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ROBERT M. KERR 1 

NASA Ames Research Center 
M.S. 202A-1, Moffett Field, CA 94035 

ABSTRACT. Velocity and passive-scalar spectra for turbulent fields generated by a forced 
three-dimensional simulation with 1283 grid points and Taylor-microscale Reynolds num­
bers up to 83 are shown to have distinct spectral regimes, including a Kolmogorov inertial 
subrange. Both one- and three-dimensional spectra are shown for comparison with exper­
iment and theory, respectively. When normalized by the Kolmogorov dissipation scales 
velocity spectra collapse to a single curve and a high-wavenumber bulge is seen. The 
bulge leads to an artificially high Kolmogorov constant, but is consistent with recent mea­
surements of the velocity spectrum in the dissipation regime and the velocity-derivative 
skewness. Scalar spectra, when normalized by the Oboukov-Corrsin scales, collapse to 
curves which depend only on Prandtl number and show a universal inertial-convective 
subrange, independent of Prandtl number. When normalized by the Batchelor scales. the 
scalar spectra show a universal dissipation regime which is independent of Prantl numbers 
from 0.1 to 1.0. The time development of velocity spectra is illustrated by energy-transfer 
spectra in which distinct pulses propagate to high wavenumbers. 

1. Introduction 
The most common tools for describing isotropic, homogeneous turbulence are 

spectra. In particular, theoretical, experimental, and numerical invest igations of the 
k- 5 / 3 inertial subrange of the kinetic-energy spectrum, predicted by Kolmogorov 
(1941), has become a small industry. The variance spectrum of a passive scalar is 
also predicted to have an inertial subrange (Oboukov, 1949: Corrsin, 1951). Ex­
amples of passive scalars are temperature and salinity, when buoyancy is neglected, 
and chemical reactants. Experiments strongly support the existence of a k- 5 / 3 in­
ertial su brange for both the 'kinetic-energy and scalar-variance spectra (Champagne 
(1978) for the velocity and references in Hill (1978) for the scalar). 

But the inertial subrange is only one part of the spectra. There are dissipation 
regimes and for the passive scalar there is an inertial-diffusive regime associated 
with low Prandtl numbers (high scalar diffusivity) and a diffusive-convective regime 
associated with high Prandtl numbers (low scalar diffusivity). These regimes are 
found in wavenumber bands determined by the largest scales of turbulence L (see 
eq. 16b) and three dissipation scales which depend on the Prandtl number, Pr = 
V / D, the viscosity v, and the kinetic-energy dissipation rate L The dissipation 
wavenumbers and corresponding length scales are the Kolmogorov scale, 

(la) 
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the Batchelor scale, 

(lb) 

and the Oboukov-Corrsin scale, 

(Ie) 

The inertial subrange of the kinetic-energy spectrum 

(2) 

where Q is the Kolmogorov constant, is found between the turbulent scale L (16b) 
and the Kolmogorov scale 17. Theoretical predictions by Pao (1965) and Herring 
& Kraichnan (1979) suggest that in the dissipation regime, for k > kk, that the 
spectrum will decay exponentially with increasing wavenumber. 

The inertial-convective subrange of the scalar-variance spectrum 

(3) 

where Q{) is the Oboukov-Corrsin constant, is found between the turbulent scale L 
and the largest of the dissipation scales, or at wavenumbers below the smallest of the 
wavenumber cutoffs. For wavenumbers greater than the largest of the wavenumber 
cutoffs, the scalar spectrum is believed to have an exponential dissipation regime 
similiar to that for the kinetic-energy spectrum. The spectrum between the inertial­
convective subrange and the dissipation regime is determined by the Prandtl number 

. and the ordering of the wavenumber cutoffs. 
For high Prandtl number (low diffusivity), the wavenumber cutoffs are ordered 

as 
kk < kB < koc 

and Batchelor (1959) predicts that the viscous-convective spectrum, which is be­
tween the Kolmogorov wavenumber and the Batchelor wavenumber, obeys 

(4) 

where e is the root-mean-square rate of strain and Co ~ 1. The exponential with 
Co is not rigorous, but Kraichnan (1968) suggests that the k- 1 power law might be 
rIgorous. 

For low Prandtl numbers (high diffusivity) the wavenumber cutoffs are ordered 
as 
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Between koc and kk' Batchelor et al. (1959) suggested that the inertial-diffusive 
spectrum would have the form 

(5) 

Gibson (1968b) predicts that the k- 17/ 3 regime will be valid only between kB and 
kk. Between koc and kB, that is between the -17/3 and -5/3 regimes, he predicts 
another regime which obeys 

(6) 

Two secondary predictions of Gibson are that the mixed-derivative skewness (27) 
is independent of Prandtl number (Clay, 1973) and that in the scalar-dissipation 
regime the spectra for all Prandtl numbers will scale with the Batchelor scales and 
the strain (Gibson, 1968a). Batchelor (1959) predicted that this scaling would only 
be true for large Prandtl numbers. 

These theoretical results are for three-dimensional spectra. Experimentalists usu­
ally present only one-dimensional spectra because single hot-wire anemometers mea­
sure only the longitudinal one-dimensional kinetic-energy spectrum 

(7) 

With crossed-wire probes the full one-dimensional kinetic-energy spectrum 

(8) 

can also measured. In isotropic turbulence these spectra are related to the three­
dimensional, kinetic-energy spectrum by 

and 

(k) = k
3 
~ (~ dEl') 

E 2 dk k dk 

E(k) = k dEdk) 
dk 
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(lOa) 

(lOb) 



In the inertial subrange E 1'(k1} = 01'f2/3kl-5/3 and El(kt} = 0If2/3kl-5/3, where 
the one-dimensional Kolmogorov constants are 

3 
01 =-0 

5 

, 18 
01 =-0 

55 
(lla,b) 

The one-dimensional scalar-variance spectrum, which can be measured with a single 
temperature probe, is related to the three-dimensional spectrum by 

(12a) 

(12b) 

In the inertial subrange E0 1{kt} = 00IXf-l/3kl-5/3, where the one-dimensional 
Oboukov-Corrsin constant is 

aOI = 0.6ao (13) 

A major aim of turbulence theory is to successfully predict the constants for these 
spectral subranges, while an objective of the experimentalists is to provide the the­
orists with reliable values for the constants. One approach to making theoretical 
predictions is to use a spectral closure such as the direct-interaction approxima­
tion, or DIA, (Kraichnan 1959) or the eddy-damped quasi-normal markovian model 
(Orszag 1970). Herring and Kraichnan (1979) use a variant of the DIA and cal­
culate the three-dimensional Kolmogorov constant to be 1.85. Larcheveque et al. 
(1980) review the closure predictions for passive scalars. 

Another theoretical approach is to make assumptions about the cascade of energy 
to high wavenumbers. If the cascade is uniform in space one expects a k- 5 / 3 inertial 
subrange. But it is well known that the cascade is intermittent. Kolmogorov (1962) 
and Frisch et al. (1978) make assumptions about spatial intermittency and predict 
small corrections to the -5/3 law. Siggia (1978) and Kerr and Siggia (1979) discuss 
temporal intermittency, but make no spectral predictions. 

Measurement and analysis of high-wavenumber velocity spectra is sensitive to 
errors in instrumentation and in the assumptions of the Taylor "frozen-flow" hy­
pothesis. Only recently have probes been able to measure. fluctuations below the 
Kolmogorov microscale in atmospheric flows and have detailed corrections to the 
Taylor hypothesis been made. Figure 1 summarizes two sets of experiments. Chap­
man (1979) cited a variety of older experiments to show a universal Kolmogorov 
inertial su brange. Detailed corrections to the Taylor hypothesis were not accounted 
for in these experiments. This should not affect the inertial range strongly, but 
it will affect the dissipation regime. Champagne (1978) uses the most recent in­
strumentation and analysis. He finds a Kolmogorov constant which is consistent 
with Chapman, a ~ 1.5 or aI' ~ 0.5, and no significant derivations from the -5/3 
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law are observed. The difference between his dissipation regime and those cited by 
Chapman is consistent with corrections he made to the Taylor hypothesis. Near 
the crossover between the inertial and dissipation subranges, Champagne observes 
a bulge. This is especially large in low-Reynolds-number experiments for the wake 
behind a cylinder. In addition, the velocity-derivative skewness (see eq. 20) is ob­
served to increase with Reynolds number. Because of a relationship between the 
spectral shape and the skewness (see eq. 22), a decreasing bulge is consistent with 
an increasing skewnes~ (see eq. 25). 

For the scalar spectrum there is a wide range of scatter in the Oboukov-Corrsin 
constant, although a value of ae ~ 1 or a/ ~ 0.6 seems reasonable (Champagne et 
a1. (1977); references in Pao (1965) and Monin and Yaglom (1975), p. 511). For 
high Prandtl numbers there is strong support for a k- 1 subrange (see Monin and 
Yaglom, 19i5, p.513), but for low Prandtl numbers there are no reliable measure­
ments because of the exotic nature of the fluids. For Pr = 0.02 (liquid mercury), 
Clay (19i3) finds some evidence for a -17/3 regime and an intermediate regime 
which would be consistent with the k- 3 regime predicted by Gibson (1968b). Ex­
periments in Clay (1973) also support the secondary predictions of Gibson that the 
mixed-derivative skewness (see eq. 23) will be constant and that the dissipation 
regime for all Prandt.1 numbers will obey Batchelor scaling. 

Direct numerical simulation of turbulence would seem to be an ideal means of 
det.ermining the spectra. Conditions can be carefully controlled and because entire 
fields are available, both one- and three-dimensional spectra can be determined. 
But until recently these simulations have been restricted by small meshes to very 
IO\\' Reynolds numbers and no inertial regimes have been found. However, Kerr 
(1985) presents results from a forced spectral simulation with 1283 mesh points and 
Taylor-microscale Reynolds number R).. up to 83. For these flow fields Kerr found a 
short inert ial su brange. We have examined the same flow fields discussed by Kerr 
(1985) and we will present a larger variety of one- and three-dimensional spectra, 
including comparisons with theories and experiments. 

Figures 1 t.o 9 depict kinetic-energy and scalar-variance spectra which have been 
averaged over many flow fields. To study temporal intermittency, time-dependent 
energy-transfer spectra for some of the same flow fields are presented in figures 10 
and 11. Because turbulence is intermittent, one might expect some fluctuations 
in the time-dependent spectra of a finite sample. In our simulations the turbulent 
length scale L (see eq. 16b) is the size of the periodic box, so the sample size is very 
small at the largest turbulent scales, and large fluctuations at low wavenumbers are 
anticipated. But at the high wavenumbers, or smallest scales, the large mesh size 
could provide such a large statistical sample that no fluctuations would be observed. 
The extent of the fluctuations at large wavenumbers indicates the degree to which 
large-scale int.ermittency influences the smallest scales of turbulence. 
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2. Numerical method 
The governing equations of the simulation are the incompressible Navier-Stokes 

equation for the velocity and the transport equation for a passive scalar. The 
N avier-Stokes equation is 

(14) 

yr'U=O (incompressibility) 

and the convective form of the scalar equation is 

(15) 

In the absence of viscosity v and diffusivity D the equations conserve two positive­
definite quadratic invariants: the kinetic energy of turbulent fluctuations, 

and the scalar. variance, 

1 
E = - < UjUj > 

2 

Ee =< ({~ > 

The fundamental dimensionless parameters that determine our spectra are the 
Taylor-microscale Reynolds number, R)., = VA/V, and the Prandtl number v/D, 
where U is the characteristic velocity of the turbulence, 

and A is the Taylor microscale, 

Also of interest are the kinetic-energy dissipation rate, 

d 
£=--<E> 

dt 

the scalar-variance dissipation rate, 

and the eddy-turnover time, 

d 
X = -- < Ee > 

dt 

6 

(16a) 



where 

(16b) 

The numerical code used is a three-dimensional pseudospectral code with periodic 
boundary conditions. By spectral we mean that the fundamental variables that are 
stored and advanced in time are the Fourier-transformed velocity and scalar fields, 
u(k) and O(k). Details about the algorithms, aliasing control, and forcing may 
be found in Kerr (1985). With 1283 mesh points and no subgrid modeling of the 
small scales, Taylor-microscale Reynolds numbers as high as 83 can be simulated 
with full resolution of the smallest scales. Prandtl numbers are restricted in our 
simulations to less than 1.0 in order to maint.ain good resolution of the small scales 
and to greater than 0.1 in order to allow a wide enough range of scales to identify 
spectral regimes. Details of the simulations are given in the Table 1, with the case 
numbers corresponding to those in Kerr (1985). For a 1283 mesh with three scalars 
approximately 55 seconds of cpu were required per evaluation of the time derivative 
and 70 hours of Cray-IS time were required for three eddy-turnover times. 

To maintain a statistically steady state, the equations were forced by adding 
energy and scalar variance to the lowest wavenumber band. If the energy cascade 
is unaffected by the details of the large scales, as assumed by the Kolmogorov 
hypothesis, then forcing the large scales, or low wavenumbers, should be an effective 
means of producing small-scale t.urbulence with many of the same properties as true 
experimental turbulence. Examination of the spectra is one way in which to test 
this hypothesis. Figures 1 to 9 represent averages over at least two eddy-turnover 
times for each Reynolds number. 
3. Velocity spectra 

Figure 2 presents calculated, three-dimensional, kinetic-energy spectra for several 
Reynolds numbers. Each point represents the kinetic energy in a spherical shell of 
wavenumbers between k = nand n + 1. The wavenumber plotted is n + !. One 
problem with the calculation of the three-dimensional spectrum is that the number 
of modes in each shell is not a smooth function. To produce a smoother curve, the 
energy in each shell has been divided by the the number of modes in the shell and 
multiplied by the volume of the shell, 11T((n -i- 1)3- n3 ). This has also been done for 
the scalar-variance spectra in figures 4 to 7. All of the time-averaged spectra to be 
discussed have been normalized by the Kolmogorov microscales and multiplied by 
k5

/
3

• The inertial su brange would appear as a line with zero slope in these figures. 
To be consistent with Kolmogorov hypothesis, all of the simulated spectra should 

collapse to a single curve. Except for the lowest Reynolds number, all of the spec­
tra in figure 2 do collapse to a single form in the dissipation regime. Below the 
dissipation regime (11k < 0.4), the spectra seem to be approaching a limit as the 
Reynolds number increases. For the largest Taylor-microscale Reynolds number, R).. 
= 82.9, there is a short inertial subrange at the lowest wavenumbers, although not 
long enough to determine if there are any corrections to Kolmogorov scaling. Since 
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there are no direct measurements of the three-dimensional kinetic-energy spectrum 
we can only compare with a theoretical form, such as Pao (see eq. 24), which is 
shown by the dashed line. 

The Kolmogorov constant for the Pao curve is 2.45, which is much higher than 
the accepted value of 1.5. This value for the Kolmogorov constant could be due to a 
bulge in the three-dimensional spectrum at the cross-over between the inertial and 
dissipative regimes. That is, the normalized spectrum appears to drop slightly at 
the lowest wavenumbers. It is possible that at wavenumbers below those simulated 
this drop continues, yielding a calculated J\olmogorov constant in better agreement 
with the experiments. It is also possible that the large Kolmogorov constant is a relic 
of the low-wavenumber cutoff. In a real flow there is a small backwards transfer of 
energy associated with vortex pairing. While essentially a two-dimensional process, 
this also occurs in three dimensions and the low-wavenumber cutoff might block 
this pairing, forcing excess energy into the high wavenumbers of the simulations. 
However, if the net energy flow from a true cascade dominates the back transfer, 
then our forcing can mimic a cascade and the simulation could be calculating the 
correct Kolmogorov constan't for this ReynoJds number. 

To get better comparisons with experiment, one-dimensional spectra must be 
plotted. Figure ~ presents the calculated one-dimensional energy spectra (8) for 
our two highest Reynolds numbers. Pao's form (see eq. 24), integrated by (lOa) 
is shown for two values of the KolrJ?ogorov c()nstant, a= 1. 7 and a=2,45. At low 
waven1.lmbers, the comp~t~~ spectrum does approach Pao's form for a= 1. 7, which 
is near the experiment.al value of tl?e ~olmogorov constant. Since this spectrum 
can pe measured with crossed-wjre probes, some results from Champagne (1978) 
are included. We took t~e longitudinal spectrum for a low-Reynolds-number shear 
flow (his figure 3! R)., = 1:30) and add,ed it ~() t~ice the cross spectrum for the 
same flow (his figure 9). While there is np agreement in the inertial subrange, 
where the effect of the forcing is greatest, the strong agreement in the dissipation 
range ~s encouraging. There ar,esmall bulges in both the experimental spectrum 
and the computed spectrum a~ 11k = 0.2. Fo~ better comparisons we encourage 
experimentalists to measure cross spectra at. higher Reynolds number along with 
the higher-order correlations discussed in Kerr (1985). 

Figure 1 presents the calculated, longit.udinal, one-dimensional, kinetic-energy 
spectrum (7) and comparisions ~jth several ,experiments and curves based o~ Pao 
(see eq. 24), integrated by equ,ation (9a). The computed and experimental spectra 
do not agree in the inertial subrange, but the computed dissipation-range spectrum 
again agrees with an experiment in Champagne (1978), in this case high-Reynolds­
number atmospheric data (his figure 25). Earlier experiments (from Chapman, 
1979) strongly dissagree with both the computations and the data from Cham­
pagne in the dissipation regime. This discrepancy is consistent with the corrections 
to the Taylor hypothesis made by Champagne. Neither the computations nor the 
experiment from Champagne show as large a bulge as the energy spectra in figures 
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2 and 3, which might explain why this effect had not been noticed in earlier ex­
periments. Lower Reynolds-number experiments for a wake behind a cylinder by 
Champagne show a larger bulge, but none of the experiments has as large a bulge 
as our simulations. To understand the relation of this to our results, let us consider 
the energy-transfer spectrum and the velocity-derivative skewness. 

The three-dimensional energy-transfer spectrum 

(17) 

is defined by the equation for the three-dimensional kinetic-energy spectrum 

(18) 

The integral of the energy-transfer spectrum is zero, J Tu(k)dk = 0 (where the limits 
of all our integrals are from 0 to oc), but the integral of the vorticity-production 
spectrum 

(19) 

is nonzero and in isotropic turbulence is related to the velocity-derivative skewness 

< (~)3 > ax. 
(20) 

by 

-5 = ~ Pn 
u(k) 35 (_{ ) ~ 

151/ 

(21 ) 

The vorticity production is also related to a fourth-order moment of the kinetic­
energy spectrum by an integral equation for the energy dissipation 

1 d J 2 J 4 2v dt f. = k Tu(k)dk --- 2v k E(k) dk (22) 

For our forced simulations. an extra source term should be added, but it appears at 
low wavenumbers and has negligible effect. Because our simulation is statistically 
steady, 1t f. ---+ 0 and J k2Tu ---+ 2v J k4E = (0 as the Reynolds number increases. 
Therefore, a third measure of the skewness, the dissipation skewness, is (Wyngaard 
and Tennekes, 1970) 

(23) 
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Because of the connection between the skewnesses and the fourth-order moment 
of the spectra, a simple relation between the velocity-derivative skewness and the 
Kolmogorov constant exists. If the spectral form of Pao (1965) 

(24) 

is used with the equation for the velocity-dissipation skewness (23), Kerr (1985) 
finds 

Su = -2.400:- 3/ 2 (25) 

Because Champagne's experiments have shown that Pao's form is a poor repre­
sentation of the spectrum and because experimental values for the skewness and 
Kolmogorov constant are not consistent with (25) (Kerr 1985), there is no reason 
take this equation literally. But it. does show that if there is a higher effective Kol­
mogorov constant, or a larger bulge, the magnitude of the skewness will decrease. 
Therefore, the decrease in the size of the bulge with Reynolds number is consistent 
with the observed increase in the skewness in experiments. 

Champagne (1978) considered in detail comparisons between Su and Sf" He found 
that Su increases with Reynolds number, possibly approaching -0.8 at very large 
Reynolds numbers. For our Reynolds number (>:::: 83) the values of the simulated 
skewnesses would be consistent with the experiments, but Kerr (1985) found no 
evidence that the magnitude of the skewness increases. Both Champagne (1978) 
and Kerr (1985) found that St --+ - Su but Kerr (1985) found that the limit of S( is 
0.5, not 0.8. Champagne (1978) also observed that the velocity-derivative flatness 

< (au))4 > 
ax, 

(26) 
2 2 

< (~) > ax) 

increases with Reynolds number and is related to Su by 

-Su 
---aIs = constant 
Fu . 

The flatness values in Kerr (1985) are consistent with those of Champagne, but the 
flatness increases independently of the skewness. The increasing flatness in Kerr 
(1985) is identified with increasing int.ermittency at the smallest scales of turbulence. 
Another inconsistency between the experiment and our simulation is that while the 
experiments show a larger bulge at low Reynolds number, which is consistent with 
our simulation, they show no evidence of an inertial subrange, while the simulations 
do. 

These inconsistencies could be due to the forcing. Only in high Reynolds-number 
experiments, where the small scales might be sufficiently decoupled from the large 
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scales, could the bulge dissappear and the skewness become constant. In our sim­
ulations there is no energy at scales larger than the size of the simulation, so an 
artificial decoupling might occur and the skewness might reach a maximum ear­
lier and the bulge could remain larger. It is also possible that the skewness does 
increase with Reynolds number in Kerr (1985), but that the range of Reynolds 
number is too small to see it. In this case the simulations would be consistent with 
the experiments. 
4. Passive scalar variance spectra 

Figures 4 to 6 present three-dimensional scalar-variance spectra for three Prandtl 
numbers, Pr= 0.1, 0.5, and 1.0, respectively. Four Reynolds numbers are plotted 
in each case and the spectra are normalized by the variance dissipation, the Kol­
mogorov microscales, and multiplied by k 5/ 3 • The spectra have been weighted by 
the number of modes in the same manner as shown in figure 1. The lowest wavenum­
ber band is not plotted because it is sensitive to the effects of the forcing and does 
not scale in the manner of the other wavenumbers. Some effects of the forcing are 
also seen in the lowest plotted wavenumber band in figures 5 and 6, Pr=0.5 and 
1.0, for R>, =82.9. Despite this, as was true for the velocity in figure 1, the scalar­
variance spectra in figures 4 to 6 collapse to forms that are independent of Reynolds 
number in the dissipation regime, except for the lowest Reynolds number. At lower 
wavenumbers, rJk < 0.2, the spectra seem to be approaching asymptotic forms as 
the Reynolds number increases. 

For low Prandtl number (high diffusivity) there should be an inertial-convective 
subrange (3) for \ ... avenumbers below the Oboukov-Corrsin cutoff k oc • For simula­
tion F27, Pr=O.l, R>, = 82.9, and koc = 8.1. While koc is within the simulation, 
it is small and an inertial-convective subrange, which would be indicated by a sec­
tion with zero slope, is not found in figure 4. The ratio of the Oboukov-Corrsin 
wavenumber and the Kolmogorov wavenumber for F27 is rJkoc = 0.18, so the regimes 
predicted by Batchelor et al. (1959) and Gibson (1968b) could also appear. The 
prediction of Batchelor et al., k- 17/ 3 (5), for 0=2.45 is shown by the dashed line in 
figure 4. At low wavenumbers the calculated spectra in figure 4 could be described 
by an intermediate power law,.but not the k- 3 predicted by Gibson (1968b). There­
fore, we must conclude that the Prandtl number of the simulation is not low enough 
to see any of the predicted low-Prandtl-number spectral regimes. Based on Gibson 
(1968a,b), Clay (1973) predicted that the mixed-derivative skewness, 

Su.fI = 
< ~(~)2 > 

aXI aXI (27) 

should be independent of Prandtl number. The mixed-derivative skewness is dis­
cussed in detail by Kerr (1985), who finds that it is independent of both the Reynolds 
number and Prandtl number and equal to -0.5 in these simulations, the same 
value as for the velocity-derivative skewness (20). To get better comparisons with 
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the theories, lower Prandtl numbers could be simulated, but the Oboukov-Corrsin 
wavenumber, koe, would then be in the regime where the forcing dominates and the 
results would be questionable. 

For Pr=0.5 (figure 5) no subranges in the scalar-variance spectrum are expected 
besides the inertial-convective subrange (3) and the dissipative range. The inertial­
convective subrange in figure 5 would be compatible with an Oboukov-Corrsin con­
stant Q(I of about 1.0, or about half the Kolmogorov constant. The one-dimensional 
constant, QIH ~ 0.6 (13), is consistent with the experiments mentioned in the in­
troduction. This is discussed further when direct comparisons to the experiments 
are made (figure 8). 

For large Prandtl number (low scalar diffusivity) Batchelor (1959) predicted a k- l 

regime such as (4). Pr=1.0 (figure 6) is too low for this subrange to be observed 
fully, but scalar experiments for Pr=0.7 (air) show a "bump" which looks like a 
short k- l (Hill, 1978). Therefore, it is not surprising that a significant bump is 
observed in our calculated spectra for Pr = 1.0. 

To get a better comparison between the scalar spectra for different Prandtl num­
bers and the kinetic-energy spectrum, figure 7 presents all the kinetic-energy and 
scalar spectra for our largest Reynolds number, R>.=82.9. The effect of the forcing 
on the first two wavenumber bands is seen for all three Prandtl numbers. That is, 
if there were no forcing, the the spectra would be smooth at the third wavenumber 
band. 

For comparison with the experiments, one-dimensional scalar-variance spectra 
for Pr=O.l, 0.5, and 1.0 are presented in figure 8. Only the largest two Reynolds 
numbers are plotted. An experimental spectrum (Champagne et a\. 1977) for 
Pr=0.7 (air) lies between the calculated spectra for Pr = 0.5 and 1.0, as expected. 
In the inertial subrange the experimental spectrum is consistent with the calculated 
spectra for Pr = 0.5 and 1.0, which we expect because scalar dissipation, and the 
value of the scalar diffusivity D, should not have a significant effect on the inertial­
convective subrange. 

Gibson (1968a) predicts that in the dissipation regime scalar spectra will depend 
only upon the scalar dissipation x, the rate of strain !c, and the Batchelor scale v 
77 B. and be independent of the Prandtl number. With this scaling all of the scalar 
spectra in the simulations and the experiment of Champagne et. al. (1977) col­
lapse to a single curve in the dissipation regime (figure 9). This agrees with the 
scaling found in experiments by Clay (1973) for Prandtl numbers from 0.02 (liquid 
mercury) to 7.0 (water). This prediction is based upon the assumption that at 
high wavenumbers the large-scale strain can still dominate the scalar dissipation 
even when the scalar-variance cascade is no longer important. At low Prandtl num­
bers this can occur only if the rate of strain is constant over scales large compared 
to Kolmogorov microscale 1]. This would be consistent with the graphics of Kerr 
(1985), which show extended vortex structures where the large scale of the vortices 
is several times 1]. 
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5. Energy-transfer spectra 

The best means of highlighting temporal fluctuations in the velocity spectrum is 
to plot the energy-transfer spectrum (17), which indicates the rate at which energy 
cascades through the spectrum. The time evolution of the transfer spectra for our 
two largest Reynolds number simulations (F22 and F25) are shown over periods of 
1.8 and 1.4 eddy-turnover times in figures 10 and 11, respectively. The time span 
given in the figures is in simulation variables (see Kerr 1985) and should be compared 
with the eddy-turnover times in table 1. The transfer in the first wavenumber band 
(which is always negative) has been divided by its time-averaged value so that it 
will fit in the figures, and the time-averaged energy-transfer spectrum is given at the 
top. The time-averaged spectrum is consistent with a Kolmogorov cascade in both 
figures. In the lowest wavenumber band, which is the energy source, the spectrum 
is large and negative. At higher wavenumbers the spectrum is positive and almost 
constant until the dissipation regime. This is expected because the time-averaged 
transfer spectrum will equal the dissipation spectrum (18) in a statistically steady 
flow and have a profile similiar to figure 2. As mentioned after (18), the integral of 
the transfer is zero. 

But the time-dependent transfer spectra are not consistent with a steady Kol­
mogorov cascade. Distinct. pulses propagate to higher wavenumbers before disap­
pearing where the dissipation spectrum begins in figure 2 (k ::::::; 7 in figure 10 and 
k ::::::; 10 in figure 11). Their progress is outlined by dotted lines in figure 11. The 
pulses are characterized by a positive leading, or high wavenumber, part. and a neg­
ative following part. superimposed on the constant positive background. The rate 
at which they propagate to high wavenumber appears to be linear with time, but 
the sample is small. There is no indication that they would propagate to infinite 
wavenumber in a finite time if the viscosity were zero. 

Despite the large statistical sample at moderate wavenumbers (k ::: 10) in the 1283 

simulation (figure 11), the pulses remain distinct until the dissipation regime. If 
statistics alone governed the size of the pulses, one might expect that their strength 
would decay as the square root of the sample size. Since the size of each wavenumber 
shell goes as k 2 , this would imply that the pulses should decay as k- l . It is clear that 
they do not. Therefore large-scale intermittency is felt in the dissipation regime. 
This would be consistent with the vortex structures observed in Kerr (1985) that 
extend from the largest scales of these simulations to the Kolmogorov microscale. 
Not.e that a k- 5/ 3 spectrum occurs in our simulation along with large temporal 
and spatial intermittency. This suggests that intermittency can be consistent with 
a k- 5/3 inertial regime and does not necessarily lead to corrections of the type 
predicted by Kolmogorov (1962) and Frisch et al. (1978). Lundgren (1982) has a 
model for dissipation structures that is based upon strained vortex tubes similiar 
to those observed by Kerr (1985). His model develops a k- 5 / 3 spectrum when 
fluctuation pulses are averaged in time. 

Similiar pulses have been observed before for time-dependent spectra in simple 
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spectral models. Kerr and Siggia (1978) present a cascade model of turbulence 
where each band of wavenumbers with 2 1- 1 < Ik\ ::; 21 is modeled by a single 
complex variable. They observed pulses of energy cascading to high wavenumbers, 
then dissipating. But there are some significant differences between their model 
and the Navier-Stokes equation, in addition to the severe wavenumber truncation. 
They found an extra third-order quantity, in addition to the energy, which was 
nonzero and conserved by the nonlinear terms. The only analog to this term in the 
Navier-Stokes equation is the energy-transfer spectrum, whose integral is zero. They 
also showed that their model could be derived from a truncated form of Burgers 
equation. Burgers equation is a one-dimensional equation that is known to form 
shocks, which do not exist in an incompressible flow. The pulses in Kerr and Siggia 
were identified with these shocks. Nonetheless, the envelopes of the pulses in Kerr 
and Siggia, when plotted in terms of the third-order invariant, and of the pulses 
in the energy-transfer spectra seen in figures 10 and 11 are similiar and suggest 
that the pulses might be identified with the development of sharp structures in the 
velocity or vorticity field. The appearance of extended vortex structures in the 
graphics of Kerr (1985) might represent this process. 

Our simulation and the latest experiments observe a high-wavenumber bulge, 
while steady spectral closures do not. Because the net transfer spectrum is given 
by the dissipation spectrum through (18), the bulge implies that energy transfer 
into a wavenumber regime through the nonlinear terms decreases more slowly with 
increasing wavenumber than transfer out of that regime. This could mean that 
temporal or spatial intermittency could provide a mechanism which would explain 
this and the bulge. A steady. not just statistically steady, cascade would not suffice 
because the rates of energy transfer into and out of a wavenumber regime should 
decay together with increasing wavcnumber. However, a strong pulse could transfer 
energy into the dissipation regime faster than it is removed by dissipation. The rate 
at which a pulse transfers energy into the dissipation regime goes as TJ / U, where 
U is the strength of the pulse and 1] is the Kolmogorov or dissipation microscale 
(la). If viscous diffusion prevents the nonlinear terms from transferring energy to 
higher wavenumbers, then the pulse can decay only through viscous dissipation, 
with timescale TK. For a sufficiently strong pulse, U could be large enough that 
the transfer into the dissipation scales would be faster than the viscous dissipation 
and a bulge would be produced. This might be simi liar to the turnup at the high 
wavenumber end of time-averaged spectra (figures 1-9), which occurs because there 
are no wavenumbers beyond the high-wavenumber spectral cutoff for energy to drain 
into. 

6. Conclusion 

We have studied in detail spectra produced by numerical simulation of the in­
compressible Navier-Stokes equations and passive-scalar transport equations for a 
range of Reynolds numbers and Prandtl numbers. These simulations are limited 
by the mesh size to moderate Reynolds numbers, and an artificial forcing was used 

14 



to maintain a statistically steady state. With these qualifications, we believe that 
this is the first time a Kolmogorov inertial subrange has been directly simulated for 
an extensive period. In other cases where a Kolmogorov spectrum has been found 
either subgrid modeling was used (Siggia and Patterson, 1978) or the spectrum was 
transient (Brachet et al. 1983). The Kolmogorov constant that we found is too 
large, but from comparisons with experimental values at low Reynolds number it 
seems probable that when higher Reynolds numbers can be simulated, better agree­
ment will be obtained. In particular, the high-wavenumber bulge might decrease 
with increasing Reynolds number while the velocity-derivative skewness increases, 
as observed in some experiments. The close agreement between the simulations and 
the experiments of Champagne (1978) in the dissipation regime is encouraging. 

Scalar-variance spectra are believed to have two spectral regimes which depend 
on Prandtl number, in addition to regimes similiar to the inertial subrange and 
the dissipation regime found for the velocity. The simulations are consistent with 
these predictions, but the range of Prandtl numbers is too small to allow direct 
comparisons with either the very high or very low Prandtl number theories. While 
there is no solid evidence as to whether the Batchelor et al. (1959) or the Gibson 
(1968b) theory for the spectral form at small Prandtl numbers is correct, two sec­
ondary prf'dictions based on Gibson (1968a,b) are supported; the mixed-derivative 
skewness is constant and the scalar-dissipation spectra obey Batchelor scaling. 

Pulses are observed in the energy-transfer spectrum which have a profile similiar 
to those observed in the cascade model of Kerr and Siggia (1978). The pulses 
propagate linearly in time to high wavenumbers and are distinct until the dissipation 
regime. This would suggest that large-scale intermittency is felt at the smallest 
scales and is consistent with the vortex structures found in the graphics of Kerr 
(1985). The appearance of a Kolmogorov inertial subrange, along with extended 
small-scale structures and spectral pulses is consistent with the model of Lundgren 
(1982). The pulses and the extended structures could provide a mechanism for 
allowing energy to cascade further into the dissipation regime than is predicted by 
spectral closures, which would explain the bulge in the kinetic-energy spectrum. 

The simulations which produced the spectra were the largest possible on present 
computers. Despite the limitations. satisfactory comparisons with experiments were 
obtained and some new insight was gained. As computer speed and memory in­
creases, we are certain that these results will be extended to higher Reynolds num­
bers and a wider range of Prandtl numbers, and that eventually it will be unneces­
sary to use an artificial forcing to reach these Reynolds numbers. 

I wish to thank C.H. Gibson and R. S. Rogallo for many useful discussions. 
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Table 1 
Characteristics of the Simulations 

Run Mesh R>. Pr kk kB koc te 

F6 323 IS.5 1.0 16.5 16.5 16.5 1.97 
F7 323 " 0.5 " 11.7 9.S " 
FS 323 " 0.1 " 5.2 2.9 " 

F16 64 3 37.5 1.0 16.0 16.0 16.0 2.51 
F17 64 3 " 0.5 " 11.3 9.5 " 
FlS 64 3 " 0.1 " . 5.1 2.S " 

F19 64 3 4S.2 1.0 22.4 22.4 22.4 1.41 
F20 64 3 " 0.5 " 15.S 13.3 " 
F21 64 3 " 0.1 " 7.1 4.0 " 

F22 64 3 55.9 1.0 27.2 27.2 27.2 1.05 
F23 64 3 " 0.5 " 19.2 16.2 " 
F24 64 3 " 0.1 " S.6 4.S " 

F25 1283 82.9 1.0 45.7 45.7 45.7 0.85 
F26 1283 " 0.5 " 32.3 27.2 " 
F27 1283 " 0.1 " 14.5 8.1 " 
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Figure 1: Longitudinal one-dimensional kinetic-energy spectra (5) normalized by 
the Kolmogorov microscales and multipied by k 5

/
3

. Circle: R).. = 82.9. Triangle: R).. 
= 55.9. Curves based on Pao's theoretical form (1). integrated by (8a) for a = 2.45 
and 0: = 1.7 are indicated by the dashed and long-dashed lines respectively. The 
one-dimensional Kolmogorov constant is 0 I' :::-: !~ o. Experimental spectra from 
Chapman (1979) (plus) and Champagne (1978) (cross) are indicat.ed with dotted 
lines. 
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Figure 2: Three-dimensional kinetic-energy spectra normalized by the Kolmogorov 
microscales and multipied by k5/ 3 • Circle: R).. = 82.9. Triangle: R).. = 55.9. Plus: 
R).. = 37.2. Cross: R).. = 18.4. Pao's theoretical form (1) for Q = 2.45 is indicated 
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Figure 3: One-dimensional kinetic-energy spectra (6) normalized by the Kol­
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• Circle: R)., = 82.9. Triangle: R)., = 
55.9. Curves based on Pao's theoretical form (I), integrated by (8a) for 0 = 2.45 
and 0 = 1.7 are indicated by the dashed and long-dashed lines respectively. The 
one-dimensional Kolmogorov constant is OJ = 0.60. An experimental spectrum 
from Champagne (1978) is indicated by the dotted line. 
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Plus: R>. = 37.2. Cross: R>. = 18.4. The prediction of Batchelor et al. (1959) (4), 
k -173 for Q = 2.45, is shown by the dashed line. 
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Figure 8: One-dimensional scalar-variance spectra normalized by the Kolmogorov 
microscales and the scalar-variance dissipation X and multipied by k 5 / 3 • Circle: R). 
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triangle: R>. = 55.9 and Pr = 1.0. Experimental spectrum from Champagne et al. 
{1977} (dotted line). 
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Figure 10: Three-dimensional kinetic-energy transfer spectra for discrete times 
for simulations F22-24, R). = 55.9. Dashed lines indicate the wavenumber axis for 
each time. Solid lines indicate the spectra. Squares are the wavenumber axis for 
the time-averaged transfer spectrum. Circles are the time-averaged spectrum. The 
lowest mode for each spectrum is normalized by its time-averaged value. The figure 
spans simulation times from t=1.125 to 3.0. with time increasing from bottom to 
top. This should be compared with the eddy turnover time in Table 1. 
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Figure 11: Three-dimensional kinetic-energy transfer spectra for discrete times 
for simulations F2S-27, R).. = 82.9. Dashed lines indicate the wavenumber axis for 
each time. Solid lines indicate the spectra. Squares are the wavenumber axis for 
the time-averaged transfer spectrum. Circles are the time-averaged spectrum. The 
lowest mode for each spectrum is normalized by its time-averaged value. The figure 
spans simulation times from t=2.10 to 3.3, with time increasing from bottom to 
top. This should be compared with the eddy turnover time in Table 1. (Dotted 
lines indicate where pulses are moving to higher wavenumber.) 
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