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The aim of the studies to be made for this project is to determine
the stress field in the lithosphere caused by the distribution of
&ensity anomalies associated to_thé geoidal undulations observed by the
GEOS~-3 and SEASAT Earth satellites in the Tonga region.

Since the geoidal undulations do not determine uniquely the
density-anomaly distribution causing the undulatiouns., different models
of the lithosphere have been generated with different assumptions on the
density distribution and geometry, all generating a geoid profile almost
identical to the observed one.

The first model used is that with the Airy isostatiec hypothesis
(Christian 1984), it consists of a crust (defined as a lower-density
layer) of density 2.85 laying on a lithosphere of density 3.35. The
models obtained with different compensation depths give residual
shortwaveiength anomalies of the order.of several tens of mgal and
several tens of meters geoidal undulations. This clearly indicates that
in the Tonga region there is no isostasy of the Airy type because the
observed geoid has very smooth undulation of about 25 m over a distance
of 2000 lap.

We also used the Pratt isostatic hypothesis in a model consisting
of a crust of variable density laying on a lithosphere of higher
density. This model gives smaller resi&ual anomalies (Wainright 1983)
but still shows that in the Tonga region there is no isostasy of the
Pratt type because the observed geoidal undulation are much smalle; and
smoother than the residual undulations associatéd to the Pratt model of

isostagy.



It is thus clear that the density anomalies needed to produce the
observed geoid are not producing isostatic equilibrium at any depth, and
therefore there 1s no hydrostatic equilibrium. The estimate of the
consequent deviatoric stress is the aim of the reéearch. |

To compute it one must therefore compute models of the litihosphere
which reproduce the geoidal undulations observed by GEOS-3 and SEASAT,

The first model (a) (Fig.l) was generated by assuﬁing that the
density of the crust is 2.85 (Garlson'and Raskin 1984) and that of the
lithosphere below it is 3,35 and taking into account the density (or

thickness) variation with time of the oceanic lithosphere (McAdoo and
Martin 1984). This model leads to an oceanic crust 24 km thick landward
of the trench and 32 km thick landward of the trench.

In a second model (b) (Fig. 2) the dengity of the crust i1s assumed
2.85 and that cf the lithosphéfe below 3.50; this model gives an average
thickness of 18 km for the crust seaward of the trench and 28 km
landward of the trench,

This ralses serious questionz on the meaning of the discontinuity
surface in the velocities of the seismic wave found at the depth of 6 km
below the oceén bottom (Shor et al., 1970, Turcotte and Shubert 1982) and
assumed to define the thickness of the crust; it is clear now that a
better definition of the term crust is needed in order to distinguish
between the discontinuities of the different physical parameters,

Inrall cases examined the oceanic lithosphere (Fig. 3, 4) has been
assumed to vary in demsity with time at a rate of about 0.2 10H3 gr/cm3
Myears {(rather than in‘thickness) and this low rate density variation
‘together with the thinner crust landward of the trench and the thinner
downgoing slab are :esﬁonéible for the lﬁng wave length geoidal
undulation observed by GE0S-3 and SEASAT.
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In both cases (a) and (b) the computed models wf the geoid deviates
from the observed by less than 2 meters,

The density distribution of models (a) and (b) have then been used
to determine the maximum shear stress (mms ) fieid caugsed by theilr load
on the layers Helow.

To estimate the stress field in a layered spherical Earth model we
used the method of Caputo (1961); however the formulae of that paper
would not allow for the body force associated to buoyant masses and had
to be modified accordingly (Caputo 1984); the new formulae allow to
compute the stress f£ield in a layered sphere caused by the most general
distribution of surface tractions and body forces.

The most recent results (Caputo et al. 1984) obtained using these
formulae indicate that the mss caused by a mountain range and by its
isostatic compensation, when thils is exactly one below the range, is
limited to the layer under the load including the layer containing the
isostatic a&justment (Tables 1, 2); when the isostatic mass is displaced
with respect to the load then the mss extends to a much greater depth
{(Tables 3, 4). In all cases the mss 1s at the most one third of the
load. It is to be noted that when the isostatic mass is exactly below
the load the mss reaches its maximum at the surface of separation
' between the top layer and that containing the isostatic mass and then it
‘decfeases linearly to almost zero within the latter layer (Fig. 6).

We then applied these vesults to the density anomaly models across
the Tonga Trench obtaining a first estimate of Ehe mss at several depths
below the sea surface. To do this we computed, at depth of 9 km, 31 km,

59, 80 km, the pressure caused by the masses above the respective depth
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for all the density models previously obtained for the Tonga region.
In all cases we found that the most important features (Fig. 5) were
pressure variations over relatively short horizontal distances which
couldlbe simulated by a box-like normalnfraction (positive or negative)
as consldered By Caputo et al (1984) or a step like variation. The
latter being the less relevant case in terms of the amount of traction
variation.

The mss found ia the Tonga regioﬁ has several features. Maximum
shear stress (mss) of about 300 bar are found close to the Trenéh
(region A), and in the back area region (region B) extending to a great
depth in the volume between them. .

The aﬁalysis of the seismic activity in the Tonga region reveals
that this is concentrated in regions A and B. In rggions A and B there
is normal depth seismic activity with moderate to large magnitudes,
while between the two regions, as well known, the seismicity exteﬁds to
é depth about 650 lm.

It is important to note that thereAare other plages in the Tonga
region where the mss reaches values of 200 bar and there is no evidence
of occurrence of large earthquakes iIin recent times namely in the area
about 800 km landward of the trench, Detailed analysis of the
seismicity of these regions may possibly reveal that they can be
éonsidered aga locations of_ﬁosaible seismic gaps.

In this research it has also been found that the portion of the
lithosphere under the seamount, in the cross seétion analysed, is not in
isostatic equilibrium, and that the mss under the seamount 1s of the

order of 250 bar at a depth below 50 km.



The gtress field under seamounts had been estimated by Lambeck and
Nakibogln (1980) and previously by other authors who modeled the
deflection of the ocean lithosphere and gave values of more than 10 kbar
for the mss (Walcott 1970, 1976, Watts et al., 1975); however Lambeck and
Nakibogin (1980) argued that there are gome plausible methods of
reducing this mss and suggested that the mss should not exceed 1 kbar,
The hypotheses invoked by Lambeck are lower density for the sediments
£111 in, depth-dependent nonelastic rﬁeology and large-deflection,
theory for the large loads.

The models determined in this research confirm that even without
invoking the causes hypothesized by Lambeck and Nakibogln’(1980) the mss
under the seamount should always be about one third the load caused by
the mount; which in the case of the seamounts studied by Lambeck would
imply a mss lesg than 0.5 kbar.
| It well known that rheology may set constraints on the mss that may
have been accumulated in a region. It also known that there is no
evidence that the Mantle and/or the Lithosphere may be described as
Maxwell or Standard Linear Solids alth;ugh geveral authors have
tentatively used these models in their studies. In order to determine
the effect of other possible rheologies we studied models different from
the Maxwell and the Standard Linear Solid (Caputo 1984a); some of these
models are supported by laboratory data (Caputo 1984b, Caputo 1984c).

Concerning the effect of rheology in the estimate of the mss of the
lithosphere we must note that the theoretical research condugted in this
project (Caputo 1984a) has shown that the relaxation time T defined as

the time to reduce the strass to e-1 of its indtial value is not:.
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indicative of the state of stress of a material at times t>> 1 ,
because there are rheological models which would mainﬁain the 3_1
reduced value of the initial stress for an almost indefinite time (Fig.
7,'Caputo 1984a) . Therefore the stress estimates computed in this
research may have to be increased due to the residual stresses
accumulated in previous time. It is also implied (Caﬁuto, 1984d) that
other phenomena such as the elastic rebound and their effect con the J2
may have time history different from Ehat assumed; for instance the
variation of the J2 may be due to the superposition of the effects of
more than one glacilal period.

The research made for thdis project concerning the rheologdical
models of the mantle has also show that using the rheological models
resulting from laboratory data on granite the response of the mantle to
applied stress fields is such that relaxation times is almost
independent of the wavelength of the stress field applied (Caputo,
1984b, Fig. 8).

A final note on the subduction zone process is due. Giardinil and
Woodhouse (1984) discussed 17 moment tensor sclutions in the Tonga
region and their implications for deformation within the subduction
zone; they foind a complex cross-—cutting pattern of interacting shear
bands and concluded that the Benioff zone should be seen "as that part
of the convective flow which by virtue of temperature, composition and
strain rate acéomplishes itg deformation through episodes of shear
ingtability." .

After the findings of this research, namely the theoretiecal
estimates of the mss under mountain ranges (Caputo et al. 1984), the
models of the lithosphere in the Tonga region and the mssrdistribution
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underneath we may comment that the idea of the slab smoothly bending
with very slowly varying density and or thickness defined by the
seismicity distributions may need a revision but in a directiom
different than that of Giardinl and Woodhouse (1984), One could view
part of thé seismicity as caused by the density anomalies distributions
through the mss generated in the lithosphere and in the deeper layers,
as the distribution of the latter is largely superimposed over the
volume where the former occur. |

Better evidence on this hypothesis could be supplemented by a
detailed modelling of the mss under the Tonga reglon. This must now be
obtained by computing it directly for the models of the d;nsity
distribution of the lithosphere already determined rather than using the
results of computations made for schematiec models. More evidence should
also be found by testing this hypothesis in other subduction regions of
the world. ‘

At this stage we have already obtained the density anomalies in two
more profiles perpendicular to the Tonga Trench and we are in the
process of computing the load at wvarious depths due to these anomalies.
From the load we shall infer the msa at depth.

The computer programme for the calculation of the mss in a layered
spherical Earth has been completed te include the body forces in the two
upper layers. This will allow to study more complex problem an obtain

more realistic results,
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Top layer:
Am3.8+10Y, = 38101, )= 6.371 - 108, ry = 6.341 - 108

Second layer:

Am7.5-10", = 6.4-101, r, = parichle, r, = 6.341 - 10®
Core;

Ae=§-102, p =610, 5, = variable, , = 0
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4 socond layer with 30 km thickness | squares refer 1o 55 km thickness triangles refer
0 80 km thickness , and open ciseles refer to 175 kum thickness M 55 in bar.
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Figure 7. Relaxation time £(t) of the rheological models identified By the
parameter Z; the relaxation time is assumed unit and is arbitrary;
£t) 1a the same for all Z, only the time history of the relaxation
aepernds on Z.
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