
...

NASA Technical Memorandum 86423 NASA-TM-86423 19850019305

An Abstract Specification Language

for Markov Reliability Models

Ricky W. Butler

April 1985

NI\5I\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

... , .. ""()5 h·;., . '.: I~O
~ ". .. \ '-

LANGLEY RESV,RCH CENTER
. - LIBRARY, NASA

HA~.~P'TOt~, VIRGINIA

\ \\\\\\\\ \\\\ \\\\ \\\\\ \\\\\ \\\\\ \\\\\ \\\\ \\\\
NF00602 --

https://ntrs.nasa.gov/search.jsp?R=19850019305 2020-03-20T19:16:58+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42845274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

..

INTRODUCTION

The reliability analysis of an aircraft's or a spacecraft's electronics system

is an essential part of both the design and the validation process.

Traditional electronics systems were static in nature, not relying on system

reconfiguration for fault tolerance. For such systems, combinatorial

mathematics were adequate to analyze system reliability. A graphical

representation of such a combinatorial analysis, called "Fault-tree analysis",

is frequently utilized by reliability engineers. Unfortunately, for systems

where reconfiguration is used, the fault-tree approach is inadequate. This is

true whether the reconfiguration is accomplished by replacing a faulty unit

with a spare or by removing the faulty unit and degrading to a lower level of

redundancy. The more powerful Markov model approach must be used to analyze

such systems.

Recently, a new mathematical technique was developed enabling the efficient

computation of such models. (See ref. 1.) This technique was embedded in a

new reliability analysis tool called SURE. (See ref 2.) The computational

power of the tool enables it to process extremely large and complex models.

However, the process of defining such models is still quite tedious. For

well-structured systems such as the Software Implemented Fault Tolerance

(SIFT) system (see ref. 3) very small and simple models can capture the

essential fault tolerance behavior. Also, highly modular systems consisting

of many independent "stages" can be analyzed by dealing with each stage in a

separate model and computing the overall system reliability with simple

combinatorics. However, for large highly integrated systems a single very

large model may be necessary. This problem is not related to any particular

reliability analysis tool, but arises fundamentally from the complex nature of

the system. The process of defining such a model can be tedious and error

prone. In this paper, a new approach to defining such models using an

abstract,model definition language is described.

THE MODEL DEFINITION CONCEPT

The process of modeling a fault-tolerant system is not an exact science. It

is still very much an art. Reliability analysts must study a fault-tolerant

architecture and capture the essential aspects of its design which contribute

to its fault tolerance. The modeling process is perhaps best described by

example. Suppose we have a SIFT-like system consisting initially of six

independent processors each executing the exact same program. Each processor

receives exactly the same inputs so that all non-faulty processors produce

exactly the same output. Furthermore we assume the system "votes" the outputs

prior to external use. Thus, so long as a majority of the processors are non

faulty, any erroneous values are "masked" while the system removes the faulty

processors via reconfiguration. The Markov model in figure 1 characterizes

this system.

6>.. 5>" 4>..
(6,0) ----) (6,1) ----) (6,2) ----) (6,3)

I 0 I 20
v 5>" v 4>.. 3>"

(5,0) ----) (5,1) ----) (5,2) ----) (5,3)

I 0 I 20
V 4>.. V 3>"

(4,0) ----) (4,1) ----) (4,2)

I 0
V 3>" 2>..

<3,0) ----) <3,1) ----) <3,2)

I 0
V 2>..

(2,0) ----) (2,1)

Figure 1. Markov Model of SIFT-Like Architecture

The states of the model are defined by the ordered pair (NC,NF), where NC

2

,

the number of processors currently in the configuration, and NF = the number

of faulty processors in the configuration. There are three main concepts that

dictate the structure of this model:

1. Every processor in the current configuration fails at rate A.

2. The system removes faulty processors at rate o.

3. A majority of processors in the configuration must not have failed in

order for the system to be "safe".

It is the goal of the abstract model definition language introduced in this

paper to express concepts such as these so that an automatic generation of the

corresponding Markov model is possible. Such a capability could be used in

conjunction with a Markov model analysis program such as SURE to provide a

high-level reliability analysis work station. This concept is illustrated in

figure 2.

abstract
model
description

----)

Markov
Model
Generator

Markov
----) Model

Input
----)

Markov
Analysis
Program

Figure 2. Reliability Analysis Work-station Concept

3

THE ABSTRACT LANGUAGE

A formal description of the language will not be presented. This paper is not

intended as a specification for the design of a translator but rather as an

exposition of the problem of Markov model description and a possible approach

to the problem. Nevertheless, it is necessary to define a few conventions to

facilitate the description of the language:

1. All reserved words will be underlined.

2. Lowercase words which are surrounded by quotes, such as "const", indicate

items which will be replaced 9Y something defined elsewhere.

3. Items enclosed in braces { } may be omitted or repeated as many times as

desired.

Language Details

The language consists 9f 5 types of statements:

1 • The constant definition statement

2. The SPACE statement

3. The START statement

4. The DEATH-IF statement

5. The TRANTO statement

Each of these statements will be discussed in the following sections.

The constant definition statement - A constant definition statement equates an

identifier consisting of letters and digits to a number. For example:

LAMBDA = 0.0052;

RECOVER = 0.005;

4

~

\

Once defined, an identifier may be used instead of the number it represents.

In the following sections, the phrase "const" will be used to represent a

constant which can be ei ther a number or a constant identifier. Constants may

also be defined in terms of previously defined constants:

LAMBDA = 1E-4j

GAMMA = 10*LAMBDA;

In general the syntax is

"ident" "expression";

Where "ident" is a string of up to 8 characters and digits beginning wi~ a

character and "expression" is an arbitrary mathematical expression using

constants and any of the following operations:

+ addition

subtraction

* multiplication

/ division

** exponentiation

equals

> greater than

>= greater than or equal

< less than

<= less than or equal

AND logical and

OR logical or

NOT logical not

5

and functions:

EXP(X) exponential function

LN(X) natural logarithm

SIN(X) sine function

COS(X) cosine function

ARCSIN(X) arcsine function

ARCCOS(X) arccosine function

ARCTAN(X) arctangent function

SQRT(X) square root

Both () and [] may be used for grouping in the expressions. The following

commands contain legal expressions:

ALPHA = 1E-4;

RECV = 1.2*EXP(-3*ALPHA);

DELTA = (ALPHA + 2.3E-5)*RECV;

The SPACE statement - This statement is used to specify the state space on

which the Markov model is defined. Essentially, the state space is defined by

a n-dimensional vector where each component of the vector defines an attribute

of the system being modelled. In the SIFT-like architecture above the state

space was (NC,NF). This would be defined in the abstract language as

SPACE (NC: 0 .. 6, NF: 0 .. 6);

The 0 .. 6 represents the range of values over which the components can vary.

The number of components (i.e. the dimension of the vector space) can be as

large as desired. In general the syntax is

SPACE ("ident": "const" .• "const" {, "ident": "const" •. "const"})

The identifiers, "ident", used in the SPACE statement will be referred to as

the "state space variables".

6

The START statement - This statement indicates which state represents the

start state. This state corresponds to the initial state of the system being

modeled, i.e. the probability the system is in this state at time 0 is 1. In

the SIFT-like architecture described above the initial state was (6,0). This

is specified in the abstract language by the following:

START (6,0) ;

In general the syntax is:

START ("const" {, "const" });

The dimension of the vector must be the same as in the SPACE statement.

The DEATH-IF statement - The DEATH-IF statement specifies which states are

death states, i.e. absorbing states in the model. The following is an example

in the space (DIM1: 2 •• 4, DIM2: 3 •• 5)

DEATH-IF (DIM1 4) OR (DIM2

This statement defines (4,3), (4,4), (4,5), (2,3), and (3,3) as death states.

In general the syntax is

DEATH-IF "express ion".

The expression in this statement must be a boolean expression.

The TRANTO statement - This is the most important statement in the language.

It is used to describe and consequently generate the model in a recursive

manner. The following statement generates all of the fault arrival

transitions in the figure 1 model:

IF NC > 0 THEN TRANTO (NC, NF+l) BY (NC-NF)*LAMBDA;

7

The general syntax for a TRANTO statement is

IF "expression" THEN TRANTO ("expression", {,"expression"}) BY "expression"

In all of the expressions of this statement the state space variables may be

used. The value of a state space variable is the corresponding value in the

source state to which the TRANTO statement is being applied. For example, if

the TRANTO statement is currently being applied to state (4,5) and the state

space was defined by SPACE = (A: 0 •. 10, Z: 2 •• 15) then A = 4 and Z = 5. The

first expression following the IF must be a boolean expression. Conceptually,

it determines whether this rule will apply to a particular state. For

example, in the state space SPACE = (A1: 1 •• 5, A2: 0 •. 1), the expression (A1 >

3) AND (A2 = 0) is true for states (4,0) and (5,0) only. The vector

following the TRANTO reserved word defines the destination state of the

transition to be added·to the model. Each expression within the parentheses

must evaluate to an integer. For example, if the state space is (X1, X2) and

the source state is (5,3), then the vector (X1+1, X2-1) refers to (6,2). The

expression following the BY indicates the rate of the transition to be added

to the model. This expression must evaluate to a real number.

The TRANTO statement is applied to every state in the model as described by

the following model generation algorithm:

1. initialize READY-SET to contain start state only

2. select a state from READY-SET. If the selected state is a death state
as defined by a DEATH-IF statement, then remove it from the READY-SET
and repeat step 2, otherwise continue on to step 3.

3. apply each TRANTO rule to the selected state as follows:

3a. if the destination state is new, add it to the model and the READY
SET.

3b. add the transition to the model.
3c. remove selected state from READY-SET

4. go to step 2.

8

Examples

In this section the abstract model definition language will be illustrated by

two examples.

Example 1 - Now we can specify the model of figure 1 in the language:

NP = 6;

LAMBDA = lE-4;

DELTA = 3. 6E3;

(* number of processors initially *)

(* fault arrival rate *)

(* recovery rate *)

SPACE

START

(NC: O •• NP, NF: O .. NP);

(NP,O);

DEATH-IF 2*NF >= NC;

IF NC > 0 THEN TRANW (NC, NF+l) BY (NC-NF)*LAMBDA; (* fault arrivals *)

IF NF > 0 THEN TRANW (NC-l, NF-l) BY NF*DELTA; (* system recovery*)

The two TRANTO statements correspond to the first two concepts used to define

the model:

1. Every processor in the current configuration fails at rate A.

2. The system removes faulty processors at rate o.

The DEATH-IF statement corresponds to the third concept:

3. A majority of processors in the configuration must not have failed in

order for the system to be safe.

The flexibility and power of this language can be seen by observing that only

the NP=6 statement would have to be changed in order to model a similar system

which initially contains 9 processors.

9

Example 2 - In this example a system consisting of 2 triads and an arbitrary

number of spares will be modelled. If two processors fail in either triad

then the system fails. As long as spares are available, a faulty processor in

a triad is replaced from the spare pool. If no spares are available, then a

triad is collapsed into a simplex and the other good processor is added to the

spares pool. Once a simplex processor fails, the system fails. Spares fail

at a different rate than active processors. The following model describes

this system:

NSI 5; (* Number of spares initially, can be anything *)

SPACE (N 1 : O •. 3, (* Number of processors in first triad *)

N2: 0 •• 3, (* Number of processors in second triad *)

F1 : 0 •. 2, (* Number of faulty processors in first triad *)

F2: 0 .• 2, (* Number of faulty processors in second triad *)

NS: O .• NSI); (* Number of spares *)

START (3,3,0,0,NSI);

LAMBDA 5E-4; (* failure rate of active processors *)

GAMMA 2E-5; (* failure rate of spares *)

DELTA 3.6E3; (* rate at which faulty processors are removed *)

DEATH-IF (2*F1 > N1) OR (2*F2 > N2);

IF N1 > ° THEN TRANTO (N1 ,N2,F1+1 ,F2,NS) BY (N1-F1)*LAMBDA;

IF N2 > ° THEN TRANTO (N1 ,N2,F1 ,F2+1 ,NS) BY (N2-F2)*LAMBDA;

IF NS > ° THEN TRANTO (N1 ,N2,F1 ,F2,NS-1) BY NS*GAMMA;

IF «F1 > 0) OR (F2 > 0» AND (NS > 0) THEN

TRANTO (N1 ,N2,F1 ,F2,NS-1) BY DELTA;

IF (F1 > 0) AND (NS=O) THEN TRANTO (1 ,N2,O,F2,NS+1) BY DELTA;

IF (F2 > 0) AND (NS=O) THEN TRANTO (N1,1 ,F1,O,NS+1) BY DELTA;

10

The DEATH-IF statement specifies that system failure occurs if a majority of

processors fail in either triad. The first three TRANTO statements specify

fault arrivals in the two triads and spares. The next TRANTO statement

specifies recovery when spares are available. The last TRANTO statement

describes the recovery process when no spare are available.

Although, increasing the number of processors in the spares pool significantly

increases the size of the Markov model, it can be accomplished in this

language by changing only one constant.

1 1

CONCLUSIONS

This paper has introduced an abstract Markov model definition language which

can be used to specify reliability models. The language essentially defines a

set of rules which are used to automatically generate the Markov model. These

rules correspond to the basic concepts used to create models of fault-tolerant

systems. A small number of statements in the language can be used to describe

a very large model. Furthermore, a variation in the system (such as in the

number of initial spares) can be accomplished by changing only one line in the

model definition, although such a change represents a large increase in the

size of the generated Markov model.

12

APPENDIX

Language Extensions

The fundamental concept for an abstract specification language for Markov

models has been developed in the main body of this paper. The constructs of

the language have adequate expressive power to describe complex systems with a

minimal number of statements. However. there are many possible extensions to

this language which may further simplify the model description process.

Several of these will be discussed briefly here.

Extension 1: Array State Variables. - The basic language allows the definition

of state space variables with a SPACE statement. The language could easily be

extended to allow an array of state space variables as follows:

SPACE NC: ARRAY[1. .3J OF 0 .. 6.

NF: ARRAY[1 •• 3J OF 0 .. 3);

This statement creates a 6-dimensional space. The state space variables are

NC[1J. NC[2J. NC[3J. NF[lJ. NF[2J. and NF[3J.

Extension 2: FOR Statement. - Many times several TRANTO statements are needed

which are identical except they operate on different state space variables.

The FOR statement defines several TRANTO rules at once:

SPACE NC: ARRAY[1 .. 5J OF 0 •. 6.

NF: ARRAY[1 •• 5J OF 0 •• 3);

FOR I IN {1 •• 5} DO IF NC[IJ > 0 THEN TRANTO NF[IJ <- NF[IJ + 1 BY LAMBDA;

13

This FOR statement is equivalent to five TRANTO statements, one for each value

of I in the set {1 .. 5}. The assignment statement after the TRANTO reserved

word replaces the vector of the basic TRANTO statement. This statement

defines the destination state of each'new transition by specifying the change

in a state variable from the source to destination state. There can be as

many of these assignment statements after the TRANTO reserved word and before

the BY reserved word as there are variables in the state space.

Extension 3: Nested IF THEN ELSE. The IF expression of the TRANTO statement

could be extended in the obvious way:

IF "expression" THEN

IF "expression" THEN

TRANTO "vector" BY "express ion";

TRANTO "vector" BY "expression" ;

TRANTO "vector" BY "expression" ;

ENDIF

ELSE

TRANTO "vector" BY "expression";

TRANTO "vector" BY "expression";

ENDIF

Extension 4: Semi-Markov Models - The "expression" following the BY statement

could easily be extended to contain the mean and variance of a non-exponential

transition (e.g. for SURE) as follows:

IF "expression" THEN TRANTO "vector" BY <"expression", "expression">;

14

~.

!
(

REFERENCES

(1) White, Allan L.: Upper and Lower Bounds for Semi-Markov Reliability

Models of Reconfigurable Systems. NASA CR-172340, 1984.

(2) Butler, Ricky W.: The Semi-Markov Unreliability Range Evaluator (SURE)

Program, NASA TM-86261, July 1984.

(3) Goldberg, Jack, et. al.: Development and Analysis of the Software

Implemented Fault Tolerance (SIFT) Computer. NASA CR-172146, 1984.

15

1. Report No. I 2. Government Accession No. 3. Recipient's Catalog No.

NASA TM-86423
4. Title and Subtitle 5. Report Date

An Abstract Specification Language for Markov April 1985

Reliability Models 6. Performing Organization Code
505-34-13-32

7. Author(sl 8. Performing Organization Report No.

Ricky W. Butler

10. Work Unit No.
9. Performing Organization Name and Address

NASA Langley Research Center 11. Contract or Grant No.
Hampton, Virginia 23665

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, DC 20546

15. Supplementary Notes

16. Abstract

Markov models can be used to compute the reliability of virtually any fault-
tolerant system. However, the process of delineating all of the states and
transitions in a model of a complex system can be devastatingly tedious and
error-prone~ This paper presents a new approach to this problem utilizing an
abstract model definition language. This high-level language is described in
a non-formal manner and illustrated by example.

17. Key Words (Suggested by Author(sll 18. Distribution Statement
Reliability Analysis
Markov Models Unclassified - Unlimited
Reliability Hodeling
Fault Tolerance Subject Category 65

19. Security Oauif. (of this reportl 20. Security Clauif. (of this pagel 21. No. of Pages 22. Price

Unclassified Unclassified 16 A02

N-30S For sale by the National Technicallntormation Service. Springfield. Virginia 22161

I
i

End of Document

