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ABSTRACT

Histological techniques Mere utilized for evaluating progressive changes

in tibial compact bone in adult sale monkeys (M, nemestrina) during

chronic studies of immobilization-associated osteopenia. The animals

wore restrained in a semirecumbent position which reduces normally occur-

ring stresses in the lower extremities and results in bone mass loss. The

longest immobilization studies were of seven months duration. Losses of

haversian bone tended to occur predominantly in the proximal tibia and

were characterized by increased activation with excessive depth of

penetration of osteoclastic activity. There was no apparent regulation

of the size and orientation of resorption cavities. Rapid bone loss

seen during 10 weeks of immobilization appeared to be due to unrestrained

osteoclastic activity without controls and regulation which are charac-

teristic of adaptive systems. Tine general pattern of loss persisted

throughout 7 months of immobilization. Clear cut evidence of a formation

phase in haversian bone was seen only after two months of reambulation.

During this period, osteoblasts accumulated within resorption cavities

and there was matrix apposition. within b months of recovery, there was

increased bone turnover and resOrption cavities with diameters of 500-1500 Pm

were filled partially with new bone; the mean wall thickness of new bone

is 2-3X larger than normal. In addition there were numerous remodeling

sites which were more or less of normal size and orientation. Trabecular

bone was also lost during immobilization, and it is probable that losses

of large trabecular plates are not replaced and consequently original

bone volume in the cross section is not recovered. In this immobilization

model, we observe bone resorption occurring for long periods without apparent

aa3v:res
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interruption. in our view, immobilization gives rise to uncontrolled

activation without coordination, balance or coupling to other remodeling

parameters. Osteoblastic activity appears to be suppressed. Resorption

cavities are not uniformly distributed and only a portion of the total

cross section is involved. Recovery of cortical bone during reambulation

is a repair and rejuvenation process characterized by refilling of

resorption cavities as well as remodeling activities. The results are

interpreted in terms of a cellular basis of bone remodeling.

KEY WORDS: immobilization-osteoporosis, cortical bone, primates
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ORIGINAL PAGE 15
INTRODUC'TION	 OF POOR QUALITY

Chronic inn obilization of adult male monkeys results in characteristic

losses of vertebral (Kazarian and Von Gierke, 1969; Mack et al., 1968;

Cann, et al., 1980) and tibial cortical (Young at al., 1979; Young and

Schneider, 1981) bone. Largely through the efforts of Kazarian, the

immobilized primate has become a potentially useful model for studies

of bone alteration in hypodynamic environments (Kazarian and Von Gierke,

1969). Our histologic&'_ data (Young et al., 1983) in adult primates

showed resorption cavities in the proximal tibiae within one month of

immobilization; by two and a half months there were large resorption

cavities subperiosteally, endosteaily, and intracortically. Partial

recovery of haversian bone Was seen afts, - fifteen, months of rea^'^ulation.

however, approximately forty months were required for restoration of

the normal histologic appearance of the cortex. Bendin g stiffness of

the tibiae, which is highly dependent upon the quality and quantity of

cortical bone (7t omFson. et al., 1976; Orne 1974; orne and Young, 1976),

declined during imaobilization., but returned to normal values a`te°

approximately eight and a half mor.ths of rea-L l-ulation (Young et al., 1983).

Kazarian. and Von Gierke (19691 using qualitative radiographic

techniques, also demonstrated loss of cortical bone in the appendicular

skeleton of young adult primates immobilized in whole body casts. But

histological data reported b • other investigators using young adult

rhesus monkeys differ from our results: for example, evidence is cited

(Schock et al., 1975, Wronski and Morey, 1983) that immobilization in

body casts for two to eight weeks diminished bone apposition in the

tibia. The haversian envelope of tibial cortical bone showed reduction

of (a) formation rate, (b) percentage of labelled oste ons in the perimeter,

it
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and (c) a diminished ratio of cortical/total bone area ( Schock at al.,

1975). The latter finding implies a loss of bone, however no additional

criteria of bone resorption were reported. Periosteal tibial bone

Schock et al., 1975) showed striking reductions in numbers of osteoid

seams and apposition rate. Immobilisation appeared to impair

c-steoblast-mediated activities. However, since there were no observed

.ncreases in percentage of resorbing surfaces, the authors concluded

;.hat there was no increase in remodeling rate.

In contrast, Jaworski et al., (Jaworski et al., 1980; Uhthoff and

Jaworski, 1979) described phasic changes in bone loss during long-term

immobilization of canine forelimbs in paster casts, and concluded that

although rate and total account of bone loss is age -elated, the mechanisms

of bone loss in both young and old animals are associated with increased

resorption surfaces but with unaltered rates of linear mineralization.

The authors suggested that those observations implied significant

changes in bone cell kinetics. Klein et al. (1982) studied limb immo-

bilization by internal fixation in dogs pre-labeled with tetracycline.

The increased losses of `H-tetracycline during immobilization demonstrated

the increase of resorption rate. Significant amounts of released

calcium were recycled and retained through the mechanisms of new bone

formation. However, formation rate did not keep abreast of increased bone

respoption, resulting in a net loss of bone. Those studies also suggest

alterations in bone cell kinetics particularly in the recruitment and

activation of osteoclasts.

Our earlier report (Young at al., 1983) was in general agreement

with the conclusions drawn by Jaworski et al. (1980) and Klein et al.

(1982) regarding the importance of bone resorption in immobilization-

associated osteopenia. The demonstration of the recovery of mechanical

t
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properties of tibial cortical bane (Young et al., 1983) however, was

of greater significance and led us to believe that the middle-aged

immobilised primate is a model for adult-acquired reversible osteopenia

(AARO) (Young, 1984). Furthermore, we postulate that observed bone

changes are (a) related principally to alterations of remodeling-type

activity and events, but (b) may not be related significantly to

changes or disturbances in bone growth functions as seen with pituitary

disorder, nor in modeling functions such as those seen in osteogenesis

imperfecta, nor in repair functions as seen in biological failures of

bone union and wound disruption.

The present report is a qualitative assessment of histological

changes in the tibiae of fifteen monkeys immobilized for periods up to seven

months,and supports our hypothesis concerning AARO. We have focused

principally upon changes in the cortex because of their impact on bending

strength, and have expanded our evaluations of the osteoporotic process

in the appendicular skeleton by use of microradiographic techniques

as well as stained histologic sections.
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KATE RI ALS AND METHODS

Immobilization studies were performed with 15 adults sale pigtail monkeys

(M. nomestrina). The studies were of 1-7 months duration. The animals

were approximately 15 years of age. They were fed a commercial primate

diet (Purina) throughout all phases of testing.

The animals were restrained in a semirecumbent position using the

techniques of HowarZ et cat. (1971). That procedure reduces normally

occurring stresses in the lower extremities which results in an immo-

i>ilization-associated osteopenia.

For histologic evaluation ,-)f the present series, the region below

the tibial tuberosity was cut into 3-5 mm transverse slices and fixed in

neutral formalin. They were subsequently decalcified in RDO • and

6-10 um frozen sections were prepared with a sliding microtome (AO) with

a Super Histo-Freeze attachment. The tissues were embedded for cutting

in O.C.T. compound (Tissue Tek). The sections were stained with H 6 E,

Paragon, modified Masson, osteochrome Villanueva bone stain, and Weigert's

iron hematoxylin with metachromic dyes. In addition, phase contrast

microscopy was used to examine unstained, undecalcified bone sections.

For microradiography, sections were cut with a Buehler Isomet low

speed saw from frozen untreated bone. For some specimens, 100-150 um

sections were prepared. Bone marrow and other soft tissue was removed;

the sections were then dehydrated in alc:ohnl, rinsed with petroleum ether

and dried in vacuo. In other samples the tissue was fixed in 75 ♦

ethanol, and then embedded in plastic and ground to a thickness of 100 um

(Joe, 1959).

Control animals were given a total of 4 labels (Terramycin/Achromycin,

i.v.) at 10 day intervals during the study in order to determine normal

sinerslization rate of cortical bone.
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RESULTS

Three techniques (fluorescence microscopy, phase contrast microscopy,

and microradiography) were used to visualise osteonal formation in the

proximal tibia of control animals. figure Is shows the incorporation of

four sequential tetracycline labels administered at 10 day intervals.

Mineral appositional rate is 1.0-1.5 Um per day, but the frequency of

events is low. Typically, only two or three labeled osteor.s are seen

in the entire cross section. They are the young dark remodeling osteons

seen in microradiography (Fig. 3). The pattern of tetracycline labeling

in an osteon corresponds with the darker concentric lamellae seen in phase

contrast microscopy of the same structure (Fig. lb). Phase contrast shows

the region of recent bone formation in relationship to the entire osteon.

Microradiographs of this osteon (Fig. lc) show another perspective. At

this stage of development the remodeling osteon is less dense than the

surrounding bone (18% less calcium as determined by electron microprobe

analysis) (Niklowitz et al., 1983). The annular light lamellae density

patterns in the microradiograph of the area adjacent to the haversian

canal correspond to the dark annular patterns seen in phase microscopy

as well as to the patterns of tetracycline labeling. Thus, these data

are potentially useful for assessing the fractional area of individual

osteons undergoing appositional bone formation in relationship to

dimension of haversian canal, to radiographic density and to pattern

of mineralization. We could not demonstrate satisfactory labeling

with tetracycline in haversian bone during chronic immobilisation, therefore

quantitative comparisons of kinetic parameters were not possible.
;M

Radiographic alterations that occur during immobilization are

shown in figure 2. Tiqure 2a, prior to immobilisation, shows the solid

4T------ ...........  ... ..
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cortical bone below the tuberosity in the anterior proximal tibia.

t
Figure 2b demonstrates the cancellation and osteopenia in cortical bone

after 10 weeks of immobilization. There is surface erosion and thinning

of the cortex, cortical striations, and a loss of definition of the

endosteal margin.

Microradiographs of cross sections of the tibia (Fig. 3) show much

of the normal haversian bone below the tuberosity delineated by an inner

and outer circumferential layer of lamellar bone. There are few re-

modeling osteons. Trabecular bone is predominantly in the anterior tibia.

Figure 4 shows the response to to weeks of immobilization. This section

was also taken below the tuberosity. Where are extensive resorption

cavities subperiosteally and enlarged resorption cavities intracortically

in the anterior tibia; there is also a thinning ant loss of trabecular

bone. Bone loss continues throughout seven months of immobilization. There

to
are no dark (less dense) osteons ndicate remodeling processes during

immobilization. Figure 5 shows six months of recovery following 10 weeks

of immobilization. These specimens show a dramatic increase in remodeling
of

rate as shown by the larger number darker osteons (less mineralized bone)

in the cortex as compared to control animals (Fig. 3). Most resorption

cavities, 500 - 1500um in diameter, are partially filled with new and less

dense hone and appear as unusually large osteons. The mean wall thickness

of these units is 2 to 3 times larger than normal and at this stage the

haversian canals are wide. During recovery, endosteal surfaces show bone

apposition. But Figure 5 also shows endosteal areas without a covering

of new bone which suggests either recent resorption or lack of apposition.

It is possible that resorption and regional bone loss continue after

immobilization is terminated. At 15 months of recovery, the wall thickness

of newer osteons remains large and the haversian canal is somewhat larger

than normal size (Fig. 6). Trabscular plates are not replaced.
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Another pattern of recovery in the tibial cortex can be seen in

Figure 7. There is extensive appositional formation of lamellar bone,

subperiosteally. Several arrest lines delineate the areas of active

formation. Remnants of arrest lines can also be seen within the cortical

bone proper; the larger osteons extending into lamellar bone demonstrate

states of transformation of lamellar to haversian bone.

specific cells associated with bone loss were examined. During

immobilization there is a characteristic recrui*mment of osteoclasts.

Figure 8 shows effects of 10 weeks of restraint. There is an accumulation

of multinucleated osteoclasts within resorption cavities in the cortex

(Fig. 8a). Longitudinal sections contain osteoclasts at the leading

edge of cutting cones (Fig. 8b). Figure 8c shows effects of seven months

of immobilization. An osteoclast and Howship's lacuna can be seen

on the irregular periosteal surface.

The large resorption cavities seen during immobilization have

smooth surfaces and are lined with mononucleated cells (Fig. 9). The

geometry of the cells suggests that they may be osteoblasts. But
	 .,

during immobilization we have not "*en able to demonostrate the presence

of osteoid seams by selective staining techniques. However, within

two months of recovery, extensive osteoid seams can be seen in proximity

to morphologically similar cells (Fig. 10).
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DISCUSSION

The present report is an extension of our studies of immobilization-

associated osteoporosis. Ordinarily, the tibial cortax has a quiescent

bone surface. Theri, are few active rm"eling sites. During immobilization

this apparently inactive surface however, is capable of excessive

metabolic activity. The pattern of bone resorption varies from cutting

cones in single osteons to uncontrolled, chaotic, osteonal resorptive

activities; that process prevails throughout at least seven months

of continuous immobilization. Unlike remodeling which is a cyclical

bone replacement mechanism (Parfitt, 1984), our samples show no apparent

regulation of the size and orientation of resorption cavities. Thus

the massive resorption of bone is considerably different from what might

be expected with a normal activation frequency, an6 is associated with

excessive depth of osteoclastic penetration. As in senescent changes

(Jowsey, 1960; Martin et al., 1980), the increased cortical porosity in our

model is not uniformly distributed; the most obvious changes were seen

in the proximal anterior tibia.

During immobilization, cavities in the cortex with smooth surfaces

are lined with mononuclear cells and appear to be in a reversal stage.

Some cf the mononuclear cells may be preosteoblasts or eve, osteoblasts.

Nevertheless, the studies of others showinq depressed osteoblastic activity

(Schock et al., 1975; Wronski and Morey, 1983) as well as our own

inability to demonstrate tetracycline labels in tibial haversian bone

of immobilized primates (Young and Schneider, 1981) indicates an

inhibition of new bone formation. Additional studies using histochmical

techniques (acid and alkaline phosphatase distribution) are rewired

for further attempts at identification of these cell populations. if

♦.
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they are indeed osteoblasts derived from the narrow compartment, the

possibility exists that there is an adequate stimulus for ostsoblast

recruitment but that specific cell function is inhibited, resulting

in a long time delay in the reversal phase. Further studies are needed

to elucidate this question.

We have seen clear cut evidence of a formation phase in haversian

bone only after two month- of reambulation. During this period,

osteoblasts accumulate within the resorption cavity and there is matrix

apposition. Thus a true reversal procoss occurs. After six months

of recovery, refilling of cavities can be seen. Resorption cavities

with diameters of 500-1500 Pm are partially filled with new bone.

The mean wall thickness is larger than normal. In addition, there is

a significant increase of activation frequency; numerous remodeling

sites which can be seen in the cross sections, are more or less of normal

size and orientation. we have not excluded the possibility that

bone loss may persist during the early phases of recovery.

Periosteal lamellar apposition is another pattern of recovery.

The long parallel lamellar units of bone are stiffer and more rigid
i

in all directions than is haversian bone (Katz et a_., 1984). Thus at

six months of recovery, the internal reconstruction of the cortex mediated

by depth of deposition of new bone, remodeling events, as well as the

formation of concentric lamellar structures improves bone quality. They

car. be expected to restore mechanical properties, especially bending

stiffness (Young et al., 1983). Rejuvenation of matrix and crystal

structure also improves the potential for homeostatic responses associated

with calcium regulation..

There are obvious losses of trabecular bone in the tibia. Whereas

a portion of the andosteal envelope may be restored by apposition, it

..	 _	 -
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Is doubtful that large trabscular plates are replaced. Consequently,

original bone volume is probably not recovered. bone surface to volume

ratio at the endosteum is clearly altered.

Events occurring during immobilization ca:.not be understood in terms

of only one cell population, therefore continuing studies in our laboratory

are ,-squired to identify and better define the role of various cells in the

overall process. but despite incomplete dais, some tentative cons?.unions

can be drawn from the observations in our model. Rapid bone loss in

hypodynamic environments may not be a physiologic adaptive responrQ.

The loss appears to be due to unrestrained osteoclantic activity without

controls and regulations which are characteristic of adaptive systems.

The general pattern of loss persists throughout the longest immobilization

studies we have conducted (7 months). The mechanisms giving rise to

the loss of bone are unknown. There could ).,e a hormonal basis for the

bone loss. For example, we noted earlier (Howard at al., 1971) a 55%

increase of fecal mass with constant food intake during immobilization

which suggested altered int^:,tinal absorption. Diminished calcium

absorption can lead to a secondary hype rparathyroidiam with direct

effects of parathyroid hormone (PTH) on bone. Alternatively, the studies

of Burkhart and 3owsey (1967) suggest increased sensitivity of immobilized

bone to circulating levels of thyroid and parathyroid hormones. But

the responses that we observe during immobilization do not fit the

patterns in which bone is influenced by calcium regulating hormones.

For example, patients suffering from primary hype rpa rathyroi di an show

a high bond turnover with increased foruation and resorption surfaces,

and a significantly increased bone apposition rate (Tan et al., 1982).

Anabolic effects of PTA! have alro been shown in involutional osteoporosis

1
1
1
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(Reeve et al., 1980). The stimulation of matrix synthesis by PTH appears

to be cyclical (Parsons, 1976) 1 an inhibitory effect is followed by

a stimulatory response in which osteoblastic activity is increased

(Raisz, 1984).

During reambulation there is ample evidence of increased bone

turnover and filling of resorption cavities by anabolic processes. The

repair and reconstruction of the cortex restores functional properties

of the bone. Anabolic activity which occurs divAng this phase resembles

some of the described effects of PTH or what slight be expected from

heightened sensitivity to PTH.

Glucocorticoids are also implicated in the osteopenia seen in

immobilized primates. Glucocorticoids have been shown to reduce

intestinal absorption of calcium (Harrison and Harrison, 1960), to

reduce calcium binding protein in the intestine (Feher and Wasserman, 1979),

and to lower plasma levels of 1,25 dihydroxyvitamin D3 (Chesney et al.,

1978). In our studies there is a transitory rise in urine cortisol

during the first five days of immobilization; baseline urinary cortisol

excretion rates of 246 Ug/day increase to levels of 409 vg/day.)

However, we have not yet established these transient alterations as a

probable cause of altered intestinal calcium absorption or of altered

bone formation parameters in our model. Further investigations are required

in order to determine the modulating and permissive effect of calcemic

hormones in the etiology of disuse osteoporosis.

In our model the extreme alterations in bone are obviously correlated

with skeletal loading. Recent evidence of the strain environment in the

tibia has been presented (Rubin, 1984). During vigorous physical activity

the total strain in bone due to bending is 12-18k greater than is the

strain associated with axial compressive loads. our sample area of interest

i	 -i-
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is located in proximity to muscle and tendon insertions which ordinarily

produce local high strain environments. Immobilisation of primates may

reduce mechanically induced deformations in the region of the tibial

tuberosity by as much as 3000 microstrains. Thus we may be evaluating

an especially load-sensitive area of bone. It has long been known that

the stress history of bone influences its structural competence

(Lanyon, 1984). The osteogenic response to increased physical activity

although difficult to quantify, has been reasonably well-documented.

Interactions of mechanical factors with hormones or local factors (Somjen

at al., 1980) are thought to regulate remodeling and bone formation within

the physiologic range. We have cited the evidence in primates which

supports the concept of a reduction or perhaps cessation of new bone

forming activities during immobilization. That lends further support

to the attractive hypothesis concerning the stimulus provided by minimum

effective strains on bone turnover. But a major effect of hypodynamic

immobilization, beyond alteration of remodeling parameters, appears to

be the loss of control and regulation of catabolic processes. we observe

bone resorption occurring for long periods (7 months) without inter-

ruption; although we have interpreted that response in terms of a

cellular basis of bone remodeling, we believe that it is more akin to a

pathophysiologic process. Similarly, some changes seen during re-

ambulation can be readily evaluated in terms of conventional remodeling

concepts and effects of loading history. But the large increase in the

mean wall thickness of new osteons is a new observation. Whether this

should be classified properly as remodeling or modeling is unclear.

The evaluations support our premise of the occurrence of a modified

type of adult-acquired reversible osteoporosis (AARO) in the cortex of

weight-bearing bones. It is likely that replacement of the endosteal

,. ,
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envelope and trabecular bone is incomplete, so that repeated exposures

to hypodynamic -hypogravic environments would probably lead to greater

thinning of the cortex and reduction of bone volume as has been described

in involutional bone loss. However, osteoporosis is traditionally

attributed to bone cell senescence and relative insensitivity to signals

and factors which ordinarily stimulate remodeling. In sharp contrast,

our studies with cortical bone vshow the extremes of cellular activities.

In our view, immobilization gives rise to uncontrolled activation

without coordination, balance, or coupling to other remodeling parameters.

Tunneling in bone due to focally excessive resorption as seen in our

specimens was originally proposed by others evaluating irradiation-

induced bone changes in man and dogs (Jee, 1962; Pool et al., 1983) and

also by Arnold (1966) in studies of senile osteoporosis. Only a portion

(approximately 259) of a representative cross section is involved.

Recovery and rejuvination of bone appears to be a reparative process.

Approximately 309 of the cortical surface is affected by this activity.

Cavities are filled and remodeling is stimulated. The mechanisms

which stimulate these changes are at the present, obscure.
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Fig. 1. Control. Proximal anterior tibia. Comparison of

fluorescence (a), phase contrast (b), and eicroradiographic

(c) images of the same osteon in process of remodeling.

Arrow points to comparable region of recent bone formation

in relationshir to entire osteon. X180
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Fig. 2. Radiographs of U.e right tibia prior to restraint

(a), and after 10 weeks of restraint (b). V-,ere is

characteristic loss of bone in t;e anterior proximal

tibia below t_he tuberosity. F.-row shows t:linning of

cortical bone, striations, and loss of definition of

endosteal margin. X2
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Fig. 9. Luring restraint resorption cavity contains osteoblasts

or osteoblast-like cells. H&E. X420
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Fig. G. Kicroradiograp? of a cross sectior, tr.rough the proximal

tibia of a 10 week restrained animal. Mere are no newly

remodeled osteons, however, a larger numl,er of resorption

cavities car. be seen ir. the anterior portion: of the tibia,

as well a: loss (thinning and fewer trabeculi) of tra:)ecular

bone. X12
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fig. 5.	 of a cr.ss se_':c- throju • . t'.e pr:)xiiral

tibia of ar. anima/ after G moat.'.=_ of rec-^ern frcxr, 1G

weeks of restraint. Tl,e resorption cavities are partially

or completely filled wit's new bone, which in this state

is still undermineralized. T I-,e posterior tibia sh7ws

increased remodeling. Regions o.` endostea_ surface show

bone apposition or resorption. (t). X12
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Fig. 6. Microradiogra:`. of the proxima l_ tibia after 15 mont_.E

of recovery from E months of restraint. Altn.st all of

the former resorptior. caioities are completely filled

with new bone and the haversiar. canal is of approximately

normal size. The mean, wall thickness of these ost.eons

is larger than normal. Trahecular bone is not cvm,:le_ely

replaced. X12
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Fi g . 7. Partial dross section through the more literal portion

of the proximal tibia after 6 months of r1covery fraer

10 weeks of restraint. 1 4-,i c bone reveals extensive

layers of lamellar bone delineated by several arrest

lines. Rs:lr.ants of arrest lines can be seer, in cortical

bone proptr (t ) . FILE. XES
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Fig. 8. 0steozlasts during bone resorption.

a. ResorFtion cavity lr_ated between, the bubpe=iosteal

lamellar bone an? haversiar. bone containing n-ime.ous

osteoclasts. H&E. X240

b. Longitudinal tibia! bone s^ction showing cutting cone

with osteoclasts ( 4 ) . H&F. X240

C. osteoclasts in HowshiF lRCUna at periosteal surface.

H&—r . X14:0
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Legend for figure 9	
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Fig. 9, Ltiuring restraint resorption cavity contains osteoblasts

or osteoblast-like cells. H&E. X420
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Legend for figure 10
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Fig. 10. Resorption cavities after 2 months of recovery. Note

the heavy laver of osteoid seam which is 'assDciated

with cub;,idal cells. Mod. Masson. X200
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Footnote to page 6

'Du Page Kinetic Laboratories, Inc., Downers Grove, IL 60515

Footnote to page 12

*Young, 1984, unputlis`.ec data.
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