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EVOLUTION OF THE LUMINGSITY FUNCTION OF EXTRAGALACTIC OBJECTS

Vah2 Petrosian

Center for Space Science and Astrophysics
Stanford University

Stanford, CA 94305

ABSTRACT. A ron-parametric¢ procedure for determination of
the evolution of the lumlnosity funation of extragalactic
objeots and use of this for prediction of expected redshift
and luminosity distribution. of objects is described., The
relation between this statistical evolution of the population
and their physical evolution, such as the variation with
cosmological epoch of their lumincsity and formation rate is
presented. This procedure when applied to a sample of
optically selected quasars with redshifts less than two shows
that the luminosity function evolves more strongly for higher
luminosities, indicating a larger quasar -activity at earlier
epochs and a mors rapid evolution of tHe objects during thelir
higher luminosity phases., It is dlso shown that absence of
many quasars at redshifts greater than three implies slowing
down of this evolution in the conventional coasmological
models, perhaps indicating that this is near the epoch of the
birth of the quasar (and galaxies). Howevern, i1t has been
shown that the same is not true in all cosmologlical models,
in some of which the epoch of birth could be at much higher
redshifts. '

I. INTRODUCTION

I will describe the steps and procedure reguired for determination
of the evolution of the luminosity function of extragalactic objects
and apply the results to quasars and, in particular, address the
question of the evolution at redshifts higher than three. The purpose
of such a study, of course, is to learn about the formation and
evolution of the population. There are four distinet steps involved in
tals procedure. These are:

Selection of complete samples with known observational
selection effects.
Choice of a cosmological model,




Statistical analysis of the sample and determination of
the evolution of the luminosity function.

Use of the luminesity function for determination of the
formation rate and the physieal evolution of the objeots.

These steps are described in the next section and are applied to a

sample of quasars 1n Section III. A short summary is presented in
Section IV.

II. THE PROCEDURE
A. The Selection of the Sample

Ideally, one requires a complete sample with known selection
effects. The almplest case is obtained when the sample is limited by
magnitude at one wavelength band. Then the data will consist of
objects with Lknown redshifte 2z and flux densities £(v} greater than
some limiting flux density fo and can be represented by the following
distribution function

"
n(f,2) = > 8(E - £)8(z = 2) (1)
i=1

where N 1z the total number of objects in the sample. Unfortunately,
more than one coriteriocn is needed for identification of the objeots.
If f above stands for some optical flux density, then the radic or
Xwray flux densities of the object will determine their membership in a
radioc or X-ray sample, so that the distribution in general 1is
multivariate rather than bivariate as in Equation (1). This aspect of
the problem is not a source of difficulty but adds to the complexity of
the calculations. We shall limit our discussion to optically selected
samples, Even in thls case, however, there are additional selecticn
eriteria 1ike color in selections based on UV excess or line strength
in selections based on slitless spectra. These put additional known
limits on the sample such as z < 2.2 for UV excess samples or z > 1.8
for samples based on siitless spectra and perhaps some other unknown
limit, We shall ignore the latter, which remains controversial, even
though there has been considerable discussion about it in the past.

B. The Cosmological Models

The observed distribution [Eq, (1)] is not only a reflection of
the luminosity function but also of the cosmological model., In
general, the effects of the cosmologleal model cannot be separated from
the evolution of the luminosity function., One needs to specify one of
these two unknowns to determine the other. It is customary to assume a
cosmological model and derive the luminosity function in that model.
And it turns out that, because of the wide dispersion of the luminosity
function and the small differences between the conventional cosmlogical



models at moderately low redshifts, z < 2, changing the cosmological
model does not affect the outcome significantly., However, when dealling
with the luminocsity function at higher redshifts, in particular, for
addressing the questions in regard to the turn-on redshift of the
objecta (quasars or galaxies), the differences in the cosmological
models, especially if one 4is not limited to the conventional models
with zero cosmologlical constant, becomes significant. Consequently,
and because the new cosmological scenarios like the inflationary models
suggest wider possibilities for the cosmological model, I shall
consider three widely different cosmological models.

The tirst two models will be based on an inflation scenario that
requires a negligible space curvdture now and in the past since the
epoch of inflation. This means that if we neglect the contribution of
zero rest mass (or relativistic) particles, the cosmological constant
A can be expressed 1in terms of the density parameter {of
non-relativistic matter) as A = A/3 Hg = 1= (cf., .8, Peebles
19684). Since § > 1 or A < 0 models can be ruled out because of their
short ages (note that for Hy = 100 km s=! Mpe~! , the = 1 model is
already in diffioculty), I shall consider two'extreme models: Q =1.0,
A=0, and § =0, A = 1.0. I shall also consider a third mode) that
is not based on the inflationary scenario but is a closed=-world model
with negligible curvature now but in which the curvature was important’
in the near past giving rise to a quasistatlc period of the expansion.
For the parameters of +this model I use A=1.2 and Q= 0.1. These
three models are called the Einstein-deSitter, the deSitter, and the
Lemaitre models, respectively.

Given the cosmological model, we ecan then’ calculate for each
object i1its intrinsic flux {or luminosity) at a specified rest frame
frequency

F, () = AﬂDi(z,a.ﬂ,l\) £,000 (2)

and a new distribution {dropping the frequency dependence)

N
n(F,z) = Z §(F - F)8(z - ) 3)
i=1
where is the luminosity distance and depends on the redshift, the

cosmological parameters, and the spectral index o = -dlnf(v)/dln v.
The variation of D. with z (for o = 0.5) is shown in Figure 1 for the
above three models. Note that for the Lemaltre model at a redshift
z =2 one has reached the so~called antipode of the closed universe
where + 0 and for a given luminosity F the flux density f + «.
However, such a drastic brightening of the sources near the antipode
will be diminished by the presence of inhomogeneities in the
distribution of matter (such as galaxies and clusters). The exact form
of the | va z curve then depends on the characteristics of these
inhomogeneitlies. For a detailed discussion of this the reader is



referred to Petrosian and Salpeter (1968). The dashed line in Figure 1
is an example with some assumed size and distribution of the
inhomogeneities. However, for simplification of the calculations, I
will assume the solid line, which on the average will give a result
similar to that of the more realistioc dashed line., This will satisfy
my purpose here, which is to show the extent of the differences betwesen
these widely different cosmological models.

C. The Luminosity Funection

The bivariate luminosity funotion (F,z) can formally be related
to the observed distribution by

P(F,z) = W(Fiszi)n(F:z) ’ (4)

where W 1as the weight of each object. These weights would be
unity if there were no selectlon bias. However, because of the
selection biases, objects of given F and z, which are less likely to be
present in the sample, carry higher weights. The problem then is
reduced to determination of the weights. The usual procedure, however,
has been to parameterize the luminosity function and then find the
value of the parameters bypassing the difficult but more accurate
procedure of determining the weights, The use of the parameters
determined in this manner for prediction of the expected number of
objeocts outside the range of the parent sample (e.g., extension to
deeper samples or higher redshifts) may give misleading results. The
optimum procedure i3 to use a non-parametric procedure in the
determination of the weights and as far as possible use these weights
for further predictions,

The simplest non-parametric approach is to divide the area of the
F-z plane accessible to the particular sample into various bins (as in
Figure 2a) and from this find the ratio of the luminosity funection at
different bins. If the sample is large, the bins could be numerous and
from the ratios of the numbers ny in different bins one can construct
the differential Jluminosity fuﬁhtion. In general, this is not the
case, and the number of sources in the sample is small, It is more
convenient to define the cumulative luminosity functions

= 2
O(F,z) = fw(F’,z)dF’, o(z,F) = flp(F,z')dz’ . (5)
¥

o}

which increase stepwise at values F and z of each source,
respectively., The slze of the steps are equal to the weights w.
Graphic illustration of the cumulative functions is more convenient and
more 1lluminating than the illustration of the delta fucticn
representation (Eq. (4)) of the differential luminosity function.
Referring to Figure 2a, we can then evaluate the ratios of the
cumulative functions at different values of F and z. For example,
consider the objects in the vertical strip between zj_; and z; and with
F > Fpin(2y), where Fp4,(2) 1is the minimum value of F an object with



redshirt Z, must have in order to be included in the sample (i.e., to
be below the heavy diagonal line). For these objects then

o(F, ,2,) n 3
i = ._iLj.—- = .
s MR Myt D Pu ©
j-1""1 1,3-1 =0

It is clear that the repeated application of this equation at different
?1 (starting from F,) yilelds

3 n
0z = 0@z T (1e ), msE E @) L)
304 o'"1 =1 di,r-l ' 1 b} min i)

This procedure can then be repeated for all z; as well as for
horizontal strips at all Fj to obtain the o(z; ,F;).

This method, however,” ignores the few objects 1hat may lie in the
triangular regions bounded by the heavy linea of Figure 2a. As it will
be shown more clearly below, in order to utilize all the information in
the data fully, we can‘'go to the limit of small bins so that each bin
contains one nbject ( + 13, in which case Equation (7) gives a
result identical to that of Lynden-Bell's (1971) ¢~ method. Then
we can extend this equation to objects in the triangular region 1f we
define for them a new Ni, . For example, for the object shown by the
open girole, Ni 1s equel {o the number of objects in the shaded area.
Clearly, an obJject in the triargular region carries more weight since
the limit of the sample has excluded the object in the complementary
triangle shown by the dashed lines, - The fact that Ni,j for this object
may be smaller reflects this higher weight.

With this procedure we can then obtain two series of histograms
¢ (F,z) and o(z,F), which can then be converted into the delta
function form of the differential luminosity function or can be
smoothed out and differentiated to yield ¢(F,z). In general, because
of the absence of low-luminosity objects at high redshifts and
high-luminosity objects at low redshifts, the histograms ®(F,z) at
different z's [or o(z,F) at different F's] will have small overlapping
regions, This makes it difficult to produce a complete description of
the luminosity function throughout the accessible region of the F-z
plane. Combining large sky area surveys with deeper but limited area
surveys can alleviate this problem. In any case, without further
assumptions about the luminosity function, we cannot extend it to the
region outside the observed parts of the F-z plane for prediction of
the expected distribution of sources in samples with different
selection ecriteria. The above-mentioned histogram, however, may be
helpful in choosing among various forms of the funetion (F,z),

The non-parametric procedure explained above becomes extremely
useful if one can assume that the luminosity function is separable

P(F,z) = $(Fplz) , (8)



whioh means that the two variables F and 2z are stochastically
independent, In principle, a sizable sample can be used to determine
the stochastic independence of the variables. In practice, however,
this is difficult, and most procedurea require some kind of binning of
the objeots, The alternate possibility is comparison of these data
with numerically simulated data sets. The discussion of this is beyond
the scope of this presentation, and I shall not dwell on it here, I
will assume that, even if F an 2z are known to be stochastically
dependent, there exist two other parameters, F; and zg , which are
functions of F and £ and are stochastically independent. In this case
the data set can be transformed into theze new variables and the
analysis carried out in terms of them. For convenience I shall drop
the subseript a8 from the discussion belew and assume Equation (8),
keeping in mind that F and =z may no longer refer to the observed
luminosity and redshift but may be arbitrary functions of them.

Given Equation (8 ), we can define new cumulative luminosity
funotions ¢ and o (see Eq. (5)) which are now functions of only one
parameter., Note taht as defined here p(z) is not the density per
unit co-moving wolume V but is the marginal distribution in 2. The
density is equal to $(0)p(z)}/(dv/dz).

0

A
¢(F) = W(F )dr o(z) = p(z’)dz’
fF _ { (9)

This also means that in Equation (6) both the numerator and the
denominator oan be integrated over the redshift from the minimum

redshift of the sample to a maximum redshift zmax(Fj ), which yields

@(F,) n 1 1

__j—._, = —j—- = % —
*F-n H Moo >~ "oy 0 N T z Mg 10
k=0 k=0

where the bin 1 is determined hy the luminosity F such that Zq is
the maximum predshift that an object with luminosity F  ean have and
still be 4in the sample. Now, in the limits of small bins,
Ei = Fs_1- dF and ¢(Fj) = @(Ej_l) + w(Fj)dF, Equation (10) can be
written as

Wr) _ _din®(F) _ n(F)
® (TF) dF TONE (11)

where now

o

z (r
n(F’)=f MaX n(F 2 )dz’, N(F) = f n (F)dF’. (12)
o] F



Similarly, we can write

p(z) . ding(z) _ "m(z)
g(z) dz i1(z) ° (13)

-

with
o 2

m(z’)=f n(Fh2’)dr’ | M(z) = j m(z’)Ydz’ . (14)
Fmin(z) o

The various quantities entering Equations (11) to (14), are illustrated
in Figure 2b.

The data n(F,z) given by Equation (3) implies that n(F) or mn(z)
are just a series of delta functions at the luminosity or redshift of
the ubjeots in the sample and that N(F) and M(z) are histograms that
inerease by one every time an object is crossed (decreasing I or
inoreasing z). Thus, Equations (11) and (13) can be written
symbolically as

dinx S(x - Xi)

& W] ¥ 0xx) (15)

where 8(x) = _lb(x)dx is the step function. Integration of (15) then
yields '

1
GlnXi‘= ln(l-i-"ﬁ;—) . (16)

By this procedure we obtaln twe monotonically inecreasing
histograms for the ocumulative functions o(z) and ¢(F). Note that
the quantity on the right hand side of equation (16) 4is well defined
only if N =+N;. Aswe start with the first objJect at lowest redshift
{(or highest luminosity), M (or N ) will be zero. For sufficiently
densely packed samples already, for the second objeet M could be equal
to 1, and 1lno and d&lno would be well defined. If not, we proceed
to the first object with M or N ¥ 0., If &, and 0O, are the values
of ¢ and ¢ just belew this object, then

i i
- 1 c Yy = 1
o(zi) = 0, jH=1(1 + M_-;) . <I:(ri) tbo _11}:1(1 + N ) . 1)

Once the cumulative functions are known, one may wish to smooth
them out and differentiate to obtain the differential funections ¢ and
o . Or one may wish to keep the integrity of the data and express
and p in the delta function form of Equation (4). In Equations (11)
and (13) if we replace the quantities n and m by this delta



function representation, we obtain

( ¢ (r -
o(z) = Z XD 5z~ 2) WD) = Z UD. s -F) L e

which, when compared with Equation (4), means that the weights are

' @f?l)o(zi)
w(l"i,zi) = W . (19)

Note that F and z may hot represent the real luminosity or redshift
but some other parameters that are stochastioally independent, in which
cagse one can transform Equations (18) or (19) into the real luminosity
and redshif't domain.

Given these functions from the parent sample, we can make limited
prediction about other samples, For example, for a sample with a
different magnitude limit than that of the parent sample, the redshift
or luminosity distributions, m’(z) and n’(F), can be obtained as
follows:

m’ (z)dz = p(z)dzd (Ft;in(z)) = g(z)dln U(z)‘b(Fr:lin(z)) ’

(20)

o (F)dF = §(F)dFo (zr;ax(F)) = -(F)dln&(F)o (27, (F))

where F;iu(z) [or z%ax (F)] is the minimum (maximum) wvalue of
luminosity (redshift) that an object, with redshift =z (luminosity F)
mu3t have in order to ke in the new sample.

For z, F, Fmin(z) and z x(F) within the range of the parent
sample histograms repreaen@fng some integrals of m’ and n’ ocan be
caloulated without further assumptions or extrapolations. However, for
extending such predictions to regions outside the observed domain of
the parent sample, one needs further assumptions. For example, to
determine the number of expected eobjects at redshifts larger than the
highest so far observed in any complete sample, we n2ed t£o extrapolate
o(z) to higher =z values. In the next section we shall need to carry
out such extrapolations.

D. The Source Function and Phyaical Evolution

The aim of the investigation of the luminosity funetion and its
statistical evaluation is to determine the physical evolution, F(t), of
the objects with cosmic time and th2 source function S(F,t), which
describes the rate of their formation as a function of cosmic time,
The luminosity function can be expressed in terms of cosmic time
WP, t) = YF,z)dz/dt through the redshift-time relation of the specific



cosmological model. As "entioned above Y(F,t) stands for the total
number of objeot (of luminosity F) within a specified go-moving veolume
and is related to F(t) and S(F,t) through the equation of continuity:

Q(F,t) /3t + d[FY(F,t)1/aF = S(F,t) , F = dF/dét . (21)

Clearly this single equation is not sufficient to determine both
S(F, t) and F(t) (or F)., * We need further information or
agsumptions. Very little attention has bwun paid to this equation
except recently by Cavaliere (see this proceedings) and his colleagues,
They have assumed various forms for F(t) and S{F,t) and compared
the derived $(F,t) froem the solution of Equation (21) with the
observed luminoaity function such as that derived by Schmidt and Green
(1963)., I think it will be more profitable to reverse this procedure
in the senze of solving Equations (21) for S(F,t) {or F) for a given
¥ (F,t) and an assumed F(or S(F,t)). As our discussion in the
pravious part shows,-the analysis of the data yields directly the
cumulative luminosity function rather than the differential function
Y (F,t). Therefore, If we integrate Equation (21) over F and t, we
can express the cumulstive source function in terms of the cumulative
luminosity function. F¢r the purpose of the 1llustration, let wus
consider the simple Ent plausible case where the luminosity function is
separable, as in Equation (8), and F is independent of the cosmological
epoch, Then, integrating Equation (21) over time and luminosity and
noting that p{t =0) =0 and ¥F ==) = 0, we obtain

2 I t / 2 .
SEe) = [ ar' [ 4es,e") = p(e)e(®) + Fo(eop(r) . (22)
F o

Now, with the help of Equation (18), we can relate the ocunulative
source function § to the data directly as

§(z~2,) S(IF-F, )
- - i7 dz i° dF
S(Fe) g"‘z"”“‘)[“—"“_mcz) R e

The use of such equations is beyond the scope of the present work. I
am presenting these equations to indicate the complexity of the problem
and to show how far we are from a direct determination of the source
funetion S(F,t).

Luminosity or MNumber Evolution: There has been considerable
discussion in the past and in this symposium in regard to whether the
evolution of quasars and active galaotic nuclel can be represented by a
luminosity funotion that undergoes a pure density or a pure luminosity
evolution., To begin with, I would like o point out that when
referring to density one is talking abrv the number of objects in a
unit co-moving volume, which is proportional not to the density of



objJects at different epoohs but to number of objects within a specified
go~moving volume. (For a closed universe this ocould be the total
number of objects). Consequently, npumber gvolution is a more
appropriate %Larm than density evolution.

A thorough disouassion of the poasible evolutionary forms of the
luminosity function was given in a paper by Lynds and Petrosian (1972).
Most of the evolutionary forms discussed in this symposium, notably
thore by Sohmidt, Weedman, and Koo, were fully covered in that earlier
paper, Mosat importantly, however, what Roger Lynds and I stressed was
the difference between what we called the gtatistical and the physical
evolutions. The confusion hetween these remains the mailn souprce of
controveray, What one normally cells the evolution of the lumipoaity
function, which deals with the mathematical representation of the data
by the function y(F,z), i3 a statistical evolution of the population.
The physical evolutlion of sour-2s are described by the funoction F and
the source funotion S in Equa®tion (21).

I suggest that it is more appropriate teo tailor the nomenclature
to the physieal processes rather than to the mathematical
representation. To illustrate how this can be done, let me compare the
time scales associated with the three terms in Equaticn (21). The
first term has a time scale of the order of Hubble t{ime
Ty 3 OW/dt = ¢/T,. The second term is of the order of W/ Tp
where T, = F/F, and the time svale of the third term is determined " by
the time scale Tg of the formation rate of the objects:
s{F, t) = IWTS'

If tp=ty >> Tgr Whidh could be the case for t > t, 1f all the
sources are created prior to an epoch t,, then any evolution of Y is
a reflection of the physiocal luminosity evolution. The total number of
ocbjects (integrated over all luminosities) is a constant. Therefore,
the term luminosity evolution iLs an appropriate term here. However, it
should be stressed that this does not guarantee a pure luminosity
evolution. The pure luminosity eveolution requires that all sources,
irrespective of their initial state or snvironment, evolve the same
way, F(t) = F,g(t).

In the ogher limiting ocase, where Tg = Ty 2> Tpy each source
evolves very rapidly so that the luminocalty function is determined
primarily by the rate of formation of the sources. This may be called
a number (or density) evolution. However, this again does not mean a
pure density evelution model, which requires S(F,t) to be a separable
function of F and t.

ITI. EVOLUTION OF QUASARS

I wvill now use the procedure developed in the preceding section to
determine the statistical evoluticn of the optical luminosity function
of the quasars and, comment on the physical evolution of the sourcss.
As diacussed above, this procedure requires a knowledge of the
appropriate stochastically independent parameters before one can
determine the global evolution of the luminosity function over the wide
ranges of the observed luminosity and redshift., Lacking this knowledge
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I consider evolution over limited redshif't and luminosity rangoes, in
which ocase T can assume that redshift and luminosaity are
stoohastically independent. This assumption is a good approximation
(and more readily testable) over small ranges of F and z,

The main new result I would like to concentrate on here is the
question of outoff of the luminosity function at high redshitia
(z > 3)., However, before doing this I will briefly desceribs the
evolution of the luminosity function at low redshifts (z < 2), in wahich
case the difference botween the various ocosmological models 1is
insignificant as compared to the dispersion of the luminosity funetion,

A« Evolution at "low® redshifts (z < 2)

In one of the fipst analyses of a complete optically Bolected
sample (Petrosian 1973), I had concluded that the distribution of the
low luminoaity, low redshift quasars oan be described by a non-cvolving
luminosity funeotion while a strong evolution was required for higher
luminosity (higher redshift) objects. Now the new more extensive PO
sample esgentially confirme this earlier result (Schmidt and Green
1984 ), except that Schmidt and Green describe the distribution by a
luminosity funetion whereby the evolution of the number of sources
becomes monotonically stronger at higher and higher luminosities. In a
short paper presented at the 1982 Liege conference (Petrosian and
Jankevics 1982), it was shown that when the PG sample {3 divided into
two (high and low luminosity)parts one finds that the low luminosity
part shows no evolution while the high luminosity part shows strong
evolution of number of quasars {(ef, Figure 3)., In the same paper it
vas also shown that the pure luminosity evolution with the paramoters
derived by Marshall et al (1983) does not agree with the PG sample. (A
different set of pure luminosity evolution parameters can be found for
a reasonable agreement; H, Marshall, private communication,) But there
is no escaping of the faot that whatever the evolution of the
luminosity funection 4t 4is small or non-existant at low F but become
gignificant at high values of F, Figure 3 clearly demonstrates this
where, assuming a pure density evolution, it is shown that for low
luminoasities o(V) « V [i.e, p{V) and p(z) are constants] while for
high luminosities o(V) « v y lmplying a strong evolution.

This kind of behavior can be described by the following simple
physical conditions. Suppose the rate of physical evolution of quasars
is independent of the cosmological epoch t but depends on the
luminosity F: e.g,y, F =« F*®. This is a reasonable assumpbtion as it
demands that quasars spend a shorter time in a higher luminosity state
than in a lower ohe, For example, an equal energy consumption at
different luminosity states implies o = 2.

Let us first consider the 1luminosity function for high
luminosities. At sufficiently high values of F (say F > F..)s the
lifetime T, = F/F could be much shorter than the Hubble time 1y s0
that on Ehe right hand side of Equation (21) the first term is much
smaller than the second and can be ignored. The rest of the equation
can then be integrated to give
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P(F,t) =« F"af 5(F’,t)dr’ , F>>F (24)
F

which chows that a strong evolution {(variation with t) is possible and
that suel. an evolution 1s a reflection of the evolution of the creation
rate of quasars. The observation that o(V) = V* for high luminoaity
sourcea implies that S(F,t) decreases rapidly as the universe expands,
For values of F < F__, however, T,. could become larger than the age
of the universe 85° that how Ehe second term in Equation {21) is
negligible leading to the solution

t
/ /
v = [osw e rer, (25)

Because S(F,t) was larger in the past (low t) and has decreased rapidly
since then, it is obvious that for large values of t (low redshifts)
tha integral of S will be nearly independent of t explaining the
observed absence of strong evolutions for weak sources,

Note that for F < F_,. the luninosity function Y(F,t} 1s a
reflection of the luminosity dependence of the sciurce function (Eq.
25). But at high luminosities Y(F,t) is steeper than S(F,t} by a
power of 1 - «o, indicating steepening of the lumineosity function at
hith values of F because ©® 13 expected to be greater than unity.
Such a steepening of the luminosity funotion is observed and can be
used to determine the physical evelution of the quasars such as the
luninosity dependence of the source function and the power law index
o L]

B, High redshifts and the redshif't cutof'f

One of the important cosmological questions has to do with the
epoch of formation of galaxies and other struotures., Theoretical
arguments indlcate that this epoch could correspond to a time anywhere
from redshift 2 to 1,000, Because guasars are the only objJects bright
encugh to be cuserved at such high redshifts, it is then expected that
the evolution of their luminosity function at high redshift ceould shed
light on this question.

There have been various attempts to extrapolate the evolution of
the Jluminosity function to high redshifts and compare its conseguences
with observation, with the obvious conclusion that the strong evolution
obtalned from the data in the redshift ranges 1 to 2 cannot continue to
very high redshifts. One of the most convineing results c¢omes from
Osmer's (1982) slitless spectroscopic search for quasars in the
redshift range 3.7 to 4.7. This searcoh yielded no quasars within this
redshift range, prompting the conclusion that this may be the epoch of
galaxy formatien,

I would like to reconsider this problem, using the more rigorous
method described in seetion II, for the three cosmological models
mentinned there. As is shown in figure 1, the cosmological models
begin to diverge from each other significantly (relative to the



dispersion in the data) only at large redshifts and are expected to
glve different results.

1} The Sample: The sample of sources I use are selected from the
complete samples compiled by Schmidt and Green (1983) which, in
addition to the PG sample, includes the Braccesi AB sample (Braccesi,
Formiggini and Gandolfi 1970) four slitless spectroscopic samples (Hoag
and Smith 1978; Lewis, McAlpine and Weedman 1979; Osmer and Smith 1980;
Sramek and Weedman 1978) and the Kron and Chiu (1981) sample. To this
I have added the few objects from the deeper Braccesi DBF sauple
(Marshall et al 1983), In order to avoid extensive extrapolation over
large cosmologlcal distances and luminosities, I have limited the
sample to the bright end of the luminosity which necessarily means
limiting to high redshifts., The PG sample is sparse around redshift of
0.5 to 1.0 This turns out to be a convenient point of separating the
sample into two sets, a high and a low luminosity set. For each
cosmological model the lower cutoff of luminesity 4is chosen to
correspond roughly .. that of the same object in the PG sample which
has a predshift of 0,944. This same lumincsity cutoff is then used for
all the other samples. Consequently, the selected sub-samples are
sorewhat different in the three cosmological medels. There are about
sixty objects in each case within the redshift range of 1 to 3. This
implies a cou-moving volume change of less than one order of magnitude
and a luminosity range of slightly larger than one order of maghitude
for the whole sample.

2) Ihe procedure: I will assume stochastic independence bsetweeen
luminosity F and redshift z, or co-moving volume V(z), which, in view
of nmall ranges of the parameters just mentioned {(and as we will show
by simple binning) is a reasonable assumption. Then the application of
the procedure described in sectin II-C is straightforward except that
combining of samples with complicated selection criteria reguires some
modification of that procedure. All the samples have the same
luminosity 1limit but different magnitude limits. This does not affect
the procedure, But the fact that the slitless spectroscopy has a lower
redshift outoff at z = 1.8 complicates the procedure., It is aot clear
how rapldly the efficiency of discovering sources i1nereases from a
small vealue for z € 1.8 to a constant and significant value above this
redshift and whether this efficiency 18 constant over the whole
redshift range when Ly-o falls in the proper bandwidth of the plates.
I will assume a zero efficlency outside this range and a constant
efficiency throughout the range. The results presented below will, of
course, be altered if this is not the case.

The lower redshift cutoff does not change the equations for the
evaluation of the cumulative Jluminosity function @(F). However,
Equation (15) for the number (or the co~moving density) evolution at
z > 1.8 is altered as follows:

do §(z-z,)

0-0(z=1.8) M(z>1. 8) dz , (26)




so that

i
o(z, > 1.8) = a(z = 1.8) + I (1 +%-) : (27)
41 i,

where ﬁ now includes only objects with z > 1.8 and F > Fp i (2 ).
This modification requires some interpolation of o(z ) around z = 1.8
which I will not go into here.

3) The results: I will first present some of the histograms ¢(F)
and o{z)} and then extrapolate them to evaluate tiae expected numbers at
high redshifts,

a) The cumulative luminosity function $(F) 1is shown in
Figure (4) for all three models. The shapes of these luminosity
functions are approximately the same (showing steepening at high
luminosity) for all three models except that the luminosity scale is
different. To somewhat Justify the assumption of the stochastic
independence of F and =z the total sample was divided into three
redshift bins with equal numbers in each bin and the luminosity
function ¢(F) was evaluated for each bin., Figure (5) shows this
result for the deSitter model (k = 0, 2=0.0, A= 1.0). The =mall
number of objecta 1in each sub~-sample (about 20) makes a detailled
compariscn difficult, but rough similarities hetwiien the  three
histograms show that the assumption of the stochastie independence
{over the small redshift and luminesity range) will not lead to large
errorsa.

b) The cumulative number evolution functions a(z)'s are
shown in figure (6). Clearly the predictions of the three cosmological
models are quite different. However, as evident, the three models show
similar strong evolution in the range 1 < z < 2 mentioned above but
begin to diverge at higher redshifts. In particular, the Lemalitre
model (A = 1.21, k= +1, 2= 0.1) shows a very slow increase of o(z)
with redshift for 2z > 2 while the other two models show that the
strong evolution continues to redshift of up to 3 and may even continue
further on up to the highest redshift in the samples. The value of
g(z) for z » 3 1s uncertain (dashed histogram) because there are
very few (about 4) objects in this range. Consequently, 1t is
difficult to extrapolate this curve beyond z = 3.5. For the deSitter
and the Einstein-deSitter models I show two possible extrapolations,
One of these extrapolates by fitting a straight line (dashed) to the
upper portion of the lno - 1nV curve obtaining o(v) = vP witn
B = 2.8 and 3.7 for the two models, respectively. (Note that this is
a slower evolution than ofV) =« Vv* found at lower redshift, perhaps
indicating the slowing down of the evolution.) The second extrapolation
assumes no evolution which means o(V) =« V (dotted 1lines). For the
Lemaitre model the extrapolation seems to be fairly obvioua
{lno(z) = 0.37z) as the curve in the 2 < z < 3 range 1s well defined.

: e¢) Predictions: As an example I have calculated the
predicted cumulative redshift distribution for a sample limited to 19.5
blue maghitude (for definition of the magnitude see Schmidt and Green



1983). This 4is done using Equation (29) with F ;. (z) evaluated for
19.5 magnitude. The result is shown by the inset in ?igure (6a) whera
the predicted values (dashed and dotted lines) for the two
extrapolations of 0O(z) beyond redshift =z = 3 are compared with the
observations (scolid lines). The agreement at low redshifts is not
surprising since the observed sample in this comparison was part of the
parent sample used in deriving o(z) and $(F). The important
feature here, however, 13 the deviation of the strong evolution case
(dashed line) from observations at redshift z > 3. This shows that, in
this model, the evolution is already slowing down at =z > 3. Note that
no other extrapolation, except that for o(z), was needed for this
calculation.

Further comparison between Che prediction in the three
cosmological models and observations are shown in Table I. For the
first two models in this table there are two predictions based on the
two extrapolations shown in figures 6a and 6b. The prediction at 19.5
limiting blue magnitude is compared with the data tabulated by Schmidt
and Green (1983) (their table III, HS and SW List) taken from Hoag and
Smith (1977) and Sramek and Weedman (1978). The first line on Table I
shows that when the redshift iange 1s divided into two parts each
containing about the same number of objects (9 in one and 10 1in the
other in this case) the predictions agree quite well with the
observation. However, if we compare numbers expected above and below
redshift 3, we find that the first two mocdels agree with observation if
the sources do not evolve beyond redshift 3(o(V) = V). However, the
third model gives acceptable results for the natural extrapelation
shown in figure bea,

The obvious eonclusion from this is that in Lemaitre type models
the source evolution 1s found to have slowed down beyond z > 2 and
could continue at this rate to a redshift of 3.5 while in the other two
(inflationary) models the evolution must slow down and stop beyond
redshift 3. This Jlatter, however, i3 not a firm result because
selection effects can account for absence of observed objects beyond
redshift 3. An indication of this 1s shown on the third line of Table
I where I compare the predicted and observed ratios of the number of
hig: and low luminosity objects 1in the same sample. Because the
luminosities of objects are different in the three cosmological models,
the luminosity dividing the two bins will also be different. The
latter 1s selected such that the observed ratioc of the number of the
objects in the two bins is about unity. As is evident too few 1w
luminosity objecta are observecd as compared to the predictions of the
two models. This could be caused by a bias against discovery of high
luminosity objects by slitless apectroscopy. The so-called Baldwin
effect (cof, e.g. Wampler et al 1984) can cause such a bias as the
line equivalent width is smaller at higher luminosities making the
discovery of such objects more difficult,

The strongest evidence for the decrease of the numbers at high
redshifts is provided by Osmer's (1982) observations where the claim is
that it goes deeper by 1.2 magnitude than the earlier Hoag and Smith
(1971) observation (with a limiting magnitude of 19.5) and was designed
to discover quasars in the redshift range 3.7 > z >4.7. None was



discovered in a search limited to a 5,1 sq. deg. area, Using the
derived luminosity function and the extrapolationsz of o¢(z) mentioned
above, I have estimated the expected numbers in this redshift range for
a limiting blus magnitude of 20.7 for the. three cosmological models.
The predicted numbers are based on the observed numbers (at 19.5
magnitude) given in the parenthesis,

This, in agreement with Osmerts (1982) conclusion, clearly rules
out the conventional Einstein-deSitter model with a strong evolution
and, to a lesser degree, no evolution in this model and the strong
evolution in the deSitter model. ' The deSitter model with no eveolution
beyond z = 3 and the Lemaitre model are acceptable considering the many
uncertainties in the limiting magnitude, the completeness and possible
selection bias of the samples.’

IV. SUMMARY AND DISCUSSIONS

The study of statistical evelution of the luminosity function of
extragalactic objJects 1s 1mportant for understanding of the physical
evolution of the objeots and provides important ocluea about the
variation with time of the birth rate and the luminosity of the objeots
and, in general, about the formation of structures in the universe. I
have explained the necessary steps for a complete description of this
evolution,

The first and the most difficult step in this study is an accurate
statistlcal analysis of the distribution of objects in the redshift and
luminosity domain once a sample and a cosmological model are selected,
Parametric apprcaches suffer from the fact that they are not unigue and
that could lead fto misleading results 1f extrapolated beyond the
observed range of the variables. The non-parametric procedure
desoribed here works for a luminesity function which is separable into
functions of some variables which need not be the basle variable,
namely, the luminosity and redshift. Discovery of such stochastically
independent variables 1s the difficult step which I have avoided here
by considering the data for small ranges of the basic variables, in
which c¢ase the assumption that these variables are stochastically
independent is a good approximation.

Using results from earlier works, I have argued that at lower
redshifts (mean redshift of about one) and independent of the
cosmological model the luminosity function shows stronger evolution at
higher luminosities than at lower luminosities. One interpretation of
these results is that the activity in galaxies which leads to the
quasar phenomenon was much more prevalent in the past and that the rate
of the physical evolution of the luminosity of the quasars is a strong
function of the luminosity in the sense that much shorter time is spent
at a high luminosity phase than a low one,

The next question I have addressed here 1s how far into the past
this ever increasing activity can be extrapcelated and whether the
existing data tells us about the cosmological epoch when thia activity
started. Here I have shown that the coneclusion depends strongly on the
cosmological model and that in conventinal cosmological models at



redshifts greater than three the activity must have been occurring at a
much slewer rate than the simple extrapolation would indicate, but that
there are coosmologlcal models where the aotivity oould have been
present at larger redshifts. Therefore, the epoch of the formation of
quasars (and galaxlies) remains an unknown,
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TABLE I

Comparison of the Observed and Predicted Number of Objeots
in the Three Cosmological Models

kK = O¥ k = 0¥ K = +1
Model Q=1,0,A=0.0] 9= 0.0, A= 1,0]2=0.1,A=1.21 ] Observed
a) 19,5 mag,
N(2.2¢2¢3.5) § 0.71 1.3 1.2 9/10
N(1.8<2<2.2) | 1.5 2.0
|
N(3<2¢3.5) | 1.8/18 1.1/18 2.2/18 1718
N(1.8<2<3) 7.4/18 6.7/18
N(High F) 2.1 3.0 1,2 10/9
N(Low F)
b) 20.7 mag.**
N(3.7<2<4.7) 5.4 (10) 0.53 (2) 1.8 (9) Q
46 .7

#First ratios from extpapolation assuming no evolution (o = V); the
second ratios from the evolutionary extrapolation (dashed lines Figure
6a, 6b).

##The caloulated numbers are based on the number (shown in the parenthesis)
of objects in the 19.5 magnitude limited sample.



FIGURE CAPTIONS

Figure 1. Luminosity distance DL(z) versus redshift for three
cosmological models. For the k= +1, £ = 0.1, A = 1.21 model the
dashed line is a more realistio relation, but for simplification of
calculations I have assumed the so0lid line. Spectral index & 1is
asgsumed to be 0.5,

Figure 2, Schematic representation of the distribution of object in
the luminosity (F) - redshift (z) plane. The heavy solid line is the
F-z relation at the limiting apparent flux value f.. For each F {(or z)
this line defines the maximum z (or minimum F) that an object with thir
F (or z) can have and be in the sample.

(a) Defines the parameters when the analysis is carried out by
binning the sample, n, is the number of objects in the bin with

<F<F and z;_; <'&°¢< z.

{b) D%fines t;he parameter z (F),

in the text.

(z) and M(z) and N(F) used

max min

Figure 3. The ocumulative density evolution function O versus volume
¥ (up to redshift z) for "low" redshift quasars (z < 2, PG sample,
Schmidt and Green 1983) at high and low luminosities separately. Note
for constant number (or co-moving density) o(V) = V. The cosmological
model assumed here is Q= 0, A =0, k= -1 but this result is not
sansitive to the model, V, and Va are arbitrary volumes,

Figure 4. The cumulative luminosity function versus the blue absolute
magnitude as defined by Schmidt and Green (1983) for the three
cosmological models depicted on Figure 1. For clarity, the histograms
are shifted to the right by the specified amounts. The relative values
of ¢(M ) are arbitrary.

Figure 5. The luminosity function for the k=0, £=0,0, A= 1.0
cosmological model for objects in three non~overlapping redshift
ranges, For olarity two of the histograms are shifted up or down by
the quantity X indicated. The rough aimilarity of these histograms
shows that the assumption of stochastic independence of the luminosity
(or absolute magnitude MB) and redshift over the small ranges of these
parameters will not lead to erroneous results.

Figure 6. The cumulative number (or co-moving density) eveolution
function o(z)} versus redshift z, or volume V{z) up to redshift z, for
the three cosmological models. The dashed portions of the histogram
have larger uncertainties,
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(a) k=0, Q=1.0, A =0.0,
(b) k = O' Q =3 0'0' A - 1000
(o} k=1, Q=0.1, )= 1.21.

In Figures (a) and (b) two possible extrapolations for z » 3 have
been shown with one of them assuming no number or density evolution,
g (V) « V., The inset in (b) shows the predicted cumulative number of
sources between Z 4n® 1.8 and 2z expected at blue limiting magnitude
of 19.5 and for the %wo extrapolations shown in the main part. In (o)
the steps of the histogram at 2 » 2 are smaller than the width of
the line.



SLog D, (z), magnitude

z, REDSHIFT
4 56 .8 ] 1.5 2 3 4 56 8 10
T 1 l — T T T 1

£:=0,k=0,A=1.0

=10, k=0, A=0

I | I

1 { I
-0.4 -0.2 O 02 04 06 08 10
log 2

Figure 1



<—— LUMINOSITY

-— LUMINOSITY

Fj*l

—
L]
—

r'.min(z)

e —— — —

M(Z)

N(F)

(b)

(F)

zznnax

REDSHIFT —=

Figure 2




In o (V) + const.

In o(V})+const.

T T
(a) LOW F

o(vjav

\ _
”~

-~
-~

-~

-~

~

ln(V/Vé)

Figure 3




"1SU0D ¢

(8W) e ui

MB+X

Figure 4



ln¢HMB)+X

10

l l I l
k=0, =0, A=1.0

1.8<z< 2.1
X= 4.5

2.14<2<3.45

0.8<z< 175
£=-0.5

] ] l | ]

gy

28 29 -30
Mg

Figure 5

- 31



ino(V) + const.

2, REDSHIFT
1.0 1.1 1,2 1.4 1.6 1.8 2.0 2.5 3.0 3.5
) / | | | { l

I i !
(a) g
k=0, =1, \=0 7 e

- asrannses O'(V) av
== o(V) av37

-------

1’8 10 N
[ OBSERVED |
| | | | d | | 1 ]
-1.5 -1.3 -1.1 -0.9-0.7 -0.5 -0.3 -0.1 +0O.1
n (V/V,)

Figure 6a



11

~

ino(V) + const.

n

2, REDSHIFT

1.0 1.5 1.8 221525 3 3.5 4 4.5

} | 1 U1 | | | | |

b) ¥4

( ) }
1
A
A i

/.-

/" -
k=0, =0, A=1 ]
--—o-(v)av2'8 )
-------- (V) aV
| ] i |

0 1.5 3.0 4.5
ln(V/Vo)

Figure 6b



ln o(z) + const.

k=41, =01, A=1.2

2 3
z, REDSHIFT

Figure 6c




	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf

