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i. INTRODUCTION

This Final Report presents the results of NASA Contract

NASI-17719 entitled "Evaluation of Fault Tolerant Concepts". The

intent of this effort is to investigate the performance of FINDS

(Fault _nferring Nonlinear Detection System) developed earlier

and documented in [i] - [3] with the use of actual sensor flight

data for the NASA ATOPS B-737 aircraft. This report summarizes

the changes made in the FINDS algorithm to accommodate flight

data, false alarm and failure detection performance of FINDS

using the sensor flight data, and modifications made to the

failure detection and isolation (FDI) algorithm in FINDS to

improve false alarm and failure detection performance.

Earlier studies [i] - [3] were restricted to analyzing the

performance of the developed FDI methodology on the digital

simulation of the NASA ATOPS B-737 aircraft. Although the

vehicle simulation was a nonlinear six-degree-of-freedom program

incorporating sensor inaccuracies due to postulated misalignment,

scale factor, noise, and constant bias errors, this simulation

did not account for lever arm effects, structural modes, post

filtering of the measurement data, and other errors such as time

varying sensor biases. Therefore, the use of flight recorded

data in the presentstudy addresses these important performance

issues under real modelling errors which will be important in an

eventual flight test of the FINDS algorithm.
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Summarizing the results obtained with the sensor flight data

driven version of FINDS (hereafter referred to as the flight data

emulation of FINDS), the vehicle state and normal operating bias

estimation performance of the no-fail filter is found to be

excellent based on an analysis of the no-fail filter residuals.

In detecting and isolating sensor bias failures injected into the

flight data, results show an excellent performance with detection

speed considerably faster for measurement sensors such as MLS

than for input sensors such as accelerometers. This is in agree-

ment with our earlier simulation studies. Finally, the modifica-

tions made to the FINDS detector and decision algorithms in this

study results in an improvement both in false alarm and failure

detection performance.

The organization of the report is as follows:

Chapter 2 presents an analysis of the sensor flight data. In

particular, various signal processing results performed on the

sensor flight data to determine the sensor noise parameters and

dropout conditions are presented. False alarm and failure

detection performance of FINDS with flight recorded sensor data

is presented in Chapter 3. This chapter also contains the

modifications made to the basic FDI algorithm. Conclusions and

recommendations are presented in the final chapter.
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2. ANALYSIS OF FLIGHT DATA

In this chapter, we present various statistical analyses

performed on the flight recorded data. These statistical

analyses were made in order to determine the sensor error para-

meters such as bias levels and noise characteristics. These

sensor error parameters are used in the design of the no-fail

filter, detectors, and decision rule in the FINDS algorithm. The

sensor error analyses results presented here are also used in the

discussion of the estimation and failure detection performance in

the next chapter. We begin this chapter with a description of

the sensor measurements available on the flight data.

2.1 Flight Data Sensor Complement and Flight Path

Flight recorded data contains triple redundant outputs for

flight control roll, pitch and yaw rate gyros; Inertial Measure-

ment Unit (IMU) roll, pitch, and yaw attitudes; and indicated

airspeed; dual redundant outputs are available for the flight

control longitudinal, lateral and normal accelerometers and the

radar altimeter measurements. On the other hand, only a single

channel of data is available for the MLS azimuth, elevation and

range measurements. Except for the body mounted rate gyro out-

puts, the third channel for the triple replicated sensors

contained bad data. Hence, a dual redundant sensor complement is

used for the FINDS exercise by simulating a dual channel for the

MLS measurements.
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The measurement data for the first replication of flight

control accelerometers and rate gyros are given in Figures 2.1-3.

These measurements depict the linear and angular accelerations

sensed due to the aircraft maneuvers executed during the partic-

ular flight. For instance, the lateral accelerometer, and roll

and yaw rate gyro outputs, show a bank maneuver around 100-140

seconds. Simularly, the longitudinal and lateral accelerometer,

and pitch and yaw rate gyro outputs indicate a pitch-up and bank

maneuver in the final phase (277-298 seconds) of the flight. We

will refer to these figures in the discussion of the flight path

correlated errors in the sensor flight data.

2.2 Determination of Replicated Sensor Error Parameters

The performance analysis of the developed fault tolerant

system using flight data normally requires the determination of

the sensor error parameters corresponding to the actual data.

For the replicated measurements, one way of determining these

parameters is to compute the difference between replicated sensor

outputs, and to determine the sensor error characteristics from

this difference signal. Consider the following representation

for the two replicated sensor outputs Yl and Y2:

Yl(k) = s(k) + Cl(k) + bI + Vl(k) (2.1)

Y2(k) = s(k) + c2(k) + b 2 + v2(k) (2.2)

where s(k) is the true signal being measured, ci(k) is the sensor

inaccuracy arising in both channels, for instance, from lever arm

effects and structural modes in the case of body mounted instru-
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Figure 2.1: Longitudinal and lateral accelerometer sensor flight
data time history
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ments, b I and b 2 are the two normal operating bias levels asso-

ciated w_th the two instruments, and Vl(k) and v2(k) are two zero

mean uncorrelated noise sequences with identical standard devia-

tions. Forming the difference of the two measurements and nor- -

malizing with V_, we get as the difference signal

el2(k) = (Yl(k) - Y2(k))/_'=Cl2(k) + b12 + Vl2(k) (2.3)

with

Cl2(k) = (Cl(k) - c2(k))/2V_- ; b12 = (bl-b2)/_-" (2.4)

where Cl2(k) is the sensor inaccuracy reflected in the difference

signal caused by physical location differences, b12 is the dif-

ference bias and Vl2(k) is a zero mean white noise sequence with

standard deviation, equal to that of the noise in the original

measurements Yl and Y2" Note that, in this analysis, common

errors contained in Cl(k) and c2(k) , would get washed out as

well. Hence, it is not possible with this approach to determine

sensor errors that are correlated among the replicated channels

so that the preceeding error analysis is on the optimistic side.

However, the sensor errors due to common lever arm effects and

structural vibrations not reflected in the difference signal are

usually negligible compared to the sensor bias and noise terms.

Our simulation studies [i-3] of FINDS have shown that time-

correlated sensor errors have a significant impact on the false

alarm performance of the FINDS failure detection algorithm.

Hence, in this study, we have made a thorough analysis of the

sensor errors in both the time and frequency domains in order to

- 8 -



determine the temporal error characteristics present in the

sensor flight data. In particular, we have, first, constructed

these sensor error (channel difference) signals from the flight

data. Next, we have computed the sample mean and standard devi-

ation, and empirical autocorrelation function for each of these

sensor error sequences. Using the computed autocorrelation

function, we have then performed a whiteness test on these error

sequences. Finally, we have found the discrete Fourier transform

(discrete power spectral density) of the normalized autocorrela-

tion function to analyze the correlation in the error data.

The results of these statistical analyses performed on the

accelerometer, rate gyro, IMU attitude, indicated airspeed, and

radar altimeter measurements are presented in Table 2.1 and

Figures 2.4-15. Table 2.1 shows the computed sample means and

standard deviations. The top graph in each of the Figures 2.4-15

shows the plot of the sensor error in appropriate units against

time. The lower graph in each of these figures depicts the

discrete power spectral density for the error time history given

above. The power spectral density is plotted in dB's (I0 times

the natural log of the magnitude of the discrete Fourier trans-

form for the normalized autocorrelation function) against Hertz.

The whiteness test results performed on the empirical autocorre-

lation function are given in Table 2.2.
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Sensor Type Computed Statistics
SampleMean Std. Dev. Units

Lonqitudinal Accel. -0.1980 0.0442 m/s/s
Lateral Accel. 0.0812 0.0532 m/s/s
Vertical Accel. 0.0652 0.1200 m/s/s

Roll Rate Gyro -0.2640 0.0461 deq/s
Pitch Rate Gyro -0.2140 0.0477 deg/s
Yaw Rate Gyro 0.1070 0.0310 deq/s

IAS 0.9100 0.2510 m/s

IMU Roll 0.0675 0.iii0 deg
IMU Pitch -0.1750 0.2610 deg
IMU Yaw -0.0039 0.0891 deq

Radar Altimeter -0.6215 0.2231 m

Table 2.1: Empirical statistics for sensor flight data channel
differences

For the body mounted accelerometers, the computed sample

means 0.i - 0.2 m/s 2 have the same order of magnitude as that

assumed in our previous studies [i] - [3] for accelerometer

biases. Time histories for the accelerometer errors shown in

Figure 2.4-6 show that the computed sample means correspond to

essentially constant accelerometer biases. Similarly, the

computed sample standard deviations of 0.05 - 0.1 m/s 2 are close

to previously postulated accelerometer noise levels. As seen

from Table 2.2, whiteness tests performed on the autocorrelation

of accelerometer error sequences indicate that the accelerometer

errors are time-correlated. This table also gives the percent of
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SensorType Autocorrelation Percent Outside
Test Result (2 s.d.)

LongitudinalAccel. Correlated 16.00
LateralAccel. Correlated 33.33
VerticalAccel. Correlated 8.33

Roll Rate Gyro Correlated 69.67
PitchRate Gyro Correlated 75.33
Yaw Rate Gyro Correlated 37.00

MLS Azimuth _ Correlated 45.33
MLS Elevation_ Correlated 94.67
MLS Range * Correlated 50.00

IAS Correlated 72.67

IMU Roll Correlated 92.67
IMU Pitch Correlated i00.00
IMU Yaw Correlated 81.33

Radar Altimeter Correlated 87.67

_NOTE:Whitenesstest was performedon MLS sensorsusing
empiricalerror signalsas replicatedchannelswere
not available.

Table 2.2: Whiteness test results for sensor flight data channel
differences

times the sample autocorrelation lies outside 95% probability

limits. As the table shows, the vertical and lateral accelero-

meters are, respectively, the least and most correlated accelero-

meter errors. The power spectral density for these sensor errors

shown in Figures 2.4-6 indicate that the sensor inaccuracies,

while not exactly white, have almost a constant power spectrum.
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Figure 2.13: Expanded time history of yaw attitude error

The computed sample means of 0. i - 0.25 deg/s for the body

mounted rate gyro difference signals are significantly higher

than the rate gyro bias levels assumed in our previous work [3],

while the computed sample standard deviations of 0.03 - 0.05

deg/s are slightly larger than noise levels assumed in our pre-

vious simulations. As can be seen from the plots of rate gyro

difference signals in Figures 2.7-9, rate gyros have varying
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Figure 2.15: Time history and spectral density of radar altimeter
error
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biases due to scale factor and misalignment errors during man-

euvers. The dependence of rate gyro errors on the flight path

can be seen by comparing these error time histories with those

for the rate gyro measurements depicted in Figure 2.2-3. Note,

for instance, the roll ra£e gyro degradation at around I00

seconds. Also note that the yaw rate gyro exhibits quantization

errors. Power spectral density for the rate gyro errors shown in

Figures 2.7-9 indicate that the constant density property of a

temporally uncorrelated error sequence is most seriously violated

at low frequencies. Time correlation in these error signals is

also evident from tests of whiteness given in Table 2.1.

For the attitude measurements, the computed sample means of

0.02 - 0.2 degrees and sample standard deviations of 0.09 - 0.25

degrees have the same order of magnitude as the attitude sensor

bias and noise levels postulated in our simulations. The time

histories for the attitude sensor difference signals are depicted

in Figures 2.10-12 which show an irregular variation of the bias

levels for these instruments with time, mostly due to maneuvers.

In the case of yaw attitude sensor, note the substantial accuracy

degradation during the flight segment between 130-150 seconds

during the bank maneuver indicated by the yaw rate gyro measure-

ment output in Figure 2.3. An expanded time history of the yaw

attitude sensor difference is presented in Figure 2.10 which

depicts an almost square-wave error with a 3 Hz frequency. This

- 24 -



characteristic is also evident from the peak at 3 Hz in the power

spectral density of the yaw attitude error depicted in Figure

2.12. In contrast, the power spectral density for the IMU roll

and pitch attitudes exhibit deviation from whiteness at low

frequencies. Tests of whiteness for the IMU attitude sensors

given in Table 2.2 verify the extreme time correlation present in

these error signals.

The computed sample mean of 1.0 m/s and standard deviation

of 0.2 m/s for the indicated airspeed are within the previously

assumed ranges for the IAS bias and noise levels. Figure 2.14

contains the time history for the IAS sensor difference signal

which shows a nearly constant bias but a higher noise level near

touchdown. Power spectral density of the IAS error indicates an

uncorrelated behavior at frequencies over 3 Hz.

For the radar altimeter, the computed sample mean of 0.6 and

standard deviation of 0.25 meters are again within the postulated

ranges for the radar altimeter bias and noise levels. Time

history for the radar altimeter difference signal shown in Figure

2.15 shows that the bias levels are time varying. Power spectral

density and whiteness test results verify the time correlation

observed in the time history.

2.3 MLS Sensor Error Characteristics

Since only one channel of MLS azimuth, elevation and range

sensor data was available, the statistical error analysis of the

- 25 -



previous section could not be used on these measurements• For

the MLS sensors, we have made a linear least squares fit over a

moving window of five measurements in order to compute the sensor

errors• Table 2.3 shows the sample mean and standard deviations

computed for these error sequences obtained•

As can be seen from the table, all of the MLS channels have

negligible bias levels• The computed standard deviation of 0•003

deg for azimuth and elevation, and 0.5 meters for range are lower

than the previously assumed noise levels•

Time histories for the MLS errors are shown in Figures

2•16-18• These error time histories do not show an obvious time-

correlation in the MLS sensors• Since time-correlated MLS sensor

errors had a significant impact on the false alarm performance of

the FINDS algorithm, we have computed the MLS sensor-error time

correlation empirically from the generated error sequences. As

discussed in [4], the MLS noise sequences are time correlated and

generated via:

v(k+l) = a v(k) + n(k) (2.5)

where n(k) is a zero mean white noise sequence, v(k) is the

colored MLS noise corrupting the measurement, and the scalar "a"

is the correlation constant to be found• We have computed this

constant by rearranging eqn. (2.5) as:

"v(k) "v(_-I) n (k-l)
v (kUl) v (k-2) n (k-2) (2.6)

• = • a+ .

" [ "• v(2) v( ) n(1)

- 26 -
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Sensor Type Computed Statistics
Sample Mean Std. Dev. Units

MLS Azimuth 0.665E-05 0.00312 deq
MLS Elevation -0_360E-06 0.00316 deq
MLS Range 0.00266 0.483 m

Table 2.3: Empirical error statistics for MLS sensor flight data

A

The least squares estimate, a, for the time correlation

constant, a, is then given by:

k-i k-i

a= v(j)v(j + l) / v2(j) (2.7)

j=l j=l

The computed correlation constants were approximately 0.i, 0.3

and 0.2 for the azimuth, elevation, and range sensors. These

values correspond to time constants of approximately 0.025, 0.05,

and 0.034 seconds which are an order of magnitude smaller than

the values used in our simulation studies (e.g. compared to 0.34,

0.25, 0.34 second time constants) . These time constants esti-
A

mates e, were computed according to:
A

= -T in(a) (2.8)

where T=0.05 s is the sampling interval. These computed time

constants are not large enough to have an impact on the false

alarm performance of the FINDS algorithm. The implications of

this analysis will be discussed in the next chapter.
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Whiteness tests performed on the MLS error sequences indi-

cate the existence of time correlation in these errors. Power

spectral density for the error sequences given in Figures 2.16-18

indicate the presence of a 5Hz peak in the elevation and 9Hz peak

in the range error.

2.4 Reasonableness Tests and Data Dropouts

An analysis of the rate of change between two successive

sampling instants were also made to ascertain the reasonableness

of the data and to find out data dropout conditions. The results

of this analysis are presented in Table 2.4. Again, using the

following measurement model

y(k) = s(k) + v(k) (2.9)

where s(k) is the true signal measured by the sensor and v(k) is

the zero mean white measurement noise, then temporal difference

will be given by:

y(k+l) - y(k) = s(k + I) -s(k) + v(k+l) - v(k) (2.10)

Therefore, this difference signal will contain a white noise

component with standard deviation two times that for the original

measurement noise. Based on the expected time rate of change,

and measurement noise statistics, we have set thresholds to

identify dropout conditions. Table 2.4 summarizes these dropouts

encountered in the flight data.

Sensor output time histories depicting the data dropout

conditions are shown in Figures 2.19-22. For instance, MLS
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elevation sensor data dropout at 212 seconds can be observed in

Figure 2.21. Simularly, Figure 2.22 shows a simultaneous dropout

in the two yaw attitudes around 277 seconds. Modifications have

been made to the FINDS software to compensate for these detected

dropout conditions.
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SensorType Rep. Time(s) Difference

MLS Elevation 1 212.000 .723 deg
MLS Elevation 2 212.000 .723 deg
MLS Elevation 1 212.050 2.800 deg
MLS Elevation 2 212.050 2.800 deg

MLS Range 1 212.000 1396.280 m
MLS Range 2 212.000 1396.280 m
MLS Range 1 212.050 5397.937 m
MLS Range 2 212.050 5397.937 m
MLS Range 1 276.650 1107.983 m
MLS Range 2 276.650 1107.983 m
MLS Range 1 276.700 2135.339 m
MLS Range 2 276.700 2135.339 m
MLS Range 1 276.750 958.789 m
MLS Range 2 276.750 958.789 m

MLS Azimuth 1 276.700 .113 deg
MLS Azimuth 2 276.700 .113 deq
MLS Azimuth 1 276.750 .098 deg
MLS Azimuth 2 276.750 .098 deq

IMU Yaw 1 276.650 87.958 deg
IMU Yaw 2 276.650 87.964 deg
IMU Yaw 1 276.700 147.907 deg
IMU Yaw 2 276.700 147.918 deg
IMU Yaw 1 276.750 54.717 deg
IMU Yaw 2 276.750 147.918 deg
IMU Yaw 2 276.800 147.918 deg
IMU Yaw 2 276.850 147.918 deg
IMU Yaw 2 276.900 147.918 deg
IMU Yaw 2 276.950 44.468 deg

VerticalAccel. 2 277.600 1.375 m/s/s

Table 2.4: Sensor flight data dropouts
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3. PERFORMANCE WITH FLIGHT RECORDED SENSOR DATA

One of the first issues to resolve in the evaluation of

FINDS using flight-recorded data is to determine the no-fai!

filter estimation error performance. In the simulation version

of FINDS, this is a simple matter since the true state and bias

variables are available from the simulation. Hence, one can

directly compute the estimation error by subtracting the esti-

mates from the true variables. On the other hand, in our flight

data driven version, the no-fail filter estimation error perfor-

mance cannot be directly observed since the true states and

sensor biases are not available.

Hence, we have investigated various approaches to ascertain,

indirectly, the estimation performance of the no-fail filter.

For example, one approach is to compute estimates for these true

aircraft state, wind and sensor bias variables from sensor mea-

surements using static transformations. In this approach, one

can obtain estimates for the aircraft position in the runway

frame by transforming the MLS measurements; but these estimates

for the true aircraft position coordinates would be poor as

compared to the dynamically filtered estimates provided by the

no-fail filter. Moreover, there is not enough sensor information

to compute aircraft velocity and wind estimates in the same

manner.

A second approach is to analyze the values for the estima-

tion error covariance and gains for the no-fail filter. While
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gross deviations such as no-fail filter divergence can sometimes

be detected in this approach, standard operational performance

cannot be determined using this method.

Finally, a third approach is to examine the no-fail filter

residuals. If the no-fail filter is operating correctly, i.e.

with accurate initial conditions, sensor parameters, etc., then

the no-fail filter residual sequence should be approximately a

zero mean and white sequence. Any deviation from this behavior

would indicate an unsatisfactory performance for the no-fail

filter. We have decided to use this approach in our analysis.

The new version of FINDS using flight recorded sensor data

will be referred to as "flight data emulation of FINDS" in order

to differentiate from the previous simulation version. In the

next section, we will describe the developed emulation.

3.1 Emulation Overview

The flight data emulation of FINDS has been obtained first

by developing a flight data interface. This was done by replac-

ing the simulation generated measurement set with the flight

recorded measurement data. In particular, routines were devel-

oped for reading the flight recorded data and assigning them to

the appropriate program variables in FINDS.

Secondly, the measurement simulation routines were changed

to simulate failures in the flight recorded sensor data. The

flight data driven version of FINDS has all of the different
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sensor failure injection capability of the previous simulation

version. That is, the emulation allows for injecting bias,

hardover, increased noise, ramp and scale factor failures into

flight recorded sensor measurements.

Concurrent with this development of the flight data inter-

face, major unnecessary blocks simulating the aircraft equations

of motion, wind, automatic guidance and control functions, and

RSDIMU operation (since the RSDIMU is not in the flight data

sensor set) were removed from the emulation since these variables

are not needed in a flight data driven version. Since some of

the earth related quantities contained in the deleted portions

were needed in the estimation/detection algorithms for the com-

pensation of rate gyros for earth's rotation, necessary modifi-

cations were made in the software.

In the next two sections we shall describe the major changes

made to the FDI algorithm in order to improve performance with

flight recorded sensor data.

3.2 Modification to Detectors

Recall from [3] that the FINDS algorithm employs a bank of

first order filters called "detectors" driven by the no-fail

filter residuals to estimate the levels of postulated sensor

failures. That is, the no-fail filter measurement residual

sequence and its associated covariance constitute the inputs into

the detectors. Hence, the accurate estimation of failure levels
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by the detectors, and, consequently, the failure detection

performance, depends on the following attributes of the no-fail

filter residuals:

- signature of the sensor failure on the residuals

- accuracy of the residual covariance statistics.

As explained by the example in Section 2.7 in [3], the

signature of a sensor failure on the no-fail filter residuals

determines the identifiability of that failure. In FINDS, the

failure signature properties for a specific sensor are, in turn,

determined by the sensor noise value used in the design of the

no-fail filter, and whether or not the normal operating bias for

that sensor is estimated. Hence, if a sensor is not heavily used

by the no-fail filter (e.g. if the sensor noise parameter used in

the design is large), then the failure signature for that sensor

would be less identifiable. Similarly, the accuracy of the

no-fail filter residuals covariance, used in the computation of

detector gains, determines the failure level estimation, and

consequently, failure detection performance of the algorithm.

Clearly, there is a natural conflict between the state

estimation and failure detection requirements. That is, if a

sensor is noisy, then the no-fail filter would make relatively

less use of that sensor output in comparison to other sensors in

order to optimize estimation error performance. On the other

hand, from a detection point of view, it is desirable to force

the no-fail filter to make heavy use of that sensor in order to

generate identifiable failure signatures on its residuals.
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In our earlier work, sensor noise parameters were chosen by

making a compromise between good estimation and detection

performance. In our current study, sensor noise parameters are

selected in order to optimize the estimation error performance of

the no-fail filter. Moreover, the sensor noise parameter values

employed in the computation of the no-fail filter measurement

residual covariance used by the detectors are now different

design variables. In this manner, it has been possible to select

values for the second set of sensor noises accurately matching

the actual measurement residual covariance of the no-fail filter.

3.3 Decision Rule Change

As discussed in [3], the decision rule in FINDS implements a

multiple hypothesis test using a detection window of measurement

residuals. Recall that the test is based on the current number

of measurement residuals in a detection window of fixed length.

That is, for a sampling interval of 0.05 seconds and a detection

window of length 0.5 seconds, the test is based on a cyclic

repetition of 1,2,3,4,5,6,7,8,9, and i0 measurements. From eqn.

(2.53)° in [i], the decision rule selects the hypothesis corres-

ponding to the minimum of the likelihood ratios given by

K

hi (K)=I/2 _ ri' (k) R-l(k)r i (k)-inP i (3.i)
k=l

i=0,1,...,M

where K is the current number of measurement residuals in the

detection window, ri(k ) is the measurement residual at the k'th
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instant compensated by the i'th detector, R(k) is the covariance

of the no-fail filter measurement residual at the k'th instant,

and Pi is the a priori probability of the i'th hypothesis. As

discussed in the previous section, in contrast to our earlier

simulation work, the covariance R(k) in the decision rule above
i

is different from the computed covariance of the no-fail filter

measurement residual sequence.

If the i'th failure mode is the true hypothesis, then each

-i
' (k) R ri(k) in the sum in eqn. (3.1) would be a Chi-term ri

squared random variable with m degrees of freedom where m is the

dimension of the residual vector (i.e. the number of measurements

currently used by the no-fai! filter). Hence, the sum in eqn.

(3.1) would be a Chi-squared random variable with Km degrees of

freedom [5]. Normalizing eqn. (3.1) by K/2, our decision logic

is equivalent to selecting the hypothesis corresponding to the

minimum of:

K

_i(k) = I/K_ r_ (k) R-l(k) ri(k ) -2/K lnP (3 2)
k= 1 1 I "

i=0,1,...,M

Examination of eqn. (3.2) above shows that the average sum

of squares of the residuals is effectively compared with a

monotonically decreasing threshold.

Hence, the effect of a priori probabilities diminish towards

the end of a detection window. An analysis of false alarms with

flight recorded data revealed that most of the false alarms were

near the end of the detection window due to the decision rule's
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attribute described above. Therefore, we have changed the deci-

sion rule to choose the hypothesis corresponding to the minimum

of:

K

' (k) R -Ir i (k) ri(k) + d. (3.3)Li (K)=I/K
k= 1 1

i=0, i, . ..,M

where the thresholds d i are now chosen from Chi square tables for

a given false alarm rate specification.

3.4 Emulation Description

In this section, we describe the characteristics of the

flight recorded data used in our present study. In particular,

we present a description of the nominal flight path of the air-

craft, and important aircraft state variable time histories as

estimated by the no-fail filter in FINDS.

The flight recorded sensor data covers 298 seconds of

flight, at a sampling frequency of 20Hz for each sensor. Thus, a

sampling interval of 0.05 seconds is used in the emulation runs

-- which is the same update rate used in all previously reported

simulation runs. Also, the recorded sensor data begins with the

aircraft already within MLS coverage boundaries; so that all the

FINDS algorithm (no-fail filter, detectors, decision logic) is

initiated at the start of the emulation run.

Figures 3.1-3 show the aircraft state estimate time his-

tories for the nominal emulation run, provided by the no-fail

filter using the appropriate sensor noise parameters. In
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contrast to earlier simulation studies, MLS sensor noise has been

assumed to be white based on the sensor error analysis in the

last chapter.

The A/C ground track, altitude profile, and horizontal

runway coordinate time .histories are depicted in Figure 3.1-3.
p

These figures show the sequencing of the various flight segments

as the A/C performs its approach to runway, altitude hold, align-

ment with runway, and finally "touch-and-go" maneuvers. Initi-

ally, the x and y position coordinates in the runway frame are

approximately (-17000 m, -4800 m), and the initial ground track

is oriented roughly 30 ° relative to the runway. A bank maneuver

at constant altitude is executed (from i00 -140

! l ,

q

I

J

i I* I
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EX (MI

Figure 3.1: Estimated aircraft ground track
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seconds) which brings the flight track in alignment with the

runway. At the end of this maneuver (144 seconds), the A/C is

exactly aligned with the runway (i.e. x and y coordinates of

(-8400 m, 0 m)). This flight segment lasts till touchdown (277

seconds). In this flight segment, radar altimeter measurements

are turned on at approximately 266 seconds replacing the MLS

elevation sensors. The final portion of the flight segment

between 277- 298 seconds depicts the A/C in a take-off and slow

bank maneuver, finally ending at position coordinates (1940 m,

-46 m).

The altitude profile curve shows the A/C initially at a

height of 760 meters with a nearly constant sink rate of approx-

imately 4 m/s until touchdown. Also note that the A/C altitude

stays almost constant during the runway alignment maneuver de-

scribed above. After touchdown, we see a higher climb rate of

approximately 7-8 m/s in the final segment of the flight path.

The final altitude of the A/C at 298 seconds is 125 meters.

The A/C flight path and altitude profile can be summarized

by the following mapping, which will be convenient for later

reference.

i) Descent: A/C is descending at constant

sink rate in a flight path
oblique to the runway (0-i00
seconds).

2) Alignment maneuver: A/C is maneuvering to align with

the runway at constant altitude
(100-140 seconds).

3) Landing maneuver: A/C is parallel to runway and

descending for touchdown (140-277
seconds).
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4) Take-off: A/C is executing a bank maneuver

and climbing (277-298 seconds).

Figure 3.4 displays the no-fail filter estimates for the

aircraft horizontal velocity components in the runway frame.

These figures show that the aircraft velocity has components both

in the x and y runway axes up to 150 seconds. After the align-

ment maneuver with the runway, the aircraft velocity is mostly

along the x axis, except for small variations due to maneuvers in

order to stay aligned with the runway. The vertical velocity

component estimate time history depicted in Figure 3.2 is in

agreement with the aircraft altitude profile estimate shown in

the same figure.

The no-fail filter attitude estimates for the emulation run

are shown in Figures 3.5-6. As can be seen from the roll atti-

tude estimate time history in Figure 3.5, significant aircraft

bank maneuvers occur during the flight segments from 20-30,

130-160, 260-275 seconds. Pitch attitude estimate time histories

show that the aircraft is pitching down at an angle of 2°-4o

during most of the emulation run, except for the flight segments

where the altitude hold and final take-off maneuvers are exe-

cuted. Yaw attitude estimate time history shown in Figure 3.6

reflects the low frequency content in this variable in contrast

to roll and pitch attitudes.

Figure 3.4 shows the no-fail filter estimates for the

horizontal winds in the runway frame. The estimates indicate

essentially a constant crosswind of about i0 m/s throughout the

emulation run.
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The aircraft latitude and longitude estimates are depicted

" in Figure 3.7. As expected, there is no significant change in

those variables from the initial conditions.

Before proceeding on to the performance evaluation of FINDS,

we make a few concluding comments about the A/C profiles above.

First, referring back to Section 2.4 on data dropouts, the MLS

and IMU yaw measurement dropouts around 276-277 seconds can be

attributed to the proximity to MLS antennas during the A/C
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"touch-and-go" maneuver. In contrast, the MLS measurement

dropouts at 212 seconds appear to be genuine sensor or recording

failures. The sensor characteristics are generally in agreement

with the previously reported simulation results for FINDS.

3.5 Performance With No Failures

The first step in evaluating the flight data driven version

of FINDS is to determine the estimation error performance of the

no-fail filter in the FINDS algorithm. The performance of the

no-fail filter is important since this performance ultimately

affects the failure detection and isolation attributes of the

algorithm. In section 3.2 above, we have discussed the changes

made to the FINDS algorithm in order to minimize the conflict

between the estimation and detection functions.

As stated in the beginning of this chapter, due to the

unavailability of the true A/C states and sensor biases in our

emulation, we analyze the no-fail filter performance by examining

the filter residual sequences. The specific sensor noise para-

meters used in the design of the no-fail filter are obtained,

from the statistical analysis performed on the replicated sensor

difference signals (see Chapter 2, Tables 2.1-2). In this

section, two specific baseline emulation run results are pre-

sented; one without the detectors implementing the failure

detection and isolation (FDI) algorithm, and the other with the

detectors on but with no injected failures.
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First, we have decided to estimate the normal operating

biases only for the input sensors, i.e. the body mounted linear

accelerometers (ax, ay, a z) and the rate gyros (p, q, r). From

the flight data analysis, we see that these sensors have a higher

bias to noise standard deviation ratio compared to other sensors

such as MLS, IMU, and IAS. The other rationale for this choice

is to keep the size of the bias-estimator filter block down to an

acceptable size. Figures 3.8-10 show the bias estimate time

histories as obtained from the baseline run with the detectors

off. As seen from these figures, it takes approximately 60-70

seconds for the no-fail filter to reach the steady state bias

estimate in the case of the linear accelerometers. Of the three

sensors, the longitudinal accelerometer shows the highest fixed

bias level of approximately -0.19 m/s 2. The steady-state bias

estimate for the lateral accelerometer is roughly 0.075 m/s 2.

The convergence rate of the rate gyro bias estimates to

their steady-state levels is faster than that for accelerometer

bias estimates as seen from Figures 3.9-10. The bias-estimator

filter, in this case, needs only 20-30 seconds to converge to the

steady state bias levels which are -0.27 deg/s for the roll rate

(p), -0.23 deg/s for the pitch rate (q) and 0.14 deg/s for the

yaw rate (r). The reason for the rapid convergence of rate gyro

bias estimates, relative to that for accelerometer bias esti-

mates, is the availability of closely coupled sensors such as IMU

measurements.
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Variable Init.Est. Uncertainty Units
(S.D.)

States:
x-rw -1.4403E+04 4.0000E+01 m
y-rw -4.2300E+03 4.0000E+01 m
z-rw -7.3396E+02 3.0000E+01 m
x-dot-rw 7.6505E+01 4.0000E+00 m/s
y-dot-rw 3.7186E+01 4.0000E+00 m/s
z-dot-rw 3.9929E+00 1.2500E+00 m/s
phi (roll) 3.5800E+00 5.0000E-01 deq
theta (pitch) 2.5800E+00 5.0000E-01 deg
psi (yaw) 3.1760E+01 1.5000E+00 deg
x-wind-rw 0.0000E+00 7.5000E-01 m/s
y-wind-rw -I.0302E+01 7.5000E-01 m/s

Biases:
lonqit,accel. 0.0000E+00 3.0480E-01 m/s/s
lateralaccel. 0.0000E+00 3.0480E-01 m/s/s
verticalaccel. 0.0000E+00 3.0480E-01 m/s/s
roll rate gyro 0.0000E+00 2.5600E-01 deq/s
pitch rate qyro 0.0000E+00 2.5600E-01 deg/s
yaw rate qyro 0.0000E+00 2.5600E-01 deq/s

NOTE: All stateswith subscript-rw are with
referenceto the runway coordinateframe.

Table 3.1: No-fail filter initial estimates
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Variable Noise S.D. Replications Units
Per Repl. Used

ProcessNoises:
lonqit,accel. 5.0000E-02 1 m/s/s
lateralaccel. 7.0000E-02 1 m/s/s
verticalaccel. 1.0000E-02 1 m/s/s
roll rate gyro 5.0000E-02 1 deg/s
pitch rate gyro 5.0000E-02 1 deq/s
yaw rate qyro 5.0000E-02 1 deq/s
x-wind-rw 0.0000E+00 N/A m/s
y-wind-rw 0.0000E+00 N/A m/s

MeasurementNoises:
MLS azimuth 6.0000E-02 2 deq
MLS elevation 6.0000E-02 2 deg
MLS ranqe 8.5000E+00 2 m
IAS 1.5000E+00 2 m/s
IMU roll 2.5000E-01 2 deg
IMU pitch 5.0000E-01 2 deq
IMU yaw 3.0000E-01 2 deg
Radar altimeter 1.0000E+00 0 m

Table 3.2: Design values for no-fail filter noise parameters
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The no-fail filter initial conditions for the state and

normal operating bias estimates along with the standard deviation

of the initial uncertainty for these variables are shown in Table

3.1. The process and measurement noise statistics used in the

design of the no-fail filter are given in Table 3.2. These

parameter values are largely based on the flight data analysis

presented in Chapter 2. Note that the noise parameter design

values are given in a per replication manner -- to reflect the

fact that the actual measurement noise statistics used depend on

the number of replications of a given sensor. Also, the wind

process noise is replication independent as it does not relate to

a physical sensor.

The no-fail filter measurement residual time histories are

shown in Figures 3.11-14 for the same emulation run. As

expected, these measurement residual sequences show the depen-

dence of estimation error on aircraft maneuvers during which the

linearity assumptions employed in the no-fail filter are most

seriously violated. For instance, the MLS azimuth and range,

IAS, and the IMU roll and yaw attitude measurement residuals

depicted respectively in Figures 3.11-14, exemplify such a case.

Note also that the MLS elevation and radar altimeter measurements

residual sequences given in Figures 3.11 and 3.14 have time

scales corresponding to segments of the flight data during which

these instruments are active.
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SensorType ComputedStatistics
SampleMean Std. Dev. Units

MLS Azimuth 0.0106 0.0153 deg
MLS Elevation 0.00015 0.0093 deg
MLS Range 3.4089 4.5081 m

IAS 0.3995 0.9295 m/s

IMU Roll -0.i187 0.2024 deg
IMU Pitch -0.0324 0.0938 deg
IMU Yaw 0.0154 0.2218 deq

Radar Altimeter -0.4589 1.0983 m

NOTE: -- MLS Elevationresidualsused from
T=0 secondsto T=266 seconds.

-- Radar Altimeter residuals used from
T=267 seconds to T=298 seconds.

Table 3.3: Computed statistics for no-fail filter residual
sequences (baseline run -- detectors off)

Table 3.3 contains the computed sample means and standard

deviations for the no fail filter residual sequences over the

entire emulation run. Note that the radar altimeter and MLS

elevation residual statistics were obtained by using the residual

values only in the region where these sensors are active i.e. MLS

elevation during 0-266 seconds, and the radar altimeter during

267-298 seconds. These empirical statistics can be used to
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investigate the no fail filter performance by comparing them to

the sensor measurements difference signal statistics (Table 2.1,

Chapter 2). From eqn. (2.37) in [i], we have the following

functional model for the no-fail filter measurements:

i
y (k) = h(x(k)) + b i + v i (k) i=1,2 (3.4)

y
i

where y is the i'th replication of the measurement vector at

time k, x(k) is the aircraft state vector at the k'th instant, h

is the nonlinear transformation mapping the state into the mea-

b i is the measurement bias vector for the i'th repli-
surements, Y

cation, and vi(k) is the zero mean, white measurement noise for

the i'th replication. Since the no-fail filter uses the average

of the replicated measurements, the no-fail filter measurement

residual sequence will be given by:

A

r(k+l) = h(x(k+l))-h(x(k+i/k))+6- + v(k) (3.5)y

where by = (bl+b2)/2 and v(k)=(v l(k) + v 2(k))/2. This expression

follows since, in the present emulation, none of the measurement
A

biases are estimated. Expanding h(x(k+l)) at x(k+i/k), we get

r(k+l) = H (x(k+i/k)) x(k+i/k) + b- + _(k) (3.6)
Y

where H (x(k+i/k)) is the measurement partial matrix defined by

eqn. (2.19) in [i] and x(k+l) is the state estimation error

defined by x(k+l) = x(k+l) - _(k+i/k). Examination of eqn. (3.6)

above suggests that the sample mean and standard deviations of
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the no-fail filter residual sequences would have a good indi-

cation of its estimation error performance.

From the statistical analysis of replicated sensor channel

differences, the standard deviation of the average noise in _(k)

can be computed. Unfortunately, this analysis does not yield the

average bias but the difference of biases in the replicated

versions. As an approximation, we have compared the rms values

of the difference signals to the rms values of the measurement

residuals. These comparisons indicate, in general, a good esti-

mation error performance for the no-fail filter. For instance,

for the IAS sensor, rms value increased from 0.94 m/s to 1.01 m/s

indicating an rms error of 0.07 m/s. Similarly, for the IMU roll

attitude sensor, the increase in the rms error is 0.i degrees.

The second baseline run is made with the detectors on,

without any injected failures, and using the same sensor noise

parameters. As discussed in Section 3.2, the advantage in

differentiating the sensor noise parameters used in the no-fail

filter from those used in the detectors is to keep the estimation

performance at its nominal best while fine tuning the failure

detection and isolation performance and sensitivity. Thus, in

the second baseline run, the no-fail filter estimation perfor-

mance is exactly the same as in the first baseline case.

The fault tolerant system detector parameters are summarized

in Tables 3.4 and 3.5. Table 3.4 gives the test threshold for
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each sensor, detector estimation window length, standard devia-

tions of the estimation information used for detector resetting

and the sensor noise parameters used by the detection logic.

Table 3.5 shows the bias and failure threshold levels used in the

healer module. The healer window length used is 3 seconds in all

runs.

During the preliminary second baseline run, a false-alarm in

yaw rate gyro at around 136 seconds into the emulation was

encountered with healing within 3 seconds. This was later traced

back to the noisy measurement yaw attitude data in the 130-140

seconds time span. Hence, the yaw attitude sensor noise standard

deviation was increased from a value of 0.3 ° to 0.4 ° , reflecting

the inaccuracy in this sensor. The sample time-line file for the

second baseline emulation run is shown in Table 3.6. Referring

to this table, MLS and FINDS filter and detectors are turned on

at 0.05 seconds. Without encountering any false alarms, the

radar altimeter is turned on around 266.2 seconds at an altitude

of 30 meters• This is accomplished by collapsing the MLS-

• elevation measurements. Finally, the run ends at 298.05 seconds

(the end of flight recorded data).

At this stage, the estimation performance of the no-fail

filter, and the false alarm performance of the detectors are now

optimized. In the next section, we discuss the failure detection

performance with flight recorded sensor data.
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DetectorsassumeM.L.S. noise is WHITE
DetectorWindow Length : 0.500 seconds

Sensor Test Estim. Estim. Noise S.D. Units
Type Threshold Window Info. (SIGD)

(s) (S.D.)

SingularFailures:
longit,accel. 2.0018E+01 3.00 9.29E-03 5.00E-02 m/s/s
lateralaccel. 2.0018E+01 3.00 9.29E-03 7.00E-02 m/s/s
verticalaccel. 2.0018E+01 3.00 9.29E-03 1.00E-01 m/s/s
roll rate qyro 2.0018E+01 3.00 0.00E+00 5.00E-02 deq/s
pitch rate gyro 2.0018E+01 3.00 0.00E+00 5.00E-02 deg/s
yaw rate gyro 2.0018E+01 3.00 0.00E+00 5.00E-02 deg/s
MLS azimuth 2.0018E+01 .50 0.00E+00 3.00E-02 deg
MLS elevation 2.0018E+01 .50 0.00E+00 2.00E-02 deg
MLS range 2.0018E+01 .50 0.00E+00 8.00E+00 m
IAS 2.0018E+01 .50 0.00E+00 1.50E+00 m/s
IMU roll 2.0018E+01 .50 0.00E+00 2.50E-01 deg
IMU pitch 2.0018E+01 .50 0.00E+00 2.00E-01 deg
IMU yaw 2.0018E+01 .50 0.00E+00 4.00E-01 deg
Radar altimeter 2.0018E+01 .50 0.00E+00 1.00E+00 m

SimultaneousMultipleFailures:
MLS azimuth 4.9246E+01
•MLS elevation 4.9246E+01
MLS range 4.9246E+01

Table 3.4: Detector parameters

3.6 Performance with Injected Bias Failures

In this section, we present the results for emulation runs

where various bias failures are injected into the sensor flight

data, and discuss the failure detection and isolation performance

of the FINDS algorithm. The reason for the selection of bias

failures in this analysis follows from our earlier simulation
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Healer Window Length = 3.000 seconds

Sensor Bias Est Failure Est Decision Units
Type Threshold Threshold Threshold

. (SquareUnits)

longit,accel. 3.000E-01 5.000E-01 -2.8317E+00 m/s/s
lateralaccel. 3.000E-01 5.000E-01 -5.5501E+00 m/s/s
verticalaccel. 3.000E-01 5.000E-01 -I.1327E-01 m/s/s
roll rate gyro 2.000E-01 5.000E-01 -2.9444E-02 deg/s
pitch rate gyro 2.000E-01 5.000E-01 -2.9444E-02 deg/s
yaw rate gyro 2.000E-01 5.000E-01 -2.9444E-02 deg/s
MLS azimuth 9.000E-02 1.000E-01 -8.4800E-02 deg
MLS elevation 9.000E-02 1.000E-01 -8.4800E-02 deq
MLS range 9.000E+00 3.000E+01 -1.7019E+03 m
IAS 1.700E+00 3.000E+00 -3.7698E+00 m/s
IMU roll 3.000E-01 5.000E-01 -3.6805E-01 deg
IMU pitch 3.000E-01 5.000E-01 -1.4722E+00 deg
IMU yaw 3.000E-01 5.000E-01 -5.3000E-01 deg
Radar altimeter 6.000E-01 1.000E+00 -5.8889E+00 m

Table 3.5: Sensor healer parameters
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TIME : 0.0H s. EVENT : MLS Coverage Begins / Filter Turn On

N-F FILTER STATES :
-1.4403E+04 -4.2300E+03 -7.3396E+02 7.6505E+01 3.7186E+01 3.9929E+00
3.5800E+00 2.5800E+00 3.1760E+01 0.0000E+00 -I.0302E+01

BIAS FILTER ESTIMATES :
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

TIME = 266.20s. EVENT : Radar AltimeterTurn On

N-F FILTER STATES :
-2.5095E+02 3.7080E+00-3.0443E+01 6.5319E+01 2.9840E-01 3.1622E+00
2.7572E+00 I.I144E+00-3.5847E+02-1.3581E+00-5.5324E+00
BIAS FILTER ESTIMATES :
-1.8671E-01 6.0690E-02 7.3919E-02-2.6363E-01-2.2717E-01 1.3536E-01

TIME = 298.05s. EVENT : End of EmulationRun

N-F FILTER STATES :
1.9400E+03-4.5618E+01-1.2560E+02 7.5962E+01-4.6090E+00-6.8641E+00
2.4479E-01 9.5560E+00-3.5698E+02-1.5168E+00-5.0799E+00

BIAS FILTER ESTIMATES :
-1.8634E-01 6.4670E-02 1.4110E-01-2.6305E-01-2.2730E-01 1.3561E-01

NOTE THAT IN ALL THE TIME-LINEFILES,THE N-F FILTER STATESAND BIAS FILTER
STATESARE ORDERED (ALONGWITH THEIR UNITS)AS PER TABLE 3.1 (page 56)

Table 3.6: Time-line file for baseline run with detectors on
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work results which show that the FINDS algorithm, designed on the

basis of a bias failure type sensor model, can identify hardover,

null, ramp, scale factor, and increase noise type failures as

well. That is, the emulation results presented here can be

extrapolated to the case for non-bias type sensor failures based

on the relative performance comparison between bias and non-bias

type failures obtained with the simulation results [3].

Here, we discuss six emulation runs providing a total fail-

ure coverage for the fourteen sensors (six input sensors com-

prised of body mounted accelerometers and rate gyros; and, eight

measurement sensors comprised of MLS, IAS, IMU, and radar alti-

meter sensors). These six runs are discussed by using the "time-

line" [2] output files which contain a "snapshot" of the vehicle

state estimates at time instants corresponding to important

events such as filter turn-on, failure detection and sensor

healing decisions, and radar altimeter turn-on.

3.6.1 MLS Elevation Failure

Time-line file given in Table 3.7 shows the results for the

first emulation run in which an MLS elevation bias failure is

injected into the flight data at 80.65 seconds. The injected

bias failure level is 0.18 ° which corresponds to a 3-sigma

failure level with respect to the standard deviation of the MLS

elevation measurement noise (see Table 3.2). As can be seen from

the time-line in Table 3.7, this bias failure in the second
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replication of MLS elevation measurement gets detected at 80.8

seconds yielding a "time-to-detect" figure of 0.15 seconds. As

the aircraft state and normal operating bias estimates at 80.65

and 80.8 seconds show, the effects of the failure on the no-fail

filter are minimal since the failure is quickly detected in three

samples. We also note that this sensor failure takes place in

the first segment of the flight (refer to Section 3.4 for the

definition of the flight segments) during which the vehicle

altitude decreases at a constant rate.

The time-line in Table 3.7 also shows a yaw attitude false

alarm at 136.85 seconds which heals itself after 3 seconds. This

false alarm is caused mainly by the large inaccuracy in the yaw

attitude sensors near the end of the second flight segment during

which the aircraft is maneuvering to align itself with the runway

as seen in Figure 2.9 in Chapter 2. Since this false alarm is

not encountered during the second baseline run with no failures

described in the previous section, we can infer that the reini-

tialization effects of the detected elevation sensor failure is a

secondary reason for the false alarm. Table 3.7 shows that the

emulation run ends at 298 seconds, after the radar altimeter

turn-on at 266.2 seconds.

3.6.2 IMU Yaw, MLS Azimuth and Range Failures

The second time-line file depicted in Table 3.8 show the

results for an emulation run in which a sequence of yaw attitude,
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TIME = 0.05 s. EVENT : MLS CoveraqeBeqlns / FilterTurn On

N-F FILTER STATES :
-1.4403E+04-4.2300E+03-7.3396E+02 7.6505E+01 3.7186E+01 3.9929E+00
3.5800E+00 2.5800E+00 3.1760E+01 0.0000E+00-I.0302E+01
BIAS FILTER ESTIMATES:
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

TIME = 80.65 s. EVENT : MLS Elevation(Repl.2) Failure Injected

N-F FILTER STATES :
-I.1846E+04-1.8944E+03-4.5291E+02 5.3287E+01 3.3561E+01 3.7722E+00
-7.0555E-02-6.7442E-01-3.2063E+02 2.5290E+00-I.0263E+01
BIAS FILTERESTIMATES:

• -1.8195E-01 5.6236E-02 7.3347E-02-2.7314E-01-2.2322E-01 1.3649E-01

TIME = 80.80 s. EVENT : MLS Elevation(Repl.2) FailureDetected

N-F FILTER STATES :
-I.1835E+04-1.8876E+03-4.5254E+02 5.3253E+01 3.3573E+01 3.8070E+00
1.5867E-02-6.7740E-01-3.2057E+02 2.5533E+00-I.0300E+01
BIAS FILTERESTIMATES :
-1.8226E-01 5.6000E-02 7.3800E-02-2.7314E-01-2.2322E-01 1.3651E-01

TIME = 136.85 s. EVENT : Yaw Rate GFro (Repl.i) False Alarm

N-F FILTERSTATES :
-8.8486E+03-I.0031E+02-4.2531E+02 5.9212E+01 2.2479E+01 6.8632E-01
-l.1210E+01 4.9053E+00-3.3802E+02 6.8303E+00-1.6195E+01
BIAS FILTERESTIMATES :
-1.7322E-01 5.9489E-02 6.9669E-02-2.6855E-01-2.2470E-01 1.3763E-01

TIME = 139.85 s. EVENT : Yaw Rate Gyro (Repl.I) Healed

N-F FILTERSTATES :
-8.6659E+03-4.5426E+01-4.2637E+02 6.2443E+01 1.6323E+01-8.0620E-01
-8.8017E+00 3.8177E+00-3.4441E+02 6.7322E+00-1.6105E+01
BIAS FILTER ESTIMATES:
-1.7703E-01 5.9017E-02 6.9685E-02-2.6820E-01-2.2500E-01 3.0039E-01

TIME = 266.20s. EVENT : Radar AltimeterTurn On

N-F FILTER STATES :
-2.5090E+02 3.6452E+00-3.0449E+01 6.5344E+01 2.6616E-01 3.1512E+00
2.7464E+00 1.0995E+00-3.5859E+02-1.3578E+00-5.5306E+00
BIAS FILTERESTIMATES:
-1.8615E-01 5.9363E-02 7.4031E-02-2.6348E-01-2.2673E-01-8.8105E-03

TIME = 298.05s. EVENT : End Of EmulationRun

N-F FILTER STATES :
1.9400E+03-4.5641E+01-1.2560E+02 7.5971E+01-4.6302E+00-6.8635E+00
1.9692E-01 9.5383E+00-3.5723E+02-1.5177E+00-5.0753E+00
BIAS FILTERESTIMATES :
-1.8563E-01 6.3363E-02 1.4139E-01-2.6298E-01-2.2690E-01-8.9562E-03

Table 3.7: Time-line file for MLS elevation failure
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MLS azimuth and range bias failures are injected into the flight

data. In this run, the second replication of the yaw attitude

sensor fails at 66.7 seconds with a bias level of 4.0 ° which

corresponds to a 10-sigma failure compared to the yaw attitude

sensor noise standard deviation used by the no-fail filter (see

Table 3.2). This failure is detected at 66.9 seconds yielding a

time-to-detect of 0.2 seconds. The estimated failure level is

2.14 ° which indicates a small percentage error in the failure

level estimate since the yaw attitude measurement is approxi-

mately 109 degrees. Due to the fast detection of the failure,

there is no significant impact on the no-fail filter estimates.

The time-line in Table 3.8 also shows that the first repli-

cation of the MLS azimuth sensor fails at 110.65 seconds, at the

beginning of the second flight segment corresponding to the air-

craft runway alignment maneuver during which the time rate of

change in the azimuth sensor starts gets smaller. The injected

bias failure level of 0.18 degrees corresponds to a 3-sigma

failure with respect to the MLS azimuth sensor noise parameter

used by the no-fail filter. This azimuth failure is detected in

0.4 seconds with a failure level estimate of 0.183 degrees.

Again, there is no discernible effect of the failure on the

no-fail filter estimates.

The final sensor failure depicted in Table 3.8 is the bias

failure in the second replication of the MLS range sensor at

221.95 seconds. At this instant, the aircraft is in the middle
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TIME = 0.05 9. EVENT : MLS CoverageBegins ! FilterTurn On

N-F FILTERSTATES :
-1.4403E+04-4.2300E+03_7.3396E+02 7.6505E+01 3.7186E+01 3.9929E+00
3.5800E+00 2.5800E+00 3.1760E+01 0.0000E+00-I.0302E+01
BIAS FILTERESTIMATES:
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

TIME = 66.70 s. EVENT : IMU Yaw (Repl.2) FailureInjected

N-F FILTERSTATES :
-1.2598E+04-2.3690E+03-5.0579E+02 5.5228E+01 3.4395E+01 3.0888E+00
1.4106E+00-9.3626E-01-3.2099E+02 I.I067E+00-7.9917E+00
BIAS FILTER ESTIMATES:
-1.7542E-01 6.5754E-02 7.3244E-02-2.7288E-01-2.2283E-01 1.3567E-01

TIME = 66.90 9. EVENT : IMU Yaw (Repl.2) FailureDetected

N-F FILTERSTATES :
-1.2584E+04-2.3604E+03-5.0503E+02 5.5195E+01 3.4359E+01 3.2962E+00
1.1384E+00-I.0025E+00-3.2091E+02 1.1018E+00-7.9819E+00
BIAS FILTER ESTIMATES:
-1.7498E-01 6.5781E-02 7.3303E-02-2.7290E-01-2.2286E-01 1.3517E-01

TIME = 110.65s. EVENT : MLS Azimuth (Repl.i) Failure Injected

N-F FILTERSTATES :
-I.0283E+04-9.3868E+02-4.3447E+02 5.4272E+01 3.3478E+01-8.1559E-02
5.5471E-01 1.3930E+00-3.2196E+02 5.7069E+00-1.4775E+01
BIAS FILTER ESTIMATES:
-1.5636E-01 6.4968E-02 7.2387E-02-2.7198E-01-2.2230E-01 1.3839E-01

TIME = ii1.059. EVENT : MLS Azimuth (Repl.i) FailureDetected

N-F FILTER STATES :
-I.0258E+04-9.2529E+02-4.3437E+02 5.4513E+01 3.3293E+01 2.4125E-01
-4.0756E-02 1.3827E+00-3.2192E+02 5.7876E+00-1.4886E+01
BIAS FILTERESTIMATES:
-1.5623E-01 6.6810E-02 7.2353E-02-2.7193E-01-2.2230E-01 1.3839E-01

• TIME = 221.95 9. EVENT : MLS Range (Repl.2) FailureInjected

N-F FILTER STATES :
-3.1664E+03 3.5177E+00-2.1399E+02 6.7880E+01 5.6299E-01 4.0661E+00
-1.2385E+00-3.7735E+00-3.5416E+02-5.0399E-01-6.9357E+00
BIAS FILTERESTIMATES:
-1.8458E-01 5.9651E-02 7.3423E-02u2.6403E-01-2.2703E-01 1.3394E-01

Table 3.8: Time-line file for IMU yaw, MLS azimuth and range
failures
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TIME = 222.20 s. EVENT : HLS Range (Repl. 2) Failure Detected

N-F FILTER STATES :
-3.1468E+03 3.6726E+00 -2.1272E+02 6.7945E+01 3.6251E-01 4.3395E+00
-2.4651E+00 -4.0805E+00 -3.5400E+02 -5.2271E-01 -6_9102E+00
BIAS FILTER ESTIMATES :

-1.8458E-01 5.9542E-02 7.3401E-02 -2.6403E-01 -2.2704E-01 1.3395E-01

TIME = 266.15 s. EVENT : Radar AltimeterTurn On

N-F FILTER STATES :
-2.5071E+02 3.8884E+00-3.0400E+01 6.5390E+01 3.7189E-01 3.1198E+00
2.9754E+00 1.0583E+00-3.5850E+02-1.3453E+00-5.5516E+00
BIAS FILTERESTIMATES :
-1.8007E-01 6.4311E-02 7.4080E-02-2.6409E-01-2.2708E-01 1.3490E-01

TIME = 298.05 s. EVENT : End Of EmulationRun

N-F FILTERSTATES :
1.9412E+03-4.5400E+01-1.2557E+02 7.6030E+01-4.5117E+00-6.8588E+00
3.3815E-01 9.3794E+00-3.5695E+02-1.5282E+00-5.0570E+00
BIAS FILTERESTIMATES :
-1.7243E-01 6.7891E-02 1.4573E-01-2.6335E-01-2.2665E-01 1.3544E-01

Table 3.8: Time-line file for IMU yaw, MLS azimuth and range
failures (continued)
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of the third flight segment, approximately 3200 meters from the

range antenna on the runway, and at an altitude of 215 meters.

The injected bias failure level of 40 meters corresponds to a

5-sigma failure with respect to the MLS range _ensor noise

parameter value used by the no-fail filter (Table 3.2). This

failure is detected in 0.25 seconds with an estimated failure

level of 44.2 meters. The only change in the vehicle state

estimates seen in the time-line is in the roll attitude which is

caused by a small roll maneuver during 221-222 seconds during

which the roll rate gyro is approximately -4 deg/s. The

emulation run depicted in Table 3.8 ends after the radar alti-

meter turn-on at 266.15 seconds.

3.6.3 IAS, Roll Rate and Lateral Accelerometer Failures

Table 3.9 depicts the time-line file corresponding to an

emulation run in which a sequence of IAS, roll rate gyro and

lateral accelerometer bias failures are injected into the flight

data. The first failure is in the IAS sensor at 55.9 seconds.

• The injected failure level of 9 m/s corresponds to a 6-sigma

failure with respect to the IAS noise parameter value used by the

no-fail filter (Table 3.2). This failure is detected at 56.1

seconds with a failure level estimate of 9.39 m/s. Since the

failure is detected in a relatively short period of 0.2 seconds,

there is no significant impact of the failure on the vehicle

state estimates. The minor change in the longitudinal accelero-
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meter bias estimate could be attributed either to the IAS failure

or to the normal transients associated with this bias estimate

(Figure 3.8).

At 140.3 seconds, a roll rate gyro failure of 0.9 deg/s is

introduced in this run, just after the completion of the runway

alignment maneuver. The failure level of 0.9 deg/s corresponds

to a 3-sigma failure level with respect to the empirical error

statistics given in Table 2.1 (Absolute value of sample mean plus

sample standard deviation is approximately 0.3 deg/s for the roll

rate gyro). The reason for comparing the input failure levels to

the empirical statistics is that the normal operating biases for

these sensors are estimated by the no-fail filter. This roll

rate gyro failure is detected at 140.85 seconds resulting in a

relatively long "time-to-detect" figure of 0.55 seconds. The

estimated failure level is approximately 1.4 degrees. As

expected, the roll rate j gyro failure affects the roll attitude

state estimate. There is no such effect on the roll rate gyro

bias estimate since this estimate has already converged to its

steady state value with a correspondingly small covariance.

The final sensor failure in this run is a lateral acceler-

ometer bias failure of 1.27 m/s 2 at 241 seconds during the land-

ing maneuver flight segment. This failure level corresponds to a

9-sigma failure with respect to the empirical error statistics

given in Table 2.1. This failure is detected at 246.4 seconds

resulting in a relatively high time-to-detect figure of 5.4
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TIME = 0.05 s. EVENT : MLS Coverage Begins / Filter Turn On

N-F FILTER STATES :
-!.4403E+04 -4.2300E+03 -7.3396E+02 7.6505E+01 3.7186E+01 3.9929E+00
3.5800E+00 2.5800E+00 3.1760E+01 0.0000E+00 -I.0302E+01

BIAS FILTER ESTIMATES :
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

TIME = 55.90 s. EVENT : IAS (Repl.i) FailureInjected

N-F FILTER STATES :
-1.3202E+04-2.7458E+03-5.4476E+02 5.7642E+01 3.4873E+01 4.6800E+00
3.9162E-01-2.2503E+00-3.2150E+02 1.0622E+00-7.9490E+00
BIAS FILTERESTIMATES:
-1.5737E-01 8.2514E-02 6.8216E-02-2.7176E-01-2.2298E-01 1.3480E-01

TIME = 56.10 ss. EVENT : IAS (Repl.l) FailureDetected

N-F FILTERSTATES :
-1.3188E+04-2.7364E+03-5.4353E+02 5.7659E+01 3.4944E+01 4.7724E+00
3.8149E-01-2.0712E+00-3.2154E+02 1.0602E+00-7.9534E+00
BIAS FILTER ESTIMATES:
-1.6119E-01 8.1920E-02 6.8178E-02-2.7179E-01-2.2287E-01 1.3479E-01

TIME _ 140.30s. EVENT : Roll Rate Gyro (Repl.i) Failure Injected

N-F FILTER STATES :
-8.6440E+03-4.3427E+01-4.2607E+02 6.2273E+01 1.5041E+01-3.4536E-01
-9.0896E+00 3.7184E+00-3.4471E+02 3.6158E+00-I.1600E+01
BIAS FILTER ESTIMATES:
-1.6975E-01 6.0120E-02 7.0058E-02-2.6823E-01-2.2530E-01 1.3696E-01

TIME = 140.85s. EVENT : Roll Rate Gyro (Repl.l) FailureDetected

N-F FILTER STATES :
-8.6068E+03-3.5242E+01-4.2632E+02 6.2768E+01 1.4003E+01-5.5576E-01
-6.7113E+00 4.1704E+00-3.4491E+02 3.6303E+00-1.1618E+01
BIAS FILTERESTIMATES:
-1.6976E-01 5.9972E-02 7.0091E-02-2.6813E-01-2.2545E-01 1.3693E-0!

TIME = 241.00s. EVENT : LateralAccel. (Repl.I) Failure InjectedL

N-F FILTER STATES :
-1.9022E+03 3.9234E+00-1.3104E+02 6.6541E+01 1.6242E+00 4.1299E+00
-I.0100E+00-2.2376E+00-3.5073E+02-4.1371E-01-5.6850E+00
BIAS FILTERESTIMATES:
-1.7117E-01 6.0778E-02 7.2835E-02 1.1215E-01-2.2612E-01 1.3556E-01

Table 3.9: Time-line file for IAS, roll rate gyro and lateral
accelerometer failures
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TIME : 246.40s. EVENT : LateralAccel. (Repl.i) FailureDetected

N-F FILTER STATES :
-1.5408E+03 1.1281E+01-I.0940E+02 6.6113E+01 4.1200E+00 4.1311E+00
-1.2592E+00-1.9185E+00-3.51BOE+02-5.4173E-01-5.4847E+00
BIAS FILTER ESTIMATES:
-1.7387E-01 6.8437E-02 7.2797E-02 1.1266E-01-2.2611E-01 1.3561E-01

TIME = 266.25s. EVENT : Radar AltimeterTurn On

N-F FILTER STATES :
-2.4945E+02 4.3244E+00-3.0388E+01 6.5389E+01 5.9090E-01 3.2155E+00
2.9520E+00 1.0551E+00-3.5840E+02-8.5322E-01-4.9450E+00
BIAS FILTERESTIMATES :
-1.6903E-01-7.2683E-02 7.3143E-02 1.1506E-01-2.2625E-01 1.3565E-01

TIME = 298.05 s. EVENT : End Of EmulationRun

N-F FILTER STATES :
1.9384E+03-4.6100E+01-1.2556E+02 7.5846E+01-4.9852E+00-6.8486E+00
-4.7219E-01 9.4755E+00-3.5694E+02-9.7311E-01-4.LB03E+00
BIAS FILTER ESTIMATES:
-1.7267E-01-2.9525E-02 1.4260E-01 1.1595E-01-2.2650E-01 1.3592E-01

Table 3.9: Time-line file for IAS, roll rate gyro and lateral
accelerometer failures (continued)
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2
seconds. The estimated failure level is 58.25 m/s . The large

error in the failure level estimate is due to the detection

delay. Recalling that the estimation window length for input

sensors is 3.0 seconds (Table 3.4), and the previous sensor

failure detection (effecting the detector window reinitializa-

tion) decision is at 140.85 seconds, the estimated failure level

corresponds to a postulated lateral accelerometer failure occur-

ring at 245.85 seconds. As expected, the lateral accelerometer

failure affects the vehicle position and velocity estimates in

the y-direction. This run ends after radar altimeter turn-on at

266.25 seconds without encountering any false alarms.

As this run illustrates, measurement sensor failures get

detected an order of magnitude faster than input sensor failures.

This observation is in agreement with the findings of our earlier

simulation results. This discrepancy in the time-to-detect

figures between the input and measurement sensors is due to the

need for input failures to propagate through the no-fail filter

dynamics in order to generate identifiable signatures on the

residuals.

3.6.4 IMU Roll and Vertical Accelerometer Failures

Table 3.10 gives the results for an emulation run in which a

sequence of roll attitude and vertical accelerometer failures are

injected into the sensor flight data. As seen from the table, an

attitude failure of 1.5 degrees is introduced in the second IMU
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roll sensor at 93.25 seconds. This 6-sigma failure (with respect

to the filter design parameter) is detected in 0.45 seconds with

a failure level of 1.29 degrees. The failure affects the roll

attitude estimate which changes from 0.17 ° to 0.62 ° . Approxi-

mately, half of this change is due to the beginning of the bank

maneuver (roll rate gyro is approximately 0.7 deg/s during

93.25-93.7 seconds).

The second failure occurs at 200 seconds in the middle of

the landing maneuver. This injected failure of 1.47 m/s 2 is

detected in 3.25 seconds with an estimated failure level of 7.67

m/s 2. This failure level corresponds to an 8-sigma failure with

respect to the empirical noise statistics given in Table 2.1.
i

The error in the failure level estimate, which is due to the

detection delay, is not critical since the FINDS algorithm uses

the failure level estimates only indirectly in the covariance

increment computation after a failure. As expected, the vertica!

accelerometer failure has an impact on the vertical velocity

estimate. This run ends without encountering any false alarms.

3.6.5 IMU Pitch, Yaw Rate Gyro and Longitudinal Accelerometer

Failures

Table 3.11 presents the results for an emulation run where a

sequence of IMU pitch attitude, yaw rate gyro, and longitudinal

accelerometer failures are injected into the sensor flight data.

As seen from the table, the first replication of the IMU pitch
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TIME = 0.05 s. EVENT : MLS CoveraqeBeqlns / Filter Turn On

N-F FILTER STATES :
-1.4403E+04-4.2300E+03-7.3396E+02 7.6505E+01 3.7186E+01 3.9929E+00
3.5800E+00 2.5800E+00 3.1760E+01 0.0000E+00-I.0302E+01
BIAS FILTERESTIMATES:
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

TIME = 93.25 s. EVENT : IMU Roll (Repl.2) FailureInjected

N-F FILTER STATES :
-I.I190E+04-1.4872E+03-4.1303E+02 5.1990E+01 3.2552E+01 8.5998E-01
1.6729E-01 4.2218E+00-3.2073E+02 4.5163E+00-1.3184E+01
BIAS FILTERESTIMATES:
-1.6833E-01 5.7740E-02 7.3273E-02-2.7302E-01-2.2380E-01 1.3755E-01

TIME = 93.70 s. EVENT : IMU Roll (Repl.2) FailureDetected

N-F FILTER STATES :
-I.I165E+04-1.4716E+03-4.1273E+02 5.1812E+01 3.2463E+01 4.5108E-01
6.1723E-01 4.5483E+00-3.2075E+02 4.5730E+00-1.3264E+01
BIAS FILTER ESTIMATES:
-1.6751E-01 5.8581E-02 7.3304E-02-2.7321E-01-2.2385E-01 I.'3759E-01

TIME = 200.00 s. EVENT : VerticalAccel. (Repl.I) Failure Injected

N-F FILTER STATES :
-4.6365E+03 2.2318E+00-2.9969E+02 6.7959E+01 5.5326E-01 4.2679E+00
-I.0586E+00-5.0287E-01-3.5153E+02-1.7843E-01-7.5044E+00
BIAS FILTER ESTIMATES:
-1.8135E-01 5.6697E-02 7.3023E-02-2.6396E-01-2.2708E-01 1.3498E-01

TIME = 203.25 s. EVENT : VerticalAccel. (Repl.i) FailureDetected

N-F FILTERSTATES :
-4.4140E+03 1.3968E+00-2.7969E+02 6.7373E+01-3.5945E-02 9.0266E+00
8.7462E-01-2.9288E-01-3.5143E+02-2.0309E-01-7.4483E+00
BIAS FILTER ESTIMATES:
-1.8069E-01 5.7171E-02 7.3730E-02-2.6389E-01-2.2707E-01 1.3500E-01

TIME = 266.15 s. EVENT : Radar AltimeterTurn On

N-F FILTERSTATES :
-2.5412E+02 3.6643E+00-3.0442E+01 6.5351E+01 2.9542E-01 3.1775E+00
2.9595E+00 1.0477E+00-3.5854E+02-1.3642E+00-5.5298E+00
BIAS FILTERESTIMATES :
-1.7553E-01 6.3732E-02-2.3427E-02-2.6393E-01-2.2707E-01 1.3539E-01

TIME = 298.05s. EVENT : End Of EmulationRun

N-F FILTER STATES :
1.9404E+03-4.5581E+01-1.2540E+02 7.6086E+01-4.5875E+00-6.8014E+00
3.0954E-01 9.3699E.00-3.5697E+02-1.5127E+00-5.1100E+00
BIAS FILTER ESTIMATES:
-1.6886E-01 6.7387E-02 4.8259E-02-2.6303E-01-2.2659E-01 1.3562E-01

Table 3.10: Time-line file for IMU roll and vertical

accelerometer failures

- 85 -



attitude fails at 77.85 seconds with a failure level of 2

degrees, which corresponds to a 4-sigma failure level with

respect to the no-fail filter design value. This failure is

detected at 78.1 seconds, resulting in a time-to-detect figure of

0.25 seconds with an estimated failure level of 1.85 degrees.

The time-line also shows that the injected pitch attitude failure

induces a false alarm in the pitch rate sensor at 78 seconds

which is healed at 81.1 seconds. This is mainly due to the close

dynamic coupling between the pitch attitude and pitch rate

sensors.

The yaw rate gyro failure of 1 deg/s injected at 152.45

seconds in this run is detected within 2.15 seconds with an

estimated failure level of 1.64 deg/s. This failure corresponds

to a 7-sigma failure with respect to the empirical noise

statistics for the yaw rate gyro. The time-to-detect figure is

quite reasonable in light of the large yaw attitude inaccuracy

during this time frame (see Figure 2.9).

In the middle of the third flight segment at 221.85 seconds,

2
the longitudinal accelerometer fails with a level of 1.47 m/s ,

which is a 6-sigma failure with respect to the empirical noise

statistics for this sensor shown in Table 2.1. This failure is

detected in 5.2 seconds with an estimated failure level of 9.09

m/s 2. Again, the large error in the failure level estimate is

due to the detection delay for this input sensor.
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TIME = 0.05 s. EVENT : MLS CoverageBegins / FilterTurn On

N-F FILTER STATES :
-1.4403E+04-4.2300E+03-7.3396E+02 7.6505E+01 3.7186E+01 3.9929E+00
3.5800E+00 2.5800E+00 3.1760E+01 0.0000E+00-I.0302E+01
BIAS FILTERESTIMATES:
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

TIME = 77.85 s. EVENT : IMU Pitch (Repl.I) FailureInjected

N-F FILTERSTATES :
-I.1994E+04-1.9862E+03-4.6421E+02 5.3795E+01 3.3972E+01 4.5600E+00
5.7110E-01-5.2541E-01-3.2075E+02 2.1858E+00-9.7328E+00

BIAS FILTER ESTIMATES :
-1.8377E-01 5.5951E-02 7.3476E-02 -2.7305E-01 -2.2309E-01 1.3628E-01

TIME = 78.00 s. EVENT : Pitch Rate Gyro (Repl.I) False Alarm

N-F FILTERSTATES :
-I.1983E+04-1.9795E+03-4.6331E+02 5.3741E+01 3.3940E+01 4.4822E+00
5.9257E-01-4.0480E-01-3.2074E+02 2.2042E+00-9.7617E+00
BIAS FILTER ESTIMATES:
-1.8400E-01 5.5865E-02 7.3505E-02-2.7305E-01-2.2324E-01 1.3629E-01

TIME = 78.10 s. 5ZTENT: IMU Pitch (Repl.i) FailureDetected

N-F FILTER STATES :
-I.1978E+04-1.9762E+03-4.6288E+02 5.3638E+01 3.3868E+01 4.4442E+00
5.7198E-01 3.1011E-01-3.2073E+02 2.2205E+00-9.7849E+00
BIAS FILTER ESTIMATES:
-1.8405E-01 5.5907E-02 7.3522E-02-2.7305E-01-2.8522E-02 1.3630E-01

TIME = 81.10 s. 5ZTENT: Pitch Rate Gyro (Repl.i) Healed

N-F FILTERSTATES :
-I.1819E+04-1.8776E+03-4.5098E+02 5.3184E+01 3.3566E+01 3.9432E+00
2.9762E-01-5.6401E-01-3.2052E+02 2.5962E+00-i.0365E+01
BIAS FILTER ESTIMATES:
-1.8299E-01 5.5255E-02 7.3387E-02-2.7303E-01 4.5969E-02 1.3643E-01

TIME = 152.45s. EVENT : Yaw Rate Gyro (Repl.i) Failure Injected

N-F FILTER STATES :
-7.8_14E+03 1.4044E+01-4.3098E+02 6.7705E+01-2.7287E+00-6.6918E-01
1.4832E+00 6.2148E+00-3.5726E+02 2.5000E+00-I.I098E+01
BIAS FILTER ESTIMATES:
-2.0736E-01 5.4184E-02 7.0463E-02-2.6820E-01 7.3147E-02 1.3538E-01

Table 3.11 Time-line file for IMU pitch, yaw rate gyro and
longitudinal accelerometer failures
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T!ME : 154.50 s. EVENT : Yaw Rate GFro (Repl. i) Failure Detected

N-F FILTER STATES :
-7.7030E+03 6.2717E+00 -4.3446E+02 6.7538E+01 -2.5927E+00 -1.6868E+00
2.8304E+00 3.H430E+00 -3.5408E+02 1.8105E+00 -I.0257E+01
BIAS FILTERESTIMATES :
-2.0967E-01 5.2802E-02 7.0784E-02-2.6798E-01 7.2100E-02 1.3577E-01

TIME = 221.85 s. EVENT : Lonqit.Accel. (Repl.i) FailureInjected

N-F FILTER STATES :
-3.1731E+03 2.8149E+00-2.1431E+02 6.7869E+01 5.2323E-01 4.0283E+00
-9.3938E-01-3.7728E+00-3.5433E+02-4.7816E-01-6.9633E.00
BIAS FILTERESTIMATES:
-_,iOlgE-01 5.3670E-02 7.1981E-02-2,646BE-01 7,5190E-02-!,3421E-02

TIME = 227.05s. EVENT : Lonqlt.Accel, (Repl.I) FailureDetected

N-F FILTERSTATES :
-2.8129E+03 1.3076E+00-I.8603E+02 7.3313E+01-I.0360E+00 4.5700E+00
-_.8180E+00-1.3174E+00-3.5225E+02-5.2164E-01-6.8698E+00
BIAS FILTER ESTIMATES:
-!.9763E-01 5.4197E-02 7.1934E-02-2.6470E-01 7.4816E-02-1.2511E-02

TIME = 566.20s. EVENT : Radar AltimeterTurn On

N-F FILTER STATES :
-2.5132E+02 3.7283E+00-3.0446E+01 6.5050E+01 3.0628E-01 3.1602E+00
2.7395E+00 1.4594E+00-3.5853E+02-1.3540E+00-5.5409E+00
BIAS FILTER ESTIMATES:
9.3235E-02 5.4547E-02 7.3689E-02-2.6460E-01 7.6029E-02-I.0589E-02

TIME = 298.05s. EVENT : End Of EmulationRun

N-F FILTER STATES :
1.9386E+03-4°5678E+01-1.2568E+02 7.5525E+01-4.6310E+00-6.8717E+00
2.0780E-01 1.0263E+01-3.5718E+02-1.5202E+00-5.0828E+00
BIAS FILTERESTIMATES :
5.5197E-02 5,7721E-02 1.2080E-01-2.6399E-01 7.6797E-02-!.0081E-02

Table 3.11 Time-line file for IMU pitch, yaw rate gyro and

longitudinal accelerometer failures (continued)

- 88 -



3.6.6 Pitch Rate and Radar Altimeter Failures

Table 3.12 summarizes the results for an emulation run where

a sequence of pitch rate gyro and radar altimeter failures are

injected into the flight data. The pitch rate gyro fails at

179.95 seconds with a failure level of 1 deg/s, which corresponds

to approximately a 4-sigma failure with respect to the empirical

error statistics for this sensor. This failure is detected in

0.55 seconds with an estimated failure level of 0.36 deg/s.

There are no significant effects on the filter estimates due to

the pitch rate gyro failure.

In this run, a false alarm in the longitudinal accelerometer

is encountered at 255.55 seconds which is healed in 3 seconds.

The radar altimeter is turned on at 266.2 seconds, and a failure

level of 6 meters is injected into the second replication of the

radar altimeter at 270.25 seconds. This 6-sigma failure (with

respect to the filter noise design value) is detected in 0.6

seconds with an estimated failure level of 5.68 meters. This run

ends after a pitch attitude false alarm at 282.75 seconds; this

can be attributed to the inaccuracies in the MLS sensors during

the touch-and-go maneuver when the aircraft is beyond the MLS

- azimuth and range antennas.

The six emulation runs described above give a complete

failure coverage for all of the 14 sensors. The results are

summarized in Table 3.13 which gives, for each sensor type, the

injected bias failure level, the estimated failure magnitude, and

time-to-detect figure.
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TIME = 0.05 s. EVENT : MLS CoverageBegins / FilterTurn On

N-F FILTERSTATES :
-1.4403E+04-4.2300E+03-7.3396E+02 7.6505E+01 3.7186E+01 3.9929E+00
3.5800E+00 2.5800E+00 3.1760E+01 0.0000E+00-1.0302E+01
BIAS FILTER ESTIMATES:
0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

TIME = 178.95s. EVENT : Pitch Rate Gyro (Repl.i) Failure Injected

N-F FILTER STATES :
-6.0735E+03-2.7737E+00-3.9040E+02 6.8129E+01 3.2448E-01 3.4742E+00 -
2.0920E+00-i.1813E.00-3.5170E+02-2.1831E-01-7.6157E+00
BIAS FILTERESTIMATES:
-1.9346E-01 5.2832E-02 7.2170E-02-2.6451E-01-2.2829E-01 1.3483E-01

TIME = 179.50 s. EVENT : PitchRate Gyro (Repl.l) FailureDetected

N-F FILTERSTATES :
-6.0332E+03-2.8415E+00-3.8833E+02 6.8158E+01 5.2239E-01 3.4849E+00
2.5160E+00-9.6758E-01-3.5188E+02-2.2410E-01-7.6038E+00
BIAS FILTERESTIMATES :
-1.9267E-01 5.2825E-02 7.2189E-02-2.6446E-01-2.2828E-01 1.3482E-01

TIME = 255.55 s. EVENT : Longit.Accel. (Repl.i) False Alarm

N-F FILTER STATES :
-9.3319E+02 4.7232E+00-7.1694E+01 6.6946E+01 1.5875E+00 4.4737E+00
1.0420E-01-2.0788E+00-3.5357E+02-1.2424E+00-5.7568E+00
BIAS FILTERESTIMATES:
-1.9425E-01 6.0951E-02 7.3297E-02-2.6378E-01 7.6561E-02 1.3529E-01

TIME = 258.55 s. EVENT : Longit.Accel. (Repl.I) Healed

N-F FILTERSTATES :
-7.3773E+02 6.1712E+00-5.7900E+01 6.6163E+01-2.6692E-01 5.3613E+00
-I.1904E+00-6.5330E-01-3.5535E+02-1.2970E+00-5.6664E+00
BIAS FILTER ESTIMATES:
3.8362E-01 6.1708E-02 7.3526E-02-2.6383E-01 7.6756E-02 1.3528E-01

TIME = 266.20s. EVENT : Radar AltimeterTurn On

N-F FILTER STATES :
-2.5255E+02 3.6614E+00-3.0473E+01 6.4503E+01 2.8403E-01 3.1627E+00
2.7496E+00 1.2728E+00-3.5847E+02-1.3725E+00-5.5160E+00
BIAS FILTERESTIMATES:
2.4785E-01 6.0865E-02 7.3652E-02-2.6386E-01 7.8685E-02 1.3527E-01

Table 3.12: Time-line file for pitch rate gyro and radar
altimeter failures
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TIME : 270.25s. EVENT : Radar Altimeter(Repl.2) Failure Injected

N-F FILTER STATES :
2.0413E+01 4.3853E+00-1.9686E+01 6.7304E+01 4.3931E-01 6.1135E+00
3.3030E+00-6.5059E-01-3.5895E+02"-I.3488E+00-5.6393E+00
BIAS FILTERESTIMATES:
3.3523E-02 5.7245E-02-3.0072E-01-2.6384E-01 7.8943E-02 1.3529E-01

TIME = 270.85s. EVENT : Radar Altimeter(Repl.2) failureDetected

: N-F FILTER STATES :
6.3420E+01 5.0422E+00-1.6824E+01 6.7347E+01 4.1358E-01 6.4742E+00
2.8997E+00-5.8930E-01-3.5903E+02-1.3691E+00-5.5762E+00
BIAS FILTERESTIMATES:
7.8674E-03 5.8205E-02-2.0024E-01-2.6383E-01 7.9004E-02 1.3529E-01

TIME = 282.75 s. EVENT : IMU Pitch (Repl.I) False Alarm

N-F FILTERSTATES :
8.3985E+02 8.1929E+00-1.4886E+01 6.8282E+01-5.1800E-02-6.2402E+00
1.3723E+00 1.1889E+01-3.5421E+02-1.4854E+00-5.1867E+00
BIAS FILTER ESTIMATES:
6.6415E-02 6.5507E-02 2.1783E-01-2.6375E-01 8.1592E-02 1.3552E-01

TIME = 298.05 s. EVENT : End Of EmulationRun

N-F FILTERSTATES :
1.9396E+03-4.5634E+01-1.2551E+02 7.5824E+01-4.6127E+00-6.9288E+00
2.7582E-01 9.9770E+00-3.5697E+02-1.5301E+00-5.0228E+00
BIAS FILTERESTIMATES :
4.6459E-02 6.7018E-02 1.2472E-01-2.6345E-01 8.1284E-02 1.3554E-01

Table 3.12: Time-line file for pitch rate gyro and radar
altimeter failures (continued)
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As discussed in the individual failure runs, the relatively

high estimated failure levels for accelerometers are due to the

comparatively long detection delays for these instruments. The

reason for the high time-to-detect figures for accelerometer

failures is the need for such failures to propagate through the

no-fail filter dynamics in order to generate indentifiable

signatures on the MLS measurement residuals. However, these high

accelerometer failure level estimates do not have an unfavorable

impact on the FINDS algorithm since failure level estimates are

used only in incrementing the no-fail filter covariance after the

identification of a failure.
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Run SensorType Detection Injected Estim. Units
No. Time (s) Fail. Lev Fail. Lev

1 MLS Elevation 0.15 0.18 0.107 deg

2 IMU Yaw 0.20 4.00 2.14 deq
2 MLS Azimuth 0.40 0.18 0.183 deq
2 MLS Range 0.25 40.0 44.2 m

3 IAS 0.20 9.00 9.391 m/s
3 Roll Rate Gyro 0.55 0.90 1.40 deg/s
3 5ateralAccel. 5.40 1.275 58.25 m/s/s

4 IMU Roll 0.45 1.50 1.285 deg
4 VerticalAccel. 3.25 1.471 7.675 m/s/s

5 IMU Pitch 0.25 2.00 1.852 deg
5 Yaw Rate Gyro 2.05 1.00 1.635 deg/s
5 Longit.Accel. 5.20 1.471 9.092 m/s/s

6 Pitch Rate Gyro 0.55 1.00 0.356 deq/s
6 Radar Altimeter 0.60 6.00 5.678 m

Table 3.13: Bias failure performance summary
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4 CONCLUSIONS AND RECOMMENDATIONS

We have presented an analysis of the FINDS algorithm perfor-

mance using flight recorded sensor data from the NASA ATOPS B-737

aircraft. Results indicate the exceptional vehicle state and

sensor bias estimation performance for the no-fail filter

employed in the FINDS algorithm. Results also show an excellent

o,

failure detection and isolation performance with detection speed

(in agreement with our earlier simulation studies) considerably

faster for no-fail filter measurement sensors such as MLS than

for input sensors such as accelerometers. Finally, emulation

results show a general improvement, both in false alarm and

detection speed performance, resulting from the modifications

which we have made in the current study to the detector and

decision algorithms in FINDS. Based on our analysis, we

recommend that the FINDS algorithm be modified in order to run

within the memory and speed constraints of the TSRV flight

computers
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