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SUMMARY

Ion beam sputter-deposited thin films cf Al20 3 , 5 1 02, and a codeposited

mixture of predominantly Si0 2 with small amounts of a fluoropolymer were evalu-

ated both in laboratory plasma aching tests and in space on hoard Shuttle

flight STS-8 fo; effectiveness in preventing oxidation of polyimide Kapton',.
Measurements of mass loss and optical performance of coated and uncoated polyi-
mide samples exposed to the low earth orbital environment are presented. Opti-

cal techniques were used to measure loss rates of protective t1iin films exposed
to atomic oxygen. Results of the analysis of the space flight exposed samples
indicate that thin film metal oxide coatings are very effective in protecting

the polyimide. Metal oxide coatings with a small amount of fluoropolymer
codeposited have the additional benefit of great flexibility.

INTRODUCTION

Anticipated space systems which must operate in the low earth orbital
environment for many years, such as Space Station, will require the utiliza-
tion of materials which are durable in their environment. Early Shuttle

flights have demonstrated that many materials such as polyimide (Kapton`),
carbon coatings, and some paints are gradually eroded and suffer changes in
optical properties when exposed in low earth orbit (ref. 1). The observed
rates of material loss are suffi;iently high to potentially compromise the
long term durability of polymers typically used in solar arrays or thermal
blankets in low earth orbit (ref. 3). The postulated mechanism for the mate-

rial loss is oxidation by ram impact (at approximately 4.5 eV) ^f the geo-
synchronous atomic oxygen which is the predominant environmenta specie at
altitudes between 180 km (91 nmi) and 650 km (351 nmi) (ref. 2).

One approach to preventing oxidation cf materials in low earth orbit is
to provide a protecting barrier over the o;:idizable material. Such a barrier

or protective coating must itself be unaffected by atomic oxygen bombardment.

In addition such a coating should be flexible, thin, lightweight, adherent, UV
tolerant, abrasion resistant, allow adhesive bonding, and not alter the sub-

strate's optical properties if it is to be used for protecting polymers such
as polyimide. Oxidation protective coatings consisting of predominantly metal-
oxide with small amounts of fluoropolymer have been proposed as a protective

yet flexible coating (ret. 4). Ion beam sputter codeposition was used t o pro-

duce such metal-oxide polymer mixtures. Oxidation protective coatings must be



adequately elastic to allow the typical flexure and handling regquired for a

specific polymer application. In the case of polyimide (Kapton* ) solar array
ulankets the hinge portion of a fold—up solar array blanket may be required to

ue Dent to a 0.6 mm radius of curvature without coating failure. The use of
mixed metal—oxide and fluoropolymer films as protective coatings may allow
increased flexibility of the protective film but may require additional film

thickness to assure long term (>10 yr) oxidation protection. The objective of
this paper is to report the oxidation, flexibility, optical and intrinsic
stress cnaracteristics of various composition thin films that have been depos-
ited by ion beam sputtering. Both ground laboratory and space flight test
results will be presented. The ground laboratory tests utilized thin film
sensing techniques and radio frequency plasma ashers to assess thin film per-

formance. The space flight test consisted of a 41.17 hr exposure of four
samples to the low earth orbital ram atomic oxygen on shuttle flight STS-8.
Characterization of the samples exposed to space was performed to address two

general questions. What are the change s in properties of the protected Kapton
as a result of the orbital atomic oxygen exposure and how effective is the
coating in providing long term durability to the under'ying Kapton?

APPARATUS AND PROCEDURE

Protective Coating Deposition

Two ion beam sputter deposition systems were used to deposit all of the

protective coatings evaluated in the ground—based and flight tests reported in
this paper. Both systems utilized 8 cm beam diameter argon ien sources oper-
ated at 1000 eV with tantalum hot wire cathodes and neutralizers.

Figure 1 shows the ion beam sputtering system used to deposit protective

coatings on the samples evaluated in space. These coatings consisted of thin
films of Si0j, Al203, and Si02 with small amounts of fluoropolymer on 0.127 mm
thick Kapton . This ion source was operated at 65 mA beam current for ion beam

cleaning the substrates as well as for sputter deposition of the protective
films. The sputter target, located 20 cm downstream of the ion sourc	 was
bombarded with an ion beam current density of approximately 2.8 mA/cm .
Codeposition of Si02 and fluoropolymer was achieved by placing a small area
sample of polytetrafluoroethylene (PTFE Teflon* ) in front of the 15.24 cm
diameter Si02 target. Deposition rates of 72 A/min typicall y resulted for
100 percent Si02 targets.

Figure 2 shows the ion beam sputtering system used for the deposition of
protective Si02/fluoropolymer codeposited films parametrically evaluated in
ground based tests. This sputtering system was designed with a stainless steel

annulus to help reduce backsputtered vacuum facility material which would
deposit on the substrates being evaluated. In this system 15.24 cm diameter
targets of Si02 and polytetrafluoroethylene (PTFE Teflon* ) were placed 51.3 cm
downstream of the ion source and were typically bombarded with a current den—

sit of 0.045 mA/cm2 from a 54 mA ion beam. Deposition rates of approximately
26 ^/min resulted when using 100 percent Si02 targets.

Deposited film thicknesses from both sputtering systems were measured by

means of a surface profiling instrument (Alpha—Step Profiler* , Tencor Instru-
munts) which documented deposition step heights on optically flat Si02
substrates-
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Evaluation of Protective Coating Performance

Grouna-based laboratory tests. - The ability of the sputter deposited

films to prevent oxidation, by atomic oxygen, of Kapton or carbon was evalu-
ated by means of an RF plasma asher (SPI Plasma Prep II` ). Samples being eval-

uated were placed in the RF asher which was operated on an air discharge (at
pressures of 100 to 130 um pressure) for approximately 15 hr with only the
protective coating surface of the Kapton exposed to the plasma. Weight loss

measurements were then used to de`ermixe if the thin film coatings were pro-
tecting the polyimide. Because Kapton can absorb up to 2.9 weight percent
water, several days were allowed 1cr reabsorption of moisture in a controlled

laboratory environment prior to weight measurement after ashing.

An additional method to evaluate coating protection was used which relied
on optical measurements during RF plasma ashing rather than weight loss of the
substrates- The purpose of using this technique was to examire whether or not
the protective film is preventing oxidation by using a more sensitive measure
of survival, or lack of survival, of the protective film rather than waiting
for bulk loss of the substrate material. To accompl i sh this, a diamondlike
carbon film coated Si02 slide was used instead of Kap^on as the substrate.
The diamondlike carbon film of approximately 1000 A thickness was ion beam

sputter deposited from a pyrolytic graphite target placed in the system shown
in figure 1 (ref. 5). The protective coating to be evaluated was then depos-

ited (as in ` ig. 2) over the diamuodlike carbon film. A light beam passed

ttirough the protecti'e coating would be partially absorbed by the diar,iondlike
carbon film as long as the protective film prc Anted oxidation of the under-

lying carbon film. If the RF plasma ashes the protective film, then the car-
bon thin film ashes quickly, resulting in an increase in transmitted light.
Figure 3 aepicts the RF plasma ashing system with optical detection of protec-

tive film durability. An additional advantage of using an optical based dura-
bility sensing technique is that water absorption is not a concern because the

substrate is not a polymer.

For actual flight utiliza'J on the film must provide protection even when

it is in various degrees of mf.chanical strain, such as when the protected poly-

mer is wrapped around components as in the hinge of a folded solar array. It
is therefore desirable to evaluate the performance of the film with regard to
the synergistic effects of atomic or.ygen exposure and tensile stress. This

was ac ,-omplished by wrapping coated Kapton substrates around ceramic mandrels
(0.76 mm diam) with the protective film on the external surface and placing
them in the RF plasma asher. Figure 4 shows the sampie configuration used for
these tests. Characterization after ashing was performed by scanning electron
microscopy.

Functional space apl.lications of protective films over Kapton would
require that flexure of coated Kapton be limited so as to not cause cracking
of the protective coating, which would allow exposure and subsequent oxidation

of the Kapton . The minimum radius of curvature to which the coated Kapton
could be bent without tensile or compressive failure of the protective film was
evaluated for various composition coatings by wrapping coated Kapton around
calibrated mandrels. The stressed coating was then examined for cracks by
reflected light microscopy.

Intrinsic stress of protective films was determined from measurements of

the dish shape distortion that occurs to an initially fiat 7.62 cm diametc r

a•
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silicon wafer after it has been coated. The particular instrument used
(Stress Gauge by Ionic Systems) measured the deflection (or bowing) of the

silicon wafer by optical means using a fiber-optic proximity sensor located
under the center of the silicon wafer.

Flight tests. - Samples were exposed to the ram ato •uic oxygen environment

of 222 km 20 nmi) during Shuttle Flight 8 in three separate exposure periods
on September 3, 4, and 5, 1983 for a total of 41.17 hr. This was accomplis,ied

by orbiting the earth with the shuttle bay doors open to allow the sample
trays to ram with normal incidence into the environmental atmosphere. The
samples consisted of one unprotected and three thin film protected Kapton

disks 2.54 cm in diameter and 0.121 mm thick which were mounted in aluminum
trays which allowed space environmental exposure over a 2.06 cjn diameter cen-
tral portion of each sample. The unprotected sample of Kapton was a control

for the coated samples. The samples as mounted in their flight tray are shown
in figure 5. This tray was located within the shuttle bay of STS-8 as shown in
figure E.

The characterization of changes in the properties of Kapton resulting
from the deposition of the protective coatings ras documented by: optical
microscopy; scanning electron microscopy (AmrV 1400); optical reflectance,
absorptarce, and transmittance (a Gier-Dunckle integrating sphere in conjunc-
tion with a tungsten strip lamp and monochrometer); and infrared total reflec-

tance and transmittance (a Perkin Elmer Model 1430 Infrared Sprectroscopy Data

System). The characterization of the effectiveness of the applied coatings
was accomplished by: optical microscopy; scanning electron microscopy; energy
dispersive x-ray spectroscopy (Kevex EDS System); mass change; and Rutherford
backscattering spectrometry (for the Si02 and codeposited Si02-fluoropolymer
films).

RESULTS AND DISCUSSION

Ground Based Laboratory Tests

The RF plasma asher was found to produce repeatable mass loss per unit
area rates for Kapton provided that power setting, sample spacial position,
and sample orientation were field constant, and that sufficient time for watcy,
reabsorbtion was allowed. Figure 7 is a plot of the dependancc of the rate of
mass loss per unit area with position along the axis of the asher. The asher

was used to evaluate the effectiveness of various protective films on Kapton
for selection of the thickness and composition of coatings to be tested in
space on STS-8 based on mass loss per unit area rate data (ref. 4). The pro-
cective coatings selected on this basis are given in table I.

Use of the plasma asher with optical detection of the protective films

typically resulted in one of the three types of plots of transmitted light (or

short circuit solar cell current) versus time shown in figure 8. The decreased
t r ansmittance of light with t 4, ,ne occurred only for pure protective films

thicker than 200 A. This optical technique was used to determine the minimum
film thickness required for permanent oxidation protection as a function of
Si02 and fluoropolymer composition (see fig. 9). The protective film was
considered permanently protecting if a negligible increase in transmittance

occurred after more that 12 hr of exposure to the asher plasma. This can be
compared with complete ashing of a 340 A diamondlike carbon film in 1.1 hr if

4
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no protective film is present or with complete aching of a 100 percent fluoro-
polymer film of 465 A and its underlying 340 A diamondlike carbon film in

1.22 hr. As can be seen from figure 9 the addition of codeposited fluoropoly-
mer necessitates thicker films for permanent protection of the diamondlike
carbon. The addition of the fluoropolymer for purposes of increasing film

flexibility is thus limited to approximately 15 percent fluoropolymer for life-
time reasons. The data points represent the minimum thickness films that are
permanently protecting based on numerous ashing tests of films of various
thicknesses for each Si02-fluoropolymer composition. A question that appears
appropriate to a:k concerning figure 9 is whether the jninimum thickness
requirement is the same for the protection of a Kapton substrate as for a

diamondlike carbon film substrate. This was experimentally verified for two
compo;itions (0 and 15 percent fluoropolymer) by observing the indicated .
results for the cu rve of figure 9 when the films were deposited on Kapton

Because the energy of bombarding oxygen atoms in low earth orbit is

4.5 EV and the energy of the oxygen ions in the plasma asher is approximately
0.23 eV, the shape of the minimum thickness versus percent fluoropolymer curve
may be slightly different for an actual in-s p ace exposure. Ferguson (ref. 6)
has found that the oxidation rate for Kapton is energy dependant . The rate

was found to be proportional to the 0.68 power of the impinging oxygen ion or
atom kinetic energy. In spite of this energy dependance, the figure 9 plot
would probably be only slightly different because the major constituent, Si02,

should have a negligible ash rate since it is already in its highest oxidation
state. Figure 9 may be more a measure of the ashing percolation limit of
molecularly mixed Si02 and tetraf,.,oroettylene molecules than a result of the
ash rate of materials. If the population of the fluoropolymer constituent is

sufficiently high to allow oxidation of a line of sight path through the pro-
tective film, then the underlying carbon atoms will be oxidized. Otherwise the

Si02 molecules will block the oxidation process. The greater the fluoropolymer
content, the thicker the film must be to provide enough Si0 2 molecules to pre-

vent oxidation pathways to develop through the film.

The addition of fluoropolymer codeposited with Si02 was found to increase
the amount of strain the film could withstand without causing brittle fracture.

Fig-ire 10 shows plots of (a) the minimum radius of curvature to which a 1000 A
thick codeposited film on 0.127 mm thick Kapton can be bent and (b) its esti-
mated strain as functions of composition. The strain was computed assuming
that the modulus of elasticity for each Si02-fluoropolymer film was the appro-
priate arithmetic average between Si02 and PTFE-Teflon for its ecmposition.
As one can see from figures 9 and 10 the ad6-,tion of 15 percent fluoropolymer
to Si02 allows a factor of 3 gain in tolerable strain but is accompanied by an
order of magnitude increase in thickness needed for permanent oxidation pro-

tection. Film thickness has no significant influence on the minimum radius of

curvature because the film is essentially in puretension during the flexure
of the substrate Kapton* which is approximately 10 3 times thicker than the
film as can be seen in figure 11(a). However the thicker the SiO;, film the
greater the influence the high modulus coating has on the low modulus sub-

strate. This effect tends to reduce the actual strain applied to the film for
constant radius of curvature bending. Figure 11(b), which depicts the frac-
ture limit mean strain in the film as funct i on of film thickness, indicates
this effect. Film thicknesses of approximately 1000 A were chosen to provide
dal;a for figure 10 because they were sufficiently thick to allow easy observa-
tion of fractures in the films.

i

rl^



The intrinsic stress in films resulting from the sputter codeposition of
Si02 and fluoropolymer scission fragments from the polytetrafluoroethylene
(Teflon ) target was found to be a function of both composition and film
thickness as shown in figure 12. The thickness dependence shown is typical of
other materials (ref. 7).

The evaluation of protective films subjected to simultaneous tensile
stress and RF plasma asking was found to show clearly the effect of oxidation
of the underlying Kapton if the film was stressed to failure causing under-
cutting oxidation through the open cracks. As can be Seen in figure 13(a)
closed fractures in an inaium—tin—oxide film on Kapton do not allow oxidation

but open fractures do. Figures 13(b) and (c) show sufficient undercuttin g oxi-

dation in failed films of pure Si02 and 11 percent fluor-opolymer in Si02,
respectively, on Kaptoni to allow partial detachment of the protective films.

Flight Tests

The Kapton* samples and surface protective films tested in space on STS-8

are listed in table I. The Kapton* sample having no protective coating was

the onl y sample to show a change in appearance as a result of the 41.17 hr
orbital ram exposure. The exposed surface had a matte rather than a specularly
reflecting appearance. Although, as shown in figure 14, the total reflectance

and absorptance changed little, the diffuse reflectance increased greatly, thus
causing the matte appearance. The transmittance for the unprotected Kapton
sample remained zero because of the opaque aluminum coating on its unexposed
surface.

The optical properties of transmittance, absorptance, and total reflec-

tance for the Si02, and >96 percent Si02 <4 percent PTFE coated samples
remained unchanged as a result of the orbital ram exposure. Figure 15 com-
pares the optical properties of the codeposited >96 percent Si02 <4 percent
PTFE sample prior to film deposition, after deposition but prior Yo orbital

ram Pxposure, and after orbital ram exposure for the wavelengths from 0.33 to
2.2 um. Similar results were obtained for the Si02 coated sample and for the
pre— and post—deposition x;1 20 3 coated sample. The Al 20 3 coated sample was not

optically evaluated postflight. Figure 16 compares the infrared transmittance
and reflectance of Kapton prior to and after deposition of the >96 percent
Si02 <4 percent PTFE film for wavelengths from 2.5 to 50 um. The infrared
resul-Es were again similar for the Al 2 03 and SiOZ coatings, As can be seen

from figures 14 and 15, there appears to be no significant alteration in the

6ptical properties of Kapton as a result of either depositing the thin film
coating on the Kapton* or the orbital ram exposure. Based on the visible and
infrared data the solar absorptance, as, for each of the three types of coated
Kapton was found to be identical to that of uncoated Kapton (a 5 = 0.331) and

unchanged by low earth orbital atomic oxygen ram exposure. The thermal emit-

tance, eT, at 300 K was also found to be unchanged (ET = 0.80) by either the
presence of or type of protective coating. The limited size of samples availa-
ble for postflight analysis precluded measurement of the infrared properties of
the samples after orbital atomic oxygen exposure because portions of the sam-

ples were consumed for SEM and RBS analysis.

Figure 17 shows scanning electron micrographs to illustrate the effect of

the >96 percent Si02 <4 percent PTFE protective coating on the durability of
the Kapton surface when exposed to atomic oxygen ram in space. The lack of



noticeable damage for the >96 percent 5102 <4 percent PTFE coating was typical
of that of the Al 20 3 a'^d S^ 2 coatings as well. The Al 20 3 coated sample how-
ever did have a small defect which was noticed prior to fright testing. This

defect site was a spot about 0.2 mm diameter where a particle of debris or dust
prevented sputter deposition over the Kapton . Postflight inspection of this

site indicated the possibility of undercutting oxidation approximately 0.2 mm
beyond the diameter of the original surface defect boundary. This may have
been due 4 scattered atomic oxygen atoms which were able to laterally oxidize

the Kapton under the Al203 film. The surface texture present for the unpro-
tected Kapton after orbital ram exposure is the cause of the matte appearance
and increase in diffuse reflectance resulting from atom i ,; oxygen exposure.

Energy dispersive x-ray spectroscopy confirmed the presence of each of

the protective films after orbital ram exposure.

The results of the pre- and post-flight mass determinations are given in

table J. The unprotected Kapton* had high rates of mass loss in compa r ison to

Kapton with protective films. The relatively high mass loss rate found for

the Al203 coated sample mad in part be a result of the surface defect, a pos-
sible missing shard, or an anomalous water uptake before or after weight meas-

urements. The amount of mass lost for this sample is six times the mass of
the coating present. However even in optical microscopy there is vivid evi-
dence that the coating is present, thus tend;ng to confirm the suggestion that

the measured high weight loss is an incorrect measure of the protection of the
Kaptori . Results of the Rutherford backscattering analysis of unexposed and
exposed areas of the Si02 and >96 percent Si022 <4 percent PTFE flight tested
samples are given in table II. These data ir;dicate that there was no loss in

the thickness of these protective coatings.

CONCLUSION

Ion beam sputter deposited thin films of Al203, Si02, and Si02 - poly-
tetrafluoroethylene molecular mixtures are effective in preventing oxidation

of underlying materials such as Kapton* as demonstrated in both ground-based
laboratory and flight tests. The addition of small amounts (<15 percent by
volume) of codeposited polytetrafluoroethylene to Si02 can be used to increase
the strain that the film can withstand without fracture by a factor of 3.

However the ground-based rf plasma ashing tests in conjunction with optical
detection of + he protective films indicate that the minimum protective film

thickness required for permanent protection from oxidation is increased by an

order of magnitude (from 50 to 600 Q) if one adds 15 percent polytetrafluoro-
ethylene. The application of protective films of Al203, Si02, and >96 percent
Si0 2 <4 percent polytetrafluoroethylene did not alter the optical properties

of Kapton over the wavelengths from 0.33 to 50 um. Ir addition, no change
occurred in optical properties of the protected Kapton over the wavelengths
from 0.33 to 2.2 um. Postflight analysis indicates the three protective coat-

ings remained intact and functional throughout the 41.17 hr orbital ram expo-
sure to environmental atomic oxygen.
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TABLE I. - EROSION RATES OF UNPROTECTED AND PROTECTED KAPTJN
0
 SAMPLES

EXPOSED TO LOW EARTH ORBITAL ENVIRONMENT

Protective coating

on Kaptun

Coatin^a

thickness,

A

Measured

mass	 loss,

ug

Based on all	 characterization	 information

Conclusion Estimated a erosion
rate, cm3/atom

None (unprotected) 0 5020 Kapton`eroded and 3.0x10-24

textured

Al203 700 567 Coating protects <2.Ox1Q-26

Si02 650 5.9 Coating protects <8x10- 8

>96% Si02 650 10.3 Coating protects <8x10-28

<4 %	 PTFEb

°Based on an est;mated atomic oxygen fluence of 3.5x1020.

hPolytetrafluoroethylene.
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TABLE II. - SURFACE 6ENSITIES

UNEXPOSED AND SPACE EXPOSED SAI

BACKSCAT

Protective
coating O

on Kapton

Oxygen atop

Unexposed
area

Si02
>96% Si02 < 4% PTFE

2.42x1017

3.21x1017
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Figure 13. - SEM photographs of protectiv e f Ims subjected to tensile stress failure and si-
multaneous ashing.
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Figure 14. - Optical properties of unprotected Kapton4i) (0.127 mm thick with an
aluminum film on the exposed surface) for samples unexposed and exposed to
low earth orbital env;ronment.
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