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Investigations were carried out to analyze various properties of materials em-
ploying computer simulation techniques based on semiempirical potential functions
which comprises two-body and three-body interactions, In the following three `self
contained' chapters we outlined the basic procedures employed and the advances
made during this period .

The first chapter involves an analysis of the relationship between the thermo-
dynamic stability and the parameters of the semiempirical potential energy function
employed in the simulation calculations. It contains a detailed in^estigation of the
structural transformations from Diamond Cubic => #.-tin and from Graphite =^-
Diamond Cubic which occur at high pressures. Also, in this chapter the surface
reconstruction of the (100), (110) and (111) planes for the diamond cubic crystal
was analyzed and a marked contraction of the first surface layer spacings was found.
Furthermore, it was found that the reduced surface tension, a', decreases with in-
crease of Z', the three-body intensity parameter, for all three planes and falls in
the expected experimental range.

The second chapter involves a parametric analysis of the elastic constants and
the mechanical stability of cubic structures against all types of homogeneous elastic
deformations. The domain of absolute stability, involving simultaneous thermo-
dynamic and mechanical stability for fcc, bcc, diamond cubic and simple cubic
structures were determined using a potential energy function based on two- and
three-body interactions.

In the last chapter, specific parameters involved in two-body plus three-body
semiempirical potential energy function for carbon, silicon and silicon carbide sys-
tems were calculated. Excellent reproduction for various energetics and structural
quantities were obtained.

These three chapters were prepared as separate manuscripts and submitted for
publication.
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Chapter I

j

A STUDY OF CRYSTAL STABILITY AND SURFACE ENERGY
FOR DIAMOND CUBIC STRUCTUTRES 	

^II
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INTRODUCTIONIfrR	 ON

From intermolecular force studies, it ie now kn ,)vn that the overall

non-additive contribution to the lattice energy is positive so that

analysis based on only pairwise additivity suggests a shallower inter-

molecular potential than the true value (1) . Two body contributions alone

are also know to be categorically unable to even qualitatively describe

s= configurations of molecular clusters in the gas phase (2) 
or the

general relaxation and reconstruction of fcc crystal surfaces (3). In

addition, the many-body contribution has been shown to play a key role in

the stability of certain crystal structures (4).

In these recent analyses 
(2-4) , a relatively simple potential energy

function ( PEF), comprising only a two-body Hie-type potential plus a

three-body Axilrod-Teller-type potential, was found to be extremely

effective. In the present paper, this same parametric PEF is applied to

describe the bulk stability and surface energy for the diamond cubic

structure. To test the stability condition, the FCC, BCC, diamond cubic,	 I^

graphite and P-tin structures were considered. For the surface energy

i

study, only the (111), ( 100) and ( 110) planes of the diamond cubic

structure were considered.
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ANALYTICAL PROCEDURE

The PEF, Q, is given as (4)

@ m 42 + 43
	

(la)

where

N N	 r m	 r n

	

2 2 i f j m-n	 rij	 rij
and

	

N N N	 (1 + 3 coo 9i	 icos B cos B 
k)

43 	Z	 (lc)
	6 i j k	

(rij 
rik rjk)3

	

ifjfk	 {

In eq. (lb), rij = Iri - ri 1, r  denotes the equilibrium atomic

separation distances, a is the two-body energy at rij	 ro while the

exponents m and n account for the repulsive and attractive two-body 	 Y

contributions respectively. In eq. (1c), 0 , 0 , 0 	 and r ., r , r	 I
i	 j	 k	 i,	 ik	 jk	 `i	 s

represent the angles am sides formed by three particles i, j and k
^^	 c

while Z is the three body intensity parameter. In this general form, 9

is a function of both the material. parameters e, r o , w, n, Z and the

atomic configuration of the system.

Choosing m m 12 and n - 6, using unitless quantities, and lattice

sums, the total reduced interaction energy for a crystalline structure, can

i
be written from eq. (1) as

	

(D* s 2 [Al2 (r*) 12 - 2A6 (r*) 6 } + Z*Tk(r * ) 9	(2a)

where the reduced quantities are defined as

4
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0, r	

- Z
Nt d

erg
0

and the lattice sums are

Al2 - E ( rd ) 12 ; A6 - E (rd)6
JX	 ij	 J>1 ij

1 N N 1+3 coo Bt cos Hj cos 0k
T
k 6^ kr i r rk 3	 (2c)

,jfk>1	 d d d)

with d denoting the nearest neighbor distance in the crystal. For each

chosen crystal structure, the lattice sums have unique values which are

listed in Table 1.

The convergence of the two body lattice sums, A m , is rapid for large

m. Computed lattice sums Al2 and A6 are in good agreement with the

results of Bell and Zucker for the BCC, FCC and HCF structures (5) . The

sum Tk is very slowly converging.

The stability condition for a crystal at T - 0 °K can be obtained by

considering 6Z Ibv - 0 or 8'D Ad - 0 since the atomic volume v is

related to d by v - gd 3 where g is a geometrical constant. Values of

g are tabulated in Table 1 for various crystals. Thus, the stability

condition becomes

Al2(r*)12 - A6(r*)6 + 2 Z*Tk (r*) 9 - 0	 (3)

The surface energy, o, per surface atom was calculated from

16
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Ne 111 A
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(k)

where EA is the total interaction energy for an atom located in the A'th

layer from the surface, E0 is the corresponding value for a layer far

inside the crystal away from any influence due to the surface, M is the

total number of surface layers considered in the calculation and N a is

the total number of atoms at the expected surface. At a finite

temperature, a is expressed as the sum of two parts, 
un 

and 
brel'

where aun represents the surface energy for the atoms in unrelaxed

positions while 
6rel 

is the change due to relaxation given by

1
M'

brel 
_

 N6 1^1 
( AEA - AE 0)

Throughout this investigation, relaxations for M' - 2 and T - 298°K

with the remainder of the atoms fixed were performed using a Monte Carlo

technique based on the Metropolis approximation(1).

RESULTS AND DISCUSSION

A.	 Structural Stabilit

Using eqs. ( 2) and ( 3), minimum values of 0 , for various crystalline

structures, were calculated as a function of Z and are shown in Figure

1. We note that the more densely packed structures are favored at small

7* and the more loosely packed structures at large Z* . The diamond cubic

structure is the most stable in the range 0.55 < Z * < 0.80. Including the

6

(5)

t^

C

., a



previous results of Halicioglu(4) that the HCP structure has the lowest

energy without 'the three body interaction (i.e., for Z	 0), structural

stability appears to change in the following order with increasing Z*

HCP + FCC + DIA + GRAPH .	 (6)

we were unable to find any region of Z where the BCC structure is the

most stable structure for m - 12 and n - 6; however, the BCC structure

becomes stable for other values of m and n.

Figure 2 shows our calculated results for 0 as a function of atomic

volume for Z* 0.3 (FCC most stable), Z* 0.7 (DIA most stable and

Z	 11 ( GRAPH most stable). We note that both the minimum energy and the

e	 *	 I^j
equilibrium volume, v , (volume at min) increase for all structures

as Z* increases. Table 2 lists these numerical values of 
0

and
min

v for the different structures. Considerable variation of these values

with Z* exists for the FCC structure but not for the graphite structure.

From Fig. 2b we note that, for the stable diamond structure, if v is

decreased by 14X or more ( by increase of pressure) a phase transition is

expected to occur to the p —tin structure. Likewise, from Fig. 2c, one may

anticipate a graphite + diamond structural transition if v is decreased

by 19% or more. Thus, these parameteric studies lead to the conclusion

that, within the stability region of the diamond cubic or graphite

structure, the diamond cubic + p—tin and the graphite + diamond cubic
i

structural transformations may be expected upon application of sufficient

external pressure.



Most group IV materials (C, Si, Ce, Sn) exhibit the diamond cubic

structure and their phase diagrams show that Si, Ce and So tend to form

the P—tin structure under high pressure. Furthermore, the stable

structure for C at NTP is the graphite structure which tends to

transform to the diamond cubic structure under sufficiently high pressure.

By evaluation of the elastic constants, the diamond cubic form has

been shown to be absolutely stable for Z > 0.55 but unstable to shear

forces below this value. Thus, mechanical stability of this crystal

structure requires the presence of a many —body force. This study will be

published elsewhere(6).

B.	 Surface Energy

For the relaxation procedure, the surface and bulk energies, o and

,t
E0 were calculated for different Z values ranging from 0.6 to 0.9 where

the diamond cubic structure is stable. The (111), (100) and (110) surface

planes were chosen for consideration and the top —most two surface layers

were relaxed to minimize a. The calculation system contained

approximately 280 atoms and considered about 10 atomic layers. In Table 3,

values of aun' 6rel and o are given for these three orientations in

reduced units at various Z* . We note that the (111) has the lowest

surface energy while the (100) has the highest and that a decreases for

e
all three orientations as Z increases.

The top and side views of the (100), (110) and (111) planes with

Z* 0.7 after relaxation are shown in Fig. 3. For all three surfaces, the

top layer exhibits a large contraction while changes in the second layer

relative to the bulk spacing are very small. The surface geometry after

8
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relaxation was found to be relatively insensitive to Z value in the

diamond cubic stability range. No change with relaxation was found for the

top view of the (111) and (110); however, the (100) exhibited dimer

formation. This reflects the relaxation energy, brel, 
which Table 3

shows us is - 5 - 10 times larger for the (100) than .either of the other

surfaces. The reconstruction patterns for the (100), (110) and (111)

surfaces are thus C(2 x 2), (1 x 1) and (1 x 1) respectively.

In Fig. 4, the reduced surface energy a 	 la/E01 and the bulk

energy, E0 , are plotted as a function of Z 	 For all three orientatiuns,

a was found to decrease monotonically with increase of Z. . The bulk

energy, E0 , exhibits the opposite trend with increasing Z * . Experimen-

tally, approximate values of reduced surface energy for Group IV elements

(C, Si, Ge and Sn) are in the range - 0.14 - 0.25 and these .
 are within

the calculated range of Fig. 4.

To estimate the "relative" experimental surface energy, we take the

raw data of Table 4 for lattice constant, a 0 , surface energy, y, and

enthalpy of formation at 298°K, AH298 . Since the surface area per

surface atom a is given by 0.217 a2, 0.354 ap and 0.5 a0 for the

(111), (110) and (100) planes respectively, we can define the reduced

surface energy by 8 - ya/GH298 . Values of B for the mayor orientations

and the average value 9 are given in Table 5.

CONCIASIONS

Atomiatic calculations using a two-body-only PEF are unable to predict

the relative stability for FCC, BCC, diamond cubic and graphite structures;

however, addition of a many-body term in the form of a three-body

9
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contribution does allow such a prediction. The present calculatiene

predict that tha structural stability order with incredsing three-body

strength, 2* , is IICP + FCC + p-tin + Diamond + Graphite. In addition,

structural transformations from diamond cubic + ¢-tin and graphite +

diamond cubic are predicted to occur by increases of pressure.

Multilayer surface relaxation of the principle or!^entations in the

diamond cubic structure shows marked contraction of the first interlayer

epao-Ing for the (100, (110) and (111) with dimer formation on the (100) and

calculated surface energies, a d , in the expected range for the experimental

values.

This study emphasises the need for inclusion of multibody forces in

the PEF when dealing with both %,,ructural stability and surface energies of

non-close packed structures. The PEF employed in thin study was a

particularly simple and useful one because it allowed ease and speed of

computation in lengthy iterative procedures.

L
J

i

10



RMRENCF.S

1. C.C. Maitland, M. Rigby, E.B. Smith and W.A. Wakeham, Intermolecular

Forces: Their Origin and Determination (Clarendon Press, Oxford,

1981).

2. T. Halicioglu and P.J. White, J. Vac, Sci., Technol. 17, 1213 (1980)

and Surf Sci. 106, 45 (.4981).

3. T. Halicioglu, 11.0. Pamuk and S. Erkoc, Surf. Sci. 143, 601 (1984).

4. T. Halicioglu, Phys. Stat. Sol. (b) 99, 347 (1980).

5. R.J. Bell and I.J. Zucker in Rare Gas Solids, Ede, M.L. Klein and

J.A. Venables (Academic Preae, New York, 1976), p. 123.

6. T. Takai, T. Halicioglu and W.A. Tiller, to be published.

7. R.W.C. Wyckoff, Crystal Structure, 2nd edition (John Wiley G Sons, New

York, 1963) Vol. 1.

8. B.N. Oshcherim, Phys. Stat. Sol. (a) 34, K181 (1976). 	 }

9. H. Wawra, Z. Metallkde 66, 395 (1975). 	 !!
i	 I

10. JANAF Theromechemical Tables, 2nd edition, 1971. NSRDS-NBS37, U.S.

Department of Commerce, National Bueeau of Standards.

11. I. Barin and 0. Knakke, Thermochemical Properties of Inorganic	
!

Substances (Springer-Verlag, New York, 1973). 	 !,
i

12. C. Kittel, Introduction to Solid State Physics, 5th edition (John

Wiley 6 Sons.) New York, 1976).

i

11

r	
.

I



1	 1

Table 1

Lateice Sums for the Hie and Axilrod-Teller Potentials
Plus the Geometrical Constant, g, for Various Structures

FCC BCC DIA GRAPH 1-tin

A6 14.4481 12.2495 5.1153 3.3895 8.2864

Al2 12.1319 9.1141 4.0389 3.0092 5.4654

T 
19.1697 14.7719 1.6647 0.1010 7.0706

gu 0.70711 0.7698 1.5396 3.067 0.9797

N t 6912 8192 5832 5040 7200

1

r

1f

t indicates the number of atoms which were considered to
compute the lattice sums.

#g - v/d3. fi

^I

t

rC
,

	

^	 1
t

,i
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Table 2

The minimum energies, 11* , and the equilibrium volume,
min

v* , for five different structures as a function of Z*.t

Z*
mminw FC BCC Diamond Graphite P-tin

Amin
-3.8212 -3.7494 -2.6086 -1.8731 -3.4417

0.3 d
v* 0.8925 0.9051 1.4854 2.9105 1.0057

--------------------------------^-,-------------..,.---------------------------

i

Amin -1.5849 -1..5871 -1.9763 -1.8265 -1.7145
0.7

v 1.3065 1.3116 1.6562 2.9382 1.3475

0min -0.8073 -0.8165 -1.5188 -1.7812 -0.9640

v 1.7835 1.7806 1.8425 2.9662 1.7426

t All values aril reduced according to eq.	 (2). !i	 ,
t
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Table 3

CAlculated surface energies of the low in-1ex planes
for the diamond cubic structure at several different Z* values.

Z* (100) (110) (111)

0.6

aun 0.8266 0.4374 0.2084

6rel
-M624 -0.0298 -0.014

a 0.4342 0.4076 0.1944

0.7

am 0.7426 0.3630 0.1696

6rel
-0.3714 -0.0492 -0.0292

a 0.3712 0.3138 0.1404

0.8

am 0.6672 0.2978 0.1362

6rel
-0.3872 -0.075 -0.0406

a 0.2800 0.2228 0.0956

0.9

am 0,6010 0.2414 0.107

8rei
-0.4152 -0.1114 -0.1006

Cr 0.1854 0.130 0.0065

Total number of
atoms in the system 216 360 288

Total number of
atoms on the surface 18 30 48

e
f
r

.
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Table 4

:Troup IV experimental data for lattice constant, a0,

surface energy, y, and bulk energy, GN298

Element a0(A) y(erge/cm2) AH298(eV/atom)

Cdiamond
3.5668(7) 3760.0(8)

7.412 (10,11)

Si 5.4307(7) 1389.0(9)
4.673 (10,11)

Ge 5.6574(7) 975.5(9) 3.85(12)

Sn 6.4912(7) 822.0(9) 3.14(L2)

'I
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Table 5

Reduced surface tension, 0, for Group IV elements

Species

a 0 11) (cm 2 ) a0 10) (cm 2 ) a0 00) (cm 2)

8(1 it) 0(110) 0(100)

Yea (111)(eV) yea 	 10) (eV) Yea (100)(eV)

2.7544 x 10 10 4.4979 x 10
-16

6.3610 x 10-16

Gdlamond
0.0873 0.1426 0.20167 0.1439

0.6472 1.057 1.4948

6.3853 x 10
-16

1.0427 x 1015 1.4746 x 10'15

St 0.11862 0.1937 0.2739 0.1954

0.55432 040519 1.28014

6.9295 x 1016 1.13157 x 10 15 1.600 x 10 15

Ce 0.10974 0.17919 0.2534 0.18077

0.42246 0.6899 0.9755

9.1226 x 10 16 1.4897 x 10 15 2.1068 x 10 15

Sn 0.1493 0.2437 0.3447 0.2459

0.46867 0.76533 1.08237

i

I^	 7

it

it	 ;
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FIGURE CAPTIONS

	

1.	 The minimum reduced energy, ( , for FCC, BCC, diamond cubic (DIA) and

graphite (GRAN) structure as a function of the reduced three-body

parameter, Z , (m - 12, n . 6).

*

	

2.	 The reduced energy, 0 , as a function of the atomic volume, V, for

FCC, BCC, DIA, GRAH and 0-tin structures (m - 12, n v 6):

(a) for Z - 0.3, within the stability region of FCC,

(b) for 2 - 0.7, within the stability region for DIA, and
i

(c) for Z* . 1.1, within the stability region for GRAN.

	

3.	 Surface geometries (top and side views) of (a) (100), (b) (110), and

(c) (111) surfaces for the diamond cubic structure after multilayer

relaxation with Z * v 0.7 and Monte Carlo temperature of 298°K.

The numbers below the figures indicate the percent changes in

interlayer spacing.

	

4.	 Plot of the reduced surface energy, o , for three different surfaces

and the bulk energy E0 on a per atom basis in the DIA system as a

function of Z* at T - 298°K.

w

j

i
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Chapter II

ABSOLUTE CRYSTAL STABILITY AND ELASTIC CONSTANTS	 G

FOR CUBIC STRUCTUTRES

`I
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INTRODUCTION

In a previoue paper, the relative stability of various open crystal

structures was shown to require a multi-body potential interaction in

addition to the usual two-body interaction. 0) There, the multi-body

term was chosen to be a simple three-body potential and a parametric

analysis was used. In the present work, this analysis is extended to

examine the mechanical stability of various cubic structures against all

types of homogeneous elastic deformations. As a necessary precursor, a

parametric analysis of the elastic constants is obtained.

Using unitless quantities, a two-body Mie potential, a three-body

Axilrod-Teller potential and lattice sums of the energy, the total reduced

interaction energy, 0* , for an atom in a particular crystalline structure

was shown to be given by(1)

0 - Z(I	
[nA(r*)m - mB(r* ) n} + Z* Tk(r * ) 9	(la)

with

r

`*
Z*

(1b)
m	

' '
Z9

Nt d
c 0

and

A - Z ( 
d
)m , B - E ( 

d
)n ,

pi rij	 j>1 rij

N N (1 + 3 coo B cos 8 cos B 1 d9

	

Tk - 3 E E	 1	 3	 j	 (lc`

	

i j	 (rli rij rij)
i>j>1

25
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.

Hare, m, n, a and r  are the usual two-body parameters while Z is the

three-body intensity parameter and d is the nearest neighbor distance in

the crystal. For each chosen crystal structure, the lattice sums, A, 0

and Tk in aqs. (1) have unique values and their computed values are

listed in Table 1 for the various cubic structures of interest to us in

this paper.

The equilibrium nearest neighbor distance, d o , at T w 0°K may be

found from eqs. (1) by requiring that the total energy be a minimum with

respoct to the nearest neighbor distance, d. As found earlisr (l) , the

equilibrium equation is then written as

A(r* )m - H(r*) n + 1 g Lm--n) Z* Tk(r* ) 9 . 0	 (2)

Using eqs. (1) and (2) plus elasticity theory, the elastic constants,

mechanical stability conditions and the absolute stability conditions for 	 ^{

II(
various crystal structures using this parametric potential may be obtained. 	 #

ELASTIC CONSTANTS

In any study of mechanical crystal stability the elastic coustants are	 Ij

an essential quantity. 
(2) 

They may be calculated by applying a

if
homogeneous deformation to the crystal and comparing the stored energy

change with that predicted by linear continuum elasticity theory. In this

procedure, the position of the i'th atom is denoted by R  in the final

configuration. According to Wallace (3) , the change in distance between

any two atoms in a crystal under homogeneous strain can be represented

using Fig. 1 by

26
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E (xa 2 -	 (xa 2 + 2	 £ naP xi xi	 (3)

a	 e	 a 

where the indices a, P represent Cartesian coordinates and take on the

values x, y, z or 1, 2, 3, and the n ap are the Lagrangian strain

parameters.

The elastic constants at 0°K are defined as

2

CaPYb V (anal anYb^n,	 (4) i
s
4

where V denotes the volume of the crystal. These elastic constants are
^l

calculated at the initial configuration, ri , with the strain in 	 beingap

measured from ri and the derivatives all being evaluated at ri,
s"

- 0. Using eqs. (1) and (4), the reduced elastic constantsi.e., at naP 

may be written, using 
CaPYb - (V/Ne) CaPYb' as

CaPYb - 4(m -n) (2 + 1) AaPYb (r )m 4 ( m -n) (2 + 1) B aPYb(r*)n
	

i

	

+ 2* TaPYb(r*)9
	

(5)	
E

The lattice sums for the elastic constants, 
Aa^Y

b, 
BaPYb 

and 
TaPYb,
	 ) j

1
are developed in Appendix I, have been computed and are listed in Table 2 	 1

ij
for various cubic structures. 	 {

There are 81 elements in the matrix 
(CaPYb] 

and, considering the

strain and crystalline symmetries plus using the Voigt notation(4)the 	 ^I -

matrix of elastic constants for the cubic system becomes 	 I`f

27



^e

a
C11

,r

C12 C12

,a

C12

,t

C11 C12	
C

a

C12

^

C12

^

C11

,Cpg I - I

	

(6)

Ck4	 0	 0

0	 0	 C44	 0

a
0	 0	

C44

In Eq. (6), there are three independent elastic constants; i.e, C11'

C12 and C44 0 It is well known that the Cauchy relations, C
12 C44

For the cubic system, hold if each pair of atoms interact through a purely

central potential
(5)

This relationship can be seen in Table 2 for the

two-body part of the lattice sums for the elastic constants, i.e.;

Al2 . A44 
and 3

12 - B44' 
Of course, it does not hold for the three-body

portion which is not a central potential.

Using eqs. (2) and (5) with m - 12 and n . 6, the elastic constants

C* for the FCC, BCC, diamond cubic and simple cubic crystal structures
pq

have been calculated as a function of Z and are shown in Figs. 2.

Except for the C12 and C44 of the simple cubic structure, all the

,r
	elastic constants, (C11' C12' C44)' 

decrease as Z	 in^reases.
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ABSOLUTE CRYSTAL STABILITY

For a crystal to be stable against all elastic homogeneous deforma-

tions, the elastic strain energy, 2 
CaPYb nab n

Yb , must be positive.

This condition requires that the matrix of elastic constants, ( C* ), be

*
pq

positive definite; I.e., all eigenvalues of the matrix [Cpg I are

positive. 
(4) 

Thus, the condition for mechanical stability in the cubic

system is

C11 > 0; C11 > 1C 12 1 	
C44 > 0; C11 + 2C 12 > 0	 (7)

u
if

Calculated values of C
ll - I0121 and 

(C11 + 2C 12) /3 for each structure

its
have been plotted in Fig. 2 to assess the mechanical stability condition

via eq. (7).

Ar
For the FCC structure, a value of Z C 0.5 satisfies the stability

condition giving an extended domain of absolute stability. We note that

this potential function gives no region of mechanical stability for the BCC

structure although in another study 
(6) 

it was found that altering m and

n led to a stability domain for the BCC structure. We note also that,

Ar
without the three-body potential (Z o 0), the diamond cubic and simple

cubic structures are not stable. However, increasing the three -body	
1^

intensity parameter, Z* , to values greater than Z * 0.5, one can

i
stabilize the diamond cubic structure. For the simple cubic structure, the

elastic constants satisfy all the stability requirements for Z * values	 ?,

in the range 0.45 < Z (0.73.
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Using eqs. (1) and (2) and Figs. 2, both the thermodynamic stability

condition (minimum value of 0* ) and the mechanical stability condition
*

may be compared so that the domain of Z providing absolute stability

for each cubic structure may be determined. These results are shown in

Fig. 3. From Fig. 3, we note that the FCC structure is absolutely stable

in the range 0 < Z < 0.45, the BCC structure has no region of absolute

stability, the simple cubic structure is absolutely stable in the range

0.45 < Z* < 0.57 and the diamond cubic structure is absolutely stable in
*

the range Z > 0.57. Of course, these ranges of absolute stability

depend on the choice of crystal structures used in the comparison and upon

the type of two-body and three-body potentials used in the potential energy

function. The use of different exponents (m and n) in the two-body

potential are known to influence the uagnitude of 0 (7) but their
variation has not been analyzed in the present investigation.

CONCLUSIONS

*
Atomistic models based on two-body-only interactions (Z 	 0) cannot

be used to simulate the various properties of open structures like the

diamond cubic structure because this structure is not mechanically stable

under such conditions. Multi-body interactions, or at least three-body

interactions, are absolutely necessary to provide both thermodynamic and

mechanical stability for such open structures. The domain of absolute

stability for each crystal structure can be found for a chosen potential

energy function and chosen list of comparison structures.
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Table 1

Lattice Sums of the Energy for Hie and Axilrod-Teller
potentials (m - 12 and n - 6)

FCC BCC DIA* SC**

B 14.4481 12.2495 5.1153 8.3994

A 12.1319 9.1141 4.0389 6.2021

Tk 19.1697 14.7719 1.6647 6.6138

**	 Diamond cubic structure.
Simple cubic structure.
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A11 (A1111 ) B11(B1111) T11(T1111)

Al2(A1122) B12(B1122) T12(T1122)
Structure

A44(A2323 ) B44(B2323) T44(T2323)

Apq (others) Bpq(others) Tpq(others)

8.1510 10.1074 274.7199

4.0124 4.4705 172.4297

FCC
4.0124 4.4705 57.0059

0.0 0.0 0.0

5.0125 8.1746 222.0875

3.5698 4.0279 129.8891
BCC

3.5698 4.0279 40.4850

0.0 0.0 0.0

8.1337 9.6340 96.4657

0.0679 0.7563 59.9206
SC

0.0679 0.7563 20.9476

0.0 0.0 010

1.8050 2.6088 26.0069

1.7899 2.0955 14.1703

DIA
1.7899 2.0955 9.2187

0.0 0.0 0.0
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Lattice Sums of Elastic Constants for FCC, BCC, Simple Cubic (SC)
and Diamond Cubic (DIA) Structures (m w 12, n - 6).
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APPENDIX I

Lattice Sum Porwaae for Elastic Constants Using Elie Potential (two-body)

and Axilrod-Teller Potential (three-body) Terms

'	 Defining our potential, 0, as the sum of a two-body, 02 , and a three-

Ili	
body, 03 , term, the two-body part can be written as

	

N	 r2 m/2	 r2 n/2

	

i al	 ri	 ri

Let us define

x m/2	 x n/2
X e rg ; X M r2 ;	 - n { 

0	
- m (0 )	 ,

	

0	 o	 i	 1	 2 m n xi	m-n xi

then we have

baep21	 Ne N 6202 ax  8Xi

	

an apanY6 	 2 1-1 8Xisa ap all y6

(I-1)

(I-2)

(I-3a)

r m	 r n
B	 (I-3b)2e 2(mn	 {( t 1)() A	 (

	

n) 
2	

dadY6 - 2 t 1)( d) 
aPY6} 

where the two-body lattice sums 
Aa9Y6 

and 
BaPY6 

are given by

	

N	 d m 4x  xi xi xi

AaPY6 1.2 {rli,

	

	
0-4a)

li
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i
N	 n 4x a x P x  x6

$aPY6	 i^2 ^rdi^	 i 
rli 

1 i	
(I-4b)

and 2xixi ' BXi/by)

The three-body part of the potential, @3 , is given by

N N 1+ 3 cos 8 cos 0 cos 91

	

' N Z E E	 1	 (I-5a)
3	 31 3 i j	

(rli r lj rij)3iij.

	N N	
(r2 +r

2 -r2 )( r2 +r2 r2 )( r2 +r2 -r2 )
N Z	 1	 + 3	 11 lj ij	 li iJ 11	 11 ij li
3t i i j ^ (rlirljrij) 3 	 8	 (rli+rlj_rij)5	 }

i^j
(I-Sb)

from Fig. 1.

Let us define X - r 2i , Y - r2	 and Z - r2j and 
^3 

as

1	 + 3 (X+Y-Z) (X+Z-Y) (Y+Z-X)
43	

(XYZ)3/2
	 8	

(XYZ)5/2

(I-6)

Then, the three-body lattice sums in the elastic constants can be written

as

_ 1 9 NN ^T-
TadY6	 6 d i	 (e1 

D3 
e2)

i^j
(I-7a)

where e1 and e2 are the column vectors, D3 is the (3 x 3) matrix

and these have the following elements
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-T 	ax	 by	 aZ	 ^T	 ax	 BY	 aZ
el (anap , asap, aia0) ; e2 " (bnYb ' an,b' bnYb)

a 203	
a2 03	 a2 03

ax - axax axaz

D	
8203	

a203	
alb

3	 aYax	 aY	 aYaz	 (1-7b)

62$3	 62¢3	 6203
azax azax li

The elements in eq. (1-7b) can also be written using atomic coordinates:

ax	 2x  X P 	 by	 2xa 0 az " 2(x 6 x5(x P-x P)	 (1-8a)
snap	 1 1	 anap	 j j	 anap	 i j	 i j

and

a2^3	 a2^3	 6203
f(XY,Z) ;	 f(Y,Z,X) ;	 ° f(Z,X,Y),

6 X2	 aY2	 az2

62 ^3 6203 62^3 6203
MY " axax " g(X,Y,z) i aza2 azax g(2'x,Y)

6203 6203
aYaZ " azax " g(Y,Z,x) '	 ( I-8b)

where f ( X,Y,Z) and g(X,Y,Z) are defined as
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f(X,Y,Z) -	 15	 +	 3 
5/2 I2 ( Y+Z-X) - 2(X+Z-Y) - 2(X+Y-Z)

^ /2 24(XYZ)	 X	 8(XYZ)

+.E{(X+Y-Z)(X+Z-Y) - (X+Z-Y)(Y+Z-X) - (X+Y-Z)(Y+Z-X)}

+ 95 {(X+Y-Z) (X+Z-Y)(Y+Z-X)}] ,	 (I-80
4X2

and

g(X,X,2)	
3/2 X9	 1 +
	 3 

5/2 
[2(X+Y-Z) + 2 (X+Z-Y)(Y+Z-X)(- % - Y)

4(XYZ)	 8(XYZ)

+ 2 (X+Y-Z) ( Y+Z-X)(X- Y) + Z (X+Y-Z) ( X+Z-Y)(- X t Y)

+ 5 (X+Y-Z)(X+Z-Y)(Y+Z-X)]	 (I-8d)

Using eqs. ( 7) and ( 8), the three -body lattice sums for the various crystal

structures were calculated and listed in Table 2.

e

J

i

it

a

I{{
i ti
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FIGURE CAPTIONS

1. Atom geometry needed in the evaluation of strain parameters and the

lattice sums of the elastic constants.

2. Variation of the elastic constanta 
(C W C12 , C44 ), C 11 r IC121 and

(C11 + X12)/3 as a function of Z	 for (a) FCC, (b) BCC, (c)

Diamond Cubic, and (d) Simple Cubic structures.

3. Reduced energy, 0 ,t , for the FCC, BCC, Diamond Cubic (DIA) and Simple

Cubic (SC) structures as a function of Z , plus mechanical stability

regions for FCC, BCC, DIA and SC structures based on their elastic

constants.
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and	 indicate the stable and
unstable regions against elastic deformation,

respectively

FIGURE 3
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CALCULATION OF POTENTIAL ENERGY PARAMETRES
FOR THE SILICON - CARBON SYSTEMS	 Ii
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Introduction

In simulation calculations, the functional simplicity as well as the. reliability
of a potential energy expression are both important considerations. In general,
in such modeling investigations based on simple two-body interactions, the close-
packed structures (hcp or fce) are the only energetically stable configurations. Less
dense structures (such as diamond cubic), on the other hand, are not stable with a
potential energy function expressed as the sum of pair interactions only. This fact
has been demonstrated in a recent parametric study on the stability of the diamond
cubic crystal Ala. It has been determined that multi-body interactions are absolutely
necessary; therefore, a potential energy function comprising two- and three-body
terms (at least) must be employed for an adequate description of the diamond cubic
structure.

In the present study, specific parameters of the potential energy functions for
a variety of Sip , CQ and Si.Cy species are calculated and the applicability of the
potential function, for reproducing various energetic and structural quantities was
tested.	 ,.

Analytical Procedure

A. Elemental Systems

For a system of N particles, in general, the total potential energy may be
expanded as 12):

4)=02i 03 t...
	 (1a)

N IV

t	 i3
?I

N N N

03 = 31	 UM, rj, rk)	 (1C)

where, u(i' i , f,) and u.(r;,rj,rk) represent the two- and three-body interactions,
respectively. The position of the i'th particle is denoted by f,.

In this study, the two-body part is represented by a Mie-type potential:
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f

u ( rij) _ 
(m n) 

^n( ^^ ) m — 
m(r^i )

n	 (2)

where, rij = jF; — Fjl; r„ represents the equilibrium distance and c denotes the
two-body energy at rij = r,,. The exponents m and n account for the repulsive and
attractive terms, respectively. For the three-body term, the Axilrod-Teller equation
is taken into consideration:

u ( r i, Ff, Fk) = 
Z(1 +3 cos O kc o'0 )C os Ok)	 (3)( 

where, O i3 Oj ,Ok and rij, rik,rjk represent the angles and the sides of the triangle
formed by the three particles i, j and k, respectively. The three-body intensity pa-
rameter is denoted by Z. Interactions coming from higher body terms are neglected
in this calculation. Considering the lattice sum formaliser, next, the total potential
energy function for a crystal is obtained by combining equations 1 through 3:

4i
 = 2(m 

c 
n) 

I nA(d ) m — MB( d )"I+ 	 NZ—k(d )°	 (4a)

where, d represents the nearest neighbor distance and the lattice sums are given by;

A	 d)m
	

(4b)

B = c-(d)n	 (4c)

and

Tk	 (1 — 3oj B 
rik,s O

ff. k)3 Ok)d9	 (4d)31 V L	 (
jOk

Numerical values for the lattice sums A, B and Tk for the diamond cubic crystal
are given in reference jl].

B. Binary Species

For a binary system, equation la is replaced by

— E E 02(a , O) + F, E E 03(a , 0,7)	 (5)
a=1^=7	 0=1^3=1ry=1	 1
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where, 452 and 03 are still given by eqs, lb and I  but now deal with the interactions
between the species a and Q and y(ry =a or 0). For a binary crystal, we have

02(a,P)_ (	
No	 Cap InapAap(ro(a,P))m

°d_ maPBaP(ro(ap)) (6Q)2 m ap ' nap ) 	d	 d	 J

where
N" / d

Np

	

Bap = D d  	 (6c)

and	
NaZap7Tapry

(7a)dp 

with

1 N
" N' (1+3cos0°cos OA cosOk)d9

TaP7=31^ k (rij(a,R)'r^k(a)'rjk(P,7))3
(76)

j#k

Subscripts i, j and k are the running indices, with similar definitions as the variables
in eq. 4.

Pertinent lattice sums for several single component and binary systems are
given in Tables 1 and 2 respectively. The following relationships hold for the two-
component lattice sums

A ll A22 	 A l2 =A 21 ; B 11 =B22; B 12 =B21;

T111 = T' 2 , T112 = T121 = T212 = T221 ; T122 = T211	 ($).

C. ,Parameter Evaluation

In order for the potential energy function given by equations 1 through 3 to

be used in a simulation calculation for a specific system, the parameters (e, ro and
Z) must be first evaluated. In accordance with our earlier study, on the stability of
the diamond cubic structure, the values of the exponents m and n were taken as 12
and 6, respectively. The evaluation process is basically a simple fitting procedure,
however, due to the nonlinear nature of the potential function it often becomes
quite cumbersome. Throughout this study only experimental data were employed
in the evaluation of the parameters. Furthermore, one should remember that the
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parameters, by definition, are independent of N and of the geometrical state of the
system (i.e., independent of the particles' positions). They dopend solely on the
atomic species involved in the interaction.

In this study, parameters for pure Si and C as well as for the SIC system were
evaluated. In each case, the basic experimental data for the crystalline bulk and
for small clusters were taken into consideration. The data which are used in the
calculation of the parameters are tabulated in Table 3. The evaluation procedure for
the pure systems will be first outlined. The parameters for the homonuclear cases
(Si and C) were calculated considering three basic restrictions. (i) The equilibrium
criterion: at the static limit we have (9^P/8rq = 0; where, in the case of a crystal,
rq is the nearest neighbor distance and is directly related to the density. For small
clusters, however, rq represent internuclear distances between the partirJes. (ii) The
stability region for the diamond cubic structure: according to results reported in
reference 11) the parameter Z should satisfy: 0.55 < Z' < 0.8, where, Z' is the
reduced three-body intensity parameter defined as: Z' = Z/er, 9. (iii)Stable trimer
configuration: the energetically most favorable trimer configuration for a potential
energy function defined by equations 1-3 has been investigated in reference (3).
Accordingly, if the trimer is linear, 0.68 < Z' and, if it is (equilateral) triangular,
Z' < 0.68 must be satisfied.

The parameters for the homonuclear cases (Si and C) were selected in such
a way that calculated energies for the small clusters (S6 i C3, Si 2 and C2 ) and

	the crystalline states (silicon and diamond) exhibit a best fit to the corresponding	
iexperimental data. For this purpose the energies were calculated according to equa-

tions 1-3 using a series of ,parameter sets which obey the restrictions cited above.
Numerical values of the best fitted parameters are given in Table 4.

	

In the case of the parameters for the SIC system, experimental data for SiC,	 G

Si 2 C, Si C 2 molecules and for the crystalline /3-SiC were used. The data consisted
of the cohesive energy and the nearest neighbor distances for the bulk, and the

bond energies along with the bond lengths for the small clusters. (See Table 3).

	

Due to the binary nature of this system, in addition to the homonuclear interaction 	 I
parameters, cross-parameters such as esi,c, ro(st,c), Zsi,si,c. and Zsi,c,c needed ^	 1

to be determined. t

In the evaluation of the cross-parameters for the ,0-SiC system, we also consid-
ered the following stability restrictions. (i) According to experimental data, Si2C
is a linear symmetrical molecule. Our present potential energy function satisfies
this condition only if Z' (si,si,o) > 0.41 where,

'f

Z(si,si,c•)
Z• (Si,Si,C) _ (E( Si,Si )E(Si,C)(.(Si,C))r13(ro( Si,Si)ro(si,c)ro(si,C))3	

(9)

(ii) On the other hand, experiments indicate that SiC 2 is also linear but asymmet-
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rical and that it can only be stable if Z . (s i ,C,c) > 0.58 with,

L•(Si,C,C) =	
Z( 3

(ro(si,c)ro(si,

i ,c,c) 	
3	 (lU)

(E(si,r.)E(sr,c)^(c,c))	 o)ro(c,r))

(iii) For the crystalline A-SiC as well as for the SX, Si2 C and SiC2 molecules,
the stability criterion which is given by No /8r9 = 0 should also be satisfied.

We employed the parameters for Si and C obtained above, and calculated
energies for the crystalline P-SiC, and a-SiC, .^i 2 C and SX2 molecules for a
series of cross-parameters sets. The best fitted cross-parameters with the above
restrictions were chosen and tabulated in Table 4 along with the parameters for Si

and C.

Discussion

	

In order to analyze how well the parameters can now reproduce experimental 	 I^ 1

data, we plotted the experimental energies, versus the calculated values in figure

1. It is important to remember that, in this graph for each case, we used the same

	

potential function associated with the same set of parameters given in table 4. The	 CI
dotted line indicates the ideal positions (i.e., the 45 0 line). For such a large variety
of systems (ranging from crystalline phases all the way down to isolated molecular
species) the agreement obtained between the experimental and calculated energy
values can be considered quite good. The plot also contains the energies for C4i

Cr, and crystalline graphite which were not included in the parameter evaluation
procedure. While the energy value for graphite displays some (— 30%) deviation,
calculated energies for C4 and Cs are in very good agreement with the experimental
values. Another important point related to figure I is the slight segregation of the

	

energy values for different species. All the calculated energies for the bulk cystalline 	 !!!
cases (namely, for silicon, diamond, graphite, a-silicon carbide(4H-III) and Q-silicon
carbide) were found to be somewhat lower than the corresponding experimental
values, while all the small molecular species produced slightly higher energies. In

	

general, the tendency for this sort of segregation in the case of a potential energy 	 I

	

function based on two-body interactions only, is much more pronounced 141 than in 	 j
the present case. This situation may be closely related to the effect of three-body
interactions which are properly accounted for in our calculations via equation 3.

	

The energies for a-SiC and A-SiC were found to be very close to each other (see 	 ^!

Table 3), and they were considerably lower than the energies calculated for other

structures (Table 2).	 !.
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Figure Caption

Figure 1 Comparison of the calculated cohesive energies with the experimental
values.
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Table 1

Lattice Sums for the Mie and Axilrod-Teller Potentials for Various Structures.

FCC I	 BCC I	 DIA GRAPH #-tin
B 14.4481 12.2495 5.1153 3.3895 8.2864
A 12.1319 9.1141 U389 3.0092 5.4654
Tk 19.1697 14.7719 1.6647 0.1010 7.0706

Table 2
Lattice Sums for two-component systems.

NaCI
structure

CSCI	 ZnS
structure	 structure

BN	 I	 a-Sic
structure	 j	 (4H-Ill)

A ll 0.1896 1.1038	 0.0337 0.0084	 0.0342
A J2 6.0126 8.0103	 4.0045 3.0009	 4.0595
B;
B 12

1.8003
I	 6.5888

3.5357	 0.7596
8.6996	 4.3516

0.2821	 i	 0.7657
3.1163	 4.3893

Till 2,5272 5.4138	 0.6928 0.1057	 0.7013
T112 11.5117 25.8716	 2.8595 0.1574	 2.8967
T122 5.7544 12.9374	 1.4298 0.0787	 1.4558
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Table 3

Experimental and calculated energies and bond distances.

Bond distances or nearest Cohesive energy
Species neighbor distance (A) (eV/molecule

Experiment Calculation Experiment	 tl Calculation
S12(g) 2,246 2.295 -3.208 t 0.216 -2.817
Si 3(p) 2.25M 2.267 -7.407 d: 0.563 -6.247
linear
Si(,) 2.3516 2.3516 -4.662 t 0.043 -5.568

diamond cubic
Cz lp 1,2.42 1.4806 -6.215 -5.437
C3(p) 1.277 1.458 -14.033-o,oe. -12.362
linear

C4(y) 1.28 rl = 1,44 -19,686_o.4s4 -19.507
linear 1`2= 1.455

Cs(p) 1.28 rl = 1.435 - 2 7-.0 1_4 _osev -26,70
linear rR = 1,455
C l , ) 1.5445(9) 1.5445 -7.399±0,ozz -9,402

diamond cubic
C (e) 1.4180 0) 1.4619 -7.Alb-o.o2z -9.807 ^.

graphite
SiC (p) 1.70 1.74 -4.631 -3.894
SizCip) 1.75(71 1.70 -11.198 0.37 8 -9.594

symmetric linear
C R Si (p) C-C=1.28 C-C=1.463 13.128 *"00.:300 -10.510

unsymmetrlc linear C-Si=1.75 C-Si=1.711
Q-SicW 1.8878(g) 1.8115 -12.835 +0.

0130 -15.714
zinc-blendc

a-SiC ( , ) 1.885(g)
I

1.8135 -12.817=0,13'0
i

-15.736
4H-III	

I

I

4
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Three-body
intensity
parameter	 (Si-Si-Si)	 (C-C-C)	 (Si-Si-C)	 (Si-C-C)

Z (eV-A°)	 3489.0	 167.3	 698.2	 261.8

Table 9
Potential Energy Parameters.

Two-body
Parameters	 (Si-Si)	 (C-C)	 (Si-C)

e (eV)	 2.817	 5.937	 3.895

ro (A)	 2.2951	 1.9806	 1.79

i

E

I'	 !

i

C

Ji
1
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