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ABSTRACT
Compact finite difference scheﬁes for hyperbolic and convection-
diffusion equations are presented and their relationships to box schemes
are described. A simple modification of the mesh ratio At/Ax is shown
to make a previously described non-~dissipative scheme for the hyperbolic
problem dissipative. The dissipative échemé for the convective-diffusion
equatioﬁ is formally second order accurate for ali values of the local

cell Reynolds number. Applications to nonlinear pfoblems are described.
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Introduction

This paper describes implicit finite difference schemes for two
closely related classes of mixed initial—_boundary value problems in one
space dimension.

Part 1 treats the hyperbolic problem:

(1a) Ut+AUx = 0, 0<x<1l, 0<t<T
with the initial and boundary conditions
u=U, t=20

B1U gl, x = 1.

Here A 1is a nonsingular (rXr) matrix with k positive and £
negative real eigenvalues while B, is (kxr) of rank k andv

Bl is (&xx) of rank %, k + £ = r. The boundary conditions are
assumed to be dissipativé, i.e. for every vector satisfying the homo-

**L 1'aU> 0 for x = 0,1.

geneous boundary conditions then (-1)
Note that the differential equation in (1) is the nonconservative
form of the system Ut+Fx(U) = 0 where A = gvradF.

Part II treats-the scalar convective~diffusion equétion v>0)

Uy - <X o, 0<x<1, O<F<T,

(2) u, +au_=-vu
which we write as the system

u, +au -vv. =90
t X X
(2a)

u -v = 0;
X

with W = (u,v)', initial and boundary conditions are



u = uo, t=20
(2b) BOW = gg> x=20
Blw = 81> x =1,

where BO,Bl are both (1X2). We also assume that homogeneous boundary

conditions result in the inequalities (-l)x+1

(au=-vv)u > 0, x = 0,1.

We are interested in demonstrating the following:

a) the dissipative implicit finite difference schemes described
below allow the related nonlinear conservation forms of (1) and (2) to be
treated in their nonconservation forms; numerical evidence for this asser-
tion is provided below.

b) for the linear hyperbolic equation dissipation can be restricted
to affect amplitude modulation while phase errors will be affected only
by the CFL number; it is .thus possible to control pre or post oscillations
at a discontinuity by the choice of the mesh ratio A = At/Ax,

¢) for the convective-diffusion equation the scheme is second order
accurate for all values of the "Jocal cell Reynolds number" (|a|Ax)/(2v).

A common feature of the schemes developed for both classes of these
problems is that they are equivalent to box schemes (Keller [5]) and may
be solved by the algebraic methods described by Keller in [6] (c.f.

[2], [4]1, [8]). Such compéc£ schemeé for mixed initial boundary value
problems avoid boundary extrapolation techniques which are generally - .
required. to make noncompact schemes algebraically determined and which

can be an important source of errors.

The following notation will be employed:

n_ ,n n o M ' nty _ n-3
Suy = (uga-uy /8%, Sug = (u 7 -y %)/Ae,
(3) 1
n_ ,n n n_ ,nts  n-3
ety = (Ut /2, My = (e Ty /2.




Clearly,
S(uv) = p(u)d(v) + u(v)s(u)
so that

38(u?) = p(u)s(u).

I. The Hyperbolic Problem

I.1 A Non-Dissipative Scheme.

In order to make this paper self-contained as well as to motivate the
extension to be described below this section reviews a treatment of the
systeﬁ Ut’+ Al%<= 0 when A 1is symmetric and constant which has been
given elsewhere (Rose [11]; also see Wendroff [12], [13]).

Consider the scheme

(a) S U +As Ut =0
t1 X 1
(1.1)

Under the conditions just indicated this seheme provides a convergent approxi-
mation to (1) as the following sketch of an "energy" argument shows: multiply

(I.1a) by utUz and employ (I.1b) to obtain

n, ,.n ny Ny
6t((Ui) Ui) + Adx((Ui) Ui) 0.
Summing on i, setting

ny2 _ » n, ,. 0
1002 = 1 @ ulns,

1



and noting that the boundary conditions (1b) were assumed to be dissipa-

tive, there results
(1.2) o™ < ol

This estimate implies that the solution of (I.1) converges to the solution
of (1) for all values of the mesh ratio X = At/Ax, Ax -~ 0. A closer
examination also shows that the scheme (I.1) is non-dissipative.

The solution of (I.1) may be obtained by one of the following methods:

(1) Two-Step Method

1
(a) Eliminate U2+§ from (I.1) to obtain
1
I.3 n n_ . n-z
(I.3) R DU+ R, 4 =15 %,
where
R, (A) = 3(1224).

The difference equations (I.3) present a two-point algebraic boundary value

problem which is solvable (Keller [6]) under the boundary conditions described
-1

in (1) with the initial conditions given by U? Z.

{b) with U? so determined, explicitly solve (I.la) or (I.1b) for

yotE

(i1) One-Step Method (Box Scheme A)

Instead of employing the explicit step (b) eliminate U

from (I.1) to obtain

n n _ ntd
(1.4) R_OUG, + R0, = U7




o

from (I.3)

Next replace n by ntl in (I.4) and then eliminate Ug

and (I.4) to obtain

n+3 n+l n+l

(1.5) LUi = R+(A)Ui+% + R_(A)Ui_% - R_(A)Ui+% - R+(A)Ui_%.— 0.

n+3

This algebraic system is similar to (I.3) and is solvable for U by
the same method. Its relationship to a box scheme is evident from the
fact that the values occurring in (I.5) are associated with the vertex

points of a computational cell centered at (i,n+3). The implementation

of this scheme involves first employing step (a) in (i).

(iii) One-Step Method (Box Scheme B)
Equation (I.1b) is didentically satisfied by introducing new

wvariables V such that

n _ .ntd n-3
2U1+% = Vi Vi o
and
™2 o g gl
1 1 1

Substitution in (I.1) then yields a box scheme for valueé centered at (i,n).
This form of the box scheme method is essentially that developed by Keller
[5] and will not be discussed in further detail in this ﬁaper.

Considered separately from (i) the box scheme formulations tend to ob-
scure the existence of the simple energy estimate (I.2). 'However, the box

scheme formulation has advantages for the analysis of other questions. Thus,

nt3

i immediately results in a truncation error

an expansion of the operator LU
2 . '

estimate which is proporational to (Ax) while an analysis of the amplifica-

tion matrix in (I.5) also shows the scheme to be non—dissipativé and, hence,

will be of limited use in treating discontinous solutions. The following

section describes a siﬁple'modification of (I.l)'which yiéids é diséipative system.



I.2 A Dissipative Scheme -
Instead of (I.1) consider the scheme
n n
(a) GtUi + ASXUi =0
(I.6)

n n i 03
(b) utUi = uXUi + cAéin ,

with o > 0.
Assuming again that A is symmetric and constant, and suppressing

indices, the energy expression resulting from (I.6) is now
= 1 ' ' '
0=2%] {6, (UD)+A8 W'D} + 0 ] (6 AU)' (8 AD),
so that
n 0
(1.7) o™ < ol

Clearly this system is dissipative, i.e., when o > 0 the inequality in
(I.7) holds unless U"  is constant.

Let
& = 20/Ax
and
(1.8) : - S

The followihg solution methods now result:

(i) Two-Step Method

' +, 0 Fol L O
Ma) R (A )Ui_% +R_(A )Ui—% Uy

(1.9) ' _ .
n n _

b) ch1 + AchUi = 0.




(ii) One-Step Method

. nty _ +,, 0+l +, n+l -\ -
(1.10) LUy © SR, ODU G +R DU 3 - R (AU - R (U, = 0.

Thus (I.9) and (I.10) result from (I.3) and (I.4) by appropriately
increasing or decreasing the parameter A, If wIl‘ = UI:,L1 - U, where U 1is
the solution of the differential equation in (1), the estimate of trunca-

tion error using (I1.10) is

“1 .tk .2 2
(At) LEW? = 204U + 0(bx"),

so that the parameter o = €Ax/2 gives rise to an artificial viscosity term

proportional to Uxx .

I.3 Amplification and Phase Error

Consider the scalar equation u tau, = 0 where a > 0. Initial data
given by u0 = exp(ifx) are transformed by (I.6) into v = p exp[i(6x- )]
while the differential equation carries uo “into v' = exp[if(x- aAt)].

Eq. (I.lO) shows that

. -2 )
(I.ll) p2 = 1_"‘_43_)\__)_ < 1

14+ (a)\+) 2

while
(.12) 32y = arc tan(al tan(6/2)).

Thus lpl <1 for € >0, i.e. (1.6) is dissipative for o > 0.
For al =1, y = 6. Since tana¢ > atan¢d, 0 < a < 1, then ¢ < 6

for 0 < aA< 1; similarly Y > 6 for aA > 1. Thus the wave velocity of
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the wave solution of the differential equation according as the CFL
number is the difference equation has the same relationship to that
of less than, equal to, or greater than 1.

In the non-scalar case an analysis of the amplification matrix
associated with (I.10) yields an inequality similar to (I.11). This
observation also implies the convergence of the scheme (I.6) since it

is, clearly, consistent with the differential equation (1).

I.4 Numerical Experiments

The preceding discussion concerned the case A = constant. For
nonlinear problems, A = A(U) and it is natural to apply (I.6) in
which the coefficient A 1is determined by U?. Because (I.6) is
equivalent to an artificial viscosity method it may be expected that
the dissipative scheme (I.6) will converge to the physical weak solution
of the nonlinear conservation system Ut + FX(U) = 0.

In one dimension the nonconservation form of the Euler equations

for inviscid fluid flow is described by
Ut + AUx = 0,

where U = {(p,u,p)' (p = demsity, u = velocity, p = pressure) and

Ju
(1.13) A={0
\o

(y = 1.4).
<+ The results of several numerical experiments with ‘Riemann problems
employing the two-step method (I.9) will be ;presented here.
Figure 1 illustrates the numerical density profile of a shock
travelling to ﬁhe‘right with speed 0.979 which results from the initial

conditions




x<0 x>0

= 0.313 0.219
u = 0.3 0.0
p = 0.166 0.1

The indicated values of p and u on the left and p on the right were
used to supply bounaary conditions. The dissipation factor in (I.9) was
€ = 0.15 and Ax = .01. The value A = 1.04 in Figure la approximates
the situation in which the average value of the CFL numBe;s before and
after the shock was 1. The smoothness of the transition across the shock
and the fairly accurate tracking of the correct shock position (indicated
by the vertical line) are evident. Figure 1b illustrates the result of
increasing the CFL number on both sides of the shock (A..= 1.3) while in
Figure lc the average CFL number was reduced (A = 0.7). The post shock
oscillation when A = 1.3 and the preshock oscillation when A = 0.7
which was evident in the figures may be interpreted as the influence of
the CFL number on the wave velocity as discussed in I.3.

.Figure.Z illustrates the p, u, p profiles resulting from the initial .

conditions
x<0 x>0
p=1.0 0.125
u= 0.0 0.0
p=1.0 0.125

The analytical solution,‘represented in the figures by the éontinuous’line,
yields a shock with speed 1.822 and a contact with speed 0;878.. The calculated
values at timé = 2.4 with Ax = 0.1, A = 0.6, and a dissipation factor of

€ = .125 yielded results in fairly good agreément with the exact soiution.

The relative error of the shock speed was estimated to be 3% and the relative
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error of the total energy was calculated to be 0.3%. The value
A = 0.6 chosen results in an average CFL number = 1 through the shock

zone. In this experiment the matrix A in (I.1l) was estimated by

n _ n 1 n
Ai = %[A(Ui“’%)] + Z[A(Ui—%)].

In both of the above experiments the dissipative factor € was

kept constant for all points.

IT. Convective—Diffusion Equation

I1.1 Difference Scheme

A motivation for this scheme will be given in the Appendix.
Consider the scalar convective-diffusion equation in the form

described by (2a), i.e.
u, + au - Vv = 0
(1I1.1)
Let
8 = afx/2v,

so that |8| is the local cell Reynolds mnumber.

Also let

p(8) = 0748 coth 6- 1),

(11.2)

q(6) Op(6)..

‘The following approximations to p and q .will be .convenient:

1) [8] <3 : pn1/3, qn8/3,

i) 8] >3 : p~lel™ g~ osgme - 1/6 .
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The proposed scheme for treating (II.i) is:

n n n _
a) Gtui + aéxui - vavi =0 |
n | Ax, 2 n _ n
(II.3) b) uxui -G vai = utui
c) 6 o+ (AE) q ¢ Ve o= u ve.
X i 2 x i x i

For convergence Ax - O in which case the coefficients of p and
q in (II.3) may be neglected. For |6| large, howevér, the-term in-
volving p and q can provide important corrections to the scheme.

The difference equations (II.3) are clearly consistent with the
differential equation (2). The convergence of the scheme for Ax - 0
when a = constant, is most easily shown by employing the following "energy"
argument: neglecting the terms in (II.3) which ifivolve p and q and

suppressing the indices (i,n), multiply (II.3a) by H.u and then employ

(I1.3b,c) to obtain
2 2 W2
= 1 -
0 -?6tu + %a&xu va(uv) + v(ﬁxu) .

Assuming the boundary conditions satisfy the diSSipativé inequalities
related to (2) as described in the introduction, summation over the

spatial index then yielas

1 .n , 0
(I1.4) o™l < Do),
where

I = ] @h? - ax.
i 1

(The inequality in (II.4) is strict unless u? is constant). This implies
the convergence of solutions of (I1.3) to the solution.of (2) as Ax > 0 for

all values of the ratio A = At/Ax.
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IT.2 Solution Methods

The solution method described earlier for hyperbolic systems has
a direct extention to the equations (II.3). It will be convenient to

(u,v)T and the matrices

introduce the vector W

(1%a)) F (VA + Az—xp)
R, = 3
+1 -Zasg
and
— X
(17 a}r) t(VA-57p)
s, =% .
1 - %’i_(l Fq)
The following solution methods result:
(1) Two-Step Method
By eliminating the term u2+% in (II.3a,b) there results
-1
: L : -02’?
(I1.6) R+ R?'Wi__é =_( . )

This is an algebraic two-point boundary value problem which is solvable
-1 .
under the boundary conditions (2b) and the initial values u? %, With W?A ‘

determined, ug+% may be obtained explicitly from~tII.3).

(ii) :One~Step Method (Box-Scheme)

By eliminating the term ug_% in equations (II.3a) and (II.3b)

and then relabeling the index n the following box scheme results:




II.
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(IL.7) W s @R - s = 0.

The truncation error, as estimated from this expression, is O(sz)

for all values of the local cell Reynolds number |[6].

3 Numerical Results

The solution u % cos(x-—t)gxp(-vt) of u, + u o =vu = 0 was
computed at t = 41 wusing II.3 for v = 10—2 and the values
Ax = m/20, /40, m/80. The L, norm of the numerical errors as a function

of A = At/Ax are given in the following table:

Ax A=0.5 A= 1.0 A =2.0

7/20 | 1.7 x 1073 0.5 x 1073 9.3 x 1073
m/40 | 0.3 %x 100 - 0.27 x 107> 2.5 x 1073
/80 | 0.8 x 1074 0.07x 107 0.6 x 107

The results confirm the assertion made earlier that II.3 is second 6rderv
accurate. Simila; results were obtained using the Lz norm.

Figure 3 indicates steady;étate boundary layer profiles' (t=10)  for
u +au - vu_ =0 with boundary conditions u(0) = 1, u(l) = 0. and
initial condition 'u(x?O) = (1-x); (II.3) was employed with Ax = 1/20 and
A = 1. The exact solution is indicated by the solid cutves.‘»The numerical
results indicate fairly close agreement with the exact solﬁtion in the
neighborhood of x = 1.

Figure 4 describes results for Burger's equation u_ + (u2/2)x =Vvu

t
with u(x,0) =1 for x < 0.5 and u(x,0) =0 for .x > 0.5 for
v = 10_2, 10-3 at time t = 1.0 wusing (II.3) with Ax = 1/50A and

A 1.0; the vertical line indicates the position of the shock for the

limiting value v = 0.




Figure 5 illustrates the solution of Burger's equation at time
t = 2.0 (steady-state) with boundary condition u(0) = 1, u(l) = -1
and initial condition u(x,0) = 1~2x. The maximum value of the local

cell Reynolds number was Rc = 112.23.
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Appendix A

The Underlying Approximation Method

The schemes described in this paper have their origin in a common
approximation method.
Divide the fundamental solution domain D 0<x<1, 0< t<T
uniformly into M+ N rectangular cells each of area AxAt. .If n; is a
n n+

typical cell with center point (xi’tn) let Oii%’ T4 denote its

vertical and horizontal sides as indicated in Figure 6.

P S
o

]
re B
=]

Figure 6

There are thus a total of M+ 1)N + (N+1)M sides of which 2(M+N)
lie on the boundary of P and 2MN - (M+N) 1lie interior to D.

ntd
i

€onsider first the equation Ut + AUx =0. If U are the average

+1 . L
values of ¥ on the sides T?'z, 02+% of ﬁg then the  MN conditions

. : A n n
(A.1) §.U; + AS U; =0,

will imply that Gauss' theorem holds on the union of any contiguous set
of cells. Suppose now that the global solution is appiqxiﬁated by_functions
which are solutions of the linear differential equation in each cell each of
which depends, say, upon <@ parameters, i.e., if_-gl,gz,"°,ga are

linearly independent solutions in a cell, we let



(A.2) U= J bies

If o =2 the mixed initial-boundary value problem (1) may be
approximated as follows (c.f. [10]): set Qi =1, 92 = (xI-tA);
then the parameters 45 & will be determined by any two of the

n+} n . .
four average values Ui ® and Ui*é associated with the sides of

_n_n
Ty

these values one of which is expressed by (A.1l) and the other by

Elimination of the parameters yields two relationships between

(A.3) p U, =uu,.

There thus result 2MN conditions for the 2MN + (M+N) average
values. By imposing the boundary and initial conditions in (1) a
determined system of equations results. As we have shown through the
use of an energy argument, when A is symmetric and constant this
approximation method converges in an L2 norm for smooth solutions. The
numerical results presented earlier indicate that the dissipative
scheme based upon a modification of this method provides accurate
approximations to nonlineaf problems as Weil.

.. For the scalar equation Sug + au, - vu = 0 similar arguments

show that, 1if v = us then

n

n n
(A.4) Gtui + anui - véxvi = 0,

is a necessary condition that Gauss' theorem hold in terms of the boundary:® -
Yy y

data of cells. Employing (A.3) with o =.3 and the elementary solutions

9, =1
(A.5) $y = (x-at)
93 - eax/\)
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an elimination of parémeters yields the scheme (II.3) which is a determined
algebraic s&stém under the initial-boundary values giveniby (2b). Again,
the energy argument given earlier establishes the convergence of this approxi-
mation scheme when a 1is constant.

Both schemes employ an approximation basis which consists of wave

solutions of the form
$(B,Y) = exp[B(x-Yt)],

where 7Y 1s the wave velocity. In the hyperbolic case Y = A and the
polynomial basis (1,xI - tA) resulté by setting ¢1==¢(0,A), ¢2 = ¢B(O,A);
For the convective-diffusion equation the dispersion relationship

Y = a - VB holds. In addition to the polynomialzsolutions (1,x- at)

the function exp(ax/v) provides aﬁother linearly independent solution
for which Yy = 0 when B = a/v. The basis (1, exp(ax/Vv)) is composed

 of solutions of the steady-state equation au - qux = 0 and the method
described above can be used to directly provide a difference scheme for -

-the time-indpendent. problem. The result is described by the two equations
(I¥.3a) and (II.3c) in which the term Stug is set equal to zero. This
same basis can be used to construct a Green's function on each overlapping

subinterval [x having its singularity at x = X4,

i-1"% 141 7
X;_; < %X; < X;,7, a technique which leads to a positive definite tridiagonal
differencé scheme for Sturm-Liouville problems as shown in [9]. An equiVa-
lent point of view has been independently developed and applied to similar
singular perturbation problems which arise from steady-state problems (for
example, c.f. [1], [3], [7],[10]). 1In this sense the methods described in

this paper appear to provide the appropriate -extention of such Green's

.function techniques to time-dependent problems.
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For the convective-diffusion equation a polynomial approximation

basis also results by taking

= q)(osa) =1

-
[
|

S
N
|

= ¢8(0)a) =x-at .
¢3 = % ¢Bs(osa) = %(X— at)z +v t.

The difference scheme which is the consequence may be obtained from (II.3)
by setting p = q = 0. In view of earlier remarks this basis can be ex-
pected to provide an accurate approximation only when the cell Reynolds

number |8] is small.
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Concluding Remarks

This paper has described related implicit difference schemes for
treating hyperbolic systems of equationms énd the scalar convective
diffusion equation 5oth of which share a common approximation rationale
as well as a common solution technique. Numerical eVidence indicates that
both schemes can be employed to treat nonlinear pfoblems. The accuracy
of approximation to the dissipative hyperbolic problem is proportional
to an artificial diffusion parameter ¢ while the approximation to the
convective-diffusion is second order accurate and is independent of the
value of tﬁe local cell Reynolds number. For both schemes conventional
energy estimates afe available when the coefficients are'constant.

One important limitation of this study is its restriction to one
dimensional problems; in another paper we will indicate how multi-dimensional

problems may also be treated.
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Figure 1. Density profile of a shock calculation showing the influence

of the CFL number upon pre- and post- oscillations (Scheme I1.6).
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Figure 4.

A comparison of boundary layer
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Figure 5. Steady-state solution of Burger's equation.
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