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Integral property calculation is an important application for 
solid modeling systems. Algorithms for computing integral properties 
for various solid representation schemes are fairly well known. It is 
important to designers and users of solid modeling systems to 
understand the behavior of such algorithms. Specifically the 
trade-off between execution time and accuracy is critical to effective 
use of integral property calculation. This paper investigates the 
average behavior of two algorithms for Constructive Solid Geometry 
(CSG) representations. Experimental results from the PADL-2 solid 
modeling system show that coarse decompositions can be used to predict 
execution time and error estimates for finer decompositions. 
Exploiting this predictability allows effective use of the algorithms 
in a solid modeling system. 

Integral properties of a solid, sometimes called "mass 
properties," are defined by a volumetric integral of the form: 

where the function f is a polynomial, dV is the volume differential, 
and S is a solid that may be geometrically complex. Thus, for 
f(x,y,z) = 1, the integral represents the volume of the solid. Other 
functions are used to obtain the centroid, moments of inertia, 
products of inertia, etc. 

There are few algorithms for computing integral properties 
directly from the representation schemes used in current solid 
modeling systems. Analytical computation methods for complex solids 
are extremely difficult. With the exception of polyhedral 
representations, approximate representation conversion provides the 
most effective means for computation of integral properties. For 
solid modeling systems using the CSG representation scheme, the two 
most effective representation conversion algorithms are column 
decomposition and block decomposition. 
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Column decomposition produces a collection of simple elements 
whose integral properties are trivial to compute. The decomposition 
is performed using ray tracing techniques. A ray is cast 
perpendicular to each square from a 2-D grid. Line/solid 
classification is performed for teach ray, producing a columnar 
decomposition whose elements have a square cross -section. Similarly, 
block decomposition produces a collection of cubical elements whose 
integral properties are also trivial to compute. The decomposition is 
performed by recursively subdividing a bounding cube into octants and 
classifying each octant cube against the CSG solid. The subdivision 
continues for each octant cube which is neither inside nor outside of 
the CSG solid, producing a hierarchical decomposition known as an 
octree. Point/solid classification is performed at the final level of 
subdivision using a sample point from the octant cube. Using Monte 
Carlo theory, an error estimate (variance) for the result can be 
introduced into the algorithms by randomly selecting the target rays 
and sample points. 

The two most important measures of the algorithms' behavior are 
execution time (a measure of efficiency) and variance estimate (a 
measure of accuracy). A theoretical analysis of the algorithms only 
yields results for their worst-case behavior. The worst-case formulas 
for execution time and variance estimate are based on the level of 
subdivision used (2-D or 3-D grid size) and the number of primitives 
in the solid's CSG tree (a rough measure of its complexity). For 
column decomposition the worst-case execution time is a quadratic 
function of the number of primitives in the solid's CSG tree and a 
quadratic function of the number of grid squares along an edge of the 
solid's bounding cube. For block decomposition the worst-case 
execution time is a linear function of the number of primitives and a 
cubic function of the number of minimal size grid cubes along an edge 
of the bounding cube. 

An implementation of the two algorithms can be found in the 
PADL-2 solid modeling system. Solid models for several automotive 
mechanical parts were used to generate experimental data for the above 
two measures of behavior (execution time and variance estimate). An 
analysis of the data yields a set of formulas for the average behavior 
of the algorithms that are quite different from the worst-case 
analysis. For each formula, the variables are the level of 
subdivision (2-D or 3-D grid size) and a proportionality constant K. 
This constant K varies from solid to solid and is roughly proportional 
to the number of primitives in the solid's CSG tree. For column 
decomposition, the worst-case analysis predicted a quadratic function 
of the number of primitives, not a linear one. For block 
decomposition, the worst-case analysis predicted a cubi.c function of 
the number of minimal size grid cubes along an edge of the bounding 
cube, whereas a quadratic function was observed instead. 

The most useful fact is that the proportionality constant K is 
independent of the level of subdivision. A user would like to address 
questions such as: "How long will it take to compute the integral 



properties of a solid to 1% accuracy?" or alternatively "What level of 
accuracy can be obtained from one hour's execution time?". These 
questions can be answered by actually computing the integral 
properties for a subject solid using a low level of subdivision. The 
values for execution time and variance estimate can be used as "seed" 
values to compute the K constants for the solid. The formulas will 
then predict the algorithms' behavior at higher levels of subdivision. 

A prediction command has been implemented in the PADL-2 solid 
modeling system. A comparison of the predicted execution times and 
variance estimates with actual values shows this prediction cabability 
accurate enough to be quite useful. 




