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NOMENCLATURE

constant of integration

height of interface

rotational Bond number
gravitational acceleration
Bond number

container half depth

unit normal outward-pointing vector
pressure inside bubble
pressure outside bubble
pressure constants
pressure difference = poi -p,°

radial coordinate

nondimensional radial coordinate

radius of interface contact with boundary
nondimensional radius of interface contact with boundary
maximum bubble radius

coefficient of surface tension

nondimensional capillary rise

vertical coordinate

nondimensional vertical coordinate

distance from bubble equator to container bottom
distance from bubble equator to container top
total radius of curvature

capiliary rise
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contact angle

density of fluid inside bubble
density of fluid outside bubble
density difference = pi- 8,
slope of interface = df/dr
integration parameter

rotation rate
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TECHNICAL PAPER

FLUID SURFACE BEHAVIOR IN LOW GRAVITY

Center Discretionary Fund No. 83-21, Final Report

INTRODUCTION

Free surface shapes of liquids play a key role in spacecraft fuel tank design and fluid management
systems. In the absence of gravity and temperature gradients along the surface, which drive Maragoni
convection, the equilibrium shape of the free surface is governed by a balance of capillary and centrifugal
forces. Hydrostatic stability is maintained when the additional pressure from the capillary rise is com-
pensated for by the pressure reduction due to the curvature of the free surface. In a zero gravity environ-
ment without rotation, the surface is spherical. As to whether the sphere encloses the liquid or the vapor
depends on the wetabilty of the container by the liquid. In some spacecraft fuel tank applications,
propellant slosh and distribution are controlled with the use of internal baffles which come into contact
with the free surface. If the liquid is to be held using capillary forces, the baffle spacing must be small
enough to overcome the fluid’s inertial forces during small accelerations brought about by thruster firings,
crew motion, etc. The problem can be complicated by the rotation of the container. In any case, in
order to manage the liquid, the distribution of the fluid including its interface shape must be determined.

Rosenthal [1] computed the shapes of rotating bubbles in the absence of gravity. He found that
for large rotation rates, the aspect ratio of a free tubble is proportional to the square of the rotation
rate. Chandrasekhar [2] examined the stability of a rotating liquid drop in which he derived analytical
formulas for the equilibrium shapes based on Laplace’s equation for the pressure drop across the inter-
face. He went on to determine the frequency of the oscillations for various modes. Busse [3] also
examined the frequency of small oscillations for drops and bubbles. Using a spherical coordinate system,
he determined the equilibrium shape for a rotating liquid drop in terms of a Legendre function
expansion. He determined that for drops, the frequency of oscillation increases with rotation rate. The
opposite result occurs for bubbles. Tieu, et al. {4] obtained solutions for the motion and interface shape
of a two-fluid system contained in an oscillating vertical cylinder. Using a domain perturbation approach,
they obtained first and second order solutions in a one-g environment. Experimental resulis were in
qualitative agreement with their theoretical predictions.

Princen, et al. [5] measured interface shape characteristics of bubbles. However, in order to
perform the experiments in a one-g environment, the rotation rate had to be high enough for centrifizgal
forces to be much greater than gravitational forces. Consequently, the bubble intertaces were shaped like
cylinders with round ends. Gans [6] obtained numerical solutions for rotating bubbles enclosed in baffled
containers and found that gravity had a destabilizing influence on their position. The solutions were
validated experimentally in a one-g environment. Experiments with non-axisymmetric shapes of a rotating
drop immersed in a host medium were performed by Wang, et al. [7]. They observed a family of muiti-
lobe shapes as a function of a rotationa' Bond number. Experimental results have also been obtained by
acoustic excitation of Jdrops (Trinh, et al. [8]}).

The Fluid Interface and Bubble Experiment (FIBEX) was conceived and developed in order to
answer questions concerning low-gravity fluid behavior which were raised by design and operational
considerations for the Gravity Probe-B (GP-B) experiment. Early phases of GP-B design studies have
teen carried out at the Marshall Space Flight Center (MSFC) and at Stanford University. The GP-B
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experiment is aimed at testing aspects of general relativity theory predicting precession of an orbiting
gyroscope due to interactions with the Earth’s gravitational field. A concept for the GP-B design which
is the result of MSFC studies is shown in Figure 1. The gyroscope package is surrounded by a large
liquid helium dewar and spacecraft power and control systems. A design goal for the system is that over

the one-year lifetime of the experiment, accelerations at the gyro locations be kept at 10'10 g or below.
The liquid helium dewar depletes itself over this period by providing cooling and propulsive venting for
the attitude and drag-free control systems. This action creates significant excursions in the total mass of
the satellite. This mass change is not a problem if the liquid helium distribution remains symmetric about
the spacecraft center of mass. If large deviations from symmetry occur, tiien gravitational and gravity
gradient effects can produce significant degradation of experiment performance. It has been shown
(Schafer, et al. [9]) that for worst case liquid helium configurations, accelerations at the experiment
location could be one or two orders of magnitude greater than the upper design limit. It was also shown
that the dominant forces for determining the fluid distribution are surface tension and centrifugal force,
which for GP-B are of the same magnitude. In this regime, the liquid helium configuration is not readily
predictable, but a symmetric distribution appears unlikely.
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Figure 1. Gravity Probe-B conceptual desigrn:.
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Based on these cousiderations, an approach was suggested which was aimed at achieving a sym-
metrical liquid helium distribution and maintaining it during the experimental period. This approach
involved installation orf a set of baffle plates in the liquid helium dewar, as shown in Figure 2 The
higher spin rates planned for iniciation of the experiment are sufficient to cause centrifugal forces to
dominate surface tension and drive the fluid into an axisymmetric shape. Submerged slots were intro-
duced in order to allow the fluid to transfer more easily. When the spin rate is reduced to the opera-
tional level, the baffles would hold the fluid in place through capillary forces.

3 “ b ’ c=lrg—ry
}rz #5 =r2—-n
T 0\
I
; ' \
!
L ROTATION
‘| AXIS
|
\
s/ EXPERIMENT CYLINDER
BAFFLE

DEWAR

Figure 2. Liquid helium dewar with baffles.

Given that the desired liquid helium configuration can be achieved, the question of shape stability
arises. Results of a static stability analysis are presented in this paper. It will be shown that two types of
instability are possible. The first type results from the baffle spacing being so wide that the surface of
the liquid between .he baffles cannot form a meniscus, i.e., the surface would “roll up.” The second
type of instability possitle results from adjacent fluid cells communicating with each other through the
submerged slcts. Displacement ot one fluid level away from the axis forces an adjacent levei toward the
axis. In certain reginns of parameter space, the additional hydrostatic pressure attained by the latter
level is not enough to compensate for the deficit resulting from the smaller radsus of curvature. Conse-
quently, the displacement is enhanced.

Although this wcrk was initially motivated by the GP-B fluid management problem, a more
general study has been pericrmed which examines the physical processes which govern the behavior
of rotating free surfuces in a low-gravity environment. A laboratory investigation of the phenomena
requires that centrifugal force be much greater than gravity, a condition that can be achieved in a ter-
restrial laboratory by rotating the fluid at high rates. However, it is also required that surface tensicn
forces be as important as centrifugal forces, a condition that could not be attained unless length scales
were made exceedingly small. This not only makes observations difficult, but also introduces viscous
effects by greatly reducing the Reynolds number. In this paper, measurements of rotating equilibrium
free surface shapes in the low-gravity environment of a free-falling aircraft arc presented. This allows
varving the relative importance of surface tension with respect to centrifugal forces producing a variety
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of shapes for comparison with theoretical profiles. Calculations of the shapes are made using a more
general formulation of Chandrasekhar’s equation by including contact of the interface with the rotating
container at a specified angle. It is easily shown that an isolated bubble or drop is a special case of the
general result.

INTERFACE EQUATION

Figure 3 shows a cross-section of a partially-filled cylindrical container rotating abou: ‘- vertica
axis. The fluid is centrifuged against the outer wall and forms a meniscus which intersects the horizontal
boundaries at an angle 8. The horizontal baffles are separated by a spacing 2L. The distance from the
axis of rotation to the farthest point along the vapor/liquid interface is given by R and the capillary rise
with respect to this point is given by {(z). The fluid interface intersects the top of the cylinder at a

height of 2T and at the bottom at zB. The pressure inside the bubble pi is given by

, o]
p1=p01+;p;w2r2~pigz ey

where poi is a constant, p; is the density of the fluid inside the interface and w is the rotation rate of
the fluid. The pressure outside of tiie bubble p© is given by

(o

1 )
P =po°+-2-pow2r“

-Pp B (2)

where poo is a constant, and p, is the density of the fluid outside the interface. At the interface, the

pressure discontinuity is given by LaPlace’s formula
. . .
pl—p°=TV'no 3)

where T is the coefficient of surface tension and ’rio i> the unit normal pu.nting outward from the

surface. Let the position of the interface be given by r = R - {(z). Then the right hand side of equation
(3)is

11 d%
—t ———
rA A3 d§2

where

a= [i+(&)]"
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Substituting equation (1) and equation (2) into equation (3) along with nondimer ‘onalizing r and z with

R, the general equation for the interface becomes

1 +y," = 8Fy(y/2-1)-G i+ +yH2 [Tf *= »]
= 1+y"-l

where yo” is the nondimensional curvature at the peoint R, y is the nendimensional capillary rise and F

and G are the parameters which determine the interface shape given by

F =
8T
and
(b - Py 2R
G =
T

\0

/Z'

Re

I

Figure 3. Definition sketch of the cylindrical coordinate
system used for the analytical model.
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The parameter F represents the ratio of centrifugal force to surface tension while G is a ratio of
gravitational force to surface tension. Note that F is negative for rotating drops (o; > Po) and positive

for rotating bubbies (p; < py). Of course for large F and G, the classic paratolic interface shape is
obtained. In that case, the equation reduces to

1
8Fy[{~y-~1
(br-)

Recalling that y = ¢/R, Z = z/R and the radial position of the interface is v = R - ¢, solving for z gives

Gz

2
W b} o}
= e « - R~
z 2g (r )

The general interface equation is solved using a fourth order Runge-Kutta scheme with a stretched
interval. The integration is performed, for a given F, by starting at z = 0 with a guess for yo" and inte-

grating first in the forward direction until the boundary condition (contact angle) is met and then starting
again at z = 0 and integrating in the negative direction.

For space aprlications, calculations were made for small F and for zero G. These results are shown in
Figure 4 with the maximum rondim=nsional baffle spacing (2L/R=D) as a function of F. The curve
indicates the maximum baffle spacing necessary to have an interface which intersects both tue top and
bottom baffle. For baffle spacings below the curve, the fluid configuration is considered stable since the
interface has becn captured by the baffles and its position and shape are known. For conditions above
the curve, at least one baffle is not in contact w-iki .n interface implying that a bubble has formed whose
position is unknown. This is referred to as a type 1 instability.

10
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Figure 4. Neutral stability curves for zero gravity.



} &
»

i

\

4

SN

. v

. ~y o~
| 7O, SROS, T N ~ -

3
{
.

Solutions to the interface equation also indicated a second type of instability relevant to adjacent
baffles open at the bottom to allow fluid interchange. Consider Figure 5, which shows two adjacent and
equal columns. For large F, the downward displacement of one column would produce a rise in the
other. The higher column would produce a larger hydrostatic pressure at the port level and force fluid
back through, returning the free surfaces to their original equal levels. However, for very small values of
F the rising column would continue to rise because its pressure at the port has been reduced more by the
greater surface tension (smaller radius of curvature) than it has been increased by hydrostatic pressure.
The important consideration is how the pressure difference across the baffle varies with R during per-
turbations. Solutions to the interface equation (with G=0) were used to obtain this information and the
results are shown in Figure 6 along with the curve of Figure 4 for comparison. Obviously, this
phenomenon places a more strict baffle spacing requirement through setting a surface tension length scale
which dominates the radial one.

@ w

|
Pc + 6P P. — bP¢
P.—P P.~P —P, — &P —Pg + 6P
Cc - 'S Cc N S H 4 S S

Figure 5. Sketch of the type II instability phenomenon.
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Figure 6. Typ: Il neutral stability curves for zero gravity along with
curve from Figure 4,

GROUND-BASED EXPERIMENTS

One motivation for adding gravity to the analysis in the previous section was the hope that useful
experiments could be done in the laboratory. ldeally, one would want small G and moderate F to

attempt to model space applications. That proves to be impractical for reasonable values of R and w.
If p, g, and T are fixed, then

R = [GT/pgl 1/2

and

w = {8TF/pR3] 1/2

and, to use ethano! as an exemplary fluid, if G = 0.1 and F = 1, then R = 0.16 mm and w = 6800/sec.

While 4 mode! experiment is impossible, it seemed useful .5 explore the basic premises of the
model in a ground-based laboratory before proceeding to a low-gravity environment. To that end a set
of experiments in a shallow dish were performed. All that could be observed easily was the location of
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the top interface (where the liquid intersects the upper boundary) and whether the liquid intersects the
lower boundary. If 2L exceeds the maximum vaiue for a given F, the liquid will intersect only the top
surface.

The experiments were carried out in a small petri dish (diameter = 48.06 inm, depth = 8.59 mm)
mounted to a turntable. Centering accuracy was better than 0.8 mm. Turntable speed was accurate to
better than 5 parts per thousand in the range of interest. The working fluid was ethanol colored with
India ink at 2 drops for 25 ml ethanol. A contact angle of zero was assumed.

The measured dependent variable was the apparent intersection radius of the fluid with the
upper boundary as a function of rotation rate and air volume. The observation was made visually by
watching the position of the intersection against a marked upper surface grid. Errors arising from non-
concentricity and parallax are estimated to be 0.5 mm. There is an additional systematic error which
may lead one to overestimate the radius. This arises because the visible intersection line is not the true
intersection line, but is some point at which the coloring is dark enough to see. The nearer the contact
angle is to zero, the more pronounced this effect will be.

Results are shown in Figure 7 for air volumes of 2, 4, and 6 ml. The symbels denote data and
the solid lines joining open circles are calculated results. The calculation predicts bo.tom exposure for
the 6 ml case at rotation rates above 18/sec, and the observations are consistent with the prediction.
The four right-most symbols on the upper curve showed a clearly exposed bottom. The next two were
ambiguous. All the others, on all the curves, showed the bottom covered.
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Figure 7. Ground-based measurements of the intersection of upper interface with the
boundary versus rotation rate for various bubble volumes.
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KC-135 EXPERIMENT PACKAGE

A schematic of the apparatus flown in the low-gravity environment of the KC-135 aircraft is
shown in Figure 8. It consists of a test cell cylinder, a turntable assembly, and a photographic system.
The test cell is made from acrylic and polycarbonate (Plexiglass and Tuffak, respectively). It measures
20 cm across while the depth can be set at 2 ¢cm, 4 cm, or 6.3 cm. The cylinder is partially filled with
ethanol, chosen because its surface tension is relatively high and not extremely sensitive to low levels
of contamination, its contact line with the container does not stick, and its contact angle is close to
zero. The cylinder is fastened to a turntable which rotates about the cylinder’s axis. The turntable is
mounted on a hollow shaft suspended by ball bearings. The electrical wiring, including a coaxial cable,
are routed through the hollow shaft and external connections arc made through a 16-contact slipring
assembly. The turntable is 16 in. in diameter and has a centering pin for locating the test cell precisely
coaxial with the rotation axis. A camera frame accommodates a video or cine camera above the test
cell. The camera mount adjusts so that the viewing direction can be aligned with the rotation axis. The
camera mount can be balanced for smooth rotation using a system of counterweights. Two adjustable,
shielded light fixtures are mounted to the table columns and are covered with fine mesh screen to restrain
glass fragments should the bulbs rupture. The turntable is driven by a gear motor through a timing belt
and clutch mechanism. A speed controller permits adjustment of the turntable rotation speed. The rota-
tion speed can be varied from O to 108 rpm. A tachometer measures the motor rotation rate and displays
the information on an LED display. The motor and turntable assembly are mounted on a frame which
can swivel about a horizontal axis. This permits maintenance of the turntable rotation axis alignment
with a space-fixed axis as the KC-135 aircraft pitches. This entire fixture is mounted on a subassembly
which is bolted to the floor of the aircraft. The fixture can be released from the subassembly for free-

LIGHTS
LIGHTS
o!
x! |
< !
2z U
5! N
g |
< BUBBLE ! [
' g LIQuID | |
: 1
| I \) X/ - ‘ — STILL
TEAY 1 I\
A 11
L ' ]
MOTOR
CONTROLS
MOTOR
C — 1
\ rl
<
VIDEO
RECORDERS

AND
MONITORS

Figure 8. A schematic of the experimental apparatus.

10

\fm



floating the package to further reduce the acceleration levels. Power required by the experiment is 110
Vac. This drives the motor, lights, and video recorders. A dc power supply operates from the 110 Vac
and provides 12 Vdc or 24 Vdc for use by the video or cine cameras. Operation of the experiment is
performed via the control box. The main power supply switch is located here along with controls for
the motor speed, lights, a turntable tachometer, and the camera power.

After the cylinder is filled with ethanol, a prescribed amount is removed to establish the bubble
volume. Overhead and side-mounted video and still cameras record the shape of the fluid interface.
The video cameras were particularly useful. The focus, field of view, and lighting could be instantly
evaluated by observing the video monitor. In addition, immediate playback was possible to insure that a
particular phenomenon was captured. The audio tracks on the tape also allowed for voice annotation.
The 16 mm camera was less versatile and sometimes had poor exposures from the varying light levels in
the aircraft cabin. Use of this camera was later abandoned.

The apparatus was bolted to the floor of a KC-135 aircraft which is flown in a parabolic tra-
jectory that provides 20 to 30 sec of low gravity. Figure 9 shows a typical ‘trajectory. After a descent
from about 35,000 ft to 25,000 ft the aircraft attains an airspeed of 520 mph and then pitches sharply
upward to begin the parabola. The local apparent gravity begins to diminish to near zero. Its value is
measured by accelerometers. Although the gravity fluctuates around zero, typical departures are of the
order of two percent of terrestrial gravity. At the top of the arc near 35,000 ft the airspeed has reduced
to 320 mph and the aircraft pitches down for the second half of the parabola. The maneuver is com-
pleted when the aircraft has descended to 25,000 ft and another parabola begins. 'On several occasions
the apparatus was free-floated in the cabin in an attempt to reduce the g levels as well as the fluctuations.
However, because the package was so large, it often had to be grasped by personnel to prevent it from
coming into contact with the aircraft walls or other experiments.

320 mph
NORMAL FLIGHT
35,000 ®2 HOURS
© 40 PARABOLAS

=
w
VE]
w 45° NOSE 45° NOSE
w up DOWN
u J
2
=
-
wd
<

25,000+

2G's 0G 2G's
! T
0 20 45 65

- TIME (SECONDS)

Figure 9. The parabolic trajectory flown by the KC-135 aircraft
for the low gravity maneuver.
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The fluid is set into rotation before the maneuver begins and the bubble shape is determined
primarily by the centrifugal and gravitational forces, producing the classic paraboloidal surface. During
the aircraft pullout at the start of the maneuver, the fluid experiences 2-g’s which flattens the bubble
at the top of the cylinder. As the local gravity diminishes the vapor penetrates down the axis of the
cylinder. The interface appears as a miniscus symmetric about the axis. Figure 10 shows typical bubbles
for (a) relatively strong rotation compared to surface tension, and (b) weak rotation. For the latter case,
the bubbles tend to meander somewhat and their shape is more sensitive to fluctuations of the low-
gravity environment. This is consistent with Rosenthal’s analytical result that rotation has a stabilizing
effect.

Analysis of the data is performed in four steps. First, a photographic frame of the bubble is
digitized to provide coordinates for the liquid-vapor interface. Next, the shape is scaled to actual size
using ratios of known dimensions. Then, the data is corrected for optical distortion using a ray trace
algorithm. Finally, the volume of the bubble is computed from the coordinates of the interface and
compared with the measured value.

(A)

(B)
Figure 10. Typical shape for a bubble (a) dominated by centrifugal force
and (b) dominated by surface tension.
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ANALYTICAL MODEL OF FLIGHT EXPERIMENTS

The previous analysis is simplified for the case of G = 0 and a slightly different derivation
simplifies the interface equation to one that is directly integrable. Chanrasekhar’s [2] analysis is expanded
to develop an equation for the interface shape relevant to the flight experiments. The bubble is assumed
to be symmetric about the axis as weil as its equator, The fluid interface intersects the top of the
cylinder at a height of L and at a radius of 1,. For this case, let the position of the interface be given
by z = f(r). Then the right hand side of equation (3) is

d
-T— i

CNSETS

where ¢ = df/dr. Again substituting equation (1) and equation (2) into equation (3), and making use of
the above expression yields

1
p0r+§pw2r2=—T——-——— 4)
where p, = poi - po0 and p = p; - p,. One integration of equation (4) results in

i 1 T
_p0r2+§pw2r4=_—__i._ +C

: Jire2

where C is a constant. The value of C can be determined by the boundary condition that at r = Iy

= - tanf. The value of p, can be evaluated at r = 0 where ¢ = —oo. With these substitutions along with

nondimensionalizing r and z with R, the general equation for the interface becomes

l;
f(r) = f v dr (5)

VA

where

1 -1, sing +F(1-1% ?02-?2 Fet-t4 1. sind
= + -
v 1-12 T
(8]

-y >
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and ~ denotes nondimensional radii. Note if ?0 = 0 and 8 = 0, equation (5) is equivalent to Chandra-

sekhar’s equation for the shape of a rotating free drop. For the case F = 0, equation (5) represents a
sphere. Chandrasekhar presented solutions for drops in which case ?o =0, 8 = 0, and F is negative. He

showed that the boundary conditions for the equations could be met only for F > =2.32911. Otherwise,
the rotation was strong enough to centrifuge all the liquid away from the axis forming a torus-like drop.

This investigation examines rotating bubbles which may intersect the top and bottom boundaries.
In this case F > 0 and ,‘}o may not be 0. It can be shown that there is a maximum value of F above

which the bubble interface no longer contacts the axis. By taking the derivative of ¢ with respect to T
and setting it equal to zero, we can see that in the marginal case of fo = 0, ¢ is a maximum at =

\/il+F)/3F . Setting this maximum equal to 1 and solving for F gives F = 1/2. Considering the

denominator of equation (5), it is clAear that, in general, solutions exist only for wz < 1. This places a
constraint on the relation of F and r,. Figure 11 shows plots of the sclution regimes for various contact

angles. It can be seen that as the centrifugal force increases and F becomes more positive, the radius of
intersection with the boundary increases. Physically, the fluid is being centrifuged away from the axis
and the fluid intersects the boundary at a larger radius. As the rotation increases without limit the vapor
core approaches a cylinder whose radius is governed by the vapor volume and L. The radius of inter-
section is particularly sensitive to F until F exceeds about one. Thus, when centrifugal forces dominate,
the interface becomes more parallel with the rotation axis except at the boundar.:s where it must satisfy
the contact angle constraint. As the contact angle increases, the intersection radius naturally increases.
To summarize, for an isclated bubble, the shape of the bubble is determined solely by the parameter F.
This parameter ranges from 0 for a spherical bubble to 1/2 for a cylindrical bubble. From the definition
of F, it can be seen that for a constant F, a further increase in the rotation speed reduces the bubbie
radius which increases its length to conserve volume. Values of F greater than 1/2 can be permitted only
if the top of the bubble breaks contact with the axis. Then permissible values of I are determined by the
contact radius of the interface with the boundary.

10 o 2%
50°
Fs
NO SOLUTION
75°
o Jr— P s, 1 4_‘
0 1

Figure 11. Solution regime of equation (5) for various contact angles.
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DISCUSSION OF FLIGHT RESULTS

This section presents some of the free surface profiles from the flight experiments. Although
many shapes were recorded, only a sample representing the extremes of F are presented here. Measure-
ments of free surface shapes were compared with the model calculations for various values of F, ?0, and

L. For the calculations, the values of F and L as well as the vapor volumes were known from the
experiment. The value of F was entered into equation (5). The value of /r\o could not be easily deter-

mined from the overhead or side cameras particularly since @ is near zero. Instead, a guess of ?0 was
made and the equation was numerically integrated. If the computed value of z at T= ?o was not equal
to the known cylinder half-depth, a new guess for ?o was made. After the integration was complete, a
check of the measured bubble volume with the computed volume was made.

Figures 12a, b, and ¢ show a comparison of the measured interface profiles with the calculated
ones for small, moderate, and large values of F, respectively. The cylinder depth is 2 cm. The profile in
12a is a low-rotation case which is dominated by capillary forces. These data were somewhat difficult

A2 A2
= =
) )
v/ v
r—1J- F=.16 —14 F=1.1
LJD: & MEASUREMENT T SMEASUREMENT
— —EQUATION (5) 2 —EQUATION (5)
L) & L
Lo e To+—t———
0 1 2 3 0 1 2 3
RADIUS (CM) RADIUS (CM)
(A) (8)
~ 2
=
Q
v/
— 14 F=5.6
I SMEASUREMENT
()
——, 1 —EQUATION(S)
L
IO — —+—ap<4 +
0 1 2 3
RADIUS (CM>
(c)

Figure 12. A comparison of the measured profile with the computed one in a
2 cm deep cylinder for (a) F = 0.16, (b) F = 1.1, and (c) F = 5.6.
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to obtain because the equilibrium was very sensitive to the environment’s departure from zero-gravity.
Although the fluid behaved nearly quasi-steady as the environmental gravity diminished from 2-g's to near
zero, vstablishment ot a true equilibrium was transitory. Fluctuations around zero-gravity created vertical
displacements of the bubble which sometimes broke contact with the top or bottom boundaries. Clearly
for this case the interface surface is near spherical and is in good agreemenrt with the calculations.

Figure 12b shows data for a moderate value of F. Here the capillary and centrifugal forces are
about equal and the surface has become more prolate. It can be seen that the value of /r‘o has increased,

consistent with Figure 11. Similarly, Figure 12¢ shows the data and calculated profiles for a large value
of F. The surface here is dominated by centrifugal force and the interface is more parallel with the
rotation axis, except at the boundary where it is constrained to intersect at a prescribed angle. For
this value of F, the interface was quite stable because the centrifugal force was not only greater than
the capillary force, but was also much greater than the fluctuating residual environmental gravity.

Figures 13a, b, and ¢ show interface shapes for a cylinder depth of 4 cm. For a given bubble
volume, larger rotation rates are needed in order for the bubble to contact the top and bottom
boundaries as required by the theory. Otherwise, the bubble with a smaller diameter than the cylinder
gap meanders along the axis or attaches to the top or bottom boundary. Figure 13a represents one of the
slower relative rotation rates that could statilize the bubble. Equation (5) can be used to determine the
largest gap required to stabilize a bubble at a particular value of F. The tallest bubble that can be
attzgined for a given F is found by using the smaliest ?0 that the solution will permit. Figure 14 shows

computations of the interface shapes of isolated bubbles for various values of F. It is apparent that
increasing the rotation increases the aspect ratio of the bubble. This occurs as F approaches its maximum
value of 1/2 for an isolated bubble. A further increase of F after that point causes the bubble to break

4 4
&
] &
~3T ~3T
= =
G | O
./
F=.71 F=.99
2+ &MEASUREMENT 24 $MEASUREMENT
(]J: —EQUATION (5) (]_:3 | —EQUATION (5)
— —
wi L
I 1+ T 1+
4
s —t — 0 e ————
8] 1 2 3 0 1 2 3
RACIUS (CM> RADIUS (CM>

Figure 13. A comparison of the measured profile with the computed one in a 4 cm deep
cylinder for (a) F = 0.71, (b) F = 0.99, and (¢) F = 3.2.
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isolated bLubbles for various values of F.

contact with the axis of rotation and ?0 becor .es greater than 0. Once f\o increases, then the solution

permits larger values of F consistent with Figure 11. Figure 13b shows a profile in which centrifugal and
capillary forces are about equal. The value of F is about the same as for the profile in Figure 12b.
However, ?0 had to be appropriately decreased for the computation in order for the interface height to

match the deeper container. Figure 13c¢ shows an interface profile for F = 3. Because capillary forces
are weak, the interface is almost cylindrical except for its contact point with the top and bottom
boundaries. The capillary rise occurs over a thinner layer in order that the small radius of curvatuve can
generate enough pressure drop to account for the increased hydrostatic contribution.

Finally, Figure 15 shows an interface profile for a rotating cylinder of 6.3 cm depth. For similar
bubble volume to total volume ratios, higher values of F are required to produce an interface with top
and bottom boundary contact. This simply means they require greater rotational speeds, since for these
near-cylindrical bubbles the bubble radius changes little with w. An increase in w merely increases F
producing a more cylindrical bubble. The figure shows the resulting thinner layer over which the surface
tension acts to meet the contact angle requirement. This layer is thinner for the reason stated above.

Quantitative evaluation of the effects of baffles was difficult to accomplish aboard the KC-135
due to the g-fluctuations as well as the short duration of the low-gravity period. Some general remarks
can be made however. The presence of the baffles clearly help to stabilize the interface by reducing the
length scale of the problem. For cases where the cylinder depth was too great for the bubble to intersect
both the top and bottom boundary (for a given rotation rate) the addition of baffles created smaller
effective depths which tended to stabilize the bubbles. In other words, a baffled cylinder acted much
like a series of independent shorter cylinders. An exception to this is for low rotation rates where the
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Figure 15. A comparison of the measured profile with the computed one
in a 6.3 cm deep cylinder for F = 6.4,

type II instability becomes important. For these cases the theory predicts that the configuration will
be unstabie to small perturbzations, although it does not predict what the final state will be. Figures 16
and 17 show photographs of single and double baffle configurations, respectively, in which the distribu-
tion of fluid in the different layers is clearly unequal. However, a sinilar configuration would occur
with the addition of small, positive gravity. Comparison of the observations with the theory was difficult
due to the fluctuations of the gravity environment. The stability boundary for this case could not be
mapped out experimentally, but all of the configurations that were theoretically unstable were observed
to be unstable. However, this was not the case for the configurations that were theoretically stable.
Further verification of the nature of the type Il mstability will have to wait for results from experiments
aboard an orbiting lahoratory.

In summary, equation (5) derived from LaPlace’s equation relating the pressure drop across an
interface to the radii of curvature has been applied to a rotating bubble which contacts the container
boundary. Solutions to the equation are dependent upon several parameters, viz F the ratio of centrifugal
to capillary forces, ?0 the contact radius of the interface to the boundary, and 0 the contact angle. For

the cases presented here the contact angle was near zero which permits a2 greater range of solutions. For
isolated bubbles, F has a maxiniusi value of 1/2. A further increase in F causes the bubble to break
contact with the axis of rotation. For large values of F, the bubble becomes more cylindrical and the
capillary rise cccurs over a thinner layer. Measurements of the interface shapes performed in the low-
gravity environment of an aircraft showed good agreement for the cases examined, indicating that equa-
tion (5) can be used to determine container baffle spacing required to confine a rotating bubble.
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