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SUMMARY

A study of low speed leading-edge flap design for supersonic cruise vehicles
has been conducted. Wings with flaps were analyzed with the aid of a newly
developed subsonic wing program which provides estimates of attainable leading-edge
thrust. Results indicate that the thrust actually attainable can have a
significant influence on the design and that the resultant flaps can be smaller and
simpler than those resulting from more conventional approaches.

INTRODUCTION

The highly-swept low-aspect-ratio wings which permit high levels of
aerodynamic efficiency at supersonic cruise conditions present serious problems in
the low speed flight regime. One of these problems is the achievement of a
sufficiently high 1ift coefficient to permit safe terminal area speed at an angle
of attack which does not 1imit pilot visibility. The required 1ift coefficients
can be generated at acceptable angles of attack through use of trailing-edge
flaps. Unfortunately, for conventional supersonic cruise designs with wing-mounted
engines and outboard ailerons, only a small portion of the trailing-edge span may
be used for this purpose. Thus, large flap deflections are required to generate
the additional 11ft, and drag penalties may be excessive. Properly designed
leading-edge flaps can bring about significant improvements in the aerodynamic
efficiency without reduction of the lift coefficient or increase in the associated
angle of attack.

As reported in reference 1, significant progress has been made in improvement
of the aerodynamic efficiency of leading- and trailing-edge flaps for supersonic
cruise configurations. The conventional approach to leading-edge flap design has
been to place segmented flaps on all of the wing area ahead of the front wing spar
and to conduct wind-tunnel tests to determine optimum deflections.

A somewhat different approach to the leading-edge flap design problem is the
subject of this paper. The concept is based on the observation that the primary
purpose of the flap system is the achievement of an aerodynamic efficiency
comparable to that which could be attained with full theoretical leading edge
thrust. Accordingly, the new approach first attempts to assertain the local degree
of achievement of leading edge thrust for the basic wing. Then, as required in a
design by iteration process, local geometry changes in the form of leading edge
flaps to compensate for the loss of thrust are introduced. Thus, for portions of
the wing leading-edge where full theoretical thrust may be anticipated no flaps
need be employed, and for the remainder of the leading-edge the flap chord and
deflection angles may be limited to values just sufficient to restore the
efficiency losses due to the failure to develop full leading-edge thrust.

The use of the computer program of reference 2 in the estimation of attainable
leading-edge thrust and in the prediction of the aerodynamic characteristics of
flap configurations is shown in comparisons with experimental data for a generic
supersonic transport model. Further application of the computer program in an
iterative design mode is illustrated in a sample problem - the definition of flap
geometry for a typical supersonic transport in landing approach.
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SYMBOLS
wing aspect ratio, b2/S
wing span
section axial force coefficient
section normal force coefficient
section thrust coefficient
section drag coefficient
section 1ift coefficient
axial force coefficient
normal force coefficient
drag coefficient
lift coefficient
1ift curve slope, dC, /da
designation of leading-edge flaps
designation of trailing-edge flaps
Mach number
lateral distance from wing centerline

C, tan (C,/C, ) - C
suction parameter, L L La D

2

o

/ (nAR)

wing reference area
Reynolds number
angle of attack

leading-edge flap deflection angle, positive for leading-edge
down

trailing-edge flap deflection angle, positive for trailing edge
down

local angle of wing surface at the leading-edge relative to the
free stream direction, includes basic wing camber and leading-edge
flap deflection



Subscripts

n measured in a plane perpendicular to the hinge Tine
s measured in a plane parallel to the free stream
DISCUSSION

Assessment of Computer Program Applicability

The computer program of reference 2 which provides estimates of attainable
thrust for wings at subsonic speeds is based on a planar solution of linearized
theory equations. To study the applicability of the program to the present
problem, comparisons of program results with previously unpublished data from tests
conducted in the Langley Research Center V/STOL Tunnel have been made, and are
shown in figure 1. The wind-tunnel model employed in these tests is particularly
appropriate for this purpose. It represents a M = 2,7 cruise vehicle, but for
simplicity only the wing and fuselage are represented in the model and the wing has
no twist and camber. The low speed test conditions are M ~ .28 and R = 5,7 x 10°.
The program has inherent limitations in the accuracy of flap planform modeling due
to the wing element grid system employed. Although the spanwise position of the
flap edges could only be approximated, the flap areas were matched by compensating
changes in the flap chord.

In figure 1(a), the program results are compared with data for the basic flat
wing. There is good agreement between the theory and experiment for the full range
of angles of attack and lift coefficients. The axial force correlation is
particularly significant since it shows an appreciable degree of achievement of
leading-edge thrust. The normal force curve shows evidence of the presence of
vortex lift, which 1s also accurately estimated by the program.

Figures 1(b) to 1(d) show similar correlations for a series of leading-edge
flap deflections with the trailing-edge flap deflection fixed at 10°. Both
trailing-edge flaps [see sketch in figure 1(a)] were set at 10°. The correlations
are not as good as for the undeflected case, but there is still a reasonably good
prediction of the 1ift-drag polar.

Figures 1(e) to 1(g) show correlations for a series of trailing-edge deflec-
tions with leading-edge flap deflections maintained at 30°, For this 30° leading-
edge flap deflection, axial and normal force predictions are poor. There are,
however, compensating effects so that the 1ift-drag relationships are given reason-
ably well in the C_ = .4 to C_ = .8 range. The program is seen to underesti-
mate the amount of leading edge thrust and overestimate the normal force.

The ability of the program to assess trends may be examined with the aid of
figure 2. Here data from figure 1 1s shown as a function of leading edge and
trailing edge deflection angles. The suction parameter s is defined as in refer-
ence 1 to be a measure of drag relative to the limits for fully attached and fully
separated flow. These results indicate that, despite some inaccuracies in the
absolute values predicted, the program may be used in a design process.



The Design Problem

The configuration of Table I has been taken as an example for application of
various flap designs (see reference 3 for an explanation of the format used for the
geometric description given in Table I). This 1s a wing-fuselage-vertical tail
configuration with a twisted and cambered wing designed for C_ = 0.10 at
1{ = 2.7. Landing approach design conditions have been chosen as:

M = .25
R = 160 X 10°
CL = .55
a = 8°

Two trailing-edge flaps on either side of the airplane (between the fuselage and
the inboard engine, and between the inboard and the outboard engine) are fixed 1n
planform but may be deflected as necessary (the same angle for both). It is
assumed that trailing-edge devices for the remainder of the wing will be employed
as ailerons for roll control and will be unavailable for use in generating lift.

Conventional Design Approach

As a base-1ine reference, conventional leading-edge flaps similar to those
treated in reference 1 have been analyzed. In that reference the test results
indicated that a uniform deflection along the entire leading-edge performed as well
as, if not better than, any other deflection schedule included in the tests.
Accordingly, the conventional flap analysis will be simplified by the assumption of
a constant deflection over the whole of the leading-edge. Results of the analysis
are summarized in figure 3. The simplification of one deflection angle for the
trailing-edge flaps and one deflection angle for the leading-edge flaps permits the
program results to be presented in the form of a contour map. Suction parameters
at CL = ,556 and angles of attack corresponding to CL = ,55 are shown by

the contour lines as a function of the leading- and trailing-edge deflection
angles.

According to the map, the optimum performance of the flap configuration
subject to the limitation of a < 8° occurs for a trailing-edge flap deflection of
about 20° and a leading-edge deflection of about 13° (when measured normal to the
hinge line this angle 1s about 34° for the inboard wing panel and about 22° for the
outer panel). The 1ndicated suction parameter is about 0.70. Based on the
previous correlations of experiment and theory, it 1s likely that a somehwat higher
suction parameter could be realized (perhaps as high as 0.78). However, 1t also 1s
likely that a larger trailing-edge flap deflection would be required to generate a
11ft coefficient of .55 at a« = 8°. This contour map also indicates that misleading
results could be obtained if the variation of suction parameter with leading-edge
deflection angle were examined at a trailing-edge flap deflection angle (say
6T = 0°) other than that for optimum performance.

Design Approach Based On Attainable Thrust
To initiate the new design for the present configuration, the program of
reference 2 was used to estimate the spanwise distribution of forces on the wing

basic camber surface as shown in figure 4. For the design 1i1ft coefficient of
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0.55, full theoretical thrust is estimated for the inboard 20 percent of the wing
semispan. The loss in thrust beyond that point 1s felt as an increase in normal
force according to the Polhamus Suction Analogy.

At the design conditions, the inboard portion of the wing leading-edge is more
likely to perform as it does at 8° angle of attack than as it does at a 1ift
coefficient of 0.55. The additional 1ift generated by the trailing-edge flaps can
have little influence on the leading-edge. Figure 5 shows program data for the 8°
angle of attack design condition. Here full leading-edge thrust is seen to extend
to 25 percent or more of the wing semispan.

Based on the preceeding information, a leading-edge flap design was developed
and subjected to program evaluation. The results are shown on the suction
parameter contour map of figure 6. An inset sketch shows the selected flap system
planform. The flap chord increases linearly from O percent of the local chord at
y/b/2 = .25 to 36 percent of the local chord at the leading-edge break. From there
it decreases linearly to 30 percent of the chord of the wing tip. Both flap
segments Ly and L, are simply hinged and are deflected to the same angle relative
to the freestream direction.

The program results presented in figure 6 show a modest gain in suction
parameter over the reference design (s = 0.74 compared to 0.70), and the new design
is simpler and could probably be constructed with less weight penalty. The
leading-edge flap deflection for optimum performance is quite large, about 35° (64°
and 50° respectively for the inboard and outboard panel when measured normal to the
hinge 1ine). It is quite possible that the true optimum condition would be reached
at a considerably smaller deflection angle. The program results do indicate no
great sens1t1v1ty of the suction parameter to leading-edge deflection when the o <
8° restriction is imposed. As with the more conventional design previously
discussed, it is likely that the actual suction parameter would be somewhat higher
and that the required trailing-edge flap deflection would be greater.

The design conditions for this example were a 1ift coeff1c1ent of .55, a Mach
number of .25, and a full scale Reynolds number of 160 X 10%. For another set of
design cond1t1ons it would be necessary to redefine the flap geometry and prepare a
new suction parameter contour map. In general, a lower design 1ift coefficient
would permit a more outboard origin of the flap and smaller flap deflection angles,
and a higher design 1ift coefficient would have the opposite effect. Lower design
Mach numbers and higher design Reynolds numbers favor the development of thrust and
thus would lead to smaller leading-edge flap systems.

The dependence of attainable thrust on both Mach number and Reynolds number
complicates the problem of extrapolation of tunnel test results to full scale
conditions., For example, if tests of th1s flap system were made at a Mach number
of .2 and a Reynolds number of 3.5 X 10°, an extrapo]at1on to full scale design
conditions would indicate no appreciable improvement in aerodynamic performance. A
discussion of extrapolation to account for leading-edge thrust effects is given in
reference 2.

Program aerodynamic forces for the partial span leading-edge flap arrangement
are shown in figure 7. The peculiar nature of the axial force curves (the no
thrust and full thrust curves do not meet) is due to the distinct regions of the
wing leading-edge. Inboard of the flaps, the angle of attack for zero thrust is
between -2 and -3 degrees. On the flaps, the angle of attack for zero thrust is
between 6 and 8 degrees. Thus, some thrust is produced at all angles of attack.



Note also that Tittle or no vortex 1ift is developed at the design condition, as
should be the case if the flap serves to maintain attached flow.

The spanwise distribution of forces on the wing with partial span leading-edge
flaps at the design condition is shown in figure 8. The most obvious changes from
the basic camber surface distribution (figures 4 and 5) are in the axial force
distribution vhere the drag penalties of the deflected trailing-edge flaps eppear
to dominate, However, there is aiso a large region of the wing outboard of the
mid-semispan where a significant thrusting force has been realized. This is due to
the leading-edge flap operating in the large upwash field generated by the forward
part of the wing. This benefit 1s similar to that which could be achieved were 1t
possible for the full theoretical thrust to be developed.

The partial span leading-edge flap design based on attainable thrust conside-
rations employs a constant deflecticn angle for the entire length of the flap.
Figura 9 was prepared as a means of judging possible improvements with other
deflection schedules, Section drag due-to-1ift factors have been plotted as a
function of the leading-edge flap deflection. To eliminate the intermingling of
curves that otherwise would cccur, the drag due-to-1ift factors shown are
increments relative to the zero leading-edge deflection values. For the outer half
of the wing semispan, minimum section drag due-to-1ift factors generally occur in
the 35° to 40° deflection range. This data thus indicates that other deflection
schedules would offer little or no bznefit over the constant deflection angle., The
linearly increasing flap chord prebably results in an effective leading-edge camber
which matches the increasing upwash field. As additional evidence, several other
deflection schedules were evaluated by use of the program. None of these offered
any improvements.

Comparison of Flap Designs

In addition to the basic camber surface alonez and the two flap designs Jjust
discussed, several other variations of these designs were evaluated. The results
are depicted in figure 10. Suction paramaters at a CL of .55 are shown

for eight configurations. For the flat wing, an angle of attack of 13.1° was
required to generate the design 1ift coefficient. For this wing with no camber and
no flaps, the suction parameter was 0.49. The wing with a camber surface designed
for supersonic cruise, had a significant improvemant in suction parameter to 0.59
and achieved the design 1ift coefficient at an angle of attack of 10.5°.

The remainder of the configurations of figure 10 employed trailing-edge flaps
which permitted the design goals of CL = b5 and o = 8° to be achieved simulta-

neously. The conventional design approach discussed previously, yielded a further
improvement in suction parameter to almost 0.70. The next configquration differed
from the conventional design only in the elimination of the inboard leading-edge
flap. It is interesting to note that the present analysis shows a slight improve-
ment in suction factor. The fifth configuraion is the result of the design
approach based on attainable thrust. This design, already discussed in detail, has
a program predicted suction factor of 0.74.

The last three configurations employ leading-edge flaps with parabolic
streamwise curvature. The deflection is proportional to the square of the distance
forward of the hinge line. Data for the sixth configuration indicates a further
substantial increase in suction parameter to a little more than .80. Actual
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benefits of this more sophisticated system would depend on the weight penalties of
the more complicated actuator system. Because of the strong influence of the outer
flap panel in reduction of the overall drag (refer to figure 9 for example), one
configuration with a double area outboard flap was examined. As shown, this
produced a negligible improvement. The final configuration was included to indi-
cate the penalties being paid for the severe restrictions imposed on the span of
the two trailing-edge flaps. Program results indicates that if the trailing-edge
flap could extend over the entire wing span, a suction parameter of 0.86 could be
achieved. It was somewhat surprising that a larger difference was not indicated.

Based on correlations of computer program results with experimental data for a
wing-body of similar planform (see figure 2) it is anticipated that somehwat better
suction parameters than shown in figure 10 could be achieved in practice.

CONCLUSIONS

A study of low speed leading-edge flap design for supersonic cruise vehicles,
based on a recently developed computer program with attainable thrust estimates,
indicates the following conclusions:

(1) Leading-edge flaps are not required and, in fact, are undesirable at span
stations where full leading-edge thrust is attainable. For the example
treated this includes the inboard 25 percent of the wing semispan.

(2) Outboard of the station where thrust loss begins, a linearly increasing
flap chord appears to produce the effect of increasing camber and
eliminate the need for flap segmenting. A simple design with a constant
deflection about the hinge line is thus acceptable.

(3) Leading-edge flaps with camber surface curvature are preferable from an
aerodynamic standpoint but do, of course, create other design problems.
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