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OPTIMAL DESIGN AND USE Or RETRY IN FAULT TOLERANT

REAL-TIME COMPUTER SYSTE,

Yann-Mang Lee and Kang G. Shin

ABSTRACT

In this paper, we present a new method for (i) determining
and (ii) using retry for fault characterization.

First, we derive an optimal retry policy for a given fault characteristic, which deter-
mines the maximum allowable retry durations so as to minimize the total task comple-
tion time. Then, we carry out the combined fault characteri:atiort and retry decision, in
which the charnctcristics of fault are estimated simultaneously with the determination of
the optimal retry policy. We have developed two solution approaches; one is based on
the point estimation and the other on the Baycs sequential decision. The maximum
likelihood estimators are used for the first approach, and the backward induction for
testing hypotheses in the second approach.

We also present numerical examples in which all the durations associated with
faults (i.e. active, benign, and inter-failure durations) have monotone hazard rate func-
tions, e.g., exponential, Weibull and gamma distributions. These are standard distribu-
tions commonly used for m)deling and analyses of faults.

Categoriev and Subject Descriptors: B.2.3 [Arithmetic and Logic Structures]: Relia-
bility, Testing and Pault-Tolerance -- ha:ard rate function, recovery overhead, optimal
retry policy, fault characteriatici G.3 [Probability and Statistics] -- eatimation, cen-
sored sampling, likelihood ratio, sequential or Dayes decision problem, hypotheaea leating.
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1. INTRODUCTION

There are three types of fault in computer systems; transient, intermittent, Ad

pcnnnnent [1). Transient faults die within a certain time of 'their generation, intermit-

tent faults cycle between being active and inactive, and permancnt faults are (as the

term indicates) permanent. It has been found that permanent faults form but a small

fraction of the faults in computer systems 12,3J, This makes the purging of any faulty

components as soon as they have been discovered an inefficient means for handling

redundnncy, If the active duration of a transient or intermittent fault is short, the con-

tinuation of the task with the same resource after the disappearance of the fault may be

more efficient than that of using other recovery methods. Unfortunately, it is impossible

to tell at its first occurrence whether or not the fault is permanent and also impossible

to know its active duration if the fault is intermittent or transient. hforeover, it would

be much more efficient (time-wise) and accurate to characterize faults on-line, and then

take the appropriate recovery actions. In this paper, we propose (i) determining an

optimal retry policy so as to minimize the task completion time, and (ii) using retry in

conjunction with statistical estimation and decision theory to characterize faults. We

obtain the optimal retry duration in the face of uncertainty about the nature of a

detected fault. Since our focus is on real-time systems, we are principally concerned with

skewing the density function of the task completion time as much to the left as possible.

For this reason, we shall concentrate on maximizing reductions in response time.

As the term implies, retry consists of restoring the affected process to some fault-

free initial state, and then re-running it on the same processor. Clearly, retry is only

applicable when the error induced by a fault is confined and the process can be restored

to integrity. The most efficient means for fault confinemcut are signal-level detection

i
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mechanisms which can detect faults immediately upon their occurrence (4). For the pro-

cess to be restorable to integrity, scratchpad registers are needed. Results obtained by

Carter, el el. (6) indicate that self-checking and retry mechanisms can be incorporated

into processors inexpensively, and without substantially degrading performance.

Currently, several commercial machines incorporate retry. In the Honeywell 6000

(6), instruction retry is reported to approach an effectiveness rate of '160%. Retry in the

IBNJ 360 and 370 series machines is widely used in the peripheral areas (I/O and storage)

as well as in the central processor (7). The UNI'VAC 1100/60 uses a hardware timer that

goes off after an interval judged to be long enough to allow transient faults to die out,

upon which retry can be effected (8). However, no discussion or justification about the

retry duration or the number of retry attempts used has been addressed.

The usefulness of retry mechanisms arises, as we said above, from (1) the smallness

of the proportion of permanent faults in any computer system, and (ii) the fast recovery

from non-permanent faults and thus the small task completion time. In the case of a

permanent fault, to retry a process on the affected processor is worse than useless: it is a

waste of time. To hasten the completion of the executing task when a fault is detected,

we must control the duration of retry to maximize the difference between the expected

gain in response time that results from using retry when the fault is transient or inter-

mittent (in some cases), and the expected loss that results from using it when the fault is

permanent or intermittent (in other cases). Our object in this paper is to derive the max-

imum allowable retry duration r' when a fault is detected. If the retry succeeds with this

duration, the execution continues. If uot, other methods for error recovery, e.g., rollback

or restart following the system reconfiguration, must be used.

.1
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In addition to the performance gain in case of a successful retry, the characteristic

of a fault can be monitored through retries. For instance, a retry which succeeds after

the retry duration r' implies that the active duration of the fault is also less than or

equal to r Even when the retry fails, it iudicates that the active duration of the fault

is greater than r'. On the other hand, the detection of fault gives information regarding

the duration of fault occurrence and the benign duration of an intermittent fault. Thus,

it becomes possible to observe the nature of fault through both retry and detection

mechanisms. Note, however, that the information obtained from retry is censored, since

for example, in case of an unsuccessful retry, the sampling via retry is stopped while the

associated fault Is still active. 1Vth the Censored Information, the problem of estimating

the nature of fault is the same, as the design of experiments in the sequential analysis

where the experiments are described by the retry policy, and the sampling is analogous

to detection and retry.

The paper first presents a brief description of fault models in Section 2, It should

be obvious that r' will depend on fault behavior, and in Section 3, we begin with how to

derive it, given the fault characteristics. When quantitative descriptions of fault behavior

are hard to come by in the real environments, the combination of retry and detection

enables us to observe the fault characteristics, while determining the optimal retry pol-

icy, We counter this in Section 4 by showing how to use statistical estimation theory to

create a system that learns via retry the fault characteristics as it goes, and therefore

becomes increasingly more "optimal" in the sense of minimizing the task completion

time. Due to its repetitive reappearances, retry of an intermittent fault is a renewal pro-

cess. In Section 5, we apply the Bayes sequential decision to fault characterization and

'This is not really true due to the fault latency. The fault latency [4] which is defined as the interval
between the moments of fault occurrence and error generation has no effect on retry. Thus, we simply ig-
nore the fault latency in the consideration of retry.

3
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retry decision. The backward induction for testing hypotheses is also presented as a

solution to the sequential decision problem. The paper concludes with Section 0.

In what follows, we will use continuous retry durations instead of the number of

retry attempts.a

2. BASIC MODEL OF FAULTS

	

Let a unit be the smallest hardware system component that the detection mcchan- 	 j

isms cau distinguish when a fault is detected, e.g., a processor module can be viwed as

an assembly of such units. hence, the term "module" will mean a system component

larger than a unit. Typically, a module is formed by a set of units. For each unit, the

fault's behavior can be modeled by a three-state stochastic process as in Figure I.

Denote these three states, namely non-faulty, fault-active, and fault benign by NF, F

	

and FB (see [4] for their detailed descriptions). At NF, no fault exists in the unit, 	 j

Transition from NF to F indicates the occurrence of a fault. If the fault is intermittent

and becomes benign following an active duration, the state of the unit changes to FB.

The unit, may move back to F when this intermittent fault recurs -- this is referred to as

the reappearance of the intermittent fault. If the fault is transient and disappears, the

unit will transfer from F back to NF. The model similar to this has been widely used in
i

the reliability analyses and the modeling of faults (4,0,10].

Let T1, T;, T,• and T; denote the duration between two successive fault occurrences,

the active duration of a transient fault, and the active and benign durations of an inter-

mittent fault, respectively. These durations are random variables with distributions Fj,
I

Fj , F and F;, and density functions fl, r,, f° and J;, respectively. For simplicity, we

'Conversion between a retty duration and its corresponding number of retry attempts is not difficult as
discussed in Conclusion.

4
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assume that these durations are mutually independent and that the causes of triggering

different types of fault are not correlated, The latter assumption implies that the

occurrence of any type of fault can be modeled as a Bernoulli process with probabilities

p t, pi, and pP for transient, intermittent and permanent faults, respectively. Thus, the

characteristics	 of	 a	 fault	 can	 be	 represented	 by	 a	 7-tuple

CI E {(pt , pi, pp, rp F"j , r'i', I"j) I pt+p,+Pp 1}.

Usually, the mean time between the occurrences of fault, EITA, is much larger than

any other durations. Thus, it is reasonably accurate to assume that there is at most one

fault in a given unit at any moment. In addition, it is assumed that the reappearance of

an intermittent fault is never mistaken for the occurrence of a new fault within a unit .4

Following a successful retry, the detection mechanisms should be able to recognize the

type of fault in a unit, by continuously monitoring normal operation. When the detec-

tion mechanisms find the same unit failing again within a short period, the unit is

declared to have an intermittent fault, IF the fault has disappeared for a long period, it is

regarded as a transient fault.

3. OPTIMAL, RETRY POLICY FOR GIVEN Or

3.1. General Problem Statement

Once a fault is detected, it is necessary to take a proper sequence of actions such as

fault isolation, system reconfiguration, and recovery. For convenience, define the

recovery overhead as the total time required to resume the normal system operation in

case of the detection of a fault; this is a System-oriented view. On the other hand, the

occurrence of fault may delay the completion of the executing task; this is a taik-

4Yhis is the very reason why the term "unit" is introduced here.

,

I
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oriented view. These two views are equivalent when the fault is transient or permanent.

For an intermittent fault, since it appears and disappears repetitively, the accumulated

overhead of retry could become unacceptably large (eventually infinite). In view of this

fact, an intermittent fault has the same undesirable effects on computer performance as

a permanent fault when retry is used as the sole means of recovery. Consequently, as

far as the minimization of the expected recovery overhead (i.e. the system-oriented view)

is concerned, all intermittent fault can be regarded as a permanent fault and hence retry

should not be used when detection mechanisms And again the same fault that was

detected but became inactive during the last retry. Once intermittent faults are treated

just like permanent faults, the optimal retry policy of minimizing the total recovery

overhead becomes equivalent to a special retry policy (for transient faults) which minim-

izes the task completion time. N4orc on this will be discussed near the end of this subsec-

tion.

A most attractive gain from retry is the rescuing of the executing task, i.e., the

task-oriented view of retry. Suppose there is enough redundancy so that the system

may be reconfigured and the, affected task may be migrated to other fault-free modules

when a module becomes faulty (due to one or more faulty units within the module). It is

obvious that no task should be started on any faulty or potentially faulty module (hav-

ing one or more units with benign intermittent fault(s)). Consider a practical case in

which a module (i) becomes faulty once and gets back to normal during execution of a

task, and (ii) never becomes faulty again before the task is completed. In such a case, it

is possible to avoid the overhead of migrating and restarting the task by means of a suc-

cessful retry, leading to a fast completion of the task. Even if the fault that occurred

was intermittent, retry is the best recovery method when its active duration is short and

benign duration is long, insofar as the completion time of the executing task is

d
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1

concerned.

Considering the task-oriented view of retry, we will derive an optimal retry policy

for a given fault characteristic, Cj, which minimizes the expected task completion time

when a fault is detected during the task execution, Such an optimal policy would be of

significant value to real-time applications where small task completion times are of

paramount importance.

Let xo denote the computation time initially needed to complete the task under a

fault-free condition. When a fault is detected, the amount of computation remaining to

complete the task, i.e., residual computation, is denoted by x, where 0<x<zo. For the

n-th detection of the same fault when the residual computation x and the characteristic

Cf are both given, the optimal retry policy should specify a maximum allowable retry

duration, rn(z,Cf). Wben n-1, the detected fault may be transient, intermittent, or per-

manent, since the fault type is unknown; but it is intermittent if n>2. Since the

optimal retry policy is to minimize the time necessary to complete the residual computa-

tion x regardless of what has happened in the past, we have the following lemma.

Lemma 1: rj(x,Cf) = ri(x,Cf) for all i, j > 2.

Thus, we bave to consider two maximum retry durations for two different cases:

the case when a new fault is detected, and the case when an old intermittent fault is

detected again. Let R = ((rj(z,Cj), r2(z,Cf)) 1 0<2<zo) be a retry policy where the

maximum retry durations is rt (x,Cf) or r2(z,Cf) for the detection of a new fault or an old

intermittent fault with the residual computation z and fault characteristic Cj. For nota-

tional simplicity, we shall use r;, whenever convenient, in the sequel, to represent 	 4

r,(x,Cf), i•=1,2. Also, denote the expected times needed to complete the residual compu- 	 1

1
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tatiou x by V,(x,C/,R), V2(x,C/,R), Vo(x,C1,R), and V4 (x,CpR) when the system is in the

following situations: execution starts/resumes on a non-faulty module, n netiv fault is

detected, an old intermittent fault is detected again, and execution continues following a

successful retry for an intermittent fault, respectively. Based on transitions among these

situations, one can derive the following recursive equations:

V,(x,C1,R)= (14'1(x))x+ jej(t+ 
V•( z-

1 , c1, R) ) dP1 ( t )	 (1)

v2(x,c^,R) =p, jer'{t+v,(x,cJ,R)}dr,(q+p; fer' (1+V4(x,C1,R))dri(t)

+ {1 — p, l,(n) -tit r;(r,)) ( 171(4 x), C1, R) + r, + 1,)	 (2)

V3(x,C1,R) _ {1—Fi(r2)}{V,(a(x),Cl l?)+r2+t,) + je`2(1+V4(x,CpR))dr j (1)	 (3)

Z
v,(x,c1,R) _ {1—r;(x)}x + je {1+V,(x- I,CJ,R))dr"(1)	 (4)

where 4z) is the residual computation needed when the system applies recovery methods

other than retry, e.g., a(z)=xo if restart is used following an unsuccessful, retry, and 1, is

the set- up time necessary for system reconfiguration and re-initialization. The optimal

retry policy, R'=((ri(x,Cl ), r2(z,Cl )) I 0<x<xo), should minimize both V2(x,CpR) and

Vo(x, Cf,R) for all x, since retry is directly applicable only to the second and third situa-

tions. (As such, they are explicitly dependent on r, and r2 .) Obviously, this policy also

minimizes V,(x,Cf,R) and V4(x,C1,R).

Since the mean time between failures is usually much longer than the other dura-

tions, V,(x,C1,R) can be accurately approximated by z. In general, there are no closed

form solutions for ri(x,Cl) and r2(x,CI). However, these optimal retry durations can be

calculated numerically without difficulty as explained below. With the initial condition

V4(0,C1.1?)=0, V3(a,C1,R) and V4(z,Cf,R) can be calculated iteratively using Eqs. (3) and

E	 N
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(4) for any given R. Thus, one can numerically determine r;(z,CI) so as to minimize

V3(x,C1,R); V4 (x,C1,R) is also determined. Once i4(x,C1,R) is known, one can easily com-

pute 1.(x, Cf,R) and therefore rl'(x,Cl).

When the recovery overhead in place of the task completion time is to be minim-

ized, r2'(z,C/)-0 for all xE(0,xe). In this case, the recovery overhead can be expressed as

V.(x,Cf,R) - V1 (x,C1,R), which is the time spent to restore the system to its state

immediately before the fault is detected. The optimal retry duration rI(x,C/) can be

determined through Eqs. (1)-(4) just as we can compute that for minimizing the task

completion time. Consequently, we will in the sequel deal with the task completion time

only.

3.2. Fault Active Durations with Monotone Hazard Rate Functions

Since Y'j  is a continuous random variable, one can assume that f,,(t) is continuous in

(O,00). The hazard rate function of the active duration of an intermittent fault is

defined by h,,°(t)=s: 
JIM	 When the hazard rate function of the active duration of an

1-mi(t)

intermittent fault is monotonically increasing, constant, or monotonically decreasing, the

optimal retry duration r; exhibits interesting properties. These properties play a signifi-

cant role in determining the optimal retry policy, since the time durations associated

with faults are usually modeled to have monotone hazard rate functions. Typical distri-

butions with monotonically increasing hazard rate functions include the gamma and the

Weibull distributions with the shape parameters greater than 1. When their shape

parameters are less than 1, they have monotonically decreasing hazard rate functions.

The exponential distribution has a constant hazard rate. Consider first the non-

decreasing hazard rate function which leads to the following theorem.

9
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Theorem 1: When h,,°(t) is monotonically non-decreasing in t, r;=0 or r;=oo.

Proof. Differentiating Eq. (3) with respect to r2, we obtain

0V,(x, Cl, R) = J;(r2)[V4(x,Cf,R) + ' - — { v,(n(x),C,R) + 4)1
Ore /;;(r2)

° A( r2)[ V4( x , Cp R) + 
h. I	 — 

( c( x) + 4)1	 (b)

Since V4(x,C1,R) is independent of the past and current retry durations r2(U,Cl) where

U>x,s V4(x,C1,R) + of	 — {o(x)+t,) is non-increasing in r2(x,C,). If there is an r such
h,(r2)

that V4 (x,Cf,R) +
h 

r̂) — (o(x)+t,)<O, then the first derivative of Va(x,Cf,R) with

respect to r2 is negative for ail r2 >r. Thus, r2=oo. If such an r does not exist, the

derivative is always non-negative, implying that Vs(x,CpR) is monotonically non-

decreasing. This results in r2=0. Q.D.D.

Following the definition of rk(z01), r2(x,C!)=0 implies that no retry be attempted

for reappearing intermittent faults, whereas r2(x,C/)=oo means that the retry should be

applied until is intermittent fault becomes benign.

Corollary 1: When h,•(t) is monotonically non-decreasing is t and if there exists an x2

such that o( x27 + t, — x2 — (R0(x2j-1)Ej7jj = 0 where R;W is the renewal function (11)

corresponding to the distribution Mi (t), then r2(x,Ct)=oo if x<x2 and r2(x,Cj)=0 other-

wise.

Proof. From Theorem 1, r.(x,Cf) is either oo or 0. Whon r2(x,Cf)=oo, there exists an r

s Note that the probability of having a zero benign duration of an intermittent fault should be zero, i.e.
Pr 6(T°,=0)a0. Otherwise, no useful computation can be dune.

10	 1
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such that Cry, ( 6) becomes negntive, Since V4(x,Ci,R') is monotonically non-decreasing

functions of x, tht-o also exists an r such that Cry. (6) becomes negative when the resi-

dual computation is less then x. Thus, r2(g,Ci)=co for all g<x. Since hot), the active

and benign durations are mutually independent, we have

V,(x,Ci,Rl = x+ (C(N(x)) — 1)C(Tjj

where A( x) is the number of reappearances of tine intermittent fault during the residual

computation x, namely Alz)=in/(n; Z^, Tb k>z) where 741, k is the benign duration fol-
k^l

lowing the h-th occurrence of the intermittent fault. The expected value of N(z),

C(A(x)), is equivalent to the renewal function R6(x) corresponding to the distribution

Also, r2(x,Ci)=oo if and only if Vs(x,Cj,R)I rr=w < Va(.c,C/,R)j rz e i i.e.,

faN(t+V4(x,Cf,R'))drf(I) 0 ^(=^il l;(x,apR^ < a(x)+t,

From the equality in the right- hand side of the above equation, we obtain x2 and thus

the Corollary is proved. Q.E.D.

Theorem I can also be viewed as below using the concept of atochaatic ordering

between two random variables. A random variable X is said to be stochaaticailg larger

than the other random variable Yif Pro6(X>1)2:ProgY>t) for all t (12). Let 1,(Ir) be

the remaining life of the intermittent fault after retry has been applied for tine duration

r. When the Lazard rate function is non-decreasing, T;(jr) is stochastically larger than

T,'(Ia) provided r<a. Thus, for all air, if it is worth continuing retry beyond the retry

duration r ( in the sense of minimizing the task completion time), then we should con-

tinue the retry even after the retry duration a. Consequently, the retry continues until

the intermittent fault disappears.

11
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Note that when the hazard rate function is non-decreasing, x2 is determined by the

mean active duration and is independent of the shape of the distribution, x; could

become negative when I:(4',f is largo, that is, intermittent faults have a long active durr•

Lion. In such it case, Corollary 1 implies that no retry be applied for intermittent faults.

On the other hand, if the set-up overhead t, is large, 4 could be even larger than xa,

implying that retry be used as n sole means of recovering from an intermittent fnult.

When the hazard rate h,(t) is decreasing, the nice properties stated in both

Theorem I and Corollary I do not exist. However, there exists at most one root of Eq.

(5) that minimizes Vs. In such a case, since there is no closed form expression of

V4 (x,CpR'), we have to resort to (less elegant) numerical techniques for determining both

r:(x,C/) and rl'(x,CI) as was previously mentioned.

Several numerical. examples, in which restart is need as a sole means of backup

N%'P, cry, i.c. a(x)=xo, are shown in Figures 2 to 4. In these figures, the durations are

normalized with respect to xa, and the active duration of the intermittent fault is

assumed to have the gamma or Wcibull distribution. Figure 2 presents 4 i when the

shape parameters a's of the gamma and Weibull distributions, respectively, are greater

than or equal to 1. Figures 3 and 4 show the optimal retry duration r2(x,C/)i the solid

lines for a<1 and the dashed lines for a=1. Note that for the gamma distribution 1j,"(1)

approaches	 as t— oo where P is the scale parameter. Thus, it is possible for the

derivative of Vs to be negative, (i.e. Eq. (5) becomes negative), implying r2(x,Cj)=oo.

For the Weibull distribution with a<1, r2 never becomes oo since h,(oo)=0.

Consider the case where T(, T, and Tj are all exponentially distributed with the

parameters r, it, v for the transient fault disappearance rate, the intermittent fault

disappearance and reappearance rates, respectively. Since &t)=ve ", the renewal

12
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function R;(z) becomes l+vz. From Corollary 1, we have r2(x,C/)=oo if x<r2 and

r2(z,Ci )=0 if x>x2, where 22 = /iY (ze + !, — ^^ ). Since V,(x,Ci,li) implicitly depends

on r; via Vy we can express V,(z,CpR') as:

v

	

V4(X,CI,R	
it

zo+t,+ v —e^Yr^(^++v)	 if x>4

The derivative of V2(x,Ci,R) with respect to r, becomes:

0 K (x C R)

	

r7r, ,	c fp + pta 
rr, (1 — ( xo+ tr—z)r) + pie ^r^(I — ( zo+ l r—V,( z, Ch R))l'J	 (7)

With r2( .CI) as determined in Corollary 1 and V,(z,C,,R') as in Eq. (0), Eq. (7) can have

at most two roots. The optimal retry duration rj(z,C/) can be obtained by examining

V2(x,Ci,R) at the boundaries, rj =0 and ry=oo, and the roots of Eq. (7). Note that rt

cannot be infinite as long as p,>0. Unlike r2, ri does not have to be zero when z>x2.

Several cases of V;(z,C1,R) as a function of r, are shown in Figure 5 where all parameters

are normalized with respect to xs. The case 2 in Figure 5 shows an example for which

two positive roots of Eq. (7) exist, Figure 0 presents some numerical results on ri(z,Cl)

as a function of x. Note that z2 depends upon the ratio of v to p, whereas r, -tarics as

pp pi and pp change.

4. OPTIMAL RETRY POLICY AND PARAMETER ESTIMATION

In Section 3, we have derived an optimal retry policy for a given fault characteristic

Cl. It is, however, very difficult in practice to know a priori the fault characteristic.

Even if the fault characteristic is measured during device manufacture, it may well vary

as the execution environment and the executing tasks change. Another factor that
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makes the fault characteristics time-variant is the aging of components, e.g., the bathtub

curve of the failure rate as a function of time (1). Thus, it is important to determine an

optimal retry policy for uncertain fault characteristics. Note that retry not only pro-

vides an efficient recovery of task execution, but also monitors the behavior of a fault

present in a hardware unit. Naturally, it is desirable to integrate the estimation of the

fault characteristics and the control of the maximum retry durations into a single deci-

sion problem. In such a case, the computer system has to adjust its retry policy using

the information on the fault i3Oiavior collected during its past retries.

The detection mechanisms  can be useful in estimating the duration between two

successive fault occurrences or the benign duration of an intermittent fault. Note that
I

this information is crucial in specifying the behavior of fault occurrence or reappearance,

Consequently, the fault characteristics would become well-defined if a good estimator

were used. Moreover, retry may lead to an indication of the active duration of a tran-

sient or intermittent fault, which is, on the other hand, affected by the retry policy

applied. The information collected is incomplete in case of an unsuccessful retry, since 	

f

the retry is stopped while the associated fault is active. In what follows, we consider the

estimation of the characteristic of an active fault and the simultaneous determination of

an optimal retry policy which minimizes the task completion time.

Note that the probabilities of having a permanent, transient, or intermittent fault

are crucial to the determination of rl'(x,Cl) but unrelated to that of r (x,C^). It implies

Chat correlations among successive retry durations during the execution of a task do not

depend on these probabilities. Thus, to minimize the task completion time, it is
i

assumed that these probabilities are determined a priori from the previous observations

'As was pointed out, we mean here the signal-level detection of faults 141.
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r

1



Lee and Shin May 4, 1084

of fault occurrence. These probabilities can be estimated accurately if a sufficiently large

amount of data of fault occurrence were collected. If a sufficient number of samples has

not yet been obtained, the measured results as in (2,3) have to be used instead,

Recall that in the determination of r,, the transient fault is excluded. Also, if p i, p;,

pp are determined a priori, the effects of retry on the task completion time is a linear

combination of the effects of transient and intermittent faults when a new fault is

detected. This implies that the same technique can essentially be used to deal with the

unknown parameters for both transient and intermittent faults. Consequently, we con-

fine ourselves to the case where the density function of the active durations of transient

faults is known and the active durations of intermittent faults have the density function

form with the parameter 0 unknown. (Note that 0 could be a vector if there are

two or more parameters, e.g., the shape parameter o and the scale parameter /1 for the

Weibull and gamma distributions.)

The samples obtained from retry can be represented by a 2-tuple (1, l) where I is a

single-bit flag and t indicates a duration. I=0 represents a successful retry, and hence t

indicates the active duration of the fault. On the other hand, when a retry fails, I==1

and t is the retry duration. Let (/;, t;) i=1,2,..n denote the past samples related to the

active duration of an intermittent fault. These resulting samples are type I progressively

censored, following Cohen's definition in 1131 with continuous censoring times. There

are several different types of estimators conceivable for estimating the parameter 0 on

the basis of these progressively censored samples. For the Weibull and gamma distribu-

tions, the maximum likelihood estimators have been widely studied as in [13-17) when

the samples are progressively censored. For simplicity (but not because of difficulty), we

shall employ the maximum likelihood estimator 0 of 0 in the sequel.

15
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When the fault is still active even after the current retry has been applied for the

duration r, we shall have collected an additional sample (1, r) via the current retry. Let

0(r) be the maximum likelihood estimator of 0 which is based on the samples including

up to the i.urrent sample (1, r). Following the current retry duration r, the maximum

likelihood function becomes

L( 0)
	 ^^

nr
 = J j nl( II, t 11 0 	 nl(1,r,0)

1^ 1

where tj(I,t,O) is defined as;

AtI0)	 if 1=0

	

4( 1, 1 1 0) =	 1—T'-'(tI0)	 if 1=1

The maximum likelihood estimator 0(r) should maximize L(0) or log L(0).

Let the optimal retry durations based on the estimated 0(r) be denoted by rk(z,0(r))

k=1,2 for n ucwly detected fault and an old intermittent fault, respectively. Use the

notation CX0(r)) to indicate that the active durations of intermittent, faults have the

density function f,°(tj0(r)), and let R(r) denote the policy that the maximum allowable

retry duration for the current retry is r. Then, the direct solution of the optimal retry

duration is to find the minimum of Yt(x,Ct(0(r)),R(r)) k=1,2,3,4. Notice that the retry

duration r not only appears in the integral equations (2) and (3), but also affects the

fault characteristic CI,

Under certain conditions, it can be proven that rk(z,0(r)) is a non-increasing func-

tion of r. We will first derive the results under such conditions, the application of which

to a more general case is then discussed later in this section. For the former case, the

optimal retry duration rk for the current retry can be readily obtained by the following

y

10	 4

(8)

t
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theorem.

Theorem 2: When (a) the active duration of an intermittent fault has the density

function J,°(t[0), and (b) for t;>tk the ratio

	

	 ^)) - a non decreasing likelihood ratio
.6010(tk))

1181-- is non -decreasing in 1, then the optimal retry duration is determined by:

r,( = inl f r; rk(x,0(r))<r)	 (0)

To prove this theorem, we need the following three lemmas.

Lemma 2.	 Under the same conditions as in Theorem 2, let Ti and Tk be random	 i

variables with the density functions At[0(1;)) and A(l[0(1k)), respectively, and 41(t) be a
I

uon-decreasing function of 1, then G[T(T;)1>G[4'(Tk)1 provided t; >tk.

Proof of this lemma follows immediately from Lemma 2 of Chapter 3 in [181.

r
Let h,°(t[0(t;)) be the hazard rate function when the density function of T; is

J;(t[0(l;)). The following Lemma gives the ordering of h,,,(t[0(t;)) with respect to f;.

Lemma 3. Under the same conditions as in Theorem 2, hj(t[0(t;)) is a non-decreasing
1

function of t; for every fixed t.

Proof. For t;>lk, we have 
f(t[0(!;)) < J;(a[0(t;)) 

for all s>t. This inequality implies
PPIO(W)	 x'( 8 1 0 W)

^	 I

that J( l 1 0( r;)) < f^l;(nl°(r;))d„	 1—t^(tla(r;))	 ro r >

l (t[o{tk)) _
	

u tr r da	 1 —r' r o r	
Thus, hj(I (,))_h ( t l a( rk)) if t;>rk•

f A( I (k))	 i(I (k))	 i

Q.E, D.
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Let Vk(x,0(1)) — tin Vt(z,0(t),R) k=2,3,4 where 0(Q is used in place of Ct(0(l)).

Note in this case that the active duration of the intermittent fault is distributed with

the parameter 0(t) and that all the other distributions are known.

Lemma 4. Under the same conditions defined as in Thenrem 2, if t i > (,, then

(i) Vk( x, 0( t1)) } Vk(x, a( t2)) k=2,3,4,

(ii) rk(x,^(tl)) C rk(x, 0( t2)) for 1.=1,2.

Proof.• The proof for k=3,4 is done by mathematical induction. Let Vl 2(nj))

k=3,4 be the expected times needed to complete the residual computation x when there

are at most n retries to be attempted following the current one, and let r 2(n,j) be the

maximum retry duration allowed. Also, let the optimal retry duration to achieve the

minimum Vk n(x,0(ti)) be r2'(n,1). Cor n=Q, Vj o(x,0(tj))=z and

V340-, 0( ti))- Va,o(x,^(tz),re(0,1)) = f. 'I`(t,x,r2'(0,1)) (.Q 1 j 0( t1)) ^'(tIo(t2)))dt

where T(t,x,y)=t+x when t<y and yFxo+t, when t> y. Since V'(t,x,r°) is non-decreasing

in t, the right-hand side of the above equation is non-negative as a result of Lemma 2.

Also, since Y3 0(z,0(t2)) is the minimum when the active duration of the intermittent

fault has the density function J;(ON)), then

Va,o( x, 0( tl)) >_ Vs01( xA 10,4(0 , 1 )) >_ V3',o(x,0(t2))•

Suppose that V3',n(z,0(t,)) > Va n(x,0(t,)) and V4 n(z,0(ti )) > V4 n(zA0 )) for all x

provided t,>t2 . It is obvious to see from Eq. (4) that V4 n+1(x,0(11)) > V,, n+i(x,0(t2)) for

all x. Thus,

1 g.n+1( x, 0( 1 1 )) _ V2,n+1(x,^(t2), r2( n -F 1 , 1 )) >
fero

^( t, V;,n+l( x, o( tl)),r^(n+ 1 , 1 U {l"(tlo(t^))-P'(tlo(t2U}dt

I
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^Y(l,V^„+^(z,0(tt)),r_(u+1,1)) is non .decreasing in !<r;(n+1,1). Also, since r;(n+1,1) is

the optimal retry duration, VA,n+t (z,0(tj) < ze+ t,. Hence, 'Y(t,V^ +^(z,0( !^)),r;(n+1,1)) is

always non-decreasing in t. The right-hand side of the above equation becomes non.

negative, resulting in	 V3,,+I(z,0(h))2: V3,a+i ( z, 0 0,r (n+1 , 1))> V3 „+I(z,0(t2))-	 BY

mathematical induction, we have V,((z,0(ti))2! V,((z,0(t2)) for k=3,4.

To prove r2(z,0(tl))<r (z,0( !2)), the following cases are examined. When

rkx,0(tj)=0, the relation is always true. When r2*(z,0(tt))>0, using Lemma 3 and the

first part of this proof, the derivative of V3(z,0(tj),R) with respect to the retry duration r

fins the following ordering relationship for all r and tj>t2.

VAX, 
tJ)+^,^(rlo(t^U-{a(x)+r,} > v;(x,al2))+^^^(rlo(t2))-{^(x)+r,}

where all retries after the current one are assumed to employ the optimal policy. Thus,

for t 1 >12, r2( z,0(t2))=oo when r2'(z,0(11))=oo, and r2(z,0(t2))>r:(x,0(t^)) when r2(z,0(t l )) is

finite.

For the case of k=2, it is easy to see that V2(z,0(ti),R) is a linear combination of

the effects of both transient and intermittent faults. Thus, V2(z,0(lj),R^> V2(z,0(tk),Rl.
t

Also, the handling of V2 with respect to ry has the same ordering relationship as that of

V3 with respect to r2. Thus, V2(z,0(tj),Rj> V2(z,0(tk),Rj, and ri(0(h))<rk(0(lk)) when
E

!j> tk . Q.E.D.

	

Lemma 4 shows that rk(z,0(tj)) is non-increasing in ti for k=1,2. Thus, there exists 	 1

an r such that r>rk(z,0(r)). The proof of Theorem 2 is given as follows:

Proof of Theorem 2: Suppose that the retry has been applied for the period r but the

fault is still active. When rk(z,0(r))>r, the retry should be continued since it decreases
i
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the expected task completion time. Thus, rk(x)>sup {r; rk(x,O(r))>r}. Suppose there is

an r^E{r; rk(x,0(r))<r}. Then Vk	Vp (x,U(rj))>V{, (z,t1(rkj) where rk is

defined in Eq. (0) and Y =k+l. Thus, the theorem follows. Q.E.D.

For the same example in Section 3.2, suppose the active duration of an intermittent

fault is exponentially distributed with an unknown disappearance rate it, Using a

method similar to the Cohen's derivation in (13), the maximum likelihood estimator jt(r)

for an exponential distribution -- which maximizes log L(p) -- is obtained as:

p( r) = ( n-Z Ii)	 1	 (10)
tj+r

i=l

Theorem 2 gives the optimal stopping time for the current retry. Note that the

true value of It is unknown and its maximum likelihood estimator is to determine the

optimal retry duration. In the case of retry for a reappearing intermittent fault, the

optimal retry duration for a given it either 0 or oo as shown in Corollary 1. Using

Theorem 2 and Eq. (10), we get the optimal retry duration as follows:

r. = max[0, ((n- ^ 1i) xs1tB z -	t,}^	 (11);^^	 l+vz	 ;_^

Note that the gamma distribution has a non-docreasing likelihood ratio for both a

and 9 )18). Furthermore, the estimators provided by Cohen (15) show that both the

estimated a and P are increasing in the current retry period r. Thus, Theorem 2 can be

applied directly when the active duration of the intermittent fault has the gamma distri-

bution. When the distribution of the active duration is Weibull, Theorem 2 cannot be

applied directly, but still provides a good approximate solution. This is due to the fact

that the Weibull distribution has a non-decreasing likelihood ratio with respect to its

20
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scale parameter only. Since (i) the variation of the estimated shape parameter a with

respect to the current retry duration r is always less than thnt of the estimated scale

parameter fl, and (ii) the estimated fl is increasing in r when a is fixed, a reasonably

good approximation can be obtained by assuming that et is constant during the current

retry and P is estimated using both the past and current samples as discusfled in the

above.

There are some shortcomings when the maximum likelihood estimator is used for

the progressively censored samples. Particularly, the estimator is biased when the sam-

ples are censored. Also, in the case of the exponential distribution, it does not contain
i

sufficient statistics of µ when the samples nre censored and incomplete, i.e., when there

exists at least one sample (/;,f;) with /,^—L These shortcomings can be seen easily from

a trivial example: µ becomes zero when 1,=1 for all i=1,2,.,n. In fact, as shown by van

Zwet [ 10), for most practical cases it is impossible to obtain unbiased estimators when

the samples are Type I censored in a semi-infinite interval. Note, however, that there is

no restriction about which estimator to be used in the foregoing determination of the 	 f

optimal retry policy, meaning that estimators other than the maximum likelihood esti-

mator can be used without altering our method described thus far,

b. BAYES SEQUENTIAL ANALYSIS AND OPTIMAL RETRY

In the previor-s section, the unknown parameters of a distribution are estimated

first, and the optimal retry policy is then determined using the estimated results. In this

section, the same problem is attacked by taking the Bayes approach. Since the reap-

pearances of an intermittent fault during the execution of a task are a renewal process,

there could be a sequence of retries for the same intermittent fault. Thus, it is natural

y
21
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to incorporate the Bayes sequential analysis to both characteri.c the intermittent fault

and determine the optimal retry policy. Retry is then considered as sampling of the

fault behavior, and the retry duration controls both the task completion time and the

information to be collected. Since the retry for a newly detected fault only occurs once

within the execution of a task (under the assumption that C(TA is much larger than the

other durations), we focus on the behavior of intermittent faults and thus the determi-

nation of r2,

5.1. Optimal Retry and Bayes Decision

Let the distribution of T,• be governed by some unknown parameters IV;. Note

that W; may be a scalar (e.g. for the exponential distribution) or a vector (e.g, for the

gamma or Weibull distribution). The a priori information concerning IVi is expressed in

terms of a probability distribution function defined on fl. Let the density function of IV;

be f,(w). Denote further the fault characteristics, given w, , and the prior density function

f i, by Cl,, , and Chf , respectively.

To apply the Bayes decision theory, the risk with a retry policy R, given f; and the

residual computation x, is defined as follows:

pk( x,fi,R) = f Vk(x,CA.,,R) f,(u))dw	 k=3,4	 (12)

Thus, the (optimal) Qayea risk is given as

p ( x,fi) = inl p k( x ,fi R )	 k=3,'1	 (13)

Since we are now concerned only with the retry for an intermittent fault, R consists of rs

only. The optimal retry duration in case of the detection of an old intermittent fault,

r2 	 abbreviatedabbreviated by rAx,f i), yields the Bayes risk n3(x,fi). Similarly, the Bayes

22
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risk of the retry for a newly detected fault can be defined with Gqs, (12) u nd (13), How-

ever, the determination of rj(x,t) is a one stage Dayes decision problem. Once p4(x,C,)

and r2(x,ej) are obtained, the normal form of analysis [221 can be applied directly for the

solution of

Following a retry attempt for an intermittent fault, regardless whether it fails or

succeeds, an event related to the fault active duration T, is observed. The event

observed during a retry of the duration r is either "success" or "fail". The "success"

event, denoted by e'(t), occurs when the detected fault disappears after the retry dura-

tion b which is less than or equal to the maximum allowable retry duration r. The "fail"

event, denoted by A(r), occurs when the detected fault does not disappear by the end of

the retry duration r. Let S(r)= (c'(t); t<r) U (ct(r)). With the prior density function

the posterior density function following the observation of eES(r), denoted by

^,(tvjr)	 becomes

V w1 c) =	
D( c [ w) Vw)

fO -ac [w) %,(w) d 

where U(clw) is the generalized conditional density function for the event a as in [201, i.e.,

The density function of Tj at t if c=c'(t) and t<r	 (15)g(clw)	 Prob(cf(r)) 	 c=e!(r)

This posterior density function will become the prior density for the next retry. Conse.

quently, the system's behavior is similar to a sequential decision procedure which deter-

mines first a retry policy and then observes the resulting sample. The procedure will be

repeated with a new prior distribution which is determined on the basis of the new sam.

ple observed and the old prior distribution. The decision on retry and the sampling for

fault characterization will continue as long as there is an occurrence of fault.

Y
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The problem of selecting the optimal retry policy can clso be treated as the of.timnl

stopping problem with continuous observations (21). Suppose an intermittent fault is

detected again when the residual computation is z. Then, retry is applied for n specified

stopping time r. The task will be continued, without applying recovery methods other

than retry, if the fault disappears during the retry period r. Otherwise, it has to be res-

tnrted from the beginning. ? The posterior density function of w; becomes >:,(wje'(f)) or

f,(wjc3(r% depending on the outcome of retry. The cost of an observation is the amount

of time used for monitoring the fault until its disappearance, i.c., c(e'(f))=f, or until the

end of retry, i.e., c(cf(r))=r. The costs associated with the termination of retry are

defined as the amount of time necessary to complete the residual computation z as fol-

lows:

L( x , r,fiI e'( t)) = Pi( x GWIe'(Q))

L( x r r.4il C( r)) — x0 + tr

The expected loss for the stopping time r; is the same as the Bayes risk defined in

Eq. (13). According to the theory presented by lrle in (21], there always exists an

optimal stopping time, r2E10, oo), satisfying Eq. (13).

We will in the next section solve the sequential decision problem using the back-

ward induction 1201 for testing hypotheses where the prior and posterior distributions are

confined within the open unit interval, i.e., (0,1). Note that the rninimax method in 1221

i
cannot be used to solve Eqs. (12) and (13), since the decision space -- which consists of

all possible maximum retry durations -- is neither compact nor finite.

'For simplicity, it is assumed that these is only one alternative to the retry recovery, i.e., restart.
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5.2. Optimal Retry and hypotheses Testing

Suppose that there are a primary and some alternntive hypotheses concerning the

characteristics of an intermittent fault, Consider the sequential testing of these

hypotheses antt the simultaneous determination of the optimal re try policy; this is not

difficult to solve since both the prior and posterior probabilities lie in the same unit

Interval (0,1). For given hypotheses, the initial prior distribution can be assumed to be

equally likely among the hypotheses,

To be more specific, take it demonstrative example s in which the active duration of

an intermittent fault is assumed to be exponentially distributed with an unknown

parameter ft. Lot there be two hypotheses on p, 110 and llt for It—po and It—f l , respec-

tively, and let po>p t . The uncertainty associated with these hypotheses can be

represented by the probability h of having µQµ 0. We will first determine the optimal

retry policy for all hQ(0,1). Then, we will consider the problem of testing hypotheses as

well as estimating the expected sample size to reach a certain significance level under the

optimal retry policy.

Consider the optimal retry duration r;(x,h) upon detection of an old intermittent

fault. In this case, we get the posterior probabilities given the events o r(t) and ef(r),

denoted by h(t) and 6(r), respectively as follows:

—Pot

!z(t)=	 _^^ft0e	 _ t	 where tCr	 (10)
hftoe tO I (1-h)µt e Nt

he-Par
/a(r) he 

µ0r+(1 -h)c 
mr	 (17)

'As will be pointed out near the end of this section, the results obtained from this example are
applicable/extendable to more general cases.

25



Lee and Shin May 4, 1084

Ita

As wns discussed in Section 3.2, we can compute zq for a given µ„ denoted by

X, Il i) i=0,1, such that ( i) r,(x,l)—oo if x<z;(ho), or 0 otherwise, and (ii) r,(x,0) —oo if

z<x;(µ t ), or 0 otherwise. Since z;(Ito)>z;(µ,), r,( z,h)—oo if and r2(z,h)=0 if

x>z.A/to). Note that the above represents extreme cases of retry, i.e., retries of duration

zero or infinite.

For the	 non-extreme case,	 i.e.,	 the cnse of z (I+,)<z<z;(po),	 [at

h' = aup(h I r2(x,h)=0). Since r2 ( z,l)—oo and r;( z,0)=0 for z;(po)<x<z;(µt), we get

0<h'<1. For all h>h', r;(z,h)>0, i.e., retry must be applied upon detection of a fault.

Suppose retry has been applied for a small duration 6r<r2'(z,h). Then, the memoryless

property of the exponential distribution leads to the following equation;

pa( z , h) _ (1 – r,'( 6r l h)) (6r + p3'(x,n(6r))) + f 
er 

li( I i l+) ( I + pd x , h ( I ) ) dr	 (lsa)

By letting 6r-0 and changing variables, Eq. (i8a) becomes

d n dl^ h) — {-1.(0 1 1+) (p^(x,Ido)) - p3( x, h))) { d; ̂ r I,ao}

_ hpo + ( 1—h)l+ l (	 1
h 1—h	 —1, 

f p*(z,/+(0)1— Aa( z, l+) + h ro+ 1—h i}	
(18b)

(	 )(lo^)	 t	 (	 )/i

On the other hand, pj(z,h) = zo + t, for all h<h'. Using the same approach as in

Theorem 1, we can prove that h' satisfies the following equation

l	 (10)

From Eq. (4) and the definition of p4' in Eq. (13), p 4'(z,h) is expressed as;

	

p;( x, h ) = v(1—e ") + Cl"  fo vc°ypa(J, l+ ) dJ	 (20)

With the initial conditions r,'(z,l)=oo, py(z,h) and pq(z,h) for x<x (µ,), and Eqs. (18}

20
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(20), we can calculate pj'(x,h) k-3,4 for all	 4(11o)) with the following numeri-

cal algorithm:

Al. Set h=l.

A2. Calculate pAx,l) and pj'(x,l) for all zE(z2(h:)r 4(11o))•

A3. Calculate 
dp db'

h) 
using Eq. (18) and p3'(x,h-6h) for all sE(z (µ i )r zi(Ib)) (Note

ps(z,h) and p4'(x,h(0)) are both known.)

A4. Calculate p,(z,h-5h) using Eq. (20) for all xE( z;(Ih), z.(ho))• (Note pa(z,h-6h) is

known for all x.)

A5. Set h=h-6h. If h<0, terminate the algorithm.

A0. If p4(z,h(0)) < zo t 1, - hleo F(1-h))p
i , go to A3.

Otherwise, set pa(x,h-6h) = zo + 1, and go to A4.

From the test at A0, one can determine h' for all xE(4(11 1 ), z2'(1to)) so as to satisfy

Eq. (10). Due to the memoryless property of the exponential distribution, r4'(x,h)=0

when h<h' or satisfies Eq. (17) with 6(r)=h' if h>h'. In Figure 7, r2' versus the prior

probability h is plotted for various values of the residual computation X. Intersections of

the curves in figure 7 with the horizontal axis give the values of h' for different values

of x.

Remark 1: in case the active duration of an intermittent fault has a general distribu-

tion (instead of an exponential distribution), a differential equation similar to Eq. (18b)

cannot be obtained. In such a case, the original integral equation of pp(z,^ ), i.e., the

combination of Eqs. (3) and (12), has to be used instead.
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From the foregoing discussion we can determine the optimal retry policy that is

based on the prior probability h. Under this optimal retry policy, we can also determine

trajectories of the posterior probabilities after a large number of occurrences and reap-

pearances of intermittent faults have been observed, Lot each retry be numbered by a

two-tuple (m,n,) on the basis of occurrences and reappearances of intermittent faults.

The (nl,nm^th retry is used to recover from the in-th occurrence of fault i n case of n,,=0

or from the n, th reappearance of the m-th intermittent fault if n m760. For the

hypotheses A; i=0,1, let h,(m,tij represent the posterior probability after the (m,nm}th

retry is applied. Also, let n; be the total number of reappearances of an intermittent

fault during the execution of a task and h,(m) be the prior probability before the m-th

occurrence of fault, which is equal to h,(m-1,nm_1) by definition. There are now two

main problems to be addressed: (i) Will h i(m) converge to either 0 or 1, namely to the

true fault characteristic as m —oo ?; (ii) If converges, how fast will it converge ? For con-

vergence, we get the following theorem.

Theorem 3. Let Al= inf (rrr [ hi(m): i–f, or h,(m)<e) where 0<c<1. If 0<h,(0)<1,

and xO +t,– 1 >0 for all hypotheses Hi and all tasks, then Proh(AI<oo) = I and
Pi

G[A ,4 <oo.

Proof: Let S,(rn)=log
h,(nl)
hi(m)

for h i. Thus, Af can be defined as inf (in [ [S,(rn)[>K),

where K=log( 1=e ). Let z,(m,nm)=log 
9[^rn,n„) [ {t'J 

where e(m,n m) is the event

observed at the (m,o yth retry and g(elµ i) is the generalized conditional density function

defined in Eq. (15). (When the retry duration defined by a retry policy is zero, e(m,nm)

is null and z,(rn,n,)=0. Also, when nm 0, the retry duration is ry'since the fault type is

28

i

i

I



rrr

Lee and Shin May 4r 1984

not known at its first occurrence.) From Dayes theorem, we have

h(0)

	

S'(0) ° S '(111 1 -1) + ^, z (nr` ,n) °	 z,(m,n) + log!._
n=c	 moln=0	 h,(0)

Let y,(rn)= ^, zi(m,n) under the optimal retry policy. 8,(m) becomes the sum of indepen-
n=0

dent random variables. After an event is observed, the expected value of z(m,n m) is the

K till back-Lai bler information number and is greater than or equal to zero when Hi is

true [23]. In this case, C(;(m,nj=0 if and only if the prior probability before the

(m,n m)-th retry is 0 or 1. Since xs +f,- 1 >0 for all hypotheses Hi and all tasks exe-

cuted, Prob(r;;P40)>0 i=1,2. Hence, Pro6(y,(m)=0)<1 for all m<AL Following the

proof in (24) that the sampling of a sequential probability-ratio test (SFRT) terminates

with probability 1, Pro4Af<ao)-1 and G(AI]<oo are obtained. QX, D.

Remark 2; Since the tasks affected by intermittent faults do not have to be identical,

the random variables U,(1), y,(2), • • • are independently but not identically distributed.

Moreover, for a fixed m, z,(m,n^,)'s are dependent on one another because the events

observed are controlled by the retry duration which is in turn a function of the moment

of reappearance. however, all z,(m,nm)>0 when Hi is true. The condition, x0+f,- 1 >0
ut

for all hypotheses Hi and all tasks executed, indicates that retry is always a useful

recovery when an intermittent fault is detected. In fact, this condition is not necessary

true for all tasks, but Theorem 3 holds as Inng as Prob(r>0);P&0.

Theorem 3 shows that the expected number of faults observed -- that makes the

posterior probability reach either a or 1-c -- is finite. This also holds for other distribu-

tions and retry policies as long as ry^?40 and rsj 0 for some x, however, it does not pro-

9
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vide the average sample size, E[Af I N;1, that is necessary to reach these termination

boundaries K and —K. Also, one has to justify whethe p or not the posterior probability

at the termination implies the true fault characteristic. In other words, it is important

to know the error probability, ProgS,(Af)<—K I H).

There are two difficult aspects in the evaluation of E[Af l f1J and

Proh(S,(An<—K I /fi); ono. is that, y,{m)'s are not identically distributed, and the other is

the non-existence of closed form solutions for both ri and r^. If the same task is exe.

cuted repeatedly under the condition z0+1j— 1 >0 for all hypotheses, then y,(m)'s

	

become independently and identically distributed. Assume further that initially, both 	 }̂}
!I

hypotheses are equally likely, i.e., h0(0)=hj(0)=0.5. Using the characteristics of Sf RT

in 1201, the error probability is approximated by:

-!f
ProgS,(A! <—K H i) ^ 

e^ 
e K -= e K

	

Even if the same task is executed repeatedly, it is very difficult to obtain an exact	 f

solution for E[yJ because of the dependency between the optimal retry durations and the

observed samples of the active durations. This fact in turn makes it impossible to
1

obtain the exact solution of E[Af I 11J. Due to the above difficulties, in what follows, we

will derive upper and lower bounds of E(M I HJ instead of an exact solution.

Suppose there are two retry policies Ro and R' with the retry durations (r°,r2) and

(r[,r;), respectively. r°(z,h) and r[(z,h) are defined the same as rl(z,h), r (x,h) is equal to

nm

oa if x<z2(pj) and 0 otherwise for j=0,1. Let f(m) and M be	 z,(m,n) and the
n=0

number of faults observed to reach the termination boundaries under the retry policy Ri,

respectively. Then, (i) Prvb(AP<oo)=1 and E[Ap1<oo, and (ii) E[y,'1<E[yil<E[:°l.
Y
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(Note that the indices tv are omitted because of the distributions being identical.) Once

E[f J Hj j-0,1 is calculated as in the Appendix, the expected sample size to reach the

boundaries I-t and a is bounded as:

LISP JHj<EMJ Ili] cEtM'JIfj

where EJAP J Hj =	
K	

j=0,1 (see (201 for more on this).
!, J HJ

The above equations give the error probability and the bounds of the expected sam-

ple size when a certain level of significance is to be achieved. These bounds of EJAI J H;J

become tight when the difference between µo and µ l is small. Of course, the expected

sample size under the optimal retry policy is larger than that for the case whet the com-

plete information about active duration is observed, i.e., rj—r2=oo.

Thus far, we have discussed solutions to the problem of sequential retry decision

and hypotheses testing only for the case of exponentially distributed durations. Notice,

however, that (1) the same method, with little modification, can be applied to the cases

with any other kind of distributions, and (ii) Theorem 3 holds as long as

Prob[y,(m)=0J<1. Moreover, the method can be extended to the testing of multiple

alternative hypotheses by specifying the prior and posterior probabilities as a vector,

each element of which represents the probability that the corresponding hypothesis is

true.

0. CONCLUSION

In this paper, we have investigated optimal retry policies with known and unknown

fault characteristics. Retry not only saves the recovery overhead but p rovides a means

to estimate the unknown characteristics. Although the data resulting from retries are

censored, they are the only significant means of monitoring the fault characteristics.
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Naturally, the monitored results are different from those obtained during device

manufacture.

In the discussion of retry policies, retry durations are assumed to be continuous. In

fact, the retry durations should be discrete since the time required for repeated execution

of an operation cannot be cascaded into a single continuous duration. Since the

expected risk is a continuous function of the retry duration, it is not difficult to find the

optimal retry policy which is specified as a number of retry attempts.

As was pointed out in the discussion of the expected sample size for reaching a cer-

tain level of confidence in hypotheses testing, the test under the optimal retry policy

turns out to be inefficient in the sense of maximizing the information observed, This is

due to the fact that the optimal retry policy is defined to minimize the total completion

time of the task affected by the occurrence of fault. Thus, the retry policy is a local

optimum; "optimal" only for the task involved. Clearly, the retry policy which gives

complete maximum information should have infinite retry durations, although such a

retry policy is totally unacceptable in reality. It would be interesting to examine the

trade-off between the two extreme objectives, i.e., minimizing the local task completion

time and maximizing the information to be collected. This problem can be formulated

Emas the minimization of the asymptotically accumulated risk, lim 1 Em G[pk(x,dl)), where
m- W m j'l

j and m are used to number the successive retries and Gj is the measured fault charac-

teristic at the j-th retry. It can also indicates that the global optimal retry policy should

collect more information (it is definitely not complete though) from the beginning to

speed up the estimation of the true fault characteristics and then implement the local

optimal retry policy once the true characteristics are obtained.
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Another important aspect is the choice of an accurate model for the fault behavior.

As was discussed in Sections 4 and 5, the optimal retry policy and the measurement of

the fault characteristics are dependent on the family of density functions that are ini-

tially selected, The suitability of chosen models can be validated through goodness-of-ft

tests, e.g,, chi-square goodness-of-fit. Although sometimes the expected task completion

time may not be minimized because of the poor choice of model, the information col-

lected via retries can still be used to check the suitability of the model. Thus, after a

large number of samples have been obtained, it is possible to select an appropriate form

of density function and then achieve the minimum task completion time. The other

approach is to begin with hypotheses of various forms of density functions. As sampling

progresses, the parameters associated with the density function forms are estimated and

then the hypotheses are tested.

The work presented in this paper is to incorporate the capa'oility of real-time esti-

mation (of the fault characteristics) and decision (on optimal retry policies) into the com-

puter system. The results are a self-adjustable (thus intelligent) system and a powerful

measurement of the fault characteristics. This idea can also be extended to other appli-

cations, e.g. the measurement of program behavior and the simultaneous decision of sys-

tem configuration or scheduling. Such extensions would be significant contributions

towards the construction of highly intelligent computer systems.
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Appendix: The Expression of l3(yjjHi)

The retry duration rtt under the retry policy Rl is equal to oo if z<_4(ly) and 0 oth-

erwise. Thus, the complete information will be gathered if an old intermittent fault is

detected again at z<_4(µl) and no information will be obtained if detected at x>z2(pl),

llencc, if the retry for a newly detected intermittent fault when the residual cr,saputa-

tion is x succeeds, we expect to collect information from the successive retries before the

task completion as follows:

vx (log /' 	 11r11i

ElidZI = Ej E 4 m n ) I x) _	
-1t+ _{^^))	 11i	 11r-ly	 otherwise

„ :	 e	 vzp(pi) ( log— -	 )
111 	 p i

Let the maximum retry duration for a newly detected fault be r l'(z) when the resi-

dual computation is x. Also, let }ixd) be the density function of the detection time of a

new intermittent fault, zd, given that it is detected during the task execution. Then,

y(xd)=^'e 	 where Xj p iX. Thus, we have E[j111i] as follows:
1— e X'ZO

sn	 +oIi(s)

!t;^^^i) = f ^( zo-
z)e" (=)1(j(ri(z))dz+ f f laic s.^1X.To-x)(r(t)+E[12jz1)dtdx

o	 s o

where /1j(r)=-(1t,-µj)r is the information collected from an unsuccessful retry of the max-

imum retry duration r and r(r)=log /1i - 11' 11i r is the resulting information when the
11j	 11 i

retry succeeds after the duration r.
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F: faulty
FB: fault-benign

Figure 1.	 The Model of Faults.
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