General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

IMPROVEMENT OF CONDITIONS FOR MESHING SPIRAL BEVEL GEARS

F. I. Litvin and fo Kav

```
(NASA-TM-77867) IMLECYEMENT CF CON[ITIONS NE5-25264
FOR MESHING SPIRAL BEVEL GEALS (Nationdl
aeronautics aud Space Adainistration) 24 p
HC AO2/MF AO1 CSCL 13I unclas
G3/37 2156&
```

Translation of Uluchsheniye Usloviy Zatsepleniya Konicheskikh Zubchatykh Koles s Normal'no Ponizhayushchimisya Dugovymi Zubstami, JNarezannykh c Korrekturoy Nastroyki Zubcreznogo Stanka, Teoriya Mashin i Mekhanizmov [Proceedings of Machi.ie and Mechanizs Theory], No. 98-99, Nauka Press, Moscow, 1964, pp. 87-103

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546

$\begin{aligned} & \text { 1. ReporiNo. } \\ & \text { NASA TM-77867 } \end{aligned}$	2. Government Accossion No.	3. Recipiont ${ }^{\text {coiolog No. }}$
4. Title and Subicte IMPROVEMENT OF CONDITIONS FOR MESHING SPIRAL BEVEL GEARS		5. Repert Date June 1985
		6. Parlorming Oiganizotion Code
7. Author(s) F. I. Litvin and Go Kay		8. Perlorming Orponization Raport No.
		10. Work Unit No.
9. Perlorming Oigonizotion Nome ond hddiest The Corporate Word, Inc. 1102 Arrott Bldg. Pittsburgh, PA 15222 12. Sponsoring hgency Nome ond Addiess National Aeronautics and Space Administration Washington, DC 20546		11. Cinlioct or Gioni No. NASW-4006
		13. Type of Report and Poriod Covored Translation
		14. Sponsoting Agency Code
15. Supplementory Notes Translation of Uluchsheniye Usloviy Zatsepleniya Konicheskikh Zubchatykh Koles s Normal'no Ponizhayushchimisya Dugovymi Zubstami/ Narezannykh c Korrekturoy Nastroyki Zuboreznogo Stanka/Teoriya Mashi:i i Mekhanizmov [Proceedings of Machine and Mechanics Theory], No. 98-99, Nauka•Press, Moscow, 1954, pp. 87-103		
16. Abstroct This article analyzes the effect of axial pinion displacement on gear meshing conditions during cutting and correction of the rolling chain gear ratio. The so-called inverse problem-solving method is used.		
17. Key Words (Selected by Author(s))		tatement mited •
19. Security Clossif. (of this report) . Unclassified	20. Security Clessil. (ol this pago) Unclassified	

IMPROVEMENT OF CONDITIONS FOR MESHING SPIRAL BEVRL GBARS
F.I. Litvin, Kai Go

In the previous article [1], the authors proved /87* analytically that meshing spiral bevel gears cut without correcting the set-up of the gear-cutting machine has the following deficiencies:

- the operating line on the tooth's surface, which defines the position of the bearing pattern, is diagonal, and the gear ratio is variable.
E. Waldgaber [2] showed that eliminating these deficiencies requires correcting the adjustment of a pinion to be cut and the kinematic set-up of the gear-cutting machine.
V. N. Kedrinskiy and K. M. Pismanik [3] developed several methods for correcting machine set-up, amung which the most commonly used are l) changing the axial displacement of the change gear and the gear ratio of the machine's rolling chain and 2) changing the axial and hypoid displacements of the gear and the gear ratio of the rolling chain. They also proposed approximation equations for determining these corrections.

This article analyzes the effect of axial pinion displacement on gear meshing conditions during cutting and correction of the rolling chain gear ratio. The so-called inverse problem-solving method, presented in the authors' work [3] and in F. L. Litvin's work [5], is used.
*Numbers in the margin indicate pagination of the foreign text.

1. Coordinate System

Each crown wheel $p_{i}(i=1,2)$ has a coordinate system $x_{p i}$, $y_{p i}, z_{p i}(f i g u r e s 1$ and 2). Two indices (i=1,2) are

Figure l. System of coordinates corresponding to cutting a pinion. 1 - Adjusting plane; 2 - Section along $0_{u}, M_{i}$.

ORIGINAL PAL. .

 OF POOR QUALITYintroduced, because cutting pinion 1 and gear 2 using different generating surfaces (cf. figures 1 and 2) is considered separately.

The coordinate system $x_{n i}, y_{n i}, z_{n i}$ is an auxiliary fixed coordinate system in which the rotation of crown wheel p_{i} is given. When teeth are being cut, crown wheel $p_{i} \quad / 88$ rotates around axis $x_{n i}$. The symbol Ψ_{i} is the current angle of rotation. The plane $x_{n i}=0$, the locating plane, is parallel to the plane tangent to the root cone of the gear being cut. The forming radius of the cutting head r_{i} and angle β_{i} between the tangent to the longitudinal line of the tooth at the midpoint M_{i} and axis $z_{p i}$ are set in the locating plane (figures $1, b, 2, b$). Cutting head adjustment parameters q_{i} and b_{i} are determined from functions (3.7), (3.8), and (3.9), introduced below. When
a)

b)

Figure 2. Coordinate system corresponding to cutting a wheel. 1 - Locaiing plane; 2 - Section $0_{u 2} M^{2}$
the cutting head turns around axis $0_{u i}$ (cf. figure $1, b$, 2, b), a bevel surface results, which is also crown.

When a pinion is being cut, it assumes axial shift $\mathbf{0}_{0} \mathbf{O}_{0}$ (cf. figure 1), where 0_{0} is the point of intersection of the axes of the pinion and the gear during meshing in gearing, and $O_{0}{ }_{0}$ is the point of intersection of axis z_{1} of pinion rotation during cutting with rotation axis $x_{n i}$ for crown wheel p_{i}. The gear is cut without axial shift (cf. figure 2), and 0_{0} is both the point of intersection of pinion and gear axes when they mesh and the point of intersection of axis z_{2} of the gear when it is cut and axis of rotation $x_{n i}$ of crown wheel P_{2}.

The fixed coordinate system x_{0}, y_{0}, z_{0} considers the meshing of the pinion and the wheel. Axis $0_{0} z_{0}$ coincides with the overall generatrix of the initial bevel of the pinion and gear, and 0_{0} is, as already mentioned, the point of intersection of their axes of rotation. System x_{0}, y_{0}, z_{0} is turned by angle r_{i} of the tooth edge around $y_{n i}$, and coordinate origin 0_{0} relative to $0_{n i}$ is shifted by the value:

$$
\begin{array}{ll}
x_{n_{1}}=L \sin \tau_{1} ; y_{n_{1}}=0 ; z_{n_{1}}=-\Delta L_{1} ; & \text { (cf. figure } \\
x_{n_{1}}=-L \sin \gamma_{2} ; y_{n_{1}}=z_{n_{1}}=0 . & \text { (cf. figure }
\end{array}
$$

Here $L=0_{0} M_{1}=0_{0} M_{2}$ is the midpoint of the generatrix of the initial cone.

The gear being cut, i, has a coordinate system x_{i}, y_{i}, z_{i} (i $=1,2$). Pinion and gear, when meshing, rotate respectively around axes $z_{b i}$ and $z_{b 2}$, which coincide with axes z_{1} and z_{2}. Auxiliary fixed coordinate system $x_{b i}, y_{b i}, z_{b i}$, presented in figures 3 and 4, can also be used to illustrate the transition to this system from system x_{0}, y_{0}, z_{0}.

2. Gear Tooth Surface Equations

When a gear is being cut, axis $\supset_{0}{ }^{2} \bigcirc$ is the instantaneous rotation axis in relative motion. Determining the line of contact of the crown and cut surfaces requires that the normal to the surfaces at points on the line of contact must intersect axis $0_{0}{ }^{2}$.

In our article [1], tooth surface Σ_{2} was determined with the following equations:

$$
\begin{gather*}
x_{2}=\left(r_{2} \operatorname{ctg} \alpha_{2}-u_{2} \cos \alpha_{2}+L \sin \tau_{2}\right) a_{1}^{(2)}+u_{2} \sin \alpha_{2} \sin \theta_{2} b_{1}^{(2)}+ \tag{2.1}\\
+\left(u_{2} \sin \alpha_{2} \cos \theta_{3}+b_{2}\right) c_{1}^{(2)} ; \\
y_{2}=\left(r_{2} \operatorname{ctg} \alpha_{2}-u_{2} \cos \alpha_{2}+L \sin \tau_{2}\right) a_{2}^{(2)}+u_{2} \sin \alpha_{2} \sin \theta_{2} b_{2}^{(2)}+ \\
\\
+\left(u_{2} \sin \alpha_{2} \cos \vartheta_{2}+b_{2}\right) c_{2}^{(2)} ; \\
z_{2}=\left(r_{2} \operatorname{ctg} \alpha_{2}-u_{2} \cos \alpha_{2}+L \sin \tau_{2}\right) a_{3}^{(2)}+u_{2} \sin \alpha_{2} \sin \vartheta_{2} b_{3}^{(2)}+ \\
\\
+\left(u_{2} \sin \alpha_{2} \cos \theta_{2}+b_{2}\right) c_{3}^{(2)} ; \\
\\
\quad\left[u_{2}-\left(r_{2} \operatorname{ctg} \alpha_{2}+L \sin \tau_{2}\right) \cos \alpha_{2}\right] \sin \left(\theta_{2}-q_{2}+\psi_{2}\right)+ \\
\\
+b_{2}\left[\cos \alpha_{2} \operatorname{tg} \tau_{2} \sin \theta_{2}-\sin \dot{\alpha}_{2} \sin \left(q_{2}-\psi_{2}\right)\right]=0 .
\end{gather*}
$$

The projection of the vector of the normal to surface Σ_{2} was expressed as

$$
\begin{align*}
& e_{x_{1}}=\sin \alpha_{2} a_{2}^{(2)}+\cos \alpha_{2} \sin \theta_{2} b_{1}^{(2)}+\cos \alpha_{2} \cos \theta_{2} c_{1}^{(2)} \tag{2.2}\\
& e_{\nu_{1}}=\sin \alpha_{2} a_{2}^{(2)}+\cos \alpha_{3} \sin \theta_{2} b_{2}^{(2)}+\cos \alpha_{2} \cos \theta_{2} c_{3}^{(2)} \\
& e_{21}=\sin \alpha_{2} a_{3}^{(2)}+\cos \alpha_{2} \sin \theta_{2} b_{3}^{(2)}+\cos \alpha_{2} \cos \theta_{2} c_{3}^{(2)}
\end{align*}
$$

$$
\begin{aligned}
& a_{1}^{(3)}=\cos \varphi_{2} \cos \delta_{b_{1}} ; \\
& a_{2}^{(2)}=-\sin \varphi_{2} \cos \delta_{b_{1}} ; \\
& a_{3}^{(2)}=-\sin \delta_{b_{1}} ; \\
& b_{1}^{(2)}=\sin \varphi_{2} \cos \left(q_{2}-\psi_{2}\right)+\cos \varphi_{2} \sin \delta_{b_{1}} \sin \left(q_{2}-\psi_{2}\right) ; \\
& b_{2}^{(2)}=\cos \varphi_{2} \cos \left(q_{2}-\psi_{2}\right)-\sin \varphi_{2} \sin \delta_{b_{1}} \sin \left(q-\psi_{2}\right) ; \\
& b_{2}^{(2)}=\cos \delta_{b_{1}} \sin \left(q_{2}-\psi_{2}\right) ; \\
& c_{1}^{(2)}=-\sin \varphi_{2} \sin \left(q_{2}-\psi_{2}^{\prime}+\cos \varphi_{2} \sin \delta_{b_{1}} \cos \left(q_{2}-\psi_{2}\right) ;\right. \\
& c_{2}^{(2)}=-\cos \varphi_{2} \sin \left(q_{2}-\psi_{2}\right)-\sin \varphi_{2} \sin \delta_{b_{1}} \cos \left(q_{2}-\psi_{2}\right) ; \\
& c_{2}^{(2)}=\cos \delta_{b_{1}} \cos \left(q_{2}-\psi_{2}\right) .
\end{aligned}
$$

Crown surface $\Sigma_{p 2}$ and the projection of the vector of the normal to the same surface in system x_{0}, y_{0}, z_{0} were expressed by the equations:

$$
\begin{align*}
& x_{0}^{\left(p_{2}\right)}=\left(r_{2} \operatorname{ctg} \alpha_{2}-u_{2} \cos \alpha_{2}+L \sin \gamma_{2}\right) \cos \gamma_{2}- \\
& -u_{2} \sin \alpha_{2} \sin \gamma_{2} \cos \left(\theta_{2}-q_{2}+\psi_{2}\right)-b_{2} \sin \gamma_{2} \cos \left(q_{2}-\psi_{2}\right) ; \tag{2.3}\\
& y_{0}^{\left(p_{2}\right)}=u_{2} \sin \alpha_{2} \sin \left(\theta_{2}-q_{2}+\psi_{2}\right)-b_{2} \sin \left(q_{2}-\psi_{2}\right) ; \\
& 2_{0}^{\left(p_{2}\right)}=\left(r_{2} \operatorname{ctg} \alpha_{2}-u_{2} \cos \alpha_{2}+L \sin \gamma_{2}\right) \sin \gamma_{2}+ \\
& \quad+u_{2} \sin \alpha_{2} \cos \gamma_{2} \cos \left(\theta_{2}-q_{2}+\psi_{2}\right)+b_{2} \cos \gamma_{2} \cos q_{2} ; \\
& e_{x_{0}}^{\left(p_{1}\right)}=\sin \alpha_{2} \cos \gamma_{2}-\cos \alpha_{2} \sin \gamma_{2} \cos \left(\theta_{2}-q_{2}+\psi_{2}\right) ; \\
& e_{\left.\nu_{0}\right)}^{\left(p_{1}\right)}=\cos \alpha_{2} \sin \left(\vartheta_{2}-q_{2}+\psi_{2}\right) ; \tag{2.4}\\
& e_{\left.2_{0}\right)}^{\left(p_{1}\right)}=\sin \alpha_{2} \sin \gamma_{2}+\cos \alpha_{2} \cos \gamma_{2} \cos \left(\theta_{2}-q_{2}+\psi_{2}\right) .
\end{align*}
$$

In equations (2.1), (2.2), (2.3), and (2.4): u_{2} and T_{2} are independent parameters of the crown surface; α_{2} is the cutter profile angle; r_{2} is the forming radius of the cutting head; q_{2} and b_{2} are head adjustment parameters; $\delta_{b 2}$ is the gear's internal cone; \boldsymbol{r}_{2} is the angle of the dedendum part of the tooth; \boldsymbol{r}_{2} and ϕ_{2} are the rotation angles for the crown wheel and the wheel being cut. Then

$$
\varphi_{2}=\psi_{2} \frac{\cos \gamma_{s}}{\sin \left(b_{s_{1}}+\gamma_{2}\right)} .
$$

When a pinion wheel is being cut, $0_{0} z_{0}$ is the instantaneous rotation axis in relative motion. Using the conclusion presented in [3], we can represent pinion tooth surface Σ_{1} with the following equationa:

$$
\begin{align*}
& z_{1}=\left(r_{1} \operatorname{ctg} \alpha_{1}-u_{1} \cos \alpha_{1}-L \sin \gamma_{1}\right) a_{2}^{(1)}+u_{1} \sin \alpha_{1} \sin \theta_{1} b_{2}^{(1)}+ \\
& f\left(u_{1} \sin \alpha_{1} \cos \theta_{1}+b_{1}\right) c_{2}^{(\omega)}+\left|\Delta L_{1}\right| \cos \delta_{u_{1}} ; \\
& 1-u_{1}+\left(r_{1} \operatorname{ctg} x_{1}-L \sin \gamma_{1}-\left|\Delta L_{1}\right| \operatorname{tg} \delta_{b_{1}}\right) \cos \alpha_{1} \mid \sin \left(0_{1}-q_{1}+\psi_{1}\right)+, \\
& +b_{1} \sin \alpha_{1} \sin \left(q_{1}-\psi_{1}\right)+b_{1} \cos \alpha_{1} \sin \theta_{1} \operatorname{tg} \gamma_{1}^{\prime}=? \tag{3}\\
& z_{1}=\left(r_{1} \operatorname{ctg} \alpha_{1}-u_{1} \cos \alpha_{1}-L \sin \gamma_{1}\right) a_{3}^{(1)}+u_{1} \sin \alpha_{1} \sin \vartheta_{1} b_{3}^{(1)}+ \\
& \dot{+}\left(u_{1} \sin \alpha_{1} \cos \theta_{1}+b_{1}\right) c_{3}^{(1)}+\left|\Delta L_{1}\right| \cos \delta_{L_{1}} ; \\
& 1-u_{1}+\left(r_{1} \operatorname{ctg} x_{1}-L \sin \gamma_{1}-\left|\Delta L_{1}\right| \operatorname{tg} \delta_{0_{1}}\right) \cos \alpha_{1} \mid \sin \left(0_{1}-q_{1}+\psi_{1}\right)+ \\
& +b_{1} \sin \alpha_{1} \sin \left(q_{1}-\psi_{1}\right)+b_{1} \cos \alpha_{1} \sin \vartheta_{1} \operatorname{tg} \gamma_{1}^{\prime}=0 . \tag{2.5}
\end{align*}
$$

where $r{ }_{1}$ is the angle between instantaneous axis $0^{\prime} 0_{0} M_{1}$ and the generatrix of the inner finion cone.

The projection of the unit vector of the normal to surface Σ_{1} is determined with the equations:

$$
\begin{align*}
& e_{x_{1}}=\sin \alpha_{1} a_{1}^{(1)}+\cos \alpha_{1} \sin \theta_{1} b_{1}^{(1)}+\cos \alpha_{1} \cos \theta_{1} c_{1}^{(1)} ; \\
& e_{\nu_{1}}=\sin \alpha_{1} a_{2}^{(1)}+\cos \alpha_{1} \sin \theta_{1} b_{2}^{(1)}+\cos \alpha_{1} \cos \theta_{1} c_{2}^{(1) ;} \tag{2.6}\\
& e_{2_{1}}=\sin \alpha_{1} a_{3}^{(1)}+\cos \alpha_{1} \sin \theta_{1} b_{3}^{(1)}+\cos \alpha_{1} \cos \theta_{1} c_{3}^{(1) .}
\end{align*}
$$

In equations (2.5) and (2.6)

$$
\begin{aligned}
& a_{1}^{(1)}=\cos \varphi_{1} \cos \delta_{b_{1} ;} \\
& a_{1}^{(1)}=\sin \varphi_{1} \cos \delta_{b_{1} ;} \\
& a_{2}^{(1)}=\sin \delta_{b_{1} ;} \\
& b_{1}^{(1)}=-\sin \varphi_{1} \cos \left(q_{1}-\psi_{1}\right)-\cos \varphi_{1} \sin \delta_{b_{1}} \sin \left(q_{1}-\psi_{1}\right) ; \\
& b_{1}^{(1)}=\cos \varphi_{1} \cos \left(q_{1}-\psi_{1}\right)-\sin \varphi_{1} \sin \delta_{b_{1},} \sin \left(q_{1}-\psi_{1}\right) ; \\
& b_{2}^{(1)}=\cos \delta_{b_{1}} \sin \left(q_{1}-\psi_{1}\right) ; \\
& c_{1}^{(1)}=\sin \varphi_{1} \sin \left(q_{1}-\psi_{1}\right)-\cos \varphi_{1} \sin \delta_{b_{1}} \cos \left(q_{1}-\psi_{1}\right) ; \\
& c_{2}^{(1)}=-\cos \varphi_{1} \sin \left(q_{1}-\psi_{1}\right)-\sin \varphi_{1} \sin \delta_{b_{1}} \cos \left(q_{1}-\psi_{1}\right) ; . \\
& i_{2}^{(1)}=\cos \delta_{b_{1}} \cos \left(q_{1}-\psi_{1}\right) .
\end{aligned}
$$

where

$$
\text { raie } \psi_{1}=\varphi_{1} \frac{\cos \tau_{1}^{\prime}}{\sin \left(\delta_{b_{1}}+r_{1}^{\prime}\right)} \cdot \dot{\xi}
$$

Equations for crown arface $\Sigma_{p i}$ and of the projections of the vector of the normal to this same surface in the asien x_{0}, y_{0}, z_{0} are written:

$$
\begin{align*}
& x_{0}^{\left(p_{1}\right)}=\left(r_{1} \operatorname{ctg} \alpha_{1}-u_{1} \cos \alpha_{1}-L \sin \gamma_{1}\right) \cos \tau_{1}+u_{1} \sin \alpha_{1} \sin \gamma_{1} \cos \left(\theta_{1}-q_{1}+p_{1}\right)+. \\
& +b_{1} \sin \gamma_{1} \cos \left(q_{1}-\psi_{1}\right)+\left|\Delta L_{1}\right| \sin \gamma_{1} ; \\
& y_{0}^{\left(\phi_{1}\right)}=u_{1} \sin \alpha_{1} \sin \left(\theta_{1}-q_{1}+\psi_{1}\right)-b_{1} \sin \left(q_{1}-\psi_{1}\right) ; \\
& z_{0}^{\left(p_{1}\right)}=-\left(r_{1} \operatorname{ctg} \alpha_{1}-u_{1} \cos \alpha_{1}-L \sin \gamma_{1}\right) \sin \gamma_{1}+u_{1} \sin \dot{\alpha}_{1} \cos \gamma_{1} \cos \left(\theta_{1}-q_{1}+\psi_{1}\right)+ \\
& +\dot{b}_{1} \cos \gamma_{1} \cos \left(q_{1}-\psi_{1}\right)+\left|\Delta L_{1}\right| \cos \gamma_{1} ; \tag{2.7}\\
& \left.-1-u_{1}+\left(r_{i} \operatorname{ctg} \alpha_{1}-L \sin \gamma_{1}-\left|\Delta L_{1}\right| \operatorname{tg} \delta_{b_{1}}\right) \cos \alpha_{1}\right] \sin \left(\theta_{1}-q_{1}+\psi_{1}\right)+ \\
& +b_{1} \sin \alpha_{1} \sin \left(q_{1}-\psi_{1}\right)+b_{1} \cos \alpha_{1} \sin v_{1} \operatorname{tg} \gamma_{1}^{\prime}=0 ; \\
& e_{x_{0}}^{\left(p_{1}\right)}=\sin \alpha_{1} \cos \gamma_{1}+\cos \alpha_{1} \sin \gamma_{1} \cos \left(\theta_{1}-q_{1}+\psi_{1}\right) ; \\
& e_{y_{0}}^{\left(\rho_{1}\right)}=\cos \alpha_{1} \sin \left(\theta_{1}-q_{1}+\psi_{1}\right) ; \tag{2.8}\\
& e_{2_{0}}^{\left(f_{1}\right)}=-\sin \alpha_{1} \sin \gamma_{1}+\cos \alpha_{1} \cos \gamma_{1} \cos \left(\theta_{1}-q_{1}+\psi_{1}\right) .
\end{align*}
$$

3. Selectins Parametere for Cutting Heads and Machine Adiustment

When parameters are being selected, as noted in [3], gear tooth surfaces must be instantaneously mated when they touch at the midpoint. This requires that both crown surfaces and pinion and gear tooth surfaces touch each other at aidpoint $M_{1}(i=1,2)$ (cf. figures 1 and 2), which is the point of intersection of axes $0_{0} z_{0}$ and $0_{n i} z_{n i}$. Axis $0_{0} z_{0}$ coincides with the overal.generatrix of normal cones of bevel ger and is their axis of rotation in relative motion.

The crown surfaces and the surfaces of the teeth to be cut can be brought to touch at the midpoint $M_{1}(i=1,2)$ by the appropriate setting of the machine's rolling chain. This requires that the sear ratio be calculated so that the instantanecus rotation axis in relative motion of the crown wheel and the wheels to be cut passes through midpoint M_{1}.

On the basis of this condition and referring to structures in figures 1 and 2 , we obtain the following for the gear
for the pinion

$$
\begin{equation*}
i_{2,1}=\frac{\sin \delta_{2}}{\cos \gamma_{2}} \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
i_{p_{11}}=\frac{\sin \left(\delta_{b_{1}}+\gamma_{1}^{\prime}\right)}{\cos \tau_{1}^{\circ}} \tag{3.2}
\end{equation*}
$$

Here angle r^{\prime}, is calculated fron the equation (cf. figure l)

$$
\begin{equation*}
\operatorname{tg} \gamma_{1}^{\prime}=\frac{L \sin T_{1}+\mid \Delta L_{1} ; \operatorname{tg} \delta_{b_{1}}}{L \cos T_{1}-\left|\Delta L_{1}\right|} . \tag{3.3}
\end{equation*}
$$

In addition, if generating arfaces touch each other at poiat M_{i}, and the instantaneous rotation axis of rotation passes through M_{1}, the surfaces of the teeth will alco touch each other at point M_{i}.

This requires that the radius-vector of the crown surfaces and the normal's unit vector at pcint M_{i} be equal, i.e.

$$
\begin{equation*}
\bar{r}_{0}^{\left(p_{1}\right)}=\bar{r}_{0}^{\left(p_{1}\right)}, \bar{e}_{0}^{\left(p_{1}\right)}=\bar{e}_{0}^{\left(p_{0}\right)} . \tag{3.4}
\end{equation*}
$$

On the basis of these equations and (2.3), (2.4), (2.7), and (2.8) for crown urfaces and unit vectors of normals in the x_{0}, y_{0}, z_{0} systen, when $\psi_{1}=\Psi_{2}=0$, we obtain: $\quad \angle 35$

$$
\begin{gather*}
\left(r_{1} \operatorname{ctg} \alpha_{1}-u_{1} \cos \alpha_{1}-L \sin \gamma_{1}\right) \cos \gamma_{1}+u_{1} \sin \alpha_{1} \sin \gamma_{1} \cos \left(\theta_{1}-q_{1}\right)+ \\
+b_{1} \sin \gamma_{1} \cos q_{1}+\left|\Delta L_{1}\right| \sin \gamma_{1}=\left(r_{2} \operatorname{ctg} \alpha_{2}--u_{2} \cos \alpha_{2}+\prime \sin \tau_{2}\right) \cos \gamma_{2}- \\
-u_{2} \sin \alpha_{2} \sin \gamma_{2} \cos \left(\theta_{2}-q_{2}\right)-b_{2} \sin \gamma_{2} \cos q_{2} ; \\
u_{1} \sin \alpha_{2} e^{\prime} a\left(\theta_{1}-q_{1}\right)-b_{1} \sin q_{1}=u_{2} \sin \alpha_{2} \sin \left(\theta_{2}-q_{2}\right)-b_{2} \sin q_{2} \\
-\left(r_{1} \operatorname{ctg} a_{1}-u_{1} \cos \alpha_{1}-L \sin \gamma_{1}\right) \sin \gamma_{1}+u_{1} \sin \alpha_{1} \cos \gamma_{1} \cos \left(\theta_{1}-q_{1}\right)+ \\
+b_{1}\left(\cos \gamma_{1} \cos q_{1}+\left|\Delta L_{1}\right| \cos \gamma_{1}\right)=\left(r_{2} \operatorname{ctg} \alpha_{2}-u_{2} \cos \alpha_{2}+L \sin \gamma_{2}\right) \sin \gamma_{2}+ \tag{3.5}\\
+u_{2} \sin \alpha_{2} \cos \gamma_{2} \cos \left(\theta_{2}-q_{2}\right)+b_{2} \cos \gamma_{2} \cos q_{2} ;
\end{gather*}
$$

$$
\begin{align*}
\sin \alpha_{1} \cos \gamma_{1}+\cos \alpha_{1} \sin \gamma_{:} \cos \left(\theta_{1}-q_{1}\right) & =\sin \alpha_{2} \cos \gamma_{2}-\cos \alpha_{2} \sin \gamma_{2} \cos \left(\theta_{2}-q_{2}\right) \tag{3.6}\\
\cos \alpha_{1} \sin \left(\theta_{1}-q_{1}\right) & =\cos \alpha_{2} \sin \left(\theta_{2}-q_{2}\right)
\end{align*}
$$

$$
-\operatorname{sinct} \sin \gamma_{1}+\cos \alpha_{1} \cos \tau_{1} \cos \left(\theta_{1}-q_{1}\right)=\sin \alpha_{2} \sin \gamma_{2}+\cos \alpha_{2} \cos \gamma_{2} \cos \left(\theta_{2}-q_{2}\right)
$$

The constructions in figures 1 and 2 show that parameters for eetting up the cutting head are related to equations

$$
\begin{gather*}
\operatorname{ctg} q_{1}=\frac{L \cos \gamma_{1}-\left|\Delta L_{1}\right|-r_{1} \sin \beta_{1}}{r_{1} \cos \beta_{1}} . \tag{3.7}\\
\operatorname{ctg} q_{2}=\frac{L \cos \gamma_{2}-r_{1} \sin \beta_{1}}{r_{1} \cos \beta_{2}} ; \tag{3.8}\\
b_{l}=\frac{r_{1} \cos \beta_{i}}{\sin q_{i}} . \tag{3.9}
\end{gather*}
$$

For midpoint $M_{i} u_{i}=r_{i} / \sin \alpha_{i}, v_{i}=90^{\circ}-\beta_{i}+q_{i}$. After cubstituting b_{i}, u_{i}, and ${ }_{i}$ in equations (3.5) we can be sure that $\bar{r}_{0}^{\left(\rho_{0}\right)}=\bar{r}_{0}^{\left(\rho_{0}\right)}$. Substituting v_{i} into equations (3.6), we obtain the equation

$$
\begin{align*}
\sin \alpha_{2} \cos \gamma_{2}-\cos \alpha_{2} \sin \gamma_{2} \sin \beta_{2} & =\sin \alpha_{1} \cos \gamma_{1}+\cos \alpha_{1} \sin \gamma_{1} \sin \beta_{1} . \\
\cos \alpha_{2} \cos \beta_{2} & =\cos \alpha_{1} \cos \beta_{2}, \\
\sin \alpha_{2} \sin \gamma_{2}+\cos \alpha_{2} \cos \gamma_{2} \sin \rho_{1} & =-\sin \alpha_{1} \sin \gamma_{1}+\cos \alpha_{1} \cos \gamma_{1} \sin \gamma_{1}
\end{align*}
$$

Systen (3.10) containa four unknowns: $\alpha_{1}, \alpha_{2}, \beta_{1}$, and β_{2}; of the three equations in this aystem, only two are independent.

The misaing equations for calculating the uaknows are derived on the basis of the fact that the values for engles α_{f}, and α_{2} are calculated with a well-known approximated form used in tooth-cutting practice:

$$
\begin{equation*}
\sigma_{i}=\alpha \pm \frac{1}{2} \sin \beta\left(\operatorname{tg} \gamma_{2}+\operatorname{tg} \gamma_{2}\right), \frac{1800}{\pi}, \tag{3.11}
\end{equation*}
$$

where α is the noninal cutter profile angle; s is the nominal tooth inclination.

Here and henceforth, n superscript will indicate gear cutting (i = 2), a subecript -- pinion cutting (i=1).

After α_{1} is calculated, angles β_{1} and β_{2} must be found from equations (3.10). After transformation, we obtain

$$
\begin{align*}
& \sin \beta_{2}=\frac{\sin \alpha_{2}-\sin \alpha_{1} \cos \left(\gamma_{2}+\gamma_{1}\right)}{\cos \alpha_{1} \sin \left(\gamma_{2}+\gamma_{1}\right)}, \tag{3.12}\\
& \sin \beta_{2}=\frac{\sin \alpha_{2} \cos \left(\gamma_{2}+\gamma_{1}\right)-\sin \alpha_{1}}{\cos \alpha_{2} \sin \left(\gamma_{2}+\gamma_{1}\right)} . \tag{3.13}
\end{align*}
$$

The forming radii are determined from the equation (cf. figures 3 and 4):

$$
\begin{equation*}
r_{i}=r_{n} \mp \frac{w}{2} \mp L \sin \gamma_{l} \operatorname{tg} \alpha_{i} \tag{3.14}
\end{equation*}
$$

where r_{n} is the nominal cutting head radius; W is the cutter set.

4. Determining Operating Line and Instantaneous Gear Ratio

Solving this problem requires finding equations for the surfaces of gear and pinion teeth and projections of the unit vector for the normals to the surfaces in the fixed system x_{0}, y_{0}, \mathbf{z}_{0}.

This requires that we use the derivative of the matrices $M_{0 b i}, M_{b i i}$, which express the transition from x_{i}, y_{i}, z_{i} to x_{0}, y_{0}, z_{0} (cf. figures 3 and 4):

$$
M_{o b_{i}} M_{b_{i} i}^{\cdot}=\left\|\begin{array}{cccc}
\cos \delta_{i} \cos \varphi_{i}^{\prime} & \mp \cos \delta_{i} \sin \varphi_{i}^{\prime} & \mp \sin \delta_{i} & 0^{\prime} \tag{4.1}\\
\pm \sin \varphi_{i}^{\prime} & \cos \varphi_{i}^{\prime} & 0 & 0 \\
\pm \sin \delta_{i} \cos \varphi_{i}^{\prime} & -\sin \delta_{i} \sin \varphi_{i}^{\prime} & \cos \delta_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right\|
$$

Using equations (4.1), (2.1), (2.2), (2.5), and (2.6), after transformation we obtain:

$$
\begin{align*}
& x_{0}^{(1)}=\left(r_{1} \operatorname{ctg} \alpha_{1}-u_{1} \cos \alpha_{1}-L \sin \tau_{1}\right) A_{1}^{(1)}+u_{1} \sin \alpha_{1} \sin \theta_{1} B_{1}^{(1)}+ \\
& +\left(u_{1} \sin \alpha_{1} \cos \vartheta_{1}+b_{1}\right) C_{1}^{(1)}+\| \Delta L_{1} \mid D_{1}^{(1)} ; \\
& y_{0}^{(1)}=\left(r_{1} \operatorname{ctg} \alpha_{1}-u_{1} \cos \alpha_{1}-L \sin r_{1}\right) A_{2}^{(1)}+u_{1} \sin \alpha_{1} \sin \vartheta_{1} B_{2}^{(1)}+ \\
& +\left(u_{1} \sin \alpha_{1} \cos \theta_{1}+b_{1}\right) C_{2}^{(1)}+\left|\Delta L_{1}\right| D_{2}^{(1)} ; \\
& z_{0}^{(1)}=\left(r_{1} \operatorname{ctg} \alpha_{1}-u_{1} \cos \alpha_{1}-L \sin \tilde{i}_{1}\right) A_{3}^{(1)}+u_{1} \sin \alpha_{1} \sin \vartheta_{1} B_{3}^{(1)}+ \\
& +\left(\mu_{1} \sin \alpha_{1} \cos \theta_{1}+b_{1}\right) C_{3}^{(1)}+\left|\Delta L_{1}\right| D_{3}^{(1)} ; \tag{4.2}\\
& -\left[u_{1}-\left(r_{1} c \operatorname{tg} \alpha_{1}-L \sin \gamma_{2}-\mid \Delta L_{1} 1 \operatorname{tg} \delta_{b_{1}}\right) \cos \alpha_{1}\right] \sin \left(\theta_{1}-q_{1}+\psi_{1}\right)+ \\
& +b_{1}\left[\cos \alpha_{1} \operatorname{tg} \gamma_{1}^{\prime} \sin \theta_{1}+\sin \alpha_{1} \sin \left(q_{1}-\psi_{1}\right)\right]=0 ; \\
& x_{0}^{(2)}=\left(r_{2} \operatorname{ctg} \alpha_{2}-u_{2} \cos \alpha_{2}+L \sin i_{1}\right) A_{1}^{(2)}+u_{2} \sin \alpha_{2} \sin \theta_{2} B_{1}^{(2)}+ \\
& +\left(u_{2} \sin \alpha_{2} \cos \theta_{:}+b_{2}\right) C_{1}^{(s)} ; \\
& y_{0}^{(2)}=\left(r_{2} \operatorname{ctg} \alpha_{2}-u_{2} \cos \alpha_{2}+L \sin \gamma_{\xi}\right) A_{2}^{(2)}+u_{2} \sin \alpha_{2} \sin \vartheta_{2} B_{2}^{(2)}+ \\
& +\left(u_{2} \sin \alpha_{2} \cos \theta_{2}+b_{2}\right) C_{2}^{(2)} \text {; } \\
& z_{0}^{(2)}=\left(r_{2} \operatorname{ctg} \alpha_{2}-u_{2} \cos \alpha_{2}+i \sin \gamma_{2}\right) A_{3}^{(3)}+u_{2} \sin \alpha_{2} \sin \hat{\theta}_{2} B_{3}^{(2)}+ \\
& +\left(u, \sin \alpha_{2} \cos \theta_{2}-1-b_{2}\right) C_{3}^{(3)} \text {; } \tag{4.3}\\
& {\left[\mu_{2}-\left(r_{2} \operatorname{ctg} \alpha_{2}+L \sin \gamma_{2}\right) \cos \alpha_{2}\right] \sin \left(\theta_{2}-q_{2}+\psi_{2}\right)+} \\
& +b_{2}\left[\cos \alpha_{2} \operatorname{tg} \gamma_{2} \sin \theta_{2}-\sin \alpha_{2} \sin \left(q_{2}-\psi_{2}\right)\right]=0 ; \\
& e_{x_{t}^{(i)}}=\sin \alpha_{i} A_{1}^{(n)}+\cos \alpha_{i} \sin \theta_{i} B_{1}^{(i)}+\cos \alpha_{i} \cos \theta_{i} C_{1}^{(i)} ; \\
& e_{y_{0}}^{(i)}=\sin \alpha_{i} A_{2}^{(i)}+\cos \alpha_{i} \sin \vartheta_{i} B_{2}^{(i)}+\cos x_{i} \cos \theta_{i} C_{2}^{(i)} ; \\
& e_{i}^{(i)}=\sin \alpha_{i} A_{3}^{(i)}+\cos \alpha_{i} \sin \theta_{i} B_{3}^{(i)}+\cos \alpha_{i} \cos \hat{\theta}_{i} C_{3}^{(i)} \text {. } \tag{4.4}
\end{align*}
$$

In equations (4.2), (4.3), and (4.4):

$$
\begin{aligned}
& A_{i}^{(i)}=\cos \delta_{i} \cos \left(\varphi_{i}^{\prime}-\varphi_{i}\right) \cos \delta_{b_{i}}+\sin \delta_{i} \sin \delta_{b_{i}} ; \\
& A_{2}^{(i)}= \pm \sin \left(\varphi_{i}^{\prime}-\varphi_{i}\right) \cos \delta_{b_{i}} ; \\
& A_{3}^{(i)}= \pm \sin \delta_{i} \cos \left(\varphi_{i}-\varphi_{i}\right) \cos \delta_{b_{i}}+\cos \delta_{i} \sin \delta_{b_{i}} ; \\
& B_{2}^{(i)}= \pm \cos \delta_{i} \cos \left(\varphi_{i}^{\prime}-\varphi_{i}\right) \sin \delta_{b_{i}} \sin \left(q_{i}-\varphi_{i}\right) \mp \\
& \mp \cos \delta_{i} \sin \left(\varphi_{i}^{\prime}-\varphi_{i}\right) \cos \left(q_{i}-\psi_{i}\right) \mp \sin \delta_{i} \cos \delta_{b_{i}} \sin \left(q_{i}-\psi_{i}\right) ; \\
& B_{2}^{(i)}=\sin \left(\varphi_{i}^{\prime}-\varphi_{i}\right) \sin \delta_{b_{i}} \sin \left(q_{i}-\varphi_{i}\right)+\cos \left(\varphi_{i}^{\prime}-\varphi_{i}\right) \cos \left(q_{i}-\psi_{i}\right) ; \\
& B_{2}^{(i)}=\sin \delta_{i} \cos \left(\varphi_{i}^{\prime}-\varphi_{i}\right) \sin \delta_{b_{i}} \sin \left(q_{i}-\psi_{i}\right)- \\
& -\sin \delta_{i} \sin \left(\varphi_{i}^{\prime}-\varphi_{i}\right) \cos \left(q_{i}-\psi_{i}\right) \div \cos \delta_{i} \cos \delta_{b_{i}} \sin \left(q_{i}-\psi_{i}\right) ; \\
& C_{1}^{(i)}= \pm \cos \delta_{i} \cos \left(\varphi_{i}^{\prime}-\varphi_{i}\right) \sin \delta_{b_{i} \cos \left(q_{i}-\psi_{i}\right) \pm}^{ \pm \cos \delta_{i} \sin \left(\varphi_{i}^{\prime}-\varphi_{i}\right) \sin \left(q_{i}-\psi_{i}\right) \mp \sin \delta_{i} \cos \delta_{b_{i}} \cos \left(q_{i}-\psi_{i}\right) ;}
\end{aligned}
$$

$$
\begin{aligned}
& C_{i}^{(1)}=\sin \left(\varphi_{i}^{\prime}-\varphi_{i}\right) \sin \delta_{b_{i}} \cos \left(q_{i}-\varphi_{i}\right)-\cos \left(\varphi_{i}^{\prime}-\varphi_{i}\right) \sin \left(q_{i}-\psi_{i}\right) ; \\
& C_{3}^{(i)}=\sin \delta_{i} \cos \left(\varphi_{i}^{\prime}-\varphi_{i}\right) \sin \delta_{b_{i}} \cos \left(q_{i}-\psi_{i}\right)+ \\
& +\sin \delta_{i} \sin \left(\varphi_{i}^{\prime}-\varphi_{i}\right) \sin \left(g_{i}-\psi_{i}\right)+\cos \delta_{i} \cos \delta_{b_{i}} \cos \left(q_{i}-\psi_{i}\right) ; \\
& D_{1}^{(1)}=-\cos \delta_{1} \cos \left(\varphi_{1}^{\prime}-\psi_{1}\right) \sin \delta_{b_{i}}+\sin \delta_{1} \cos \delta_{b_{i}} ; \\
& D_{2}^{(1)}=\sin \left(\varphi_{1}^{\prime}-\varphi_{1}\right) \sin \delta_{b_{1}} ; \\
& D_{3}^{(1)}=\sin \delta_{1} \cos \left(\varphi_{1}^{\prime}-\varphi_{1}\right) \sin \delta_{b_{i}}+\cos \delta_{1} \cos \delta_{b_{1}} .
\end{aligned}
$$

Here and in equation (4.1), the superscript indicates cutting a gear ($i=2$), the subscript -- cutting a pinion (i=1).

We know from analytical geometry [4] that coefficients for the transformation equations for rectangular coordinate systems are related by the functions:

$$
\begin{align*}
& {\left[A_{1}^{(i)}\right]^{2}+\left[A_{2}^{(i)}\right]^{2}+\left[A_{3}^{(i)}\right]^{2}=1} \\
& {\left[B_{2}^{(i)}\right]^{2}+\left[B_{2}^{(i)}\right]^{2}+\left[B_{2}^{(i)}\right]^{2}=1 ;} \\
& {\left[C_{2}^{(i)}\right]^{2}+\left[C_{2}^{(i)}\right]^{2}+\left[C_{2}^{(i)}\right]^{2}=1 ;} \tag{4.5}
\end{align*}
$$

$$
\begin{align*}
& A_{1}^{(i)} B_{1}^{(i)}+A_{2}^{(i)} B_{2}^{(i)}+A_{3}^{(i)} B_{3}^{(i)}=0 ; \\
& B_{1}^{(i)} C_{1}^{(i)}+B_{2}^{(i)} C_{2}^{(i)}+B_{3}^{(i)} C_{3}^{(i)}=0 ; \\
& C_{1}^{(i)} A_{1}^{(i)}+C_{2}^{(i)} A_{2}^{(i)}+C_{3}^{(i)} A_{3}^{(i)}=0 . \tag{4.6}
\end{align*}
$$

In addition, $i t$ is easy to be sure that $A_{j}{ }^{(1)}, B_{j}{ }^{(1)}, C_{j}{ }^{(1)}$ and $D_{j}{ }^{(1)}(j=1,2,3)$ are related by equations:

$$
\begin{gather*}
A_{1}^{(1)} D_{1}^{(1)}+A_{2}^{(1)} D_{2}^{(1)}+A_{3}^{(1)} D_{3}^{(1)}=0 ; \\
B_{1}^{(1)} D_{2}^{(1)}+B_{2}^{(1)} D_{2}^{(1)}+B_{3}^{(1)} D_{3}^{(1)}=0 ; \\
C_{1}^{(1)} D_{1}^{(1)}+C_{2}^{(1)} D_{2}^{(1)}+C_{3}^{(1)} D_{3}^{(1)}=0 ; \\
{\left[D_{1}^{(1)}\right]^{2}+\left[D_{2}^{(1)}\right]^{1}+\left[D_{3}^{(1)}\right]^{2}=1 .} \tag{4.7}
\end{gather*}
$$

To calculate the contact point of the gear and pinion teeth, we have to use the following system of equations:

$$
\begin{array}{ll}
x_{0}^{(1)}=x_{0}^{(2)} ; \quad e_{x_{0}}^{(1)}=e_{x_{0}}^{(2)} ; \\
y_{0}^{(1)}=y_{0}^{(2)} ; \quad e_{\nu_{0}^{(1)}}^{(1)}=e_{\nu_{0}}^{(2)} ; \\
z_{0}^{(1)}=z_{0}^{(2)} ; \quad e_{z_{0}}^{(1)}=e_{2_{0}}^{(2)} ;
\end{array}
$$

$$
\begin{gather*}
\left.\left[-u_{1}+r_{1} \operatorname{ctg} \alpha_{1}-L \sin \gamma_{1}-\left|\Delta L_{1}\right| \operatorname{tg} \delta_{b_{1}}\right) \cos \alpha_{1}\right] \sin \left(\theta_{1}-q_{1}+\psi_{1}\right)+ \\
\quad+b_{1}\left[\cos \alpha_{1} \operatorname{tg} \gamma_{1}^{\prime} \sin \vartheta_{1}+\sin \alpha_{1} \sin \left(q_{1}-\psi_{1}\right)\right]=0 \\
{\left[u_{2}-\left(r_{2} \operatorname{ctg} \alpha_{2}+L \sin \gamma_{2}\right) \cos \alpha_{2}\right] \sin \left(\theta_{2}-q_{2}+\psi_{2}\right)+} \\
+b_{2}\left[\cos \alpha_{2} \operatorname{tg} \gamma_{2} \sin \theta_{2}-\sin \alpha_{2} \sin \left(q_{2}-\psi_{2}\right)\right]=0 \tag{4.8}
\end{gather*}
$$

From equations (4.8), it is obvious that

$$
\begin{gather*}
{\left[x_{0}^{(1)}\right]^{2}+\left[y_{0}^{(1)}\right]^{2}+\left[z_{0}^{(1)}\right]^{2}=\left[x_{0}^{(2)}\right]^{2}+\left[y_{0}^{(2)}\right]^{2}+\left[z_{0}^{(2)}\right]^{2}} \tag{4.9}\\
\vdots \tag{4.10}\\
e_{x_{0}}^{(1)} x_{0}^{(1)}+e_{p_{0}}^{(1)} y_{0}^{(1)}+e_{z_{0}}^{(1)} z_{0}^{(1)}=e_{x_{0}}^{(2)} x_{0}^{(2)}+e_{y_{0} y_{0}^{(2)} y_{0}^{(2)}+e_{20}^{(2)} z_{0}^{(2)} .}
\end{gather*}
$$

Substituting equations (4.2) and (4.3) into (4.9); (4.2), (4.3), and (4.4) into (4.10), and taking into account functions (4.5), (4.6), and (4.7), after transformation we obtain:

$$
\begin{align*}
& \left(r_{1} \operatorname{ctg} \alpha_{1}-u_{1} \cos \alpha_{1}-L \sin \gamma_{1}\right)^{2}+\left(u_{1} \sin \alpha_{1} \sin \vartheta_{1}\right)^{2}+\left(u_{1} \sin \alpha_{1} \cos \vartheta_{1}+b_{1}\right)^{2}+ \\
& \quad+\left|\Delta L_{1}\right|^{2}+2\left|\Delta L_{1}\right|\left[u_{1} \sin \alpha_{1} \cos \left(\theta_{1}-q_{1}+\psi_{1}\right)+b_{1} \cos \left(q_{1}-\psi_{1}\right)\right]= \\
& =\left(r_{2} \operatorname{ctg} \dot{\alpha}_{2}-u_{2} \cos \alpha_{2}+L \sin \gamma_{2}\right)^{2}+\left(u_{1} \sin \alpha_{2} \sin \dot{\vartheta}_{2}\right)^{2}+\left(u_{2} \sin \alpha_{2} \sin \vartheta_{2}+b_{2}\right)^{2} \tag{4.11}
\end{align*}
$$

$$
\begin{gather*}
\sin \alpha_{1}\left(r_{1} \operatorname{ctg} \alpha_{1}-L \sin \gamma_{1}\right)+b_{1} \cos \alpha_{1} \cos \theta_{1}+\left|\Delta L_{1}\right| \cos \alpha_{1} \cos \left(\theta_{1}-q_{1}+\psi_{1}\right)= \\
=\sin \alpha_{2}\left(r_{2} \operatorname{ctg} \alpha+L \sin \gamma_{2}\right)+b_{2} \cos \alpha_{2} \cos \theta_{2} . \tag{4.12}
\end{gather*}
$$

To determine parameters $u_{1}, v_{1}, \Psi_{1} \phi_{1}, u_{2}, \mathcal{J}_{2}, \Psi_{2}$, and $\phi^{\prime}{ }_{2}$, using equations (4.8), (4.11), and (4.12) we obtain the following system of equations:

$$
\begin{gather*}
\left.1-u_{1}+\left(r_{1} \operatorname{ctg} \alpha_{1}-L \sin \gamma_{1}\right) \cos \alpha_{1}\right] \sin \left(0_{1}-q_{1}+\psi_{1}\right)+b_{1} \cos \alpha_{1} \operatorname{tg} \gamma_{1}^{\prime} \sin \theta_{1}+ \tag{a}\\
+b_{1} \sin \alpha_{1} \sin \left(q_{1}-\psi_{1}\right)=0
\end{gather*}
$$

$\sin \alpha_{1}\left(r_{1} \operatorname{ctg} \alpha_{1}-L \sin \gamma_{1}\right)+b_{1} \cos \alpha_{1} \cos \vartheta_{1}+\left|\Delta L_{1}\right| \cos \alpha_{1} \cos \left(\vartheta_{1}-q_{1}+\psi_{1}\right)-$

$$
\begin{equation*}
-\sin \alpha_{2}\left(r_{2} \operatorname{ctg} \alpha_{2}+L \sin \gamma_{2}\right)-b_{2} \cos \alpha_{2} \cos \vartheta_{2}=0 \tag{b}
\end{equation*}
$$

$$
\begin{align*}
& \left(r_{1} \operatorname{ctg} \alpha_{1}-u_{1} \cos \alpha_{1}-L \sin \gamma_{1}\right)^{2}+\left(u_{1} \sin \alpha_{1} \sin \vartheta_{1}\right)^{2}+\left(u_{1} \sin \alpha_{1} \cos \theta_{1}+b_{1}\right)^{2}+ \tag{c}\\
& +\left(\Delta L_{1}\right)^{2}+2\left|\Delta L_{1}\right|\left[u_{1} \sin \alpha_{1} \cos \left(\vartheta_{1}-q_{1}+\psi_{1}\right)+b_{1} \cos \left(q_{1}-\psi_{1}\right)\right]-\left(r_{2} \operatorname{ctg} \alpha_{2}-\right. \\
& \left.\quad-u_{2} \cos \alpha_{2}+L \sin \gamma_{2}\right)^{2}-\left(u_{2} \sin \alpha_{2} \sin \vartheta_{2}\right)^{2}-\left(u_{2} \sin \alpha_{2} \cos \vartheta_{2}+b_{2}\right)^{2}=0 ; \tag{17}
\end{align*}
$$

$$
\begin{gather*}
{\left[u_{2}-\left(r_{2} \operatorname{ctg} \alpha_{2}+L \sin \tau_{2}\right) \cos \alpha_{2}\right] \sin \left(\vartheta_{2}-q_{2}+\psi_{2}\right)+b_{2} \cos \alpha_{2} \operatorname{tg} \tau_{2} \sin \vartheta_{2}-} \\
-b_{2} \sin \alpha_{2} \sin \left(q_{2}-\psi_{2}\right)=0 ; \tag{d}
\end{gather*}
$$

$$
\begin{gather*}
\sin \alpha_{1} A_{1}^{(1)}+\cos \alpha_{1} \sin \vartheta_{1} B_{1}^{(1)}+\cos \alpha_{1} \cos \vartheta_{1} C_{1}^{(1)}-\sin \alpha_{2} A_{1}^{(2)}-\cos \alpha_{2} \sin \vartheta_{2} B_{1}^{(2)}- \tag{e}\\
\quad-\cos \alpha_{2} \cos \vartheta_{2} C_{1}^{(2)}=0 ; \\
\sin \alpha_{1} A_{3}^{(1)}+\cos \alpha_{1} \sin \vartheta_{1} B_{3}^{(1)} \div \cos \alpha_{1} \cos \vartheta_{1} C_{3}^{(1)}-\sin \alpha_{2} A_{3}^{(2)}- \tag{f}\\
-\cos \alpha_{2} \sin \theta_{2} B_{3}^{(2)}-\cos \alpha_{2} \cos \theta_{2} C_{3}^{(2)}=0 ; \\
\left(r_{1} \operatorname{ctg} \alpha_{1}-u_{1} \cos \alpha_{1}-L \sin \gamma_{1}\right) A_{1}^{(1)}+u_{1} \sin \alpha_{1} \sin \theta_{1} B_{1}^{(1)}+\left(u_{1} \sin \alpha_{1} \cos \theta_{1}+\right. \\
\left.+b_{1}\right)+\left|\Delta L_{1}\right| D_{1}^{(1)}=\left(r_{2} \operatorname{ctg} \alpha_{2}-u_{2} \cos \alpha_{2}+L \sin \gamma_{2}\right) A_{1}^{(2)}+ \tag{g}\\
+u_{2} \sin \alpha_{2} \sin \theta_{2} B_{1}^{(2)}+\left(u_{2} \sin \alpha_{2} \cos \theta_{2}+b_{2}\right) C_{2}^{(2)} .
\end{gather*}
$$

The system of transcendental equations (4.13) is solved by sequential approximation.

In solving system (4.13), Ψ_{1} is considered fixed. Then the system has seven unknown equations, whose solution results in the calculating of the seven desired parameters $u_{i}, v_{1}, \phi_{1}, u_{2}$, \mathfrak{v}, φ^{2}, and ϕ^{2}.

Substituting the resulting values into equations (2.1) and (2.5), we find the coordinates of points on the operating line on the surfaces of the teeth. Coordinates x_{i}, y_{i}, z_{i}, found for various Ψ_{1} values, define the operating line.

Substituting values for $u_{i},{ }^{v_{1}}, \Psi_{1}, \phi_{1}^{\prime}, u_{2}, \mathcal{J}_{2}, \Psi_{2}$, and ϕ_{2}^{\prime} into equations (4.2), (4.3), and (4.4), we find the coordinates of the point on the dedendum line of contact and the projection of the unit vector for the normal at this point.

Let us introduce an equation for finding the instantaneous gear ratio for gears.

In fixed system x_{0}, y_{0}, z_{0}, the equation for the normal to tooth surface contact point M_{0} is expressed as (cf. figure 5):

$$
\begin{equation*}
\frac{x_{0}-x_{0}^{K}}{c_{x_{0}}^{K}}=\frac{\gamma_{0}-\hat{x}_{0}^{K}}{e_{\psi_{0}}^{K}}=\frac{Z_{0}-z_{0}^{K}}{e_{z_{0}}^{K}}, \tag{4.14}
\end{equation*}
$$

where X_{0}, Y_{K}, Z_{K} are the coordinates of the current normal point; $x_{0}{ }^{K}, y_{0}{ }^{K}, z_{0}{ }^{K}$ are the coordinates of point M_{0}^{K} of contact in system x_{0}, y_{f}, z_{0}, determined with equations (4.2) and (4.3); $e_{x e^{K}} e^{K} e^{K}, e_{z e}$ are projections of the unit vector of the normal at the point of contact in this system, determined from equations (4.4).

At point N_{K}, where the normal intersects the plane of gear axes, $Y_{0}=0$. After substituting $Y_{0}=0$ into equation (4.14), we obtain

$$
\begin{aligned}
& X_{0}=x_{0}^{\mathrm{K}}-\frac{e_{x_{0}}^{\mathrm{k}}}{r_{y_{0}}^{\mathrm{K}}} y_{0}^{\mathrm{k}},
\end{aligned}
$$

Figure 5. For solving the equation to determine instantaneous gear ratio.

Angle Δ_{K} between axis z_{0} and instantaneous axis $0_{0} N_{K}$ will be found with the equation

$$
\begin{equation*}
\operatorname{tg} \Delta_{\mathrm{K}}=\frac{X_{0}}{z_{0}}=\frac{z_{0}^{\mathrm{x}} e_{y_{0}}^{\mathrm{K}}-y_{0}^{\mathrm{K}} e_{x_{0}}^{\mathrm{K}}}{z_{0}^{\mathrm{k}} e_{y_{0}}^{\mathrm{K}}-y_{0}^{\mathrm{K}} e_{z_{0}}^{\mathrm{K}}} . \tag{4.16}
\end{equation*}
$$

The instantaneous gear ratio for gears may be found from the equation (cf. figure 5):

$$
\begin{equation*}
i_{12}=\frac{\sin \left(s_{2} \div \Delta_{k}\right)}{\sin \left(\delta_{2}-\Delta_{k}\right)} . \tag{4.17}
\end{equation*}
$$

Example of Calculation $\angle 101$

Let us consider the case of cutting teeth on a pinion and gear with a gear ratio $i_{12}=1$. The teeth on the gear are directed to the right; those on the pinion -- to the left. The number of teeth is $z_{1}=z_{2}=20$. The face modulus $m_{s}=10 \mathrm{~mm}$, tooth inclinatiun $\beta=35^{\circ}$, meshing angle $\alpha=20^{\circ}$, toothing width $B=40 \mathrm{~mm}$. Nominal cutting head radius $r_{u}=152.4 \mathrm{~mm}$, cutter set $W=1.524 \mathrm{~mm}$. Tooth cutting method: one-sided. Axial displacement $\Delta S_{1}=-10 \mathrm{~mm}$.

Using BNIMS [expansion unknown] system geometric calculation [3] and calculating equations for setting up the machine given in pointy 3 , we will find the parameters for meshing of gears, cutting heads, and setting up the machine. ΔL_{1} is found with the equation [3] $\Delta L_{1}=-\Delta S_{1} \cos \delta_{b_{1}}$.

Figure 6. Projecitions of the operating line. 1 - Midpoint; 2 - Operating line.

Let us introduce values for solving system (4.13):

	Gear	Wheel
Average generatrix, L	121.4214	121.4214
Initial cone angle, σ_{i}	45°	45°
Angle of dedendum part of tooth, r_{i}	4.125308°	$4.125308{ }^{\circ}$
Internal bevel angle, $\delta_{b i}$	40.87469*	40.87469 ${ }^{\circ}$
Cutter angle, α_{i}	17.62972 ${ }^{\text {- }}$	22.37028 ${ }^{\circ}$
Angle of spiral in locating		
plane, \boldsymbol{A}_{i}	36.24563 ${ }^{\text {- }}$	33.78168°
Forming radius, r_{i}	155.9378	148.0431
Angular adjustment, \mathbf{q}_{i}	80.36620°	72.50272°
Radial adjustment, $\mathbf{b}_{\mathbf{i}}$	127,5611 ${ }^{\text {- }}$	129.0173°
Axial displacement, ΔS_{i}	10	0
Rolling chain gear ratio, ipii	0.7561548	0.7089436

The results of calculation using equations in system $\angle 102$ (4.13) and the coordinates of points on the operaling line and of the instantaneous gear ratio for gears found according to equation (2.1), (2.5), (4.17), are given below:

Current values

Rotation angle of crown wheel,
$\mathbf{P}_{\mathrm{i}},{ }^{\boldsymbol{\Psi}}{ }_{i}$
-5°
0°
5°

Parameters for crown surface
$\Sigma_{p i}:$
${ }^{5} 1$
${ }^{u}{ }_{1}$

133.57°	134.12°	135.42°
520.64	514.88	509.48

Parameters for crown surface
$\Sigma_{\mathrm{p} 2}$:
${ }^{\mathrm{J}} 2$
u_{2}
Rotation angle of crown wheel

$\mathrm{P}_{2},{ }^{\mathbf{\Psi}}{ }_{2}$

127.87°	128.72°	130.35°
394.42	388.95	383.47

P_{2}, Ψ_{2}	-5.28°	0°	5.47°
Pinion rotation angle, ϕ^{\prime}	1	-7.65°	0°
Gear rotation angle ϕ^{\prime}	7.82°		
	7.25°	0°	7.16°

Coordinates of the point on the meshing line

$\mathbf{x}_{0}^{(i)}$	-5.2	0	5.0
$\mathbf{y}_{0}^{(i)}$	-11.2	0	11.9
$z_{0}(i)$	123.5	121.4	116.6

Coordinates of the point of contact
on the pinion tooth surface

x_{1}	-91.7	-85.9	-79.8
\mathbf{y}_{1}	1.0	$0: 00$	1.1
z_{1}	83.65	85.9	86.0

Coordinates of the point of contact on the gear tooth surface

x_{2}	84.4	85.9	86.8
y_{2}	-0.6	0	1.1
z_{2}			
Gear ratio, \mathbf{i}_{12}	91.0	85.9	78.9

These results were used to plot the projections of the operating line for pinion tooth surface on plane $x_{1} 0_{0} y_{1}$ (cf. figure 6, a) and of the operating line for gear tooth surface on plane $x_{2}{ }_{0} \mathbf{y}_{2}$ (cf. figure 6, b).

Figure 7. Graph of gear ratio function.

Figure 7 shows a graph of the change in gear ratio.

Calculations and constructions (cf. figure 6) show that, when axial displacement is introduced and the recommended method for calculating cutter head parameters and machine set-up is used, the operating lines pass through the designated midpoints on the surfaces of the teeth, and the diagonal nature of the operation line (bearing pattern) is already eliminated.

Therefore, we may draw the following conclusion. The diagonal nature of contact can be eliminated by changing displacement and gear ratio of the rolling chain. Displacement must be negative if the convex side of the gear tooth is being cut, i.e. the head should be shifted forward. Shift in this case amounts to about 10 mm , but it may be somewhat less. Optimum axial displacement should be selected on the basis of experimental calculations. In critical cases, it is advisable to program the equations given here to perform calculations on computers.

The gear ratio of the gears still remains variable. However, its deviation from nominal is less than when gears are cut without correcting machine adjustment.

REFERENCRS

1. Litvin, F. L. Kai, Go., "A Study of Meshing Spiral Bevel Gears," Teoriya mashin i mekhanizauv, 1962, No. 92.
2. Waldgaber, B., Osnovy zatsepleniya konicheskikh i gipoidnykh peredach [Fundamentals of the Meshing of Bevel and Hypoid Gearing], Moscow: Mashgiz, 1948.
3. Kedrinskiy, V. N., Pismanik, K. M., Stanki dlya narezaniya konicheskikh zubchatykh koles [Machines for Cutting Bevel Gears], Moscow: Mashgiz, 1958.
4. Muskhelishvili, N. N., Kurs analiticheskoy geometrii [A Course in Analytical Geometry], Moscow: GITTL, 1947.
5. Litvin, F. L., Teoriya zubchatykh zateepleniy [A Theory of Gear Meshing], Moscow: Fizmatgiz, 1960.
