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NOMENCLATURE 

constant of integration 

height of interface 

rotational Bond number 

gravitational acceleration 

Bond number 

container half depth 

unit normal outward-pointing vector 

pressure inside bubble 

pressure outside bubble 

pressure constants 

i o pressure difference = po - p0 

radial coordinate 

nondimensional radial coordinate 

radius of  interface con tact with boundary 

nondimensional radius of interface contact with boundary 

maximum bubble radius 

coefficient of surface tension 

nondimensional capillary rise 

vertical coordinate 

nondimensional vertical coordinate 

distance from bubble ecluator to container bottom 

distance from bubble equator to container top 

total radius of curvature 

capiliaor rise 



contact angle 

density of fluid inside bubble 

density of fluid outside bubble 

density difference = pi - po 

slope of interface = df/dr 

integration paramzter 

rotation rate 



TECHNICAL PAPER 

FLUID SURFACE BEHAVIOR I N  LOW GRAVITY 

Center Discretionary Fund No. 83-21, Final Report 

INTRODUCTION 

Free surface shapes of liquids play a key role in spacecraft fuel tank design and fluid management 
systems. In the absence of gravity and temperature gradients along the surface, which drive Maragoni 
convection, the equilibrium shape of the free surface is governed by a balance of capillary and centrifugal 
forces. Hydrostatic stability is maintained when the additional pressure from the capillary rise is com- 
pensated for by the pressure reduction due t o  the curvature of the free surface. In a zero gravity environ- 
ment without rotation, the surface is spherical. As to  whether the sphere encloses the liquid o r  the vapor 
depends on the wetabilty of the container by the liquid. In some spacecraft fuel tank applications, 
propellant slosh and distribution are controlled with the use of internal baffles which come into contact 
with the free surface. If the liquid is to be held using capillary forces, the baffle spacing must be small 
enough to overcome the fluid's inertial forces during small accelerations brought about by thruster firings, 
crew motion, etc. The problem can be complicated by the rotation of the container. In any case, in 
order to manage the liquid, the distribution of the fluid including its interface shape must be determined. 

Rosenthal [ 11 computed the shapes of rotating bubbles in the absence of gravity. He found that 
for large rotation rates, the aspect ratio of a free bubble is proportional t o  the square of the rotation 
rate. Chandrasekhar [2]  examined the stabiliiy of a rotating liquid drop in which he derived analytical 
formulas for the equilibrium shapes based on Laplace's equation for the pressure drop across the inter- 
face. He went on to determine the frequency of the oscillations for various modes. Busse [3] also 
examined the frequency of small oscillations for drops and bubbles. Using a spherical coordinate system, 
he determined the equilibrium shape for a rotating liquid drop in t e rns  of  a Legendre function 
expansion. He determined that for drops, the frequency of oscillation increases with rotation rate. The 
opposite result occurs for bubbles. Tieu, et al. [41 obtained solutions for the motion and interface shape 
of a two-fluid system contained in an oscillating vertical cylinder. Using a domain perturbation approach, 
they obtained first and second order soldtions in a one-g environment. Experimental results were in 
qualitative agreement with their theoretical predictions. 

Princen, et al. [5]  measured iiiterface shape characteristics of bubbles. However, in order to 
perform the experiments in a one-g environment, the rotation rate had to  be high enough for centrifugal 
forces to be much greater than gravitational forces. Consequently, the bubble interfaces were shaped like 
cylinders with round ends. Gans [6 ]  obtained numerical so1utior.s for rotating bubbles enclosed in baffled 
containers and found that gravity had a destabilizing influence on their position. The soliltions were 
validated experimentally in a one-g environment. Experiments with non-axisymmetric shapes of a rotating 
drop immersed in a host medium were performed by Wang, et al. [7 ] .  They observed a family of multi- 
lobe shapes as a function of a rotational Bond number. Experimental results have also been o b t a i ~ e d  by 
acoustic excitation of drops (Trinh, et al. [8; ). 

The Fluid Interface and Bubble Experiment (FIBEX) was conceived and developed in order t o  
answer questions concerning low-gravity fluid behavior which were raised by design and operational 
considerations for the Gravity Probe-B (GP-B) experiment. Early phases of GP-B design studies have 
been carried out at  the Marshall Space Flight Center (MSFC) and at Stanford University. The CP-B 



experiment is aimed at testing aspects of general relativity theory predicting precession of an orbiting 
gyroscope due to interactions with the Earth's gravitational field. A concept for the GP-B design which 
is the result of MSFC studies is shown in Figure 1. The gyroscope package is surroanded by a large 
liquid helium dewar and spacecraft power and control systems. A design goal for the system is that over 

the one-year lifetime of the experiment, accelerations at the gyro locations be kept at 10-lo g or  below. 
The liquid helium dewar depletes itself eyer this period by providing cooling and propulsive venting for 
the attitude and drag-free control systems. This action creates si-gnificant excursions in the total mass of 
the satellite. This mass change is not a problem if the liquid helium distribution remains symmetric about 
the spacecraft center of mass. If large deviations from symmetry occur, tiicn gravitational and gravity 
gradient effects can produce significant degradation of experiment performance. It has been shown 
(Schafer, et al. [9] )  that for worst case liquid helium configurations, accelerations at the experiment 
location could be one or two orders of magnitude greater than the upper design limit. It was also shown 
that the dominant forces for deternlining the fluid distribution are surface tension and centrifugal force, 
which for GP-B are of the same magnitude. In this regime, the liquid helium co~if igurat i~n is not readily 
predictable, but a symmetric distribution appears unlikely. 

MULTI- 
LAYER 
INSULATION 

LIGHT 

INSTRUMENT 

EXPERIMENT 
GYROSCOPES 

MASS 

Figure 1. Gravity Probe-Il conceptual desigr,. 



Based on these co~lsiderations, an approach was suggested which was aimed at achieving a sym- 
metrical liquid helium distribution and maintaining it during the experimental period. This approach 
involved installation o i  n set of baffle plates in the liquid helium dewar, as shown in Figure 2 The 
hgber spin rates planned for iniriation o r  the experiment are sufficient to cause centrifugal forces to  
dominate surface tension and drive the fluid into an axisymmetric shape. Submerged slots were intro- 
duced in order t o  allow the fluid to transfer more easily. When the spin rate is reduced to  the opera- 
tional level, the baffles would hold the fluid in place through capillary fw-ccs. 

ROTATION 
AXIS 

I 
\ 

I 
EXPERIMENT CYLINDER 

Figure 2. Liquid helium dewar with baffles. 

Given that the desired liquid helium configuration can be achieved, the question of  shape stability 
arises. Results af a stctic stability analysis are presented in this paper. It  will be shown that two types of 
instability are possible. I'he first type results from the baffle spacing being so wide that the surface of 
the liquid between .he baffles cannot form a meniscus, i.e., the surface wculd "roll up." The second 
type of instability possible results from adjacent fluid cells communicating with each other through the 
submerged ~12:s. Displacement 01 one fluid level away from the axis forces an adjacent ;eve; toward the 
axis. In certain regiqns of parameter space, the additional liydrostatic pressure attained by the latter 
level is not enough to  conlpensate for the deficit resulting from the smxller radlus of curvature. Conse- 
quently, the displacement is enhanced. 

Although this wcrk was initially motivated by the GP-B fluid management problem, a more 
general study has been peri'crrned which examines the physical processes which govern the behavior 
of rotating free surfaces in a low-gtavity envuonment. A laboratory investigation of the phenomena 
requires that centrifugal force be much greater than gravity, a condition that can be achieved in a ter- 
restrial laboratory by rotating the fluid at high rates. However, it is also required that surface tensictl 
forces be as important as centrifugal forces, a condition that could not be attained unless length scales 
were made exceedingly small. This not only makes observations difficult, but also introduces viscous 
effects by greatly reducing the Reynolds number. In this paper, measurements of rotating equilibrium 
free surface shapes in the low-gravity environment of a free-falling aircraft are presented. This dlows 
varying the relative importance of surface tension with respect to centrifugal forces producing a variety 



of shapes for comparison with theoretical profiles. Calculations of the shapes are made using a more 
general formulation of Chandrasekhar's equation by including contact of the interface with the rotating 
container at a specified angle. It is easily shown that an isolated bubble or drop is a special case of the 
general result. 

INTERFACE EQUATION 

Figure 3 shows a cross-section of a partially-filled cylindrical cotltainer rotating abou: '-!e vertich 
axis. The fluid is centrifuged against the outer wall and forms a meniscus which intersects the horizontal 
boundaries at  an angle 8 .  The horizontal baffles are separated by a spacing 2L. The distance from the 
axis of rotation to the farthest point along the vapor/liquid interface is given by R and the capillary rise 
with respect to this point is given by {(z). The fluid interface intersects the top of the cylinder at a 

height of zT and at the bottom at zB. The pressure inside the bubble pi is given by 

where is a constant, pi is the density of the fluid inside the interface and w is the rotation rate of 

the fluid. The pressure outside of the bubble is given by 

where p,O is a constant, and po is the density of the fluid outside the interface. At the interiace, the 

pressure discontinuity is given by Laplace's formula 

where T is :he coefficient of surface tension and ii, i: the unit normal pblnting outward from the 

surface. Let the position of the interface be given by r = R - t(z). Then the right hand side of equation 
(3) is 

where 



Substituting equation ( I )  and equation (2) into equation (3) along with n o ~ d i m e r  'onalizing r and z with 
R,  the general equation for the interface becomes 

i .  where yo" is the nondimensional curvature at the point R, y is the ncndimensional capillary rise and F 

and G are the parameters which determine the interface shape given by 

and 
., , 

Figure 3. Definition sketch of the cylindrical coordinate 
system used for the analytical model. 



The parameter F represents the ratio of centrifugal force to surface tension while C is a ratio of 
gravitational force to surface tension. Kate that F is negative for rotating drops (pi > po) and positive I 

for rotating bulbies (pi < p,). Of coursc for large F and G ,  the classic parabolic interface shape is 

obtained. In that case, the equation reduces to  

Recalling that y = SIR, 2 = z/R and the radial position of the interface is 1, = R - f ,  solving for z gkes 

The general interface equation is solved using a fourth order Runge-Kutta scheme with a stretched 
interval. The integration is performed, for a given F, by starting at z = 0 with a guess for you and inte- 

grating first in the forward direction until the boundary condition (contact angle) is met and then starting 
again at  z = 0 and integrating in the negative direction. 

For space ap~lications, calculations were made for small F and for zero G. These results are shown in 
Figure 4 with the maximum ~ondirnensioiial baffle spacing (ZL/R=D) as a fiinction of F. The curve 
indicates the maximum baffle spacing necessary to have an interface which i~tersects  bath ttle top and 1. 

bottom baffle. For baffle spacings below the curve, the fluid configuration is considered stable since the 
interface has becn captured by the baffles and its position and shape are known. For conditions above 
the curve, at  least one bzffle is not in c o ~ ~ t a c t  wliil ..? interface implying that a bubble has f a m e d  whose 
position is unknown. This is referred to as a type 1 ~nstability. 

Figure 4. Neutral stability curves for zero gravity. 



Solutions to the interface equation also indicated a second type of instability relevant t o  adjacent 
,. , 

baffles open at  the bottom to  allow fluid interchange. Consider Figure 5, which shows two adjacent and 
equal columns. For large F,  the downward displacement of one column would produce a rise in the 
other. The higher column would produce a larger hydrostatic pressure at the port level and force fluid 
back through, returning the free surfaces to their original equal levels. However, for very small values of 
F the rising column would continue t o  rise because its pressure at the port has been reduced more by the 
greater surface tension (smaller radius of curvature) than it has been increased by hydrostatic pressure. 
The important consideration is how the pressure difference across the baffle varies with R during per- 
turbations. Solutions to the interface equation (with G=O) were used t o  obtain this information and the 
results are shown in Figure 6 along with the curve of Figure 4 for comparison. Obviously, this 
phenomenon places a more strict baffle spacing requirement through setting a surface tension length scale 
which dominates the radial one. 

Figure 5. Sketch of the type I1 instability phenomenon. 



Figure 6. Typn I1 neutral stability curves for zero gravity along with 
curve from Figure 4. 

GROUND-BASED EXPERIMENTS 

One motivation for adding gravity to the analysis in the previous section was the hope that useful 
experiments could be done in the laboratory. Ideally, one would want small G and moderate F to  
attempt to model space applications. That proves to be inlpractical for reasonable values of R and a. 
!f p, g, and T are fixed, then 

and 

and, to use ethanol as an exemplary fluid, if G = 0.1 and F = 1, then R = 0.16 mm and o = 6800/sec. 

While a model experiment is inlpossible, it seemed useful .-I explore the basic premises of the 
model in a ground-based laboratory before proceeding to a low-gravity environment. To that end a set 
of experiments in a shallow dish were performed. All that could be observed easily was the location of 
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the top interface (where the liquid intersects the upper boundary) and whether the liquid intersects the 
lower boundary. If 2L exceeds the maximum vaiue for a given F, the liquid will intersect only the top 
surface. 

The experiments were carried out in a small petri dish (diameter = 48.06 lnm, depth = 8.59 mm) 
mounted to a turntable. Centering accuracy was better than 0.8 mm. Turntable speed was accurate to 
better than 5 parts per th~usand in the range of interest. The working fluid was ethanol colored with 
India ink at 2 drops for 25 ml ethanol. A contact angle of zero was assumed. 

The measured dependent variable was the apparent intersection radius of the fluid with the 
upper boundary as a function of rotation rate and air volume. The observation was made visually by 
watching the position of the intersection against a marked upper surface grid. Errors arising from non- 
concentricity and parallax are estimated to be 0.5 mm. There is an additional systematic error which 
mnjl lead one to overestimate the radius. This arises because the visible intersection line is not the true 
intersection line, but is some point at which the coloring is dark enough to see. The nearer the contact 
angle is to zero, the more pronounced this effect will be. 

Results are shown in Figure 7 for air volumes of 2, 4, and 6 1n1. The symbels denote data and 
the solid lines jcining open circles arp calculated results. The calculation predicts bo.tom exposure for 
the 6 ml case at rotation rates above 18!sec, and the observations are consistent with the prediction. 
The four right-most symbols on the upper curve showed a clearly exposed bottom. The next two were 
ambiguous. All the others, on all the curves, showed the bottom covered. 

Figure 7. Ground-based measurements of the intersection of upper interface with the 
boundary versus rotation rate for various bubble volumes. 



KC-135 EXPERIMENT PACKAGE 

A schematic of the apparatus flown in the low-gravity environment of the KC-135 aircraft is 
shown h Figure 8. It consists of a test cell cylinder, a turntable assembly, and a photographic system. 
The test cell is made from acrylic and polycarbonate (Plexiglass and Tuffak, respectiveiy). It measures 
20 cm across while the depth can be set at 2 cm, 4 cm, o r  6.3 cm. The cylinder is partially filled with 
ethanol, chosen because its surface tension is relatively high and not extremely sensitive to  low levels 
of contamination, its contact line with the container does not stick, and its contact angle is close to 
zero. The cylinder is fastened to a turntable which rotates about the cylinder's axis. The turntable is 
mounted on a hollow shaft suspended by ball bearings. The electrical wiring, including a coaxial cable, 
arc routed through the hollow shaft and external connections are made through a 16-contact slipring 
assembly. The turntable is 16 in. in diameter and has a centering pin for locating the test cell precisely 
coaxial with the rotation axis. A camera frame accommodates a video or  cine camera above the test 
cell. The camera mount adjusts so that the viewing direction can be aligned with the rotation axis. The 
camera mount can be balanced for smooth rotation using a system of counterweights. Two adjustable, 
shielded light fixtures are mounted to  the tab!e columns and are covered with fine mesh screen to restrain 
glass fragments should the bulbs rupture. The turntable is driven by s gear motor through a timing belt 
and clutch mechanism. A speed controller permits adjustment of the turntable rotation speed. The rota- 
tion speed can be varied from 0 to  108 rpm. A tachometer measures the motor rotation rate and displays 
the information on an LED display. The motor and turntable assembly are mounted on a frame which 
can swivel about a horizontal axls. This permits maintenance of the turntable rotation axis alignment 
with a space-fixed axis as the KC-135 aircraft pitches. This entire fixture is mounted on a subassembly 
which is bolted to the floor of the aircraft. The fixture can be released from the sbbassembly for free- 

VIDEO C A M E R A  
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CONTROLS 

\ 
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Figure 8. A schematic of the experimental apparatus. 







ANALYTICAL MODEL OF FLIGHT EXPERIMENTS 

The previous analysis is simplified for the case of G = 0 and a slightly different derivation . * , siniplifies the interface equation to one that is directly integrable. Chanrasekhar's [ 2  I analysis is expanded 

i to  develop an equation for the interface shape relevant t o  the flight experiments. The bubble is assumed 
! to  be symmetric about the axis as weil as its equator. The fluid interface intersects the top of the 

cylinder at a height of L and at a radius of ro. For this case, let the position of the interface be given 
by z = f(r). Then the right hand side of equation (3) is 

1 

: 

where 4 df/dr. Again substituting equation (1) and equation (2) into equation (3), and making use of 
the above expression yields 

&. , - ,  
- ,  

where po = poi - poO and p = pi - p0. One integration of equation (4) results in 

where C is a constant. The value of C can be determined by the boundary condition that at r = ro, 

@ = - tane. Tlie value of po can be evaluated at r = 0 where 4 + -oo. With these substitutions along with 

nondimensionalizirlg r and z with R ,  the general equation for the interface becomes 

where 

1 - s i n  + F (1 - 4 )  Po* - ?* F (;4 - ;04) to sin B 
Ill = + - 



and A denotes nondimensional radii. Note if 3, = 0 and 9 = 0, equation (5) is equivalent to  Chandra- 

sekhar's equation for the shape of a rotating free drop. For the case F = 0, equation (5) represents a 
sphere. Chandrasekhar presented solutions for drops in which case ?o = 0, 0 = 0, and F is negative. He 

showed that the boundary conditions for the equations could be met only for F > -2.3291 1. Otherwise, 
the rotation was strong enough to centrifuge all the liquid away from the axis forming a torus-like drop. 

This investigation examines rotating bubbles which may intersect the top and bottom boundaries. 
In this case F > 0 and fo may not be 0. It can be shown that there is a maximllm value of F above 

which the bubble interface no longer contacts the axis. By taking the derivative of I) with respect to ? 
and setting it equal to zero, we can see that in the marginal case of ;, = 0, $ is a maximum at f = 

& I + F ) / ~ F  . Setting this maximum equal to 1 and solving for F gives F = 112. Considering the 

denominator of equation ( 5 ) ,  it is clear that, in general, solutions exist only for $' < 1. This places a 
constraint on the relation of F and to. Figure 11 shows plots of the solution regimes for various contact 

angles. It can be seen that as the centrifugal force increases and F becomes more positive, the radius of 
intersection with the boundary increases. Physically, the fluid is being centrifuged away from the axis 
and the fluid intersects the boundary at a larger radius. As the rotation increases without limit the vapor 
core approaches a cylinder whose radius is governed by the vapor volume and L. The radius of inter- 
section is particularly sensitive to F until F exceeds about one. Thus. when centrifugal forces dominate, 
the interface becomes moE parallel with the rotation axis except ;it the boundar;.:~ where it must satisfy 
the contact angle constraint. As the contact angle increases, the intersection radius naturally increases. 
To summarize, for an isclated bubble, the shape of the bubble is determined solely by the parameter F. 
This parameter ranges from 0 for a spherical bubble to 112 for a cylindrical bubble. From the definition 
of F, it can be seen that for a constant F, a further increase in the rotation speed reduces the bubbie 
radius which increases its length to conserve volume. Values of F greater than 112 can be permitted only 
if the top of the bubble breaks contact with the axis. Then permissible values of 1' are determined by the 
contact radius of the interface with the boundary. 

NO SOLUTION 

Figure 11. Solution regime of equation (5) for various contact angles. 



DISCUSSION OF FLLGHT RESIJLTS 

This section presents some of the free surface profiles from the flight experiments. Although 
many shapes were recorded, only a sample representing the extremes of F are presented here. Measure- 
ments of free surface shapes were compared with the model calculations for various values of F, Co, and 

L. For the calculations, the values of F and L as well as the vapor volumes were known from the 
experiment. The value of F was entered into equation (5). The value of Q0 could not be easily deter- 

mined from the overhead o r  side cameras particularly since 9 is near zero. Instead, a guess of ;, was 

made and the equation was numerically integrated. If the computed value of z at ? = io was not equal 

t o  the known cylinder half-depth, a new guess for 6 was made. After the integration was complete, a 

check of the measured bubble volume with the computed volume was made. 

Figures 12a, b, and c show a comparison of the measured interface profiles with the calculated 
ones for small, moderate, and large values of F, respectively. The cylinder depth is 2 cm. The profile in 
12a is a low-rotation case which is dominated by capillary forces. These data were somewhat difficult 
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Figure 12. A comparison of the measured profile with the computed one in a 
2 cm deep cylinder for (a) F = 0.16, (b) F = 1.1, and (c) F = 5.6. 
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to obtain because the equilibrium was very sensitive to the environment's departure from zero-gravity. 
C Although the fluid behaved nearly quasi-steady as the environmental gravity diminished from 2g's to near 

zero, cotablishrnent ot' a true equilibrium was transitory. Fluctuations around zero-gravity created vertical 
displacements of the bubb!e which sometimes broke contact with the top or bottom boundaries. Clearly 
for this case the interface surfdce is near spherical and is in good agreemenr with the calculations. 

Figure 12b shows data for a moderate value of F. Here the capillary and centrifugal forces are 
about equal and the surface has become more prolrte. It can be seen that the value of ?o has increased, 

consistent with Figure 11. Similarly, Figure 12c shows the data and calculated profiles for a large value 
of F. The surface here is dominated by centrifugal force and the interface is more parallel with the 
rotation axis, except at the boundary where it is constrained to intersect at a prescribed angle. For 
this value of F, the interface was quite stable because the centrifugal force was not only greater than 
the capillary force, but was also much greater than the fluctuating residual environmental gravity. 

Figures 13a, b, and c show interface shapes for a cylinder depth of 4 cm. For a given bubble 
volume, larger rotati011 rates are needed in order for the bubble to contact the top and bottom 
boundaries as required by the theory. Otherwise, the bubble with a smaller diameter than the cylinder 
gap meanders along the axis or attaches to  the top or bottom boundary. Figure 13a represents one of the 
slower relative rotation rates that could stabilize the bubble. Equation (5) can be used to determine the 
largest gap required io stabilize a bubble at a particular value of F. The tallest bubble that can be 
attained for a given F is found by wing the smnllest that the solution will permit. Figure 14 shows 

computations of the interface shapes of isolated bubbles for various values of F. It is apparent that 
increasing the rotation increases the aspect ratio of the bubble. This occurs as F approaches its maximum 
value of 1/2 for an isolated bubble. A further increase of F after that point causes the bubble to break 
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Figure 13. A comparison of the measured profile with the computed one in a 4 cm deep 

cylinder for (a) F = 0.71, (b) F = 0.99, and (c) F = 3.2. 
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contact with the axis of rotation and to becor .es greater than 0. Once 6 increases, then the solution 

permits larger values of F consistent with Figure 11. Figure 13b shows a profile in which centrifugal and 
capillary forces are about equal. The value of F is about the same as for the profile in Figure 12b. 
However, to had to be appropriately decreased for the computation in order for the interface height t o  - 

I match the deeper container. Figure 13c shows an interface profile for F = 3. Because capillary forces 

i are weak, the interface is almost cylindrical except for its contact point with the top and bottom 
: boundaries. The capillary rise occurs over a thinner layer in order that the small radius of curvatuve can 

generate enough pressure drop to account for the increased hydrostatic contribution. 

Finally, Figure 15 shows an interface profile for a rotating cylinder of 6.3 cm depth. For similar 
bubble volume to total volume ratios, higher values of F are required to  produce an interface with top 
and bottom boundary contact. This simply means they require greater rotational speeds, since for these 
near-cylindrical bubbles the bubble radius changes little with a. An increase in w merely increases F 
producing a more cylindrical bubble. The figure shows the resulting thinner layer over which the surface 
tension acts to meet the contact angle requirement. This layer is thinner for the reason stated above. 

Quantitative evaluation of the effects of baffles was difficult t o  accomplish aboard the KC-135 
due to the g-fluctuations as well as the short duration of the low-gravity period. Some general remarks 
can be made however. The presence of the baffles clearly help to  stabilize the interface by reducing the 
length scale of the problem. For cases where the cylinder depth was too great for the bubble to intersect 
both the top and bottom boundary (for a given rotation rate) the addition of baffles created smaller 
effective depths which tended to  stabilize the bubbles. In other words, a baffled cylinder acted much 
like a series of independent shorter cylinders. An exception to this is for low rotation rates where the 
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Figure 15. A comparison of the measured profile with the computed one 
in a 6.3 crn deep cylinder for F = 6.4. 

type I1 instability becomes important. For these cases the theory predicts that the configuration will 
be unstabie t o  small perturbciions, although it does not predict what the final state will be. Figures 16 
and 17 show photographs of single and double baffle configurations, respectively, in which the distribu- 
tion of fluid in the different layers is clearly unequal. However, a sinilar configuration would occur 
with the addition of small, positive gravity. Comparison of the observations with the theory was difficult 
due to the fluctuations of the gravity environment. The stability boundary for this case could not be 
mapped out experimentally, but all of the configurations that were theoretically unstable were observed 
to  be unstable. Howzver, this was not the case for the configurations that were theoretically stable. 
Further verification of the nature of the type I1  instability will have to  wait for results from experiments 
aboard an orbiting la5oratory. 

In summary, equation (5) derived from Laplace's equation relating the pressure drop across an 
interface to the radii of curvature has been applied to  a rotating bubble which contacts the container 
bor:ndary. Solutions to  the equation are dependent upon several parameters, viz F the ratio of centrifugal 
to capillary forces, ?o the contact radius of the interface to  the boundary, and 0 the contact angle. For 

the cases presented here the contact ang!e was near zero which permits a greater range of solutions. For 
isolated bubbles, F has a rnaxiniutti value of 112. A further increase in F causes the bubble to break 
contact with the axis of rotation. For large values of F ,  the bubble becomes more cylindrical and the 
capillary rise czcurs over a thinner layer. Measurements of the interface shapes performed in the low- 
gravity environment of an aircraft showed good agreement for the cases examined, indicating that equa- 
tion (5) can be used to  determine container baffle spacing required to confine a rotating bubble. 
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