3.5698 4,0279 129,8891
BCC
3.5698 4,0279 40,4850
0.0 0.0 0.0
8.1337 9.6340 96,4657
0.0679 0.7563 59.9206
sc
0.0679 0.7563 20.9476
0.0 0.0 0.0
1.8050 2.6088 26.0069
1.7899 ' 2,0955 14,1703
DIA
1.7899 2.0955 9,2187
0.0 0.0 0.0
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APPENDIX I
Lattice Sum Formulae for Rlastic Constants Using Hie Potential (two~body)

and Axilrod-Teller Potential (three-body) Terms

Defining our potential, ¥, as the sum of a two~body, ¢h’ and a three-

body, ¢3, term, the frwo-body part can be written as

2
N r" m/2 r n/2
- NE n 0 m -
Z E s L_f) m=n (rz b (I=1)
i i
Let us define
x m/2 x. n/2
- - e . -z 0 -
x0 To xi ry i ¢2 m=n (xi) m-n (xi] ! (1-2)
then we have
&, 2
B e g 8%, BX, X, (1-3a)
3N 2 Z 3n_. on
B im] axi ap " 'yb

m n

r
) I o
- e (Gt 1)( T Aggys~ (T DG Byl (1-30)

where the two-body lattice sums AGBY5 and B are given by

afyd
o B v 6
N ( d ]m 4xi XXy X, (T-4a)
afyé 2 i rfi
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A N S e ’ x Cw

B LY x5
(%) —— (1-4b)
1

[+ 4
) g n hxi x
L G £l

P9 . \
and inxi bxilanpq

The three~body part of the potential, &,, is given by

3
NN1+ 3 cos O, cos 6, cos 6
¢’3 - %’ Zi z X L :'3 L (1’55)
1] (ryy Ty rij)
iig.
2 2 2 2
N, 'z”g{ 1 +g‘”u‘*‘u 11)(‘11 147F ’(’-'13 13" )}
il " { (r )3 8 ( rz - 2 )5
PR RREEREEREY SRS
(1-5b)
from Figo .lc
Let 2 2 2
us define X = Ty Y= rlj and Z = ri.1 and ¢3 as
1 3 (X+Y=2) (X+2-Y) (Y+Z=-X)
¢ L] + = . (1—6)
3 (xzz)3/2 (mcz)ﬁl2

Then, the three~body lattice sums in the elastic constants can be written

as
N AT = ~
§ (el Dg ez) (1-7a)

where El and 32 are the column vectors, ﬁs iz the (3 x 3) matrix

and these have the following elements
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e : H e '
1 on ﬁ' anaB bnaa ! 2 76 bn,r& ban
~ o%, 0%, ole,
Y5 3X0Y 3X0Z
52 526 524
s . 3 ¢ 3 | (T=7h)
3 30K BT XY
224 8% 224
3 3 3
326X YEY YAl

p. Q¥ _,0 B, 22 _ B, B -
x 2% xJ, 3'0'3 Z(x Q")(:r. j) (1-8a)

and

bcb 3413 '0¢3

—-—--fCXYZ) ;s = £(Y,2,X) 3 ——T-f(zx‘z),
2 3 ?Z

220, 0%,

2%, 0%,
3% - BY5K = g(z,X,Y) ,

= 8(X.Y,2) § wwE ~ 3EeK

o%e, 0%,

3%z " vaer - KHZ4H (1-8b)

where £(X,Y¥,Z) and g(X,¥,Z) are defined as
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15 1 3
£(X,Y,Z) = e e [2(Y+2z-X) ~ 2(X+Z-Y) - 2(X+Y-Z)
sxyz) ¥ %2 a(xvz)®?
+% [(XFY-2Z) (X4+2-Y) - (K+Z-Y)(Y+2-X) = (¥+Y-2)(¥+2-X)}
F =22 {(XHY-2) (R42-Y) (HZ-X) } ] (1-8¢)
4%
and

9 1 3 5 ] 11

g(X,Y,2) = et 572 [2(x+y-2) + 5 (XY (2R (- = )

4(XYZ) 8(XYZ)

5 1 1 5 1l 1
+3 (XH-2)(H2-X) (3 -~ 3) + 3 (X+Y=2) (X+2-¥) (- ¥ + )

25
+ 5y (X+Y-Z) (X+Z-Y) (Y+2-X) ] (1~84)

Using eqs. (7) and (8), the three-body lattice sums for the various crystal

structures were calculated and listed in Table 2.
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3.

FPIGURE CAPTIONS

Atom geometry needed in the evaluation of etrain parameters and the

lattice sums of the elastic constants.

Variation of the elastic comataats (G ,, Cp, C;4)y C)) = |C,[ and
*
(c11 + 2&12)/3 as a function of Z for (a) FCC, {b) BcC, (c)

Diamond Cubie, and (d) Simple Cubic structures,

*
Reduced energy, ¢ , for the FCC, BCC, Diamond Cublc (DIA) and Simple
.
Cubic (SC) etructures as a function of Z , plus mechanical stability
regions for FCC, BCC, DIA and SC structures based on their elastic

constantsa.,
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Chapter II1

CALCULATION OF POTENTIAL ENERGY PARAMETRES
FCR THE SILICON - CARBON SYSTEMS



Introduction

In simulation calculations, the functional simplicity as well as the reliability
of a potential energy expression are both important considerations. In general,
in such niodeling investigations based on simple two-body interactions, the close-
packed structures (hcp or fec) are the only energetically stable configurations, Less
dense structures (such as diamond cubic), on the other hand, are not stable with a
potential energy function expressed as the sum of pair interactions only, This fact
has been demonstrated in a recent parametric study on the stability of the diamond
cubic crystal {1], It has been determined that multi-body interactions are absolutely
necessary; therefore, a potential energy function comprising two- and three-body
terms (at least) must be empleyed for an adequate description of the diamond cubic
structure,

In the present study, specific parameters of the potential energy functions for
a variety of Si,, C; and 51,Cy species are calculated and the applicability of the
potential function, for reproducing various energetic and structural quantities was
tested,

Analytical Procedure

A. Elementa) Systems

For a system of N particles, in general, the total potential energy may be
expanded as |2): '

= o+ Pzt (1a)
LN
br= ) D ulff) (15)
t :
i) :

3"'_2 z Zurzsr.]srk) (16)
l#J#k ¢

where, u(7i,7;) and u(f;,7;, k) represent the two- and three-body interactions,
respectively, The positipn of the i'th particle is denoted by fi.

In this study, the two-body part is represented by a Mie-type potential:
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- R R R =

el T

-

o

TR e TR AT Rl o

¢ o vm Tosn
u(ry;) = m n(;‘a‘) - m(;) (2)

where, r;; = |Fj = ;i ro represents the equilibrium distance and ¢ denotes the
two-body energy at r;; = ro. The exponents m and n account for the repulsive and
attractive terms, respectively. For the three-body term, the Axilrod-Teller equation
is taken into consideration:

o m ) Z(1+ 3cosf;cosl;cosOy)
u(F1, 75, k) = (ri; * Fik - T4k)° (3)
where, 0;,0;,0x and ri;,rik,rjx represent the angles and the sides of the triangle
formed by the three particles i, j and k, respectively. The three-body intensity pa-
rameter is denoted by Z. Interactions coming from higher body terms are neglected
in this calculation. Considering the lattice sum formalisin, next, the total potential
energy function for a crystal is obtained by combining equations 1 through 3:

& = %N—_f—n—)[m(%)m —mB(%‘-)“] + NZT(2) (4a)

where, d represents the nearest neighbor distance and the lattice sums are given by:

A=Y (Eym (45)

;1
-~ d . .
B= z,(;;) (4c)
2
and NN
1 (1~ 3cos b, cos b, cos b;)d®
Ty = — 4d
kT EJ: ; (rij  rik - rik)® (44)

J#k
Numerical values for the lattice sums A, B and T} for the diamond cubic crystal

are given in reference {1}.

B. Binary Species
For a binary system, equation la is replaced by

2

| 2
P = Z ¢2(aaﬂ)+ Z

a=1 =] a=]

2
Z ¢3(0!,ﬁ,")‘) (5)

171=1

NIE

=
il
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where, ¢2 and ¢z are still given by egs, 1b and 1c but now deal with the interactions
between the species & and § and 4( =a or ). For a binary crystal, we have

_ Na rﬂ(ﬂlﬁ) LI ro(a,ﬂ) Rl
¢2(f11 ﬁ) = z(m,aﬁ - naﬂ) £af [naﬁAaﬁ( d ) maﬂBaﬂ( d ) (6‘1)
where N
fop = T2y (6t
i ri(alﬁ)
i
* f ri(a,ﬁ)
and NoZ. o
ba(a,By) = =2t (7a)
with . 5
1 <A X (1 + 3cos02 cos 8 cosb))d®
T“n‘*”f:ﬁizz y ) oy 3 (76)
T (Tis(a,8) * Tik(arm) " Tik(Bm))
Tk
Subseripts 1, § and k are the running indices, with similar definitions as the variables
in eq. 4.

Pertinent lattice sums for several single component and binary systems are
given in Tables 1 and 2 respectively. The following relationships hold for the two-
component lattice sums

A=Az} A=A} Byy=Ba; Byz2=By;
Tmi=Tr2, The=Tn=Taz=Ta; Tizz=Te (8),

C. tarameter Evaluation

In order for the potential energy function given by equations 1 threugh 3 to
be used in a simulation calculation for a specific sysiem, the parameters (¢, r, and
Z) must be first evaluated. In accordance with our earlier study, on the stability of
the diamond cubic structure, the values of the exponents m and n were taken as 12
and 6, respectively. The evaluation process is basically a simple fitting procedure,
however, due to the nonlinear nature of the potential function it often becomes
quite cumbersome. Throughout this study only experimental data were employed
in the evaluation of the parameters. Furthermore, one should remember that the
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parameters, by definition, are independent of N and of the geometrical state of the
system (i.e., independent of the particles’ positions)., They depend solely on the
atomic species involved in the interaction.

In this study, parameters for pure Si and C as well as for the SiC system were
evaluated. In each case, the basic experimental data for the crystalline bulk and
for small clusters were taken into consideration. The data which are used in the
calculation of the parameters are tabulated in Table 3, The evaluation procedure for
the pure systems will be first outlined. The parameters for the homonuclear cases
(Si and C) were calculated considering three basic restrictions. (i) The equilibrium
criterion: at the static limit we have 8¢/8r; = 0; where, in the case of a crystal,
rq is the nearest neighbor distance and is directly related to the density. For small
clusters, however, r, represent internuclear distances between the parti-les, (ii) The
stability region for the diamond cubic structure: according to resuits reported in
reference [1] the parameter Z should satisfy: 0.55 < Z* < 0.8, where, Z* is the
reduced three-body intensity parameter defined as: Z2* = Z/er,®, (iii)Stable trimer
configuration: the energetically most favorable trimer configuration for a potential
energy function defined by equations 1-3 has been investigated in reference [3].
Accordingly, if the trimer is linear, 0.68 < Z~ and, if it is (equilateral) triangular,
Z" < 0,68 must be satisfied.

The parameters for the homonuclear cases (Si and C) were selected in such
a way that calculated energies for the small clusters (Si3, Cs, Si2 and C;) and
the crystalline states (silicon and diamond) exhibit a best fit to the corresponding
experimental data. For this purpose the energies were calculated according to equa-
tions 1-3 using a series of parameter sets which obey the restrictions cited above.
Numerical values of the best fitted parameters are given in Table 4.

In the case of the parameters for the SiC system, experimental data for 5:1C,
S512C, SiCp molecules and for the crystalline $-8{C were used. The data consisted
of the cohesive energy and the nearest neighbor distances for the bulk, and the
bond energies along with the bond lengths for the small clusters. (See Table 3).
Due to the binary nature of this system, in addition to the homonuclear interaction
parameters, cross-parameters such as €si,c, To(5i,c)y £5i,5i,¢ and Zg;,c,c needed
to be determined.

In the evaluation of the cross-parameters for the §-5iC system, we also consid-
ered the following stability restrictions. (i) According to experimental data, Si;C
is a linear symmetrical molecule. Our present potential energy function satisfies
this condition only if Z° (g s;,¢) > 0.41 where,

Z(5i,51,C) (9)
€(51,51)€(51,0)€(54,0)) V3(ro(s1,50)To(51,C) T o(51,0)) 2

Z7(si,5i,0) = (
(i) On the other hand, experiments indicate that §iC; is also linear but asymmet-
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rical and that it can only be stable if Z°(s,¢,c) > 0.58 with,

Z(si,c,c) (10)
(e(si,09€(s6,0) (00 2 ro(sio)To(ss, ) otc,0))®

Z7(sie0) =

(iii) For the crystalline §-SiC as well as for the SiC, §7,C and SiC, molecules,
the stability criterion which is given by d®/dr, = 0 should also be satisfied.

We employed the parameters for Si and C obtained above, and calculated
energies for the crystalline §-S1C, and a-SiC, »i2C and S51C, molecules for a
series of cross-parameters sets, The best fitted cross-parameters with the above
restrictions were chosen and tabulated in Table 4 along with the parameters for Si
and C.

Discussion

In order to analyze how well the parameters can now reproduce experimental
data, we plotted the experimental energies, versus the calculated values in figure
1. It is important to remember that, in this graph for each case, we used the same
potential function associated with the same set of parameters given in table 4, The
dotted line indicates the ideal positions (i.e., the 45° line). For such a large variety
of systems (ranging from crystalline phases all the way down to isolated molecular
species) the agreement obtained between the experimental and calculated energy
values can be considered quite good. The plot also contains the energies for Cy,
Cy and crystalline graphite which were not included in the parameter evaluation
procedure. While the energy value for graphite displays some (~ 30%) deviation,
calculated energies for C4 and C5 are in very good agreement with the experimental
values. Another important point related to figure 1 is the slight segregation of the
energy values for different species. All the calculated energies for the bulk cystalline
cases (namely, for silicon, diamond, graphite, a-silicon carbide(4H-III} and B-silicon
carbide) were found to be somewhat lower than the corresponding experimental
values, while all the small molecular species produced slightly higher energies. In
general, the tendency for this sort of segregation in the case of & potential energy
function based on two-body interactions only, is much more pronounced [4] than in
the present case. This situation may be closely related to the effect of three-body
interactions which are properly accounted for in our calculations via equation 3.
The energies for a-SiC and §-SiC were found to be very close to each other (see
Table 3), and they were considerably lower than the energies calculated for other
structures (Table 2).
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Figure Caption

Figure 1 Comparison of the calculated cchesive energies with the experimental
values,
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Table 1

Lattice Sums for the Mie and Axilrod-Teller Potentials for Various Structures.

FCC BCC DIA GRAPH f-tin

B 14,4481 12,2495 5.1153 3.3895 8.2864
A 12,1319 9.1141 4,089 3.0002 £.40654
Tk 19,1697 14,7719 1.6647 0.1010 7.0706

Table 2
Lattice Sums for two-component systems.

NaCl CsCl 1T ZnS° BN | oa-SiC
structure structure ' structure structure | (4H-III)

A 0.1896 1.1038 + 0.0337 0.0084 ; 0.0342
Aj2 6.0126 8.0103 4.0045 3.0009 © 4,0595
By, 1.8003 3.563b67 . 0.7596 0.2821 ; 0.7657
B, 6.5888 8.6996 ' 4,3516 3.1163 o 4,3803
Ti11 2,5272 5.4138 - 0.6928 0.1057 " 0,7013
Thy2 11.5117 25.8716 . 2.8595 0.1574 . 2.8967
Ti92 5.7544 12,9374 1,4208 0.0787 . 1.4558
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Table 3

Experimental and calculated energies and bond distances.

Bond distances or nearest

Cohesive energy

Species neighbor distance {A) {eV/molecule)
Experiment Calculation Experiment {$:%78) Calculation
Sia(e) 2,24617) 2,205 -3.208 : 0,216 -2.817
lsia(g) 2,257 2,267 ~7.407 £ 0,563 -6.247 |
inear
Si(a) 235161 2.3516 ~4,6062 = 0,043 —5.568
diamond cubic
Cs(p) 1.24207) 1.4806 ~8.215 7012 —5.437
Ca(y) 127747 1.458 ~14.033 70" o7 ~12,362
lincar
Ca(y) 1.281%) ri= Ldd4 ~10.686 7003 ~19.507
linear ro = 1.455 f
Cs(g) 1.28(7) r1 = 1,435 ~27.014 75520 ~26,70 }
Jinear ro = 1,465 ‘
Cla) 1.5445(°) 1.5445 ~7.394 T 000 -9.402
diamond cubic |
Cia) 1.4180(%) 1.4619 ~7.418F500% ~0.807
graphite '
SiCp) 1.700%) 1.7 -4.831 70007 -3.894 !
§i2Cy, 1.75¢7) 1.70 ~11,198 %030 -9.504
symmetric ?inear
C2Si(y) C-C=1.28") C-C=1.163 -18.1287 0305 ~10.510
unsymmetric linear C-8i=1.75 C-Si=1.711
=3 8 l. ’ ot ’ — i - ’
B-8iCys) 1,88781%) 1.8115 12,8357 2 15.714
zinc-blende
-8iC(,) 1.885(9) 1.8135 —-12.81775 158 ~15.736
4H-111
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Table 4
Potential Energy Parameters.

Two-body

Parameters (Si-Si) (c-C) (Si-C)

e (eV) 2.817 5.437 3.895

ro (A) 2.2051 1.4806 1.74
Three-body
intensity
parameter (8i-Si-Si) (C-c-C) (8i-8i-C) (8i-C-C)
Z (eV-A®) 3484.0 167.3 698.2 261.8
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