General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

HEAT TRANSFER IN PIPES

 Th. Burbach(NASA-TH-77838) HEAT TRANSFER IN PIPES
(National Aeronautics and Space
Administration) 47 E MC ADJ/ MF AOL CSC ROD
Uncles
c.3/34 21456

N85-28262

Translation of "Waermeuebergang in Rohren," IN:
Stroemungswiderstand and Waermeuebertraguns in Roehren, (Flow Resistance and Heat Transfer in Pipes), Leipzig, Germany, 1930, pp. 45-88.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, DC. 20546 APRIL 1985

1, Reporl No. NASA TM-77838	7. Government hecelotion Ho.	3. Recipiont', Coloteo Hu.
4. Till and Subilli HEAT TRANSFER IN PIPES		3. Reppoti Dale April 1985
		6. Perlorming Diponisation Codu
7. Author(1) Th. Burbach		8. Petorming Oigonisation Report No.
		10. Watk Unil Ko.
9. Peilaming Digonizolion Neme and hdders The Corporate Word, Inc. 1102 Arrott Bldg. Pittsburgh, PA 15222		11. Controct of Giant No. NASW-4006
		13. Type al Repoll ond Peliod Covered Translation
12, Sponsoting haency Nome ond hedre:s National Aeronautics and Space Administration Washington, DC 20546		14. Spansaring hoency Code
15. Supplementary Nolet Translation of "Waermeuebergang in Rohren," IN: Stroemungs widerstand und Waermeucbertragung in Roehren, (Flow Resistance and Heat Transfer in Pipes). Leipzig, Germany, 1930, pp. 45-88.		
16. Absicoel This study determines the heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition. The mean flow-through velocity in the pipe, relative test J length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new prandtl equation for heat transfer and sorrelated well. Test material for 200- to 400 -diameter test length is represented at four different vessel temperatures.		
17. Key Hords (Selected by Author(s)) 18. Distribution Statoment		
19. Socurity Closaif. (ol this roporl) - Unclassified	20. Security Clozalf. (of this papo) Unclassified	

HEAT TRANSFER IN PIPES

Th. Burbach

Introduction

"Heat transfer" is the heat exchange which takes place between a fluid and a solid when they have different temperatures. Heat transfer occurs through two different processes: through conduction and through convection of heat. While a heat transfer through unordered movement of molecules occurs in heat conductance, heat transfer by convection takes place through movement of many larger aggregates, which change location and carry their heat with them. In this latter process, one differentiates between "free" and "forced" convection. If a flow condition results solely from gravity of unequal densities occurring from temperature differences, then one speaks of "free convection". If, on the other hand, the velocity field is determined by pressure differences under diminishing density differences, then we are dealing with "forced convection". In this study we shall investigate only heat transfer with forced flow. The great interest in technology for heat transfer explains the large number of investigations carried out in this field. Records of experiments on heat transfer with heated gases and steam have been made by Groeber [1], Josse [2], Jordan [3], Poensgen [4], Tietschel [5] and Nusselt [6]. There are fewer investigations on heat exchange with fluids flowing through $\angle 48 *$ pipes. In this direction, the works of stanton [7]. Soennecken [8] and Stender [9] should be mentioned. While test results gained by various experimenters on gases agree fairly well, this is not the case for measurements on fluids. This can be explained only through theoretical treatment of heat

[^0]transfer using similarity observations. Such an investigation shows that heat transfer is independent of Reynolds number $\frac{\bar{\pi} \pi}{\nu}(U$ $=$ mean velocity in the pipe, $d=$ pipe diameter, $v=k i n e m a t i c$ viscosity), of the relative test length z / d ($z=$ distance of measuring point from intake), of the relative roughness $\frac{\varepsilon}{d}$ (c approximately $=$ height of roughness element), and of a substance value $\sigma=\frac{\lambda}{c \mu}(\omega=$ heat conduction, $c=$ specific heat, $\mu=$ viscosity). It has a value of almost 1 in gases, but varies greatly with temperature in fluids. Thus, a variable plays a smaller role with gases, a fact which has simplified relationships and theory. In 1910, Prandtl [10] already formulated such a theory for the situation $\sigma \neq 1$. He succeeded in deriving a formula for heat transfer in gases. An expansion of this equation also for the situation σ, i.e., for any fluid, is given in Chapter 2 of this study using a concept from Prof. Schiller based on similarity observations. New experiments, discussed in Chapter 3 , were needed to test this formula for longer test lengths and to answer the question: "What is the influence of substance value o and, further, of relative test length on heat transfer?"

Chapter One

Theoretical Observation

It is customary, for all practical questions of heat transfer to assume a heat transfer number a which is defined by:

$$
\begin{equation*}
\mathrm{Q}=a\left(\bar{\theta}-\theta_{\mathbf{k}}\right) \tag{1}
\end{equation*}
$$

(Q = transferred amount of heat per unit of time and surface, $\theta=$ mean fluid temperature, $\theta_{W}=$ wall temperature). In this formula, amount of heat Q is further determined by the equation:

$$
\begin{equation*}
Q=\lambda_{\pi}\left(\frac{\partial \theta}{\partial \bar{y}}\right)_{m} \tag{2}
\end{equation*}
$$

in which weans that the value of the temperature gradient is
set for $\frac{\partial \theta}{\partial y}$ and that pipe wall temperature andor the temperature of the fluid which is in contact with it and equal to it is set for heat conductivity λ. Since the mean fluid and pipe wall temperature can be measured so that $\bar{\theta}-\theta_{w}$ may be considered as known, using (1) and (2) and eliminating Q, one arrives at a suitable formula for heat transfer a, when an easily measurable dimension can be assumed for the value of in equation (2).

Since differential equations of impulse conduction and convection and of temperature conduction and convection are similar in fluids, $\frac{\partial \theta}{\partial y}$ can be determined. Reynolds first ascertained the similarity of these two processes, and, based on this, he succeeded in deriving an equation for heat transfer. We shall use such similarity observations here to investigate more generally the question: "When is a temperature field similar to a velocity field?" Prandtl found this to be the case in a system ${ }^{1}$ where $\sigma=1$. In this way, however, we obtain only an $\quad 50$ equation for a when $\sigma=1$. If, in the same way, seekine a velocity field similar to the temperature field, we wish to obtain an equation for any σ, this will not be possible without additional assumptions, and then only approximately. Below we shall see that experiences with velocity distribution of turbulent atom flow permit us to make such assumptions [11, 12]. First, we must formulate the requirement that temperature dispersion and velocity dispersion at the wall are similar andor that the dimensionless gradients are equal at the wall. This condition is written as:

[^1]\[

$$
\begin{equation*}
\frac{\left(\frac{\partial u_{1}}{\partial y^{j}}\right)_{w} \cdot r_{1}}{\bar{u}_{2}}=\frac{\left(\frac{\partial \theta}{\partial y}\right)_{x} \cdot r_{2}}{\tilde{\theta}-\theta_{w}} \tag{3}
\end{equation*}
$$

\]

If the relationship between pressure drop and velocity gradient at the wall is introduced into equation 30:

$$
\begin{equation*}
-\operatorname{grad}_{x} p=\frac{2 \mu_{x}}{r_{2}}\left(\frac{\partial u_{1}}{\partial y}\right)_{r^{\prime}} \tag{4}
\end{equation*}
$$

then the following is obtained, taking (2) into consideration:

$$
\begin{equation*}
\frac{- \text { grad }_{1}^{\prime} p \cdot r_{1}^{:}}{2 \mu_{\mathrm{w}} \cdot \tilde{u}_{1}}=\frac{Q \cdot r_{1}}{\lambda_{\mathrm{N}}\left(\tilde{\theta}-\theta_{W}\right)} \tag{5}
\end{equation*}
$$

This equation states that a very definite relationship must exist between pressure decrease and amount of heat per unit of time and surface. In a stationary situation mean velocity maintains its value along the pipe while mean temperature of the fluid eventually nears the wall temperature as the result of the heat released outwardly during flow. According to Prandtl, as much new heat has to be created by heat sources inside the fluid section as the pipe loses, for the temperature field also to attain inertia condition along the pipe, that is, for it to attain a complete pattern with regard to the stationary condition. If we call the yield of these heat sources per volume q, we obtain the following relationship between Q and q :

$$
\begin{equation*}
2 r_{2} \pi Q=r_{2}^{n} \pi q \text { oder }: Q=\frac{r_{2}}{2} q . \tag{6}
\end{equation*}
$$

Using (6) one can now write equation (5) in the following form:

$$
\begin{equation*}
\frac{-\operatorname{grad}_{x} p}{q}=\frac{r_{2}^{2} \bar{u}_{1} \mu_{w}}{r_{2}^{2}\left(\bar{\theta}-\theta_{r}\right) \lambda_{\pi}} \tag{7}
\end{equation*}
$$

Equation 7 represents the relationship which must be satisfied between pressure gradient and heat yield inside the fluid andor converted amounts of heat, so that gradients on the wall are "similar."

This relationship can be obtained from differential equations of impulse conduction and convection and of temperature conduction and convection formulated in dimensionless variables u*. $x *$, etc. They are given here:

$$
\begin{align*}
& \frac{\rho_{1} \bar{u}_{i}^{z}}{r_{1}}\left(u u_{i} \frac{\partial u_{i}}{\partial x_{i}^{i}}+r_{i}^{\prime} \frac{\partial u_{i}^{i}}{\partial y_{i}^{\prime}}+\ldots\right)=-\operatorname{grad}_{x} p+\frac{\mu \bar{u}_{1}}{\Sigma_{i}^{2}}\left(\frac{\partial^{2} u_{i}^{0}}{\partial x_{i}^{j^{2}}}+\ldots\right) \tag{8}\\
& \frac{c e_{2} \vec{u}_{y}\left(\bar{\theta}-\theta_{k}\right)}{r_{2}}\left(u_{i}^{*} \frac{\partial \theta^{*}}{\partial x_{2}^{*}}+r_{2}^{0} \frac{\partial \theta^{*}}{\partial y_{2}^{\prime}}+\ldots\right)=q+\frac{\lambda\left(\bar{\theta}-\theta_{x}\right)}{r_{2}^{2}}\left(\frac{\partial^{2} \theta^{*}}{\partial x_{2}^{\prime}}+. .\right)
\end{align*}
$$

The first equation is true for the velocity field of a flow, the second for the temperature field of a second flow which is similar to the first field.

With equation (7) a comparison of the right side of both differential equations, which contains the viscosity and/or heat conduction component and relate primarily to the processes near the wall apparently because of the laminarity there, shows immediately that one obtains the relationship originating there between grad p and q for both components of the right side through the similarity statement.

All the differential equations show, further, that condition (7) can be satisfied only when the following ratio is simultaneously true:

$$
\begin{equation*}
\frac{-\operatorname{grad}_{x} p}{q}=\frac{e_{1} \tilde{u}_{i}^{2} \cdot r_{z}}{r_{1} c \varrho_{z} \bar{u}_{2}\left(\dot{\theta}-\theta_{n}\right)} . \tag{7a}
\end{equation*}
$$

This statement is acceptable only under the condition that the velocity fields of both flows are similar, that is, that at corresponding points, $u *_{2}=u *_{2}$, etc., everywhere. Then and only then can the convective components act everywhere like the expressions in fron't of the parentheses. The condition mentioned above simply means that the Reynolds number in both cases are must be the same. This does not give us answer to our question. As a result, we make the obvious assumption that we may limit the aforementioned requirement of similarity of both velocity fields
to the turbulent atom, since the inertia components involved here are the most essential item. The requirement that the velocity profile be similar in the turbulent atom, independent of the Reynolds number, is actually satisfied to great extents for the Reynolds number. It suffices to point to the reliability of the Prandtl-Karman $1 / 7$ exponent law of velocity distribution. It justifies the similarity statement of equation (7a).

Since (7) and (7a) must be satisfied simultaneously, if velocity and temperature ficlds are to be entirely similar, the following condition must be observed:
or

$$
\begin{align*}
& \frac{r=}{r_{i}^{2}\left(\bar{\theta}-\overline{u_{1}}-\mu_{\pi}\right) \hat{\theta}_{k}}=\frac{\rho_{1} \bar{u}_{1}^{2} r_{s}}{r_{1} c \rho_{2} \bar{u}_{2}\left(\bar{\theta}-\theta_{n}\right)} \quad \text { or } \\
& \left(\frac{\rho \bar{u} \bar{r}}{\mu_{\mathrm{w}}}\right)_{!}=\left(\frac{\frac{c}{} \in \overline{\mathrm{u}} \mathrm{r}}{\hat{m}_{\mathrm{w}}}\right)_{2} \\
& \text { Reynolds }{ }_{1}=\text { Peclet }_{2} \tag{9}
\end{align*}
$$

That is: the velocity field of a flow (system l) is similar to the temperature field of another flow (system 2) if the Reynolds number for system 1 is equal to the Peclet number for system 2. Using this similarity law: "Reynolds = Peclet" makes it easy to establish a formula for heat transfer which is true for all fluids. The foregoing considerations showed that the per-unit volume and -time heat produced, q, must stand in a definite ratio to pressure gradients to guarantee similarity of both profiles. According to equation $7 a$:

$$
\begin{equation*}
q=-\operatorname{grad}_{x} p \frac{r_{1} \rho_{2} \bar{u}_{2}\left(\tilde{\theta}-\theta_{n}\right)}{\rho_{1} \dot{u}_{\dot{1}}^{\tilde{z}} \cdot r_{2}} \tag{10}
\end{equation*}
$$

Considering equations (1) and (6) we obtain the following equation from (10) for a:

$$
\begin{equation*}
a=-\operatorname{grad}_{x} p \frac{c e_{2} \bar{u}_{2} r_{1}}{2 \varrho_{1} \bar{u}_{1}^{2}} \tag{11}
\end{equation*}
$$

so that for the dimensionless heat transfer number $\frac{\text { ad }}{\lambda}$ there results:
$\angle 53$

$$
\begin{gather*}
\frac{a d}{2}=\frac{\varphi}{4}\left(P_{c^{\prime}}\right) \frac{c \rho_{1} \bar{u}_{1} \cdot d}{2} \\
\frac{a d}{2}=\frac{\varphi}{4}\left(P() \cdot P c_{c} .\right. \tag{12}
\end{gather*}
$$

in which ψ represents the resistance coefficients. Using Blasius' value for $\mathrm{F}=\frac{0,1582}{\sqrt{\mathrm{Pe}}}$, we obtain:

$$
\begin{equation*}
\frac{a \mathrm{~d}}{\lambda_{n}}=0,03955\left(\frac{\overline{\mathrm{u}} \mathrm{~d} \bar{\rho} \overline{\mathrm{c}}}{\mathrm{~h}_{\mathrm{n}}}\right)^{?} \tag{12a}
\end{equation*}
$$

The indices in this formula should indicate for which temperatures with great temperature differences the separate material values are to be inserted-according to the meaning they take on from heat transfer.

Equations (12) and (12a) represent the heat transfer law for fluids which we are seeking. Special equation (12a) is, of course, only valid when the conditions underlying the derivation are satisfied. The distance from the test length to the measuring point is primarily long enough here to guarantee the validity of Blasius' law. An experimental proof of this theoretical formula can be expected only from heat transfer numbers, which are measured far enough from the intake.

Chapter 2: Experimental Investigations

a) Description of the Experiment Apparatus

The test apparatus depicted in Figure 1 has proven after
lengthy preliminary tests to be very suited to answer the questions posed in our introduction and to test the heat transfer laws which we have just derived. The test apparatus permits heat transfer numbers to be measured in very different distances from the intake.

Fig. 1 and la: Test apparatus

A large test length makes it possible to test the theoretical formula from the previous chapter. By gradually changing the distance from the intake, the influence of the test length could by investigated. By changing the initial temperature in the vessel and the flow speed in the test pipe, tests could be carried out. on the influence of the dimensions "Reynolds" and "Peclet" and $\sigma=\frac{\lambda}{c \mu}$ on heat transfer numbers. The heat flow always traveled water-to-wall, since hot water flows through a cold $\angle 55$ pipe in the test apparatus. To calculate heat transfer number, the following dimensions had to be measured in accordance witt the definitions given in the previous chapter: transfered amount of heat along a given measuring section, temperature inside the pipe wall, mean fluid temperature, and mean flow velocity of the water in the pipe. The transfered amount of heat could be calculated from the variation of the mean fluid temperature for the involved measuring section.

ORNWM PCis? of Fonr qualivy

Fig. 2: Test apparatug

A gas burner in a steel cast vessel with an inner diameter of 50 cm heated water to the desired temperature. The vessel was cast by the Leipzig firm Max Jahn and possessed, as can be seen from Fig. 1 and the photographic depiction in Fig. 2, various $\angle 56$ control instruments, such as: water stand glass a, manometer c, and safety valve e. A mercury thermometer b, bent at a right angle, determined water temperature in the vessel. After its installation in the vessel, the thermometer was calibrated with a normal thermometer. The large heat capacity of the vessel and a sensitive setting on the gas burner d made it possible to regulate the water temperature to $1 / 10$ th of a degree. The vessel was connected to the Institute's compressed air line (Fig. 2f) to attain starting temperatures over 100 degrees and also to obtain a large velocity range in the test pipe. The highest attainable flow-through velocity $5 \mathrm{~m} / \mathrm{sec}$ was established by a high pressure of 6 atmospheres.

$$
\text { Onernean, } 1, \therefore \because
$$

Fig. 3: Test apparatus

An electric heating device was erected to shorten the $\angle 57$ heating time, which amounted to several hours when using gas and a full vessel. Tests to heat the vessel water directly using a nickel wire resistance were unsuccessful. On the other hand, an electric circulating heater from Loki-Works in Offenbach worked very well. Kettle water traveled through a hot water pump a in Fig. 3 (produced by Schwada, Erfuhrt) to the cirulating heater (7 $k(V)$ and then flowed back to the vessel. When the desired vessel temperature was nearly reached, the heater and pump were shut off. The starting temperature was regulated by the sensitivity settings on the gas burner. The regulator on gas burner d is indicated in Fig. 1. The electric heating device is not shown, to avoid confusion in the drawing. In the photograph of the entire device in Fig. 3 the pipe lines of the circulating heater can be seen.

In connection with the description of the vessel, the heavy rust formation in the vessel should be mentioned here, since it can cause disturbances when the device is put on line. A lead or chrome coating of the vessel would have made it too heavy to take out of the test structure. The only solution was to paint all of the parts coming in contact with water with a rust protector an location. Aftor a number of unsuccessful attempts with minium, lacquer paint and other rust proofers on the market, Krusta Nera enamel lacquer from the firm Heyn \& Manthe, Berlin, proved to ba effective as a long-term rust proofer for the vesisel.

A precision brass pipe, 2 m long and with 5.0 mm l.W. and 1.0 mm wall thickness, was used for test pipe. A small intake converter (t in Fig. 1) was welded to one end. Using a clamping nut u, it was bolted to a larger intake converter T fastened securely onto the vessel. The two funnels were screwed into each other smoothly. The test pipe, as seen in Fig. l, was placed in a long zinc trough g, which was filled with ice water during the test. It guaranteed a well-defined outside temperature for the pipe. 管e trough in Fig. la was screwed onto the vessel at the afolwmentioned intake converter T. Good heat insulation at was of particular importance. Further, it was necessary that the $\angle 58$ thermic effect of the ice water begin exactly at the beginning of the pipe to permit a clear determination of the test length. Details of the apparatus, which satisfied all requirements, can be seen in Fig. la.

The test pipe had to be straightened very precisely during measuring, since, as tests had shown, even a small sag in the pipe had a substantial effect on heat transfer. A silverconstantan thermoelement determined pipe wall temperature. Its thermal power was measured with a sensitivity of 10^{-4} volts by a so-called tower instrument from the firm Siemens \& Halske. Installation in the pipe wall required great care, so that heat was not drawn from the measuring place by the element itself, and
the yeonctry of the pipe wall was not altered. A short description of the construction with references to Fig. 4 is in order here, since the apparatus is thermally efficient and has

Fig. 4 (center), 4a (above), 4b (below): Measuring points.
proven itself quite well in every aspect. The two silver constantan wires, each $3 / 10 \mathrm{~mm}$ tinick, were soldered to each other and the soldering bead was hammered out to a thickness of $4 / 10$ mm. The soldering spot was cut to fit installation (d in Fig. 4, 4a, 4b). To bring this thermoelement as close as $\angle 59$ possible to the inside of the pipe wall, this wire was stripped from point a to the end of the test pipe in a length of 6.5 cm with a wall thickness of $3 / 10 \mathrm{~mm}$. A further reduction proved impossible because of strength limitations. A $4 / 10 \mathrm{~mm}$ thick, notched casing b was clamped on the tapered pipe piece. An electrically insulated thermoelement $c-d$ fit into the notch. By clamping on another casing e the original wall thickness of 1 mm was restored throughout and the thermoelement simultaneously closed completely to the outside. This installation permitted the thermoelement wires to go 2 cm into the pipe wall so that the measuring point would not lose heat to the element itself.

A mercury thermometer measured fluid temperature in the pipe. Its scale was calibrated against a normal thermometer, so that the correct temperature was indicated when the mercury container was rinsed with water. A device, depicted in Fig. 4b, was constructed so that this thermometer indicated the mean temperature of a precisely given cross section which was necessary to determine the test length. This device should be described here briefly. A thick-walled measuring body, which also secures the thermometer b, is wrapped with insulation band c and protects the test pipe from the cross section q on up against heat losses, so that a drop in the mean temperature can no longer take place. A twisting, brass water mixer d is located in the insulated pipe piece in front of the fluid thermometer. Its form can be seen in Fig. 4a. It causes pood mixing of the water so that the thermometer actually indj ates the mean temperature, Two regulator valves established the desired flow-through speed. A rough setting was produced by the simple metal ball faucet shown to the right of the fluid thermometer in Fig. l. A finely turned screw (k in Fig.).) permitted a more exact regulating by continuously changing the flow-through resistance. The mean flow-through resistance. the mean flow-through temperature u in the test pipe could be determined by timing the flow-through mass M obtained in t sec according to the equation:

$$
r^{2} \pi \rho \bar{u}=\frac{M}{t}
$$

The Helmhotz Society provided the funds for the equipment $\angle 60$ and apparatus described here. Without their generous assistance this project would not have been possible, and we thank them for it.
b) Execution of the Tests: Memeuring Accuracy and Test Results

Before we present the results of the measurements, we shall describe the tests for determining heat transfer numbers briefly.

The actual measurements could begin after regulating the atarting temperaiure in the vessel and filling the ice water trough. First, tha stretching device with 20 kg tractive force was activated to straighten the test pipe. Then, the compressed air pressure in the vessel was set to produce approximately the desired flow-through velocity. The exact setting was regulated by the fine setting device at the end of the test pipe. A constant discharge of the safety valve, even during the test, permitted a very good constant of the mean flow-through velocity, which was of great importance to measuring accuracy. Heat exchange stabilized about 20 to 30 seconds after the measurements began. This could be recognized from the constant setting on the fluid thermometer. The water mass emerging in about 50 seconds was timed to determine the mean flow-through velocity. The indicator instrument for pipe wall temperature and the fluid thermometer were read a number of times during the timing period. The timed water mass had to be weighed on a platform scale immediately following the test, since the hot water evaporated very rapidly.

The mercury thermometer settings could be read with a precision of $1 / 10$ degree, if the flow-through velocity in the test pipe was beyond the critical range. Such an exact determination of pipe wall temperature was not possible because of the limited sensitivity of the indicator galvanometer. Reading errors during measuring amounted to $\pm 3 / 10$ degree, but multiple readings reduced this error factor by $1 / 10$ degree. After each measurement the ice water mixture in the trough was replenished, and the melted water was removed from time to time. The length of one measurement, including all preparations, amounted to about $1 / 4$ hour; an average of 20 tests could be made per day.

The sequence of measurements was already prescribed by the test apparatus. As can be seen in Fig. l, the apparatus had only
one measuring point for fluid velocity at a certain distance from the vessel, since installation of additional fluid temperature measuring points would have disturbed the construction.
$\angle 61$ To measure the temperature change along the pipe for calculating the transferred amount of heat, it was necessary to move the fluid temperature measuring place along the pipe, that is, to move it to another distance from the vessel. The easiest way to achieve this was to disconnect the pipe from the vessel. Since this procedure only provided a shortened distance from the vessel, the measurements proceeded in the following fashion: First, the fluid and pipe wall temperature independence of the mean flow due to velocity was determined at a constant initial temperature in the vessel and with the largest test length having 400 diameters. When this independence was ascertained at about 40 test points in the velocity range of $5-500 \mathrm{~cm} / \mathrm{sec}$, the same tests were carried out at three other vessel temperatures to increase the measuring range. Thus, the influence of initial temperature on heat transfer could be ascertained. Then, to change the relative test length, a piece of pipe was cut from the vessel, and the same measurements were carried out at the same four initial temperatures. In this way the test length was varied seven times. Each time the pipe was cut, it was thoroughly cleaned inside and outside to avoid any obstructions. Two sets of curves were obtained for each of the four initial temperatures in the vessel: the fluid and the pipe wall temperature independences of the mean flow-through velocity at seven different test lengths. In all sets of curves the abscissa indicates the flow-through velocity, the ordinate indicates the temperature of the measuring points. The parameter was the relative test length. The curves may be used to obtain the decrease in fluid and pipe wall temperature along the pipe independently of the flow-through velocity at four different initial temperatures in the vessel.

At the beginning of the tests, that pipe length up to the reference point for the fluid temperature (cross section q in Fig. $4 b$) amounted to 200 cm . At a pipe diameter of 0.5 cm the fluid temperature measuring point was 400 dianeters away from the intake. The corresponding test length for pipe wall temperature, however, amounted to only 390 diameters, since the soldering bead of the thermoelement lay exactly 10 diameters in front of the fluid temperature measuring point. The test leagths for the other two temperature measuring points are given in Table 1.

TABLE I.
RELATIVE TEST | LENGTH FOR

Pipe Wall Temperature	Fluid Temperature
Measuring Point	Measuring Point
390	400
290	300
210	220
140	150
90	100
50	60
20	30

The course of the fluid and pipe wall temperature for turbulent flow condition was determined along the pipe at five different flow-through velocities for each of the four initial temperatures and recorded in the graphs in Figures 5-9. (Kettle temperatures 69.2 degrees, 85.5 degrees, 101.8 degrees, 118.0 degrees; velocities $100 \mathrm{~cm} / \mathrm{sec} ; 104 \mathrm{~cm} / \mathrm{sec}, 200 \mathrm{~cm} / \mathrm{sec}, 300$ $\mathrm{cm} / \mathrm{sec}, 500 \mathrm{~cm} / \mathrm{sec}$.) A numerical record of these results is to be found in Table II, in which test results for laminar and unsteady flow condition are given.

Fig. 5: Course of fluid and pipe wall temperature along pipe at $100 \mathrm{~cm} / \mathrm{sec}$ mean flow-through velocity.
Solid line $=$ fluid temperature; dotted line $=$ pipe wall
temperature; parameter: vessel water tempterature.

Since the per-second heat loss of the fluid flow in any pipe element of length dz must equal the amount of heat released outwardly at the same time, the following equation results:

$$
\mathrm{r}^{2} \pi \bar{u} \bar{\rho} \overline{\mathrm{c}} \mathrm{~d} \theta=a 2 \mathrm{r} \pi \mathrm{~d} \mathrm{z}\left(\bar{\theta}-\theta_{\pi}\right) .
$$

Fig. 6: Course of the fluid and pipe wall temperature along pipe at $140 \mathrm{~cm} / \mathrm{sec}$ mean flow-through velocity.
Solid line = fluid temperature; dotted line = pipe wall temperature; parameter: vessel water tempterature.

Fig. 7: Course of the fluid and pipe wall temperature alon \mathfrak{B} pipe at $200 \mathrm{~cm} / \mathrm{sec}$ mean flow-through velocity.
Solid line = fluid temperature; dotted line = pipe wall
temperature; parameter: vessel water tempterature.

One obtains the following relationship for a:

$$
\alpha=\frac{1}{2} r \bar{n} \bar{\rho} \overline{\mathrm{c}} \frac{\mathrm{~d} \bar{\theta}}{\mathrm{dz}} \cdot \frac{1}{\left(\bar{\theta}-\theta_{w}\right)}
$$

The heat transfer numbers given in Table II are calculated according to this formula. The value of $\bar{\theta}-\theta_{w}$ can be taken directly from the curves for individual test lengths.
By placing a tangent on the fluid temperature curve we obtain the value $\frac{d \bar{\theta}}{d z}$ for a certain test length. The curves had to be drawn in very large scale for this purpose to obtain enough precision. Since this curve gives the change of the fluid temperature with the pipe length, the tangent of the slope angle of the tangent is the value $\frac{d \bar{\theta}}{d z}$ we are looking for. Of course, the scale ratio has to be taken into consideration for it.

The given a values in strict accordance with the form of their calculation are valid only for an infinitely small pipe length. A differential a is given which is valid for only a very definite test length on which the calculation is based. This is contrary to the heat transfer numbers related to data in literature where mean volues are represented by a finite pipe

Fig. 8: Course of the fluid and pipe wall temperature along pipe at $300 \mathrm{~cm} / \mathrm{sec}$ mean flow-through velocity. Solid line $=$ fluid temperature; dotted line $=$ pipe wall temperature; parameter: vessel water tempterature.
length. For this reason, the procedure described here enables us to calculate heat transfer numbers for any test length and is particularly useful when the influence of the test length $\angle 65$ is determined by heat transfer number. The influence of radiation was not taken into consideration in my test material, since evaluation showed this influence was smaller than $1 / 10 \%$, even in the maximum situation.

Fig. 9: Course of the fluid and pipe wall temperature along pipe at $500 \mathrm{~cm} / \mathrm{sec}$ mean flow-through velocity.
Solid line $=$ fluid temperature; dotted line $=$ pipe wall temperature; parameter: vessel water tempterature.
c) Discussion of Measurements and Comparison to Theory

An exact theory of heat transfer for laminar flow condition was formulated by Nusselt [13] in 1910, and handled in detail in the book by Groeber [14]. Nusselt's investigation found that, for large test lengths, the dimensionless formulated heat transfer number $\frac{a \cdot d}{\lambda}$ assumes the value 3.65 independent of flow velocity.
If one plots the dimensioneless peclet number $\frac{\bar{u} d \rho C}{\lambda}$ as abscissa 166 essentially being a measure of velocity, and the dimensionless heat transfer number $\frac{a \alpha}{\lambda}$ as ordinate, a line parallel to the abscissa is obtained as the theoretical curve for laminar flow condition. Using the equation $\frac{a \cdot \alpha}{\lambda}=0,0395 . \mathrm{P}^{3} / 4$ derived in detail in part 2, it is now possible for the turbulent condition likewise to be given a theoretical curve for large test lengths.

Fig. 10: Theoretic course of heat transfer numbers.

In a logarithmic coordinate system with Peclet as abscissa and $\frac{a d}{\lambda}$ as ordinate, this curve is a straight one. Its slope angle \varnothing is tangent $\varphi=3 / 4$. If both straight lines are entered in a logarithmic coordinate system, the following theoretical picture, given in Fig. 10, is obtained for heat transfer with laminar and turbulent flow. For small peclet values left of point a in Fig. 10 laminar flow prevails and, for this reason, $\frac{a \cdot \alpha}{\lambda}$ is constant here. For large Peclet numbers right of point b the turbulent flow is completely developed and $\frac{a \cdot \alpha}{\lambda}$ is proportional to $3 / 4$ of the Peclet exponent. For the boundary situation of very great test lengths, the transfer from laminar to turbulent values must occur very acutely, as represented in Fig. 10 by the straight line a--b. A totally, correspondingly abrupt transfer is $\quad 67$ obtained in a resistance coefficient-Reynolds number diagram for the increase of resistance coefficients resulting from laminar t turbulent values for large test lengths [15]. For smaller test lengths the transfer does not occur so suddenly, but is rather more or lessed blurred. For even with laminar flow intake disturbances will not yet be completely faded, and these cause the heat transfer number to move above the theoretical
horizontal at an earlier point. On the other hand, turbulence is not yet fully developed in small Reynolds numbers, also as the

Fig. 1l: Experimental values for $z / d=400$ with both theoretical straight lines.
result of the short intake. Therefore, the theoretical straight line is attained only at higher values of $\mathrm{Pe}=\frac{\mathrm{Rey}^{0}}{\mathrm{O}}$. This causes the heat transfer numbers left of point c to have to curve down from the turbulent straight line to come closer to the laminar straight line. This consideration necessarily leads to a curve with a turning point for the transfer range. This $\quad 68$ curve is drawn into Fig. 10. An experimental confirmation of this theoretical concept should be expected only from measurements which are made at a large distance from the input. For this reason, Fig. 11 contains my measuring results for the greatest test length of 400 diameters together with both theoretical straight lines.

OR: POO

Fig. 12: Experimental course of dimensionless heat transfer number along pipe at four velocities and four vessel temperatures. Key: 1) Kettle water temperature
2) Theoretical value for $z / d=400$ (formule 12 a) $+\ldots$
3) Flow-through velocity

One recognizes immediately that the test results confirm theoretical considerations. In laminar range the heat transfer numbers do not reach the theoretical value completely, however, a gradual approximation to the straight line seems sure. In complete correspondence with the previous considerations, the test values lie on a curve with a turning point in the transfer range. The fact that the test points for the turbulent flow condition do not agree completely with the theoretical straight line probably has to do with severe therinic disturbances coming from the vessel and not faded completely at these test lencths and for that reason causing an increase in heat transfer numbers. The correctness of this interpretation is verified by Fig. 12, which reproduces the experimentally determined cause of the heat transfer number with the pipe length at four vessel temperatures. It can be seen clearly that the heat transfer numbers at higl vessel temperacures, that is, with greater thermic disturbances, assume higher values as test length increases and come closer and closer to the theoretical
values. The course of these curves, therefore, allows us toexpect that the calculated and the measured test valucs also agree for higher vessel temperatures with correspondingly larger test lengths. The values calculated here lose their meaning with smaller test lensths, since, as corresponding measurements showed, the Blasius law is no'longer valid for them. The values in these cases are given only to emphasize the approximation of test values to theoretical values. For test lengths which are not too short, measured deviations from Blasius' law are so small that they do not suffice to explain the large number of heat transfer numbers observed as deviations from theoretical law. It is quite apparent that the development of the final temperature profile still must be influenced substantially by the dimensionless $\sigma_{c} \frac{\lambda}{\omega}$. It is easy to overlook the fact that, seteris paribus, greater specific heat requires a higher test length for the temperature profile. This probably explains the fact that measurements for gases ($\sigma=1$) are substantially less able to show this offect than are our measurementa for liquids, for which the value of a is substantially smaller than 1 .

Before we consider my measurements on short test lengths, we shall compare a quite recently proposed theory of Prandtl's [16] on heat transfer for turbulent pipe flow and my tests at 400 diameters test length. As already pointed out in the anticipation to this study, this new theory from Prandtl compliments his earlier work, in which the relationship of velocity on the inside of the boundary level to the middle velocity in the pipe still remained undetermined. In his new theory Prandtl now finds the following formula for the . dimensionless heat transfer number:

$$
\frac{a \cdot \mathrm{~d}}{\lambda}=0,0385 \frac{(2 \mathrm{Rey})}{\sigma+1,0(1-\sigma) \mathrm{Rey}^{-\frac{1}{2}}}
$$

According to Prandtl's own words, the number factor 1.6 in the comominatar is very uncertain in this equation and most likely may be determined from heat transfer observations. If one
rollows this auggestion and ascertains this number factor from my test material with 100 -diameter test length, then a value of 0.1 is obtained. In Fig, 13 the Prandtl equation with this number factor $i s$ given for the \quad values $1 / 4,1 / 2$, and 1 . Furthermore, $m y$ test value for $\sigma=1 / 4$ is included. As one sees, the moasuring points correspond quite well to the prandil curve for a $=1 / 4$.

Fig. 13: Formula from Prandtl.
Number factor $0.40 ;$ for $\sigma=1 / 4--\quad,-$; $\sigma=1 / 2 \ldots \ldots \ldots$;
for $\sigma=1$----- identical with Schiller.
Experimental values for $a=1 / 4+++$

Further, it is also very noteworthy that, for nearly all possible σ values from $1 / 4$ to 1 with this number factor, the Prandtl curves hardly differ from the theorectical straight lines developed here. Both theoretical curves for every number factor for $\sigma=1$ agree, as can be seen immediately from Prandtl's formula. As seen, as well, from Fig. 13, the maximum deviation of the Prandtl curves amounts to 8% for the remaining o values in the large Peclet range of 6000 to 600,000 . This small deviation is present, however, only for the number factor 0.4. Figures 14 and 15 , show clearly how inserting other number values into the Prandtl equation moves this deviation up or down.

Fig. 14: Formula from Prandtl.
Number factor 1.50 ; for $\sigma=1 / 4--\quad$ - $\quad \sigma=1 / 2-\quad-\quad$; for $\quad=1$----- identical with Schiller.

Experimental values for $a=1 / 4+++$

Fig. 15: Formula from Prandtl.
Number factor 0.30 ; for $0=1 / 4-\ldots \ldots$. $0=1 / 2 \ldots-\ldots$; for $\sigma=1$----- identical with Schiller.
Experimental values for $\sigma=1 / 4+++$

In Fig. 14 the theoretically resulting number value l. 6 is $\angle 72$ inserted, in Fig. 15 the value 0.3. From these curves we see, as
well, that the influence of on heat transfer with the prandtl curves is very much dependent on the dimension of the number factor. This is contrary to the formula given here, in which o occurs only in the combination $\frac{\text { Rey }}{\sigma}$. One advantage of our theory, it seems to me, is that there is no uncertain factior in it, as is the case with Prandtl's theory. Only new tests with large test lengths can ascertain which of the two formulas better represents the truth. These tests also must measure the pressure drop to determine the valid resistance law and must demonstrate increased measuring precision.

My results, also for smaller test lengths, are reproduced in Fig. 16 (Table). Not only the two theoretical straight lines are given, but also partial comparisons of test results from Stender and Stanton. I cannot explain why Stender and Stanton's test results are substantially lower than my measurements. Substantially cluser to our results are Nusselt's test results for compressed air and other gases which practically agree with our measurements for $\frac{z}{d}=400$. This might seem surprising since the mean test lengths in Nusselt's tests amounted to only about 50 diameters. Nusselt's values are lower than ours relative to the same test lengths. The reason for this may lie in the extension of the starting stretch by reducing the o value in our experiment.

Establishing a heat transfer law also for small test lengths would advance technology greatly, since, in practice, primarily heat transfer with small test lengths occurs. This is very difficult, however, since the number of independent dimensions influencing the heat transfer multiplies with the transfer. Besides the relative test length, another variable is the dimension of the intake disturbances governed by free convection. For a numerical determination of these disturbances the velocity field with free convection must be known. Nusselt [17] has shown that this velocity field is dependent on the following two $\quad / 73$ dimensionless factors:
on $\quad \sigma=\frac{2}{c \mu} \quad$ and Grashof $\quad \operatorname{Gr}=\frac{n^{2} g\left(T_{n}-T_{10}\right) \beta}{i^{3}}$
(a for us $=$ about vessel radius, $g=e a r t h ' s$ acceleration, $T_{W}--$ $T_{f l}=$ temperature difference between vessel wall and fluid, $\beta=$ expansion coefficient, $\nu=$ kinematic viscosity).

To simplify matters, only the large "Grashof" will be considered for calculating the intake disturbances in the vessel. Since the heat transfer formula must be converted into the law derived in Chapter l before it can be established for the boundary case of infinitely large test lengths, it is written here in the following form:

The values of "Grashof" at the four vessel temperatures were determined by measurements of the temperature difference between vessel wall and fluid and are given in Table 3 with the number material needed for calculation. The number factor in the exponent of equation (13) was determined empirically. Using this equation, it was possible to represent the test results for 200to 400-diameter test lengths for all four vessel temperatures with sufficient precision. The values of $\frac{\pi \alpha}{\lambda}$ calculated using formula (13) are given in the last column of Table 2. Due to the complexities of the relationships in the starting area, the equation imparted here, in spite of its dimensionlessness, serves only for orientation and, as such, has no universal validity.

Summary of the Results

1. In this study, the heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition was determined. The mean flow-through velocity in the pipe, the relative test length and the initial temperature in the vessel were varied extensively during the tests. The measurements confirm Nusselt's theory for large test lengths in laminar range.
2. By establishing a similarity law for a temperature and velocity field for turbulent flow cordition, a new equation was derived for heat transfer for large test lengths. This equation agrees satisfactorily with the measurements for large test lentths.
3. The test results also were compared with the new prandtl formula for heat transfer. The value of the number factor, still uncertain in that equation, resulted from measurements at 0.4 . Measured values and those calculated with this number agreed very well.
4. The influence of intake disturbances could be determined by the dimensionless "Grashof". Using an equation, it was possible to represent the test material for 200- to 400-diameter test length at four different vessel temperatures.

REFERENCES

1. Groeber, "Der Waermeuebergang stroemender Luft an Rohrwandungen [Heat Transfer of Flowing Air on Pipe Walls]," Mitteil, ueber Forchungsarbeiten. V.D.I. Heft 130.
2. Josse, "Versuche ueber Oberflaechenkondensatoren, insbesondere fuer Dampfturbinen [Tests on Surface Condensors, Particularly for Steam Turbines];" ZS. d. V.D.I., 1909, p. 328.
3. Jordan, "On the Rate of Heat Transmission between Fluids and Metal Surfaces," Proc. Inst. of Mech. Eng. 1909, II, 1317.
4. Poensgen, "Ueber die Waermeuebertragung von stroemendem, ueberhitztem Wasserdampf an Rohrwandungen und von Heizgasen an Wasserdampf [On Heat Transfer of Flowing, Overheated Water Steam on Pipe Walls and of Heating Gases on Steam\}," ZS.d.V.D.I. 1916, p. 27.
5. Rietschel, "Untersuchungen ueber Waermeabgabe, Druckhoehenverlust und Oberflaechentemperatur bei Heizkoerpern unter Anwendung großer Luftgeschwindigkejten [Investigations on Heat Loss, Pressure Height Loss and Surface Temperature with Heating Bodies using Large Air Velocities]," Mitt. d. Pruefungsanst. f. Heizungs- u. Lueftungseinrichtungen, Heft 3, Techn, Hochschule Berlin, 1910.
6. Nusselt, "Die Waermeuebergang jn Rohrleitungen [Heat Transfer in Pipelines]," Dissertation, Dresden 1909 and Mitt. ueber Forchungsarbeiten, H. 89.
7. Stanton, "On the Passage of Heat between Metal Surfaces and Liquids in Contact with them," Phil. Trans. Roy. Soc., London, 190, 67. 1897.
8. Soennecken, "Der Waermeuebergang von Rohrwaenden an stroemendes Wasser [Heat Transfer from Pipe Walls to Flowing Water]," Diss., Munich, 1910.
9. Stender, "Der Waermeuebergang an stroemendes Wasser in vertikalen Rohren [Heat Transfer to Flowing Water in Vertical Pipes]," Berlin, 1924.
10. Prandtl, "Eine Beziehung zwischen Waermeaustausch und Stroemungswiderstand der Fluessigkeiten [A Relationship between Heat Exchange and Flow Resistance of Fluids]," Phys. ZS., 1910, p. 1072.
11. Schiller and Burbach, "Waermeuebergang stroemender Fluessigkeit in Rohren [Heat Transfer of Flowing Fluid in Pipes]," Phys. ZS. 29, 340-42, 1928; V.D.I. 72, No. 34, P. 1195, 1928.
12. Schiller, "Zwei neue Aenlichkeitsgesetze fuer das Temperaturfeld turbulent stroemender Fluessigkeiten und ihre Bedeutung fuer den Waermeuebergang [Two New Similarity Laws for the Temperature Field of Turbulently Flowing Fluids and their Meaning for Heat Transfer]," Phys. ZS. 29, 690-91, 1928.
13. Nusselt, "Die Abhaengigkeit der Waermeuebergangszahl von der Rohrlaenge [The Dependency of Heat Transfer Number of the Pipe Length]," ZS. d. V.D.I., 1910, p. 1154.
14. Groeber, "Die Grundgesetze der Waermeleitung und des Waermeueberganges [The Basic Laws of Heat Conductance and Heat Transfer]," Berlin, l92l., p. 182 ff.
15. Schiller, "Experimentelle Untersuchungen zum Turbulenzproblem [Experimental Investigations on Turbulence Problems]," ZS. f. angew. Math. u. Mech. 1, Heft 6, p. 436, 1921.
16. Prandtl, "Bemerkung ueber den Waermeuebergang im Rohr [Remarks on Heat Transfer in Pipes]," Phys. ZS., 1928, No. 14, p. 487.
17. Nusselt, "Das Grundgesetz des Waermeueberganges [The Basic Law of Heat Transfer]," Gesundheitsingenieur, ZS. f. d. ges. Staedtehygiene. 38. Jg. No. 42, p. 477.

Tables.
Table II.*

U	$\bar{\theta}$	$\theta \sigma$	$\vec{H}-\mathrm{H}_{\mathrm{n}}$	$7 \cdot \vec{c}$	$\frac{d \vec{\theta}}{d z}$	4	$\overline{\text { c }}$
$\operatorname{cm}_{\mathrm{kec}}$	$C^{\prime \prime}$	$0^{\prime \prime}$	Cl	$\frac{c a l}{c^{3} C^{3}}$	$\frac{\mathrm{C}^{0}}{\mathrm{~cm}}$	$\frac{\mathrm{cal}}{\mathrm{cm}^{2} \mathrm{MaCO}^{\text {c }}}$	$\frac{.0 .}{800}$
$\mathrm{x} / \mathrm{d}=400$							
5,0	6,6	4,2	2,4	1,0022	0,044	0,0115	1,0025
0,0	0,2	0,0	3,2	1,(00)2	0,053	0,0125	1,0016
8,0	12,8	8,7	4,2	0,99318	0,057	0,0130	1,0005
10,0	10,4	11,1	5,3	0,9985	0,009	0,0102	0,4697
12,5	20,0	13,7	6,3	0,9972	0,077	0,0181	0,9990
15,0	23,2	10,2	7,0	0,0000	0,088	0,0235	0,8985
18,0	20.7	18,4	8,3	0,9947	0,091	0,0245	0,0951
30,0	30.2	21,4	8,8	0,093	0,098	0,0415	0,9978
45,0	34,0	28,9	6,1	0,6979	0,036	0,10i2	0,8970
60,0	38,0	3,1	3,0	0,9004	0,092	0,1750	0,8975
$x / d=350$							
5,0	7,9	5,5	2,4	1,6017	0,034	0,0141	1,0020
6,0	10,5	7,4	3,1	1,0007	0,00-	0,0155	1,0012
8,0	14,5	10,3	4,2	0,9992	0,070	0,0160	1,0001
10,0	18,2	12,8	5,4	0,0978	0,083	0,0182	0,0993
12,5	23,0	16,0	0,1	0,0905	0,089	0,0216	0,6885
15,0	25,5	17,8	7.7	0,9952	0,100	0,0242	0,6982
18,0	29,1	19,8	0,3	0,9938	0,099	0,0238	0,9978
30,0	32,6	23,8	B,B	0,0925	0,100	0,0448	0,8976
45,0	36,5	31,3	6,2	0,9810	0,105	0,1127	0,8975
60,0	40,3	30,2.	\$,1	0,8895	0,099	0,1790	0,9075
$\mathrm{z} / \mathrm{d}=300$							
5,0	8,5	7,1	2.4	1,(011	0,068	0,0180	1,0015
6,0	12,3	8,2	3,1	1,0600	0,078	0,0191	1,0007
8,0	16,3	12,1	1,2	0,9985	0,086	0,020	0,09897
10,0	20,5	14,8	6,7	0,4970	0,097	0,0212	0,0889
12,5	24,3	17,0	6,7	0,9956	0,097	0,0225	0,0983
15,0	28,0	19,7	8,3	0,9942	0,100	0,0238	0,0980
18,0	31,6	21.6	10,0	0,9928	0,102	0,0297	0,0977
30,0	35,3	20,5	8, ${ }^{1}$	0,9914	0,113	0,0478	0,0975
45,0	38,1	34,0	5,1	0,0900	0,110	0,1200	0,0975
60,0	42,8	38,0	4,2	0,9685	0,104	0,1830	0,0975
$x / \mathrm{d}=250$							
8,0	11,4	0,0	2.4	1,0004	0,080	0,0224	2.0010
6,0	16,4	11,1	3,3	0,0982	0,098	0,0223	1,0001
8,0	18,6	14,1	4,5	0,9977	0,109	0,0212	0,9092
10,0	23,0	16,9	0,1	0,4001	0.111	0,0220	0,0085
12,5	25,8	18,7	7.1	0,8947	0,113	0,0247	0,0081
15,0	30,6	21,9	8,4	0,51932	0,110	0,0238	0,0978
18,0	3,0	23,8	10,2	0,9918	0,112	0,0245	0,9770

* T.N.: Commas in numerical entries represent decimal points.
-

Abstract

 ．

\begin{abstract}

Abstract

\square

\end{abstract}

Tables.
Table II

\bar{u}	$\ddot{\theta}$	θ_{π}	$\bar{\theta}-\theta_{\boldsymbol{n}}$	\%, \bar{c}	$\frac{d \widetilde{\theta}}{d z}$	\square	-
$\frac{\mathrm{cm}}{\mathrm{Nc}}$	CO°	$0^{\prime \prime}$	$C^{\prime \prime}$	$\frac{c a l}{c^{2} c^{\prime \prime}}$	$\frac{\mathrm{C}^{0}}{\mathrm{cto}}$	$\frac{\mathrm{cal}}{\mathrm{cm}^{3} \mathrm{meC}}$	$\frac{\mathrm{cal}}{\mathrm{BC}^{\text {c }}}$
$2 / \mathrm{d}=250$							
30,0	38,1	29.4	6,7	0,870	0,125	0,053	0,6975
45,0	42,0	36,7	5,3	0,0688	0,122	0,128	0,0975
60,0	45,5	11,0	4, 6	0,9875	0,114	0,188	0,0975
$z / \mathrm{d}=200$							
5,0	13,6	11,2	2,4	0,9390	0,503	0,0268	1,0003
0,0	16,8	13,4	3,4	0,0984	0,111	0,024	0,5990
8,0	21,4	10,0	4,8	0,0907	0,120	0,0202	0,4988
10,0	25,8	19,3	0,5	0,8451	0,122	0,023	0,4989
12,5	29.7	22,2	78	0,0936	0,135	0,0280	0,4979
15,0	33,5	24,4	0,1	0,9821	0,132	0,0270	0,4076
18,0	30,9	20,3	10,0	0,9008	0,135	0,0284	0,8975
30,0	41,4	32,4	9,0	0,8891	0,143	0,0589	0,0975
45,0	45,1	39,7	5,4	0,9670	0,134	0,138	0,8975
60,0	48,3	43,7	4,0	0,8864	0,122	0,100	0,0976
$x / d=150$							
5,0	16,6	14,2	2,4	0,8985	0,134	0,0348	0,8090
0,0	20,0	10,0	3,4	0,0972	0,163	0,0359	0,0990
8,0	24,8	18,8	5,0	0,9954	0,170	0,0350	0,8983
10,0	29,3	22,5	0,8	0,9837	0,187	0,0342	0,0979
12,5	33,3	25,2	8,1	0,0922	0,180	0,0345	0,8976
15,0	36,8	27,2	9,7	0,0908	0,177	0,0339	0,8975
18,0	40,7	28,9	11,8	0,889	0,180	0,0338	0,4975
30,0	45,5	35,7	0,8	0,9875	0,180	0,0850	0,9975
45,0	48,8	42, 6	6,0	0,9502	0,160	0,118	0,8977
0,0	31,5	10,5	5,0	0,9852	0,137	0,203	0,8978
$\mathrm{x} / \mathrm{d}=100$							
100	71,8		5,8		0,181	0,381	1,0003
140	34,3	-68,7	4,6	0,9750	0,140	0,520	1,0007
200	76,8	73,0	3,8	0,9748	0,100	0,660	1,0011
300	78,9	70,1	2,8	0,9739	0,072	0,939	1,0015
$\mathrm{z} / \mathrm{d}=50$							
100	76,8	70,0	6,8	0,9748	0,224	0,402	1,0011
140	78,1	72.8	8,3	0,9742	0,168	0,540	1,0014
200	78, 6	75,2	1,4	0,4730	0,127	0,703	1,0016
300	80,8	77,8	3,0	0,9730	0,080	0,874	1,0018
$x / \mathrm{d}=25$							
100	70,6			0,9736	0,217	0,424	1,0016
140	80,4	74,6	3, ${ }^{\text {, }}$	0,9732	0,198	0,570	1,0018
200	81,1	76,4	4,7	0,9729	0,141	0,730	1,0019
300	81,0	78,6	3,3	0,9725	0,090	0,995	1,0020

Tables.
Table II

is	$\bar{\theta}$	θ_{π}	$\bar{\theta}-\theta_{\pi}$	7.0	$\frac{d \bar{\theta}}{d z}$	a	$\stackrel{\square}{0}$
$\frac{\mathrm{cm}}{\mathrm{MCS}}$	0^{0}	∞	∞	$\frac{\mathrm{cal}}{\mathrm{cm}^{3} \mathrm{ClII}^{\text {a }} \text { - }}$	$\frac{\mathrm{C}^{0}}{\mathrm{~cm}}$.	$\frac{\mathrm{cma}}{\mathrm{cm}^{2} \mathrm{mac}^{\text {C0 }}}$	$\frac{\mathrm{Cad}}{\mathrm{CO}^{\text {c }}}$
$x / \mathrm{d}=10$							
100	81,6	71,2	7,3	0,9727	0,260	0,407	1,0019
140	81,0	76,8	0,1	0,3725	0,220	0,030	1,0020
200	82,2	77,2	6,0	0,4721	0,100	0,770	1,0020
300	82,0	70,1	3,6	0,0722	0,104	1,085	1,0021
$x / d=400$							
100	4,1	11,8	3,2	0,8876	0,074	0,280	0,0076
100	63,2	19,2	4,0	0,9645	0,998	0,3C2	0,0980
100	00,7	60,0	4,7	0,0816	0,123	0,321	0,0887
100	67,9	62, 1	8,6	0,0760	0,160	0,334	0,8907
$x / 8=350$							
100	47,0	43,7	3,3	0,8809	0,078	0,292	0,P076
100	65,8	81,7	4,1	0,9835	0,104	0,312	0,0882
100	4, 1	69,1	8,0	0,0602	0,170	0,333	0,0082
100	71,6	68.0	6,8	0,8770	0,167	0,343	1,0002
2/a m 300							
300	49,1	45,7	3,4	0,0801	0,083	0,301	0,0977
100	68,5	6,3	4,2	0,8821	0,110	0,322	0,0985
100	67,0	62.4	8,2	0,9787	0,144	0,339	0,0090
100	76,0	08,7	6,8	08763	0,173	0,358	1,0008
$x / \mathrm{d}=250$							
100	81,3	47,7	3,0	0,9853	0,092	0,316	0,0879
100	01,2	50,8	4.3	0,9814	0,116	0,331	0,0888
100	71,2	65, 8	6,4	0,9772	0,157	0,355	1,0002
100	80,1	73,9	0.2	0,9733	0,182	0,377	1,0017
2/d m 200							
100	83,6	40,9	3,7	0,964	0,098	0,326	0,9980
100	O,3	58,7	4,e	0,8601	0.131	0,340	0,0992
100	75,1	09,6	0.0	0,8755	0,171	0,373	1,0008
100	85,2	78,0	6,6	0,9710	0,215	0,300	1,0020
$2 / \mathrm{d}=150$							
100	603, 1	52,2	3,9	0,9634	0,109	0,343	0,0988
100	67,9	02,7	8,2	0,0768	0,155	0,365	0,0397
100	79,5	72,9	0,0	0,9730	0,190	0,350	1,0017
100	90,8	83.9	6,9	0,9684	0,237	0,410	1,0037
$2 / \mathrm{d}=400$							
140	40,2	46,4	2,8	0,6880	0,063	0,388	0,0877
140	58,9	85,4	3,5	0,9893	0,080	- 0,423	0,0985
140	67,9	63,8	4.1	0,0786	0,108	0,451	0,0097
140	76,1	71,2	4,9	0,9751	0,130	0,473	1,0010

OR W W...": :

Tables.

d*	7	TV		$2 \mathrm{Rcs} \times \mathrm{m}$	$0 \in \frac{h_{\pi}}{0 \frac{11}{11}}$	$A=\frac{a d}{i n}$	$\frac{A}{A}$		
$\frac{C a l}{c m}$	$\frac{\mathrm{E}}{\mathrm{cm}}$	$\frac{\mathrm{cm}}{} \mathrm{mc}$						muln	
cmanct	cm		-	-	-	cxp.		is	
$x / \mathrm{d}=10$									
0,001018	\|0,070s	0,00360	30100	13690	0,402	141,1			
0.001025	0,8700	0,00359	41:00	10500	0,405	19,0			
$0,(0) 030$	0,0701	0,01238	89700	2000	0,408	239,0			
0.01036	0,0701	0,00350	80100	42200	0,473	331,0			
$2 / \mathrm{d}=400$									
$0,001+0$	10,0002	0,00604	33160	8280	0,250	00,0	87,2	105,0	
0,001610	0,0800	0,00530	32.400	9835	0,201	09,2	95,6	108,1	
0,001610	0,8620	0,00172	31720	10500	0,334	103,0	81,0	113,7	
0,001372	0,0760]	0,00126	31100	11060	0,370	100,1	82,0	121,4	
$x / d=350$									
0, (0) 107	[0,0601	0,00565	32000	8560	0,259	87,6	00,8	105,8	
$0,(0) 529$	0,0653	0,60509	32160	0825	0,305	102,0	95,0	103,0	
0,001559	0,0810	0,60150	31400	11110	0,354	100,6	83,3	115,8	
0,001560	\|0,0768		0,00107	307\%0	12280	0,389	108,0	01,0	120,2
$2 / d=300$									
0,001505	10,0889	0,00500	32750	8810	0,209	100,0	10,3	100,8	
0,001439	0,10839	0.10168	31060	10255	0,321	101,0	84.4	111,0	
0,00167?	0,070)	0,60429	31100	11050	0,375	107.7	02,6	110,3	
0,601001	0,0is5 \mid	0, 10368	30430	12885	0,424	111,7	31,1	130,8	
$x / d=250$									
0,001513	0,06741	0, 10545	32:50	8175	0,282	103,0	85,8	108,5	
0,001550	0,0825	0,60400	31050	10055	0,377	100,9	93,9	114,7	
0,001655	0,077	0.6 CH 10	30500	12100	0,300	312,0	82,0	124,7	
0,0010:7	0,07171	$0,6 \times 1360$	300:50	13055	0,405	110,0	90,3	138,2	
$x / \mathrm{d}=200$									
0,001522	0,95031	0,00520	32350	9510	0,294	107,0	Q5, 1		
0,001601	(1,95064	0,00448	31360	11155	0,350	111,8	93,2		
0,001003	0,874	0,10300	30470	12820	0,421	116,3	01,2		
0,001030	0,0085	$0,0 \times 340$	29030	14450	0,488	120,8	89,3		
$2 / \mathrm{d}=150$									
0,001531	0,0651	0,01500	32100	9885	0,308	112,0	04,0		
0,001573	0,9760	0,0)428	31100	11080	0,376	115,9	22,0		
0,001013	0,072)	$0,0 \times 370$	30150	13510	0,448	108,6	00,5		
0,001057	0,9048	0,02325	28200	15380	0,527	125,4	88,4		
$\mathrm{x} / \mathrm{d}=400$									
0,001608	0,9884	0,00505	45800	12380	0,270	128,0	123,8	133,8	
0,001584	0,8837	0,00585	44500	14430	0,324	136,8	121,2	137,3	
0,001577	0,8789	0,00128	43400	16350	0,377	143,1	118,9	143,0	
0,001003	0,0711	0,00385	12450	$1 \mathrm{dl80}$	0,128	147,3	117.0	153,4	

Tables.

> OLW:"\%."
> OFFBG:

Table II

\%	\underline{G}	θ_{*}	$\bar{\theta}-\theta_{\text {c }}$	\%' $\overline{\mathrm{c}}$	$\frac{d \bar{\theta}}{d x}$	-	$\stackrel{\square}{c}$
$\frac{c m}{n c o s}$	c ${ }^{\text {c }}$	${ }^{*}$	C*	$\frac{c a l}{\operatorname{cin}^{-1} c^{2}}$	$\frac{0}{6 m}$	$\frac{\mathrm{cal}}{\mathrm{cm}^{\text {a }} \text { (cc }}$	
1/d a 330							
140	81,0	48,1	2,0	0,08\% ${ }^{\text {H }}$	0,0i0	0,110	0,67\%
140	01.0	37,4	3,6	0,0814	0,002	0,436	0,8985
140	70,7	60,3	4.4	0,9774	0,120	0,400	1,001
140	70,0	74,0	6,0	0,0735	0,144	0,400	1,0010
$\mathrm{r} / \mathrm{d}=300$							
140	52,9	10,9	1	0,pE40	0,075	0,430	0,0980
140	63, 3	58,0		0,9805	0,096	0,45	0,6000
140	73,0	69,1	4,5	0,0702	0,125	0,475	1,0000
140	63,2	76,2	5,0	0,8719	0,150	0,510	1,0023
2/d $=0$ 200							
$1+0$	${ }^{51} 6$	31,8	3,0	0,9639	0,077	0,411	0,4061
140	6, O_{6}	02,0	3,8	0,9785	0,103	0,405	0,0394
140	70,7	:2,0	4.7	0,0746	0,135	0,410	1,0011
140	67,1	62,0	5,1	0,0701.	0,162	0,036	1,0030
z/d $=200$							
110	50,6	53,0	3,2	0,9831	0,083	0,410	0,0963
140	68, 6	6-5	3,9	0,978	0,110	0,483	0,0998
140 140	80,0	75,2	1.8	0,9734	0,143	0,508	1,0017
140	81,5	65,9	8,0	$0: 4050$	0,188	0,857	1,0038
$x / 8 \mathrm{mel} 150$							
140	88.8	5,5		0,UR23	0,090	0,45	0,8985
110	71.1	07,0	\$1	0,97:2	0,120	0,50]	1,0002
140	83,6	78,6	3,0	0,0717	0,157	0,634	1,0023
140	¢0,2	00,2	0,0	0,9057	0,200	0,503	1,0018
$2 / \mathrm{C}=100$							
200	53,3	50,8	2,5	0,985 5	0,055	0,541	0,0960
200	6, 1	01,1	3,0	0,0602	0,071	0,560	0,0092
200	74,7	71,2	3,5	0,8757	0,089	0,620	1,0008
20	64,0	78,0	4,4	0,9715	0,120	0,603	1,002
2/d $=330$							
200	58,7	E2, 1	2,0	0,40;38	0,059	0,558	0,0881
200	co,0	62.8	3,2	0,978	0,078	0,590	0,809
200	77.0	83,3	3,7	0,9747	0,097	0,638	1,0012
200	87,0	82,0	4,4	0,0;02	0,124	0,684	1,0030
200	50,3	83,5	28	0,9833	0,00H	0,563	0,0963
200	68,0	68.7	3,3	0,9785	0,082	0,606	0,8997
200	70,4	75,7	3,7	0,9736	0,100	0,657	1,0016
200	00,2	85,0	4,6	0,0650	0,133	0,700	1,0036

Tables.

1.	0	-		$2119 y$	$n m \frac{2 \pi}{c}$	$A=\frac{a \cdot d}{i x}$	$\frac{A}{\text { calcuinted }}$	
cal		cm^{7}				cap!		rula
mancos	sm^{1}	\cdots		-		-	124	13
$2 / \mathrm{d}=350$								
0,001016	10,0670	0,00318	45600	12:\%	0,260	137,2	:13,2	13,7
0,00165?	0,0520	0.60150	41850	146s	0,330	141,1	120,7	130,3
0, (0)1557	0,0783	$0,0 \times 1512$	43100	16960	0,381	140,0	116,3	147,1
0,01030	0,0720,	0.60300	42080	$160 \% 0$	0,451	151,2	110,0	18,2
$x / d=303$								
0,001529	10,056:	0,00333	45260	13130	0,200	111,2	122,8	130,3
0,001501	0,0614	0 0, (x) ${ }^{1}$	43020	1 HH 15	0,351	145,3	120,0	141,0
0,011508	0,0750	0,00398	42700	17585	0,411	148,7	117.6	151,5
0,011034	0,8008	0,0036-4	1)600	10:70	0,475	160,0	118,2	165,0
$x x^{\prime} \mathrm{d}=8$								
0,601630	0,08571	0.60517	+6GK10	13,330	0,301	144,0	122,2	138,8
0,001570	0, 10801	$0 .(0) 138$	43050	15840	0,305	148,0	110,4	140,0
$0,(0) 1010$	0,0738	0.0×1382	42320	16320	0,433	152,2	116,7	156,3
0,001080	0,807-	$0,6 \times 336$	11150	2070)	0,603	103,3	114,3	176,5
$2 / d=200$								
0,001537	0,96471	0,00601	44000	13970	0,312	140,1	121,7	142,3
0,001580	0,0760	0,00125	43300	10170	0,380	153,0	118,7	152,5
0,001622	0,0716	0,00307	12000	100:0	0,455	110,0	110,0	100,7
0,001005	0,9043\|	0.6×322	+11:00	21730	0,535	107,1	113,2	18, 7
z'd \quad = 160								
0, (01044	0,4637i	0,00155	HFick	1 $1+30$	0,324	147,3	121,2	
0.001600	0, 0171	$0, \mathrm{COH} 10$	+3000	17070	0,397	157,6	118,1	
0,001630	0,9000	0,00352	41590	10SEK	0,478	103,1	118,0	
0,001682	0,9010	0, (x) 307	40150	2ntick	0,508	107,0	112,2	
$z=d=4(0)$								
0,001520	0,1015	0.60529	G G 6×1	160×0	0,2013	177,3	160,1	173,1
0,001500	0,0810	0.10	02000	22220	0,355	185,0	150,5	177.4
0,001000	0,11750	(1, 6×13102	00000	235001	0,420	183,0	183,0	J85, 1
0,0010 0	0,9093]	0,00:5	68200	26.50	0,4825	202,0	150,1	100,8
$2 / \mathrm{d}=350$								
0,001531	0,9858	0,06318	Gr250	10360	0,300	182,1	150,0	174,5
0,001574	0,9800	0,60⒊38	O2900	22820	0,367	180,3	165,8	179,8
0,001615	0,9730	0,00381	00300	20230	0,435	107,6	152,2	189,3
0,001052	0,9073	0,00338	『6650	29580	0,604	207,0	148, 1	203,3
$x / \mathrm{d}=300$								
0,001530	0,9850	0,00505	04000	10700	0,309	183,1	159,1	170,0
0,0016SI	0,9789	0,0038;	61850	23400	0,378	102,3	165,1	183,3
0,001624	0,8721	0,00370	38900	27000	0,451	202,2	151,4	305,2
0,001064	0,9052	0,00327	88160	30580	0,525	210,2	148,1	212,7

Tables.
Table IT

"	$\bar{\sigma}$	θ_{n}	$\stackrel{\square}{\theta}-\sigma_{x}$	$\because \overline{5}$	$\frac{d}{d x}$	n	$\bar{\square}$
	0°	C^{6}	C	$\underset{\mathrm{cm}^{2} \mathrm{cal}^{\mathrm{cal}}}{\mathrm{c}}$	$\frac{\mathrm{c}^{\prime}}{\mathrm{cm}}$	$\frac{\mathrm{cal}}{\mathrm{cm}^{\text {mec }}{ }^{\text {m }}}$	
$2 / 4=250$							
200	87, 6	65,0	2,8	0,4587	0,060	0,350	0,986
200	70,1	00,7	3,4	0,07\%	0,05\%	0,025	1,0060
200	82,0	78,2	3,8	0,11225	0,100	0,076	1,0020
200	83, 5	88,8	4,7	0,9671	0,140	0,721	1, CNO_{4}
$x / d=200$							
200	50,4	50,0	2,8	0,0821	0,005	0,590	0,9986
200	72,2	08,6	3,4	0,$0 ; 07$	0,069	0,640	1,0003
200	84,7	80,7	4,0	0,4712	0,114	0,602	1,0025
200	07,0	92,2	4,8	0,9653	0,148	0,74	1,0050
$x / 4=150$							
200	01,2	58,3	2,9	0,0513	0,072	0,010	0,4988
200	74,4	70,6	3,0	0,073S	0,000	0,052	1,0007
200	67,0	¢3,4	4,2	0,464	0,12s	0,715	1,0030
200	103, 8	05,9	4,0	0,9643	0,155	0,760	1,0058
$z / d=400$							
300	57,2	55,2	2,0	0,9630	0,042	0,7\%4	0,9984
300	09,3	00,7	2,0	0,9760	0,059	0,833	0,0999
300	81,3	76,1	3,2	0,9728	0.079	0,000	1,0019
300	00, ${ }^{1}$	36,8	4.1	0,4053	0,108	0,056	1,0037
2/1 m m 30							
300	56,3	56,2	2.1	0,9525	0,045	0,789	0,9985
180	70,8	OS, 2	2,6	0,9774	0,001	0,859	1,0010
300	63,9	60,1	3,2	0,4719	0,051	0,922	1,0023
300	93, ${ }^{\text {i }}$	80,5	4,2	0.4600	0,113	0,876	1,0043
x:d $=300$							
300	59,4	57,2	2,2	0,9850	0.048	0,804	0,0986
303	;2.4	09,	2,7	0,900	0,00-	0,868	1,000 4
300	850	82, 1	3,2	0,9009	0,182	0,033	3,0026
300	90,5	02,3	4,2	0,9650	0,115	0,942	1,0049
$x / \mathrm{d}=250$							
300	6,0	88,4	2.2	0,8816	0, CH 9	0,820	0,0887
300	74,0	71,3	2,7	1,9760	0,000	0,693	1,0005
300	88,4	88,2	3,2	0,9:00	0,081	0,855	1,0180
300	89,4	95,2	4,2	1,0040	0,118	1,017	1,0045
$x / \mathrm{d}=200$							
300	01,9	59,6	23	0,0811	0,052	0,831	0,0982
300	75,6	72,9	2,7	0,9753	0,067	0,007	1,0003
300	89,4	80,2	3,2	0,8690	0,066	0,970	1,003
300	202,9	88,1	4,2	0,9625	0,121	1,040	1,0001

OF POU.: ": ".

Tables.

2w	4	\cdots	Pex matac	2 Reym $\frac{10 \mathrm{~d}}{4}$	$n \times \frac{i x}{c}$	$A=\frac{\pi d}{i \pi}$	calculoted	
cal	F						Yor	4uIa
cmmec	cm^{2}	(10			-	crp,	12	13
$z_{1}^{\prime} \mathrm{d}=0 \mathrm{~d}$								
0,001512	0,08431	0, (0)04	03700	20230	0,318	185, ${ }^{3}$	155,0	170.7
$0,001) 159$	0,47i7	0,00115	01500	24 as5	0,392	100.7	154,5	188,0
0,00103:	0,9:03	0,003358	58450	2-910	0,470	207,3	150,6	204.3
0,001600	0,9620	0,00310		31cro	0,548	215,1	14,1	227,0
$2 / \mathrm{d}=200$								
0,00159	0,9535	0, (K1381	03400	$20: 50$	0,328	192,3	165,0	164,7
0,001517	0,0;04	$0,(0) 105$	01100	24050	0,403	200;4	153,7	197,
0,00144	0,4058	0,003 0	50000	25800	0,488	210,5	188,7	219,0
0,001080	0,9001	0,00315	57050	32780	0,675	$\stackrel{2}{2} \div 0,0$	140,0	251,1
$\mathrm{z}, \mathrm{d} \mathrm{d}=150$								
0,001530	0,QS25	0,04H08	03000	21360	0,339	190,0	157,3	
0,001605	0,0752	$0,0 \times 394$	00150	$253 \% 0$	0,117	202, 2	153,0	
0,001055	0,9060	0, 6×1336	6S550	20750	0,508	210,0	148,8	
0,001705	0,9837	0,002:14	5 HO 0	$34(8)$	0,002	203,0.	144,8	
$x_{i}^{\prime} \mathrm{d}-40{ }^{(0)}$								
0,063513	0,0540	0, (X148S	\$500	30120	0,315	231,0	215,0	232,5
0,001569	0,0783	0,00220	02300	35720	0,357	202,0	208,4	237,3
0,001034	0,9710	0,001301	80300	41550	0,405	275,2	201,3	247,
0,01008	0,9047	0,00324	85050	. 163 r	0,532	280,5	$\pm 60,4$	200,8
$2 / \mathrm{d}=3350$								
0.001537	0,9840	0,0 ¢ 00	95300	30020	0,321	235,0	:14,5	234.5
0,001505	0,9\%\%		91850	30500	0,307	209,0	208,7	240,8
	0,9065	0,00135	68750	+12370	0,4:7	250,5	203,4	253,0
0,001079	0,402s	0, (k, 315	80.00	taige	0,552	290.7	109,3	271,7
$2 \times \mathrm{d}=3(x)$								
0,001551	0,9835	0,60481	95000	31200	0,328	259,0	214,0	237,5
0,001601	0,1700	$0, \mathrm{CKH03}$	91500	3:220	0,507	271,0	20,1	240,0
$0,(0) 1650$	0,96S	0,00315	88250	43450	0,492	283,0	2042,5	201.0
0,001090	0,960s	0,00363	85050	4 50130	0,573	294,0	105,0	284,5
$x^{\prime} \mathrm{d}=250$								
0,001550	(0,0526	0,007:2	9650	31760	0,330	$203{ }^{\text {r }}$	213,4	211,0
0,001607	0,0isi	0,00390	91100	37880	0,416	278,0	207,4	253,6
0,601658	0,9071	0,00337	6770	41500	0,507	288,0	201,6	272,4
0,001702	0,9587	0,00218	S4950	60330	0,593	298,5	196,8	303,7
$\mathrm{z} / \mathrm{d}=200$								
0,001561	0,9821	0,0010	84250	32330	0,343	200,0	2127	248,7
0,001013	0,974	0,00387	90700	38760	0,427	281,0	200,7	205,4
0,001660	0,9057	0,00330	87200	+4450	0,520	493,2-	200,7	203,7
0,001713	0,9507	0,002269	84250	[1900	0,017	303,5	105,6	336,5

Tables.
Table II

u	θ	θ_{*}	$\bar{\theta}-\theta_{w}$	$\cdots \cdot \bar{c}$	$\frac{d \vec{\theta}}{d z}$	a	\bar{c}
$\frac{\operatorname{cm}_{n}}{m e n}$	C'	${ }^{\circ}$	c^{c}	$\frac{\mathrm{cal}}{\mathrm{cm}^{1} \mathrm{C}^{\text {a }}}$	$\mathrm{Co}^{\mathrm{cin}}$	$\frac{\mathrm{cal}}{\mathrm{cm}^{2} \mathrm{mec}}{ }^{\text {a }}$	$\frac{\mathrm{Ca}}{\mathrm{BC}^{\text {c }}}$
8/d $=160$							
300	03,1	60, 8	2,3	0,9800	0,005	0,652	0,40460
300	73,2	74,5	2,7	0,9740	0,008	0,820	1,0012
300	81,5	88,3	3.2	0,9050	0,088	0,998	1, 1030
800	105,3	101.0	4,3	0,9008	0,127	1,005	1,0008
$x / \mathrm{d}=300$							
500	01.1	68,5	1,6	0,9614	0,024	1,112	0,8988
500	73,6	71,7	2,1	0,9,00	0,042	1,220	1,0000
500	87,0	85,3	2,3	0,0039	0,050	1,31\%	1,0031
500	99,2	05,7	3,5	0,9012	0,083	1,428	1,0054
$x / d=350$							
500	61,8	00,2	1,0	0,4811	0,030	1,149	0,9889
500	74,9	72,7	2,2	0,9750	0,045	1,247	1,000
300	88,8	80,4	2,4	0,9093	0,053	1,338	1,0033
200	10,3	97,8	3,5	0,9030	0,084	1,414	1,0059
$x / d=300$							
500	62,0	60,9	1,7	0,0608	0,032	1,155	0,9990
500	76,0	73,7	2,3	0,9751	0,017	1,256	1,0010
5001	90,1	87,7	2,4	0,0657	0,053	1,337	1,0036
500	103,3	98.8	3,5	0,9019	0,065	1,460	1,0003
$2 / \mathrm{d}=250$							
500	663,5	61,7	J, 8	0,980,	0,033	1,124	0,9891
500	77,2	74,9	2,3	0,8740	0,048	1,271	1,0012
500	91,4	88,0	2,4	0,9050	0,054	1,361	1,0038
600	105.4	101,8	3,5	0,0007	0,086	1,476	1,0065
$x \prime d=200$							
500	64.3	02,5	1,8	0,9801	0,035	1,1*0	0,8989
500	78,4	70,0	2,4	0,9740	0,050	1,270	1,0014
500	82,7	90,3	2,4	0,9675	0,056	1,410	1,0041
500	107,5	104,0	3,5	0,8595	0,088	1,509	1,0573
$x / d=150$							
500	05,1	60,3	1,3	0,9798	0,036	1,201	0,0902
800	70,6	77,2	2,1	0,9736	0,051	1,294	1,0018
500	84.2	01,6	2,6	0,8057	0,061	1,118	1,0044
500	109,6	106,0	3,6	0,0583	0,002	1,4530	1,0078

Tables.

is	\square	\cdots	$P_{c}=\frac{\bar{u} d \underline{e}}{\bar{i} k}$	aReym $\frac{\square}{\square} \mathrm{d}$	$0=\frac{2_{m}}{c \mu}$	$\Delta=\frac{a d}{i n}$	calculated	
al	F	cm					ro	1 n
mmCC°	cm^{3}	crer		-	-	crp,	12.	13
$2 / \mathrm{d}=100$								
0,001506	0,9815	$0,0 \times 450$	93900	32900	0,350	272,3	212,2	
0,001020	0,9735	0, (10350	9036	33480	0,438	264,0	205,8	
0,01075	0,0063	$0,(0) 322$	80:00	40000	0,538	288,0	109,8	
0,001:25	C,954b	0,002F0	83500	63600	0,642	308,6	10,3	
$x / \mathrm{d}=400$								
0,001500	10,9820	0,04770	157300	53200	0,338	350,5	312,4	337,8
0,001009	0,9755	0,00396	151000	63150	0,416	379,0	303,8	3/4,4
0,001602	0,9070	0,01330	1,5900	74.400	0,510	396,0	295,3	357,3
0,001704	0,0550]	0,00208	141400	83100	0,594	418,5	288,4	378,1
$x / \mathrm{d}=350$								
0,001503	0,9822	0,00165	150950	53800	0,342	367,5	311,9	311,0
0,001012	0,9740	0,00391	161300	03900	0,423	380,5	303,4	350,2
0,001067	0,906]	0,0033?	145300	75300	0,518	101,0	281,3	364,0
0,001712	0,9574	0,00292	140600	85050	0,010	421,5	287,2	391,6
$\mathrm{z} / \mathrm{d}=300$								
0,001560	0,8818	0,04459	150500	54500	0,346	368,5	311,2	35,5
0,001017	0,0742	0,00386	150700	04800	0,430	385,5	3025	307,6
0,001673	(1,9653	0,00327	144750	76i50	0,528	309,5	293,5	378,3
0,01720	(0,8560)	0,01250	139750	87.450	0,020	424,5	265,9	410,7
z/d $=250$								
0,001509	(0,9S13	0,00454	150200	25100	0,352	356,0	310,8	352, 2
0,001621	0,9:3r	0,00380	150300	05800	0,438	302,0	301,9	369,0
0,001027	0,9044	0, <03222	14.1300	77050	0,538	4 10,0	292,8	387,0
0,001728	0,854-1	0,01260	130050	60300	0,043	427,0	284.7	439,2
$2 / \mathrm{d}$ at 200								
0,001572	0,98031	0,00449	155800	5570	0,357	376,2	310,2	362,6
0,001020	0,9728	0,00374	149700	cos50	0,446	380,5	301,0	386,6
0,001) is3	0,9035	0,00318	143000	78650	0,648	418,0	291,8	127,0
0,001736	0,9527]	$0,0 \times 275$	138100	90920	0,658	434,5	283,3	487,2
$\mathrm{x} / \mathrm{d}=180$								
0,001575	10,9805	0,004.4	155500	50300	0,362	399,0	308,7	
0,001630	0,97:50	0,00370	149300	67000	0,452	397,0	320,4	
0,001688	0,9024	0,00314	1.43150	75600	0,558	20,0	281,1	
0,00174	0,9510	0,00269	137300	92850	0,077	438,5	285,1	

TABLES.

TABLE III

CALCULATION OF "GRASHOF" ANO "g" FOR FOUR VESSEL TBMPBRATURES

$$
\begin{aligned}
& \begin{array}{c}
T_{w}-T_{n}=8,8^{\circ} \\
T_{n}
\end{array} \\
& T_{x}-T_{\nu}=8,5^{\circ} \\
& T_{x}-T_{n}=10,2^{\circ} \\
& T_{x}-T_{a}=10,8^{\circ} \\
& \text { at vessel temperature } \\
& \text { at vessel temperature } \\
& \text { at vessel temperature } \\
& =08.2^{\circ} \\
& T_{n}=85,5^{\circ} \\
& T_{n}=101,8^{\circ} \\
& T_{0}=118,0^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& v_{10, c^{\circ}}=0,00220 \frac{\mathrm{~cm}^{2}}{m 0} \\
& y_{12,0^{\circ}}=0,00250 \frac{\mathrm{~cm}^{2}}{208} \\
& \text { Gr } 4,2^{\circ}=1,370 \cdot 10^{\circ} \\
& \mathrm{Gr} \mu \mathrm{~s}^{\circ}=2,202 \cdot 10^{\circ} \\
& \mathrm{Gr}_{24, \mathrm{a}^{\circ}}=3,346 \cdot 10^{\circ} \\
& \mathrm{Gr}_{\mu 4,0^{\circ}}=4,768 \cdot 10^{\prime}
\end{aligned}
$$

97

[^0]: *Numbers in the margin indicate pagination in the foreign text.

[^1]: Since the velocity field is only a function of the Reynolds number, another system could be used instead of this one for the velocity field.

