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FAST APPROACH FOR CALCULATING FILM THICKNESSES AND PRESSURES

IN ELASTOHYDRODYNAMICALLY LUBRICATED CONTACTS AT HIGH LOADS

Luc G. Houpert* and Bernard J. Hamrock
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

The film thicknesses and pressures in elastohydrodynamically lubricated
contacts have been calculated for a line contact by using an improved version

of Okamura's approach. The new approach allows for lubricant compressibility,
the use of Roelands' viscosity, a general mesh (nonconstant step), and accurate

N	 calculations of the elastic deformations. The new approach is described, and
LL	 the effects on film thickness, pressure, and pressure spike of each of the

improvements are discussed. Successful runs have been obtained at high pres-
sure (to 4.8 GPa) with low CPU times.

i

SYMBOLS

a ij	 weighting factors used to define dP/dX at node i

b	 half Hertzian length, R 8W/,r, m

Ci	 weighting factors used to integrate P

D ij	 influence coefficient used to calculate elastic deformation at 	 i
node i due to Pi

E	 `'oung's modulus of surface, Pa

1	 1	 1 - va	1 - ub
E'	 equivalent Young's modulus, E' = 2

	 E	 +	 E	
Pa

a	 b

G	 materials parameter, nE'

H	 dimensionless film thickness, hR/b 2 = 1►h/8RW

He	 dimensionless film thickness where dP/dX = 0

HO	dimensionless constant used in calculation of H

AH	 maximum deviation from flat shape of Hertzian contact

h	 film thickness. m

*Presently at S.K.F. Engineering and Research Center, 3430AB Nieuwe

The Netherlands; NRC-NASA Research Associate during academic year 1984-
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i,j	 nodes

N	 number of nodes used in linear system

Nmax	 maximum number of nodes used in mesh

P	 dimensionless pressure, p/pH , Pa

Ps	 dimensionless pressure at spike

P	 pressure

PH	 maximum Hertzian pressure, E'b/4R = E' W/2r, Pa

R	 equivalent radius of contact, m

r	 radius of surface, m

U	 dimensionless speed parameter, nou/E'R

u	 tangential speed of surface, m/s

u	 average entrainment rolling speed, (ua * ub)/2, m/s

W	 dimensionless load parameter, w/E'R

w	 applied load per unit length, N/m

X	 dimensionless abscissa, x/b

Xe;, d	outlet meniscus distance

Xmax	 maximum value of X in mesh

Xmin	 minimum value of X in mesh, X1

AX	 constant step, (X N - X 1 )/(N - 1), used in uniform mesh

x	 abscissa along rolling direction, m

z	 Roelands' parameter

n	 piezoviscous coefficient, m2/N

d H	maximum dimensionless Hertzian deformation

d i	elastic deformation at node i, m

S i	dimensionless elastic deformation, R6/b2

no	 viscosity at operating temperature and ambient pressure, N s/m2

V	 Poisson's ratio

2



P	 relative density

Pe	 relative density where H = He

Subscripts:

a	 surface a	 i

B	 Barus

b	 surface b

li	 Hertz

i	 at node number i	
I

i	 at node number j

max	 maximum value

min	 minimum value

R	 Roelands

INIROOUCTION

Elastohydrodynamic lubrication is a form of fluid-film lubrication where
elastic deformations of the lubricated surfaces become significant. It is usu-
ally associated with highly stressed machine elements such as rolling-element
bearings and gei.-s. The first attempt to analyze elastohydrodynamicaily lubri-
cated contacts was made by Grubin and 1linogradova (ref. 1), who managed to
incorporate both the effects of elastic deformation and the viscosity-pressure
characteristics of the lubricant in an inlet analysis of hydrodynamic lubri-
cation of nonconformal contacts. Solutions to the coupled Reynolds and elas-
ticity equations have proved to be difficult. An attempt to review the methods
of obtaining numerical solutions to the elastohydrodynamic lubrication problem
is presented by Hamrock and Tripp (ref. 2). Highlights of four main approaches

are presented, namely the direct method, the inverse method, the quasi-inverse
method, and the system approach method. The advantages and disadvantages of
each method are discussed. As described by Hamrock and Jacobson (rof. 3), the
direct method used a large amount of CPU time and the approach failed at high

loads. (Maximum dimensionless load W was of the order of 300-5).

A recently developed approach not covered in Hamrock and Tripp's review
(ref. 2) is that of Okamura (ref. 4). Okamura uses a iewton-Raphson method to
solve the elastohydrodynamic lubrication problem in a system form. Iterations
on the system approach are still required, as was the case in the direct
method; however, much less computer time is used. Furthermore, the mayor
advantage of the method is that solutions can be obtained for higher loads than
by the direct method. (Maximum dimensionless load W was of the order of

800- 5 .) Nevertheless, these loads are much lower than those in rolling-
element bearings, where W reaches the order of 1x10- 3 . At high loads the

..
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elastic deformations are several orders of magnitude larger than the film
thickness. Any inaccuracy in the pressure will cause (v-!a elasticity calcula-

tions) drastic changes in the film thickness that will in turn (via the
Reynolds equation) cause large pressure fluctuations and numerical instabil-
ities, especially when the viscosity is large, as is the case in normal EHL
contacts. At high loads the viscosity of the fluid can vary by 10 orders of
magnitude within the conjunction.

In the current study it was felt that the only way of solving the EHL
problem at high loads was to accurately calculate the elastic deformations and
the pressure gradient dP/dX, especially in the inlet region and near the pres-
sure spike, where dP/dX is large. To calculate the pressure gradient, a
general mesh (i.e., nonconstant step) is needed (a fine step when dP/dX is
large). Okamura's method (ref. 4) was therefore extended to include these

improvements.

For a comparable change in pressure the relative density change is con-
siderably smaller than the viscosity change. The maximum density increase is
about 35 percent. However, although the density effect is much smaller than
the viscosity effect, the very high pressures in EHL films are such that the
liquid should no longer be considered incompressible. Furthermore, high-
pressure viscosity measurements have shown that Barus' expression cannot be
used at high loads. A more realistic pressure-viscosity relationship as pro-

posed by Roelands (ref. 5), should be used. Although Roelands expression is
valid for pressures not exceeding 1 GPa, it can be used in EHL calculations at
larger maximum pressures because the film thickness is mainly dependent on the
inlet of the contact, where pressures are small. Therefore, lubricant compres-

sibility and Roelands' viscosity were also introduced in the present approach.
Different means (including the authors' new approach) of calculating the

elastic deformations are first compared. After having described the new mathe-
matical formulation, the effects on film thickness, pressure, and pressure
spike of the mesh and number of nodes are studied in detail. Results are shown

for low, intermediate, high, and very high loads. Finally results obtained
using Barus' and Roelands' viscosity as well as the compressible and incom-
pressible relationships are compared.

The authors wish to thank Dr. J. Tripp of the NASA Lewis Research Center
and Mr. T. Lubrecht of the University of Twente, The Netherlands, who took
part in many helpful discussions on the subject.

CALCULATION OF ELASTIC DEFORMATIONS

The elastic deformation d at any puint x on the surface is expressed
as

2 x

 

end	 2
d = - *E, 

J	
p In (x - x')	 dx'	 (1)

xmin

where p is the pressure function of x', with x' varying between xmin
and xend• Letting X = x/b, P = p/pH , d = R6/b 2 where

-mil
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n .

1/R	 1/Ra + 1/Rb, R/b = */8W, W = WE'R, and PH = E'b/4R gives

XendXend
d - 2Y f	 P In (X - X') 2 dX' + In (R 2 8W) 

fX
P dX'	 (2)

Xmin	 m

But w =fp dx implies fP dX' _ w/2. Making use of this, equation (2)
hecomes

Xend
d = - 2t f	 P in (X - X') 2 dX' - ;

X	
in R2 

8W

1 	
(3)

min

The constant term on the right side of equation (3) represents in general 80
to 90 percent of the total deformation. This is a very useful separation in
that it puts the remaining pressure-dependent deformation of the same order as
the film thickness at moderate loads. Using integration by parts on the
integral gives

Xend	 Xend
d=

- ,	 PI 

min 

+1	

min	

dP IdX' - 1 
in R28W

	

2^ I I X	 2. X	 dX'	 4	 (	 1)

where

I = fln (X - X') 2 dX' = -(X - X') [In (X - X') 2 - 2]

Since the pressure is zero at Xmin and Xend we can write that

Xend
d =
	 2x	 dX'(X - X ' ) [ in ( X - X') 2 - 21 dX' - 

4 
In R 2 *W )	 (6)

X	 \
min

The integral in equation ( 6) can be calculated analytically by assuming that
the pressure is described by a polynomial of second degree in the interval
[X _ l , X +l]. The details of the calcul-4 tions are given in appendix A. The
deformation Tid at node i is calculated as a function of the pressure Pj and
the influence coefficients Dij:

N1	 ( 2 8W l

	

3i	
3=1
L 

Di 3 Pj	 4 In \R * /

The results obtained will be compared in table I with the ones obtained by
Hamrock and Jacobson (ref. 2) and Okamura (ref. 4), who used simpler approaches.
Hamrock and Jacobson assumed the pressure to be constant in the interval
[Xj - eX/2, Xj + AX/2] and used an analytical expression for + he integral of
log (Xi - X'). Okamura did not use any analytical solutions and assumed

simply that

(4)

(5)

(7)

l^
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In

di	
1	

P' In	
Xi +12 + 

Xi - 
X  11 x i-1 2+ Xi - X

j i	 (8)

The three approaches can be compared by assuming a Hertzian pressure. Between
abscissa -1 and +1, the Hert.1an shape should be flat, leading to eH s 0 where

eH is defined as

2

DH = 2 + a - 
9max	 (9)	 +

and Tmx is the maximum deformation and can be compared with the Hertzian
analytical value TH:

dH - - 4 In 1 R2 8W
J 

+ 2 In (2) + 0.25	 (10)

the largest value allmax/He of AH/He is found at abscissa X = -1
and +1 (because of the slope discontinuity) and is shown on table I wi'h the

corresponding value of max/TH - 1. The central film thickness He has

been chosen to be equal to 0.5; Xmin and Xmax define the first and last

values of X; Nmax is the number of nodes.

TABLE I. - THREE WAYS OF CALCULATING ELASTIC DEFORMATIONS

[OK: O'.amura (ref. 4); HJ:	 Hamrock and Jacobson (ref. 3).]

Nmax Xmin Xmax (ama,I	 H	 -	 1 ) aHinax/He

OK HJ New approach OK HJ New approach

51 -1.0 1.0 -1.9x10' 3
-3

-2.7x10-3
-2

8.6x10-7

-51.0x10

9.4x10-3

3.4x10-2

-5.5x10-3
1.6x10-2-

-2.1x10-3
-8.6x10-3al -3.6 1.4 -4.9x10 -1.1x10

1^1
151

-1.0
-3.6

1.0
1.4

-6.3x10-4
-1.6x10-3

-5.1x10-4
-2.0x10-3

5.1x10-8
5.4x10-7

4.0x10-3
1.2x10-2

-1.4x10-3
-4.4x10-3

-6.4x10-4
-2.1x10-3

301
301

-1.0

-3.6

1.0
1.4

-3.1x10-4
-7.8x10-4

-1.8x10-4
-7.1x10-4

8.1x1O-9
9.0x10-8

2.2x10-3
6.0x10-3

-5.6x1O-4
-1.8x10-3

-2.5x10-4
-8.6x10-4

6bl -3.6 1.4 --------- 2.2x10-6 -------- -------- -2.6x10-4 ---------

51 a-1.0 a l.0 --------- --------- 6.5x1O-7 -------- --------- -2.7x10-4

allonuniform.

: n

The results of table I show that for a given mesh the best accuracy in 	 I '

the calculation of d and AH is obtained by using the present approach.

the value of Tmax from Hamrock and Jacobson (ref. 3) is in some cases less

accurate than that from Okamura (ref. 4) because they did not use the constant

expressed in equation (3). But Tmax is not really significant since any

inaccuracy in its calculation can be compensated for by Ho in the film

thickness expression. The important parameter of table I is allmax since

6
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it is a measure of the flatness of the film shape. This aspect is extremely
important at high loads, where the elastic deformations are two or three orders

of magnitude larger than the film thickness.

Also shown in table I are the results obtained with a uniform mesh of 661
nodes by Hamrock and Jacobson (ref. 3). Very small values of aHmax were

calculated and cannot be reproduced with the new approach because of storage
'i	 problems with the matrix 

Dij 
and because of the large system of equations

that would have to be solved with such a mesh. But using a nonuniform mesh
► '	 with a fine grid near X equal to -1 and +1 (where 10 subintervals are used in

F	 the intervals [-1,-0.96] and [0.96,1]), similar results are found with a very

small value of Nmax (Nmax s 51), as indicated in table I. The latter case

illustrates very well the power of the new approach.

CALCULATION OF dP/dX

The term dP/dX is used to calculate the influence coefficient Dij

i	
and is used in the Reynolds equation described later. For the calculation of
Dij, (dP/dX)i at node i is calculated by using three nodes.

I L 
dX) i	ai,i-lPi-1 + a

i,i P i + a
i,i+l P i .1	

(11)

where

iXi	

Xi+l	 (12)
a i,i-1 " (Xi-1 - X i )( X i-1 - Xi+1)

2X i - 
X i+1	 X1-1

ai,i	 (Xi - X i-1 )(X i	 Xi+1)	
(13)

-

`

X i - 
Xi-1	

(14)
ai,i+l
	 (Xi+l - X i-1 )(Xi+l - Xi)

At the first and last nodes, X 1 and X 	 , dP/dX is also defined by
max

using three nodes (X 1 to X3 end XN-2 to X 	 ).

max
For the calculation of dP/dX in the Reynolds egUAtion, two nodes may

often be used if the numerical convergence is difficult to obtain with the

•	 three-node formula. For the two-node formula the weighting factors are

1
a i,i+1 • X1+1 - Xi	 ai,i = -a i,i+l ;	 ai,1-1 = 0	 (15)

Minor corrections are also applied on the last values of an^j to respect
the boundary conditions at X = Xend and are described in appendix B.

7
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(4-1

FORMULATION OF MATHEMATICAL FROB:EM

The basic equation to solve in dimensionless form at each node i is the
dimensionless Reynolds equations.

p H

f i	 Hi (

dP
ix

) i
Kn i Hi-

e e	
0	 (16)

 Pi

with

	

X11 

	 N

	

H i = Ho+	 +	 Dijpj	 (17)
-1

0.6x10-9 PH Pi
P i	1 +	 9	 (18)

1 + 1.1x10	 pH Pi

n i = exp(apH P i )	 if Barus' viscosity is used	 (19)

n i = exp [ln(n o ) + 9.61][-1 + (1 + 5.100-9PHpi)Z]^

a	 if Roeland's viscosity is used 	 (20)	

I
3 2 U	 ^

K	 4Y 2	 (21)	 I
W 

where do contains the term -ln (8WR 2/Y)/4 introduced in equation (3). The	 f
parameter Z in Eq. (20) can be expressed in terms of a and no as in
reference 6. Furthermore, the constant load is also introduced by

X	 f
F	 end	 x	 ;

P dX	 2	 (22)

	

Xmin	 1

The unknowns is this problem are

Xend	 outlet meniscus distaAce defined in figure 1

N	 number of nodes to use as defined in figure 1

Ho	 constant to define

peHe	 value of pH where dP/dX - 0

Pj	 pressure at node j (3 = 2, N)

8



s 1

Tne boundary conditions are

Pl - 0	 for X1 - Xmin	 (23)

	

P - dP/dX - 0	 for X n Xend	 (24)

Figure 1 illustrates the calculation of Xend and N, where XN is the

nearest node to Xend such that XN < Xend; H(X) can be defined as a second-

degree curve using HN_l, HN, and HN+l; and Xend is calculated such that
H ( Xend) - PeHe . Having defined Xend and '!, the remaining N + 1 unknowns
PeHe, HO, and P2 to PN are calculated by using an iterative Newton-

Raphson scheme. If the superscripts n and o are — ed to define the new
and old values of the unknowns corresponding to two successive interations, we
have

(veHe)n = (PeHe ) o + [ s (PeHe )] n	 (25)

	

n - Pi + (APP 	 (26)

	

H 	 H0 + (AHO ) n 	(27)

where [e(peHe)] n , [e(Ppj n , and [e(HO)] n are now the unknowns
to the problem. They must all be small if the convergence is obtained. For
the data presented, an accuracy of 1/1000 was required on each unknown. From
the definition of the Newton-Raphson algorithm, we have for each node i

0 	 0
afi	

[e(PeHe)]n 
+PMd(48fPj'

(eP^n* aHi	 (eH0)nf^(28)a(peHe)20

where [afi/a(peHe)] o , (afi/aPj ) o , and (afi/aHO) o are defined analytically
in appendix C. The constant load is taken into account by writing

Xend	 Xend

	

(AP) n dX - 2 -	 Po dX = (oW)n
 f

Xmin	 Xmin

or	 (29)

N

C ' (AP' ) n = (eW)n

where Ci are the weighting factors defined in appendix 0. Since XN

does not coincide with Xend minor corrections are applied on the last
values of Cj, as described in appendix B. A linear system of N + 1 equa-

tions is therefore to be solved

9 1
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afI	 afl	 afI	 afl
a( - He)	 aP2 .... ... aP

N
	3H 

af t	aft	 aft	 af2
a(Te)	 aP2 ........ aP

N	all0

af N 	afN	 afN	 afN

a(T)	
aP2 ........ aP

N 	 8H0

0	 n	 0

e(PeHe)
	

- fl

e(P2)
	

- f2

i(PN)
	

fN

;.

L

0	 C2 ........ C 	 i 1 e(Ho )	 i	 1 eW

A Gauss elimination with a partial pivoting method is used to solve this linear
system.

RESULTS AND DISCUSSION

The results of employing these techniques are shown in figures 2 to 3.
Most of these results have been obtained by using a two-node formulation for
dP/dX because the convergence was found to be easier.

Figure 2 gives the pressure profiles and film shapes at iterations 0, 1,
and 14. The 14th iteration is the converged solution. Barus' pressure-

viscosity expression was used and W - 2.0452x10- 5 , U = 1.0x10- 11 , and
G - 5007. Barus' viscosity was used as this stage to eneble direct comparison
with the results of Hamrock and Jacobson (ref. 3). Starting with a Hertzian

pressure profile (iteration 0), the present approach converged quickly. At

the first iteration a pressure spike was formed that was close to the finial
converged spike. The initial film level (iteration 0) was obtained from

Hamrock and Jacobson (ref. 3). In general, it took about 15 iterations to
obtain a converged solution, or about 2 min of CPU time on the IBM 370 com-

puter with a mesh of 181 nodes. Contrast this with the 100 min normally taken
by the Hamrock and Jacobson approach. At high loads iterations have to be

performed by starting from a previous pressure profile obtained at a lower
load.

Figure 3 shows the effects of a number of uniform nodes on Hmin, He,
and the pressure spike Ps. The parameters W, U, and G were exactly the
same as those described for figure 2, and Barus' viscos i ty was also used. The
actual pressure profiles and film shapes for four nodes are shown at the top
of figure 3. The value of Hmin did not change much as the number of nodes
Nmax increased: Hmin for Nmax - 51 was about the same as Hmin for
Nmx - 321. With increasing number of nodes He approached an asymptotic.
value. For this case little change was observed when Nmax became larger
than 221. When the three-node formulation of dP/dX was used, the convergence
was more difficult to obtain, but some successful runs clearly indicated that
considerably fewer nodes were required for a given accuracy of He.

10
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The value of the pressure spike fluctuated, especially at low values of
Nmax, because of the position of the nodes relative to the position of the

spike. For example, at Nmax . 51 the spike did not develop because of the
large spacing of the nodes (sketch at top of fig. 3). Another example is given
by the asterisk in figure 3, for Nmax . 241. This asterisk corresponds to the

value of Ps when a translation of half an interval has been imposed on the
mesh and gives a range of fluctuation of Ps. Note that an increase of 20 was
chosen for Nmax and that more oscillations in	 Ps might have been found if

Nmax would have been varied more slowly. As the number of nodes was increased,
the spike became better defined. At Nmax . 261 the value of Ps stated to
become stable, although it was still slightly increasing as Nmax increased.
It can therefore be concluded that the amplitude of the spike is limited once
a sufficient number of nodes have been used. As the number of nodes increased,
there could also be large changes in the pressure spike but little correspond-
ing change in the film thickness. The results presented in figure 3 are for a
given uniform mesh. When a nonuniform mesh was used with many nodes near the
spike, the pressure spike became better defined.

Hamrock and Jacobson's (ref. 3) and the present film shapes and pressure 	 i
profiles are compared in figure 4. Parameters were identical to those

described for figures 2 and 3, and Nmax was fixed at 321. The value of He 	 f

as calculated in reference 3 is about 2 percent larger than the value cal-
culated in the present approach; the value of Hmin is about 9 percent

smaller. The pressure spires also differ in amplitude and position. Although
the differences are not yet explained, they could be attributed to the fact
that Hamrock and Jacobson were solving the second-order differential Reynolds

equation, whereas the present approach solved Vie first-order differential

Reynolds equation. Furthermore, as noted previously, elasticity calculations
also differ. The present results are believed to be more accurate than those

described in reference 3, where in front of tr,a pressure spike region the sign
of dP/dX was not equal to the sign of (pH - fe H e ). Furthermore, the mesh

flow was not constant in reference ?, whereas the first-order differential
Reynolds equation solved in the present approach is directly representative of

a constant flow.	

Ii
Figure 5 shows the pressure profile and the film thickness ratio H/He 	 1

for five dimensionless loads varying over two orders of magnitude (from 2x10-5
to 3x10- 3 ). This dimensionless load range corresponds to a maximum Hertzian
pressure of 0.4 to 4.8 GPa. A nonuniform mesh was always used in the spike and
inlet regions for the high-load cases. For those results Roelands' pressure-
viscosity formula was used, and the dimensionles! speed and materials param-

eters were fixed at U = 100- 11 and G - 5007. I.s the loa' increased
(fig. 5(a)), the spike became smaller and moved toward the ..jtlet. Further-
more, as the load increased, the inlet meniscus moved toward the abscissa

X . -l. The nip film thickness wijth and length (fig. 5(b)) both decreased as
the load increased. This effect could be used to predict, from experimental
observations of the nip, the existence and amplitude of the pressure spike.

Figure 6 shows the effect of the dimensionless load	 W	 on He,	 Hmin,	 and
Ps.	 Conditions were	 similar	 to the ones defined	 in figure	 5. At low loads

Hmin	 was smaller	 than	 He,	 but at high	 loads	 the reverse was true. The

slopes of	 the curves	 plotted on a	 log-log	 scale are -1.16	 for He	 and -1.11
for	 Hmin.	 The slope of	 Hmin is	 similar	 to the one found by Hamrock and
Jacobson in reference 3 where a slope	 of	 -0.11	 was found when plotting hmin/R

^^ I



versus W. As the load increased, the height of the spike decreased until
W • - 300- 4 , where the spike no longer appeared for these given speed and
material conditions. With a much finer nodal structure, the spike might be

observed even at higher loads, but its height would indeed be quite small.

Figure 7 shows the effect on the pressur , and film thickness of using
Barus' or Roelands' pressure-viscosity expression. The dimensionless load,

speed, and materials parameters were held fixed at W - 2.045200-5,

U - 1x10- 11 , and G • 5007. A uniform mesh of 321 nodes extending from -4
to 1.3 was used. The large number of nodes was used to reduce the possibility
of spike height instabilities. Barus' formula produced a higher spike and a
larger film thickness than Roelands' formr'lA. The increase in He was about

3 percent.

Figure C show! the effect of l-;brlcant compressibility on film thickness.

The parameters U and G were held fixed while W was equal to 300- 3 . In
the compres0 ble case the film thickness He was reduced by the average density

ratio, and Hmin was larger than He. This result is due to the effects

of compressibility since in the incompressible casr Hmin was smaller than
He, as wouli be expected in cider to keep the mass flow constant at the nip,

where dP/dX was large and negative. Note also that the incompressible film
shape was very close to the Hertzian shape (except near the nip) because of
the high loads.

CONCLUSIONS

The film thicknesses and pressures in elastohydrodyna..iicalty lubricated
contacts have been calculated for a line contact by using an improved version

of Okamura's approach. the oew approach allows fc- lubricant compressibility,
the use of Roelands' viscosity, a very general mesh (nonconstant step), and
very accurate calculations of the elastic deformations. The results indicate

that the new method is fast and accurate. The accuracy of the film thickness,
pressure, and pressure spike is fully controlled by the Type of mesh and the
number of nodes used. The new approach is not load limited as % ,ere previous

approaches. Successful runs have been made at a maximum pressure of 4.8 GPa
with low CPU times. This approach can be a useful tool in studying rolling
bearings and gears. Calculations of the rolling traction force and pressure
spike at high loads are now possible and should be of first importance for

predicting rolling-bearing friction and fatigue life.

i
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APPENDIX A

CALCULATION OF ELASTIC DEFORMATIONS

The details of evaluating equation (6) are presented in this appendix.
The interval [ Xmin , Xend] can be divided into small intervals [XJ_1 ► Xj+l]
so that the deformation Ti 	 at node i is the sum of all of the small elemen-
tary deformations ddij calculated at node i and due to the pressure defined
in the interval [ Xj-1, X^+1]•

N-1

8 i F,	 ddij	 (30)
J-2,4,6 ....

In these small intervals, dP/d X' is assumed to vary linearly with X', and X'
varies between X^ l - X^ and X^ii+l - Xi as indicated on figure 9. When
these small intervals are used, Ne distance Xi - Xj, rather than simply Xi,
has to be introduced.

J

XJ +1-Xi

dPdi	 = -	 , (X - X - X') ln(X - X - X')
2
 - 2 dX' + constanti	 2v X	 -X	 dX	 i	 [	 i	 J

(31)

The linear expression for dP/dX' reads

dP

dX' _ (a 1 X' + a 2 ) PJ _1 + ( a
3 X' + a 4 ) P

1 
+ (a5 X8 + a 6 ) P'+l	 (32)

where

.1

13



(33)

a 1 = d
1

a2 = -(X^ + X, +1) + a l X'
1

d1 = (X J-1 - Xi)(Xj-1 - Xj+1)

2a3=d

	

2	 i

-(X,
+1 + X1-1)a 4	d2	 + a3Xj

	

d 2 = (Xi - XJ-1)(Xi	 XJ+1)

2
a 5 = d 3

	

-( X	 + x	 )-1
a6 =	 d3	 + a5X^

d 3 = (Xj+1 - xJ- 1 )(X j+1 	 Xiv

From the expression for dP/dX', it can be seen that ddij can be expressed as

	

dd ij = dDi,3-1Pj-1 + dD i,j
Pj + dDi.J+1Pj+1 + constant	 (34)

where dDij are the elementary influence ccefficients calculated as

fXJ+l-X'

dD
i,j-1	 - 2*	

(al X' + a 2 )( X1 - X' - X'}rin ( X i - X^ - X') 2 - 2] dX'

Xi-1 -xi
	L

(35)

A similar relation that uses the corresponding coefficients a3, a4 and

a 5 , a6 is used to define dDij and dDi , 3+1. By adopting the change of
variables

	

Z=Xi -X3-X'; Zmin	 X i -XJ_1 ; Z max =Xi-XJ+1
(36)

	b 2 = a l ( X i - X^) + a 2 ;	 dZ = - dX'

dDi , j - 1 is calculated as

14



Z
max

dD i.J_1	 2^	
(-a1Z + b 2 ) Z 11  (Z 2 ) - 2] dZ

Zmin

Zmax	 Zmax

	

- 2	 -b2	Z In Z dZ + al	Z2 In Z 2 dZ + 2b2

Zmin	 Zmin

	

Z2 Zmax	 Z3 Zmax

x 2	
-2a1 3

	

Zmin	 Zmin

Zmax
4	 3	 `	 2	 3

2r 
-2b2 

4 
(In Z 2 - 1) + 2a1 

Z9 
(ln IZI 3 - 1I+ 2b2 2 - 2a1 3

	

 /
	

Zmin

(37)

Using the variables M, N, and K, we obtain after rearrangement

dD
i, j - 1	 2w (al K + a 2 2)

dDi,^ _ - 2z	
34 

2

	

(
a K + a	 (38)

1	 M	 +
dDi

, 3 + l = - 2. 
a 

5 K + a 6 2

where
1

M = Zmi n 
(I	 min - 3) - Zma  (In Zma

N = Z3 x (In 
IZmax13- 

4) - Z3 (In IZmi
n13 - 

4 1	 (39)MalK

	 M Xi	 x^ + 92N

There is no problem concerning the singularity occurring for ;i • X .

When there is a singularity in the interval [ X i-1• Xi+l], we can integrate
along the two half intervals [Xi - 1, Xi] and [Xi, Xi + l] and use the relation

lim (Z2 in Z 2 ) = lim (Z 3 in IZI 3 ) • 0	 (40)
Z-+0	 Z-+O

15
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1 •`N 1_ .	 _

which shows the relations 118) to be also valid for Xi - XJ. Finally, the
deformation Ti 1s obtained by summing all of the elementary small deforma-

tions daiJ

N-1

di 
3 J=2,4,6,... 

da 
i.J

	
(41)

	

b i =	 Di^JPJ - 4 in CR2 *
w I	 (42)

J=1	 \\\	 /

	

where Di.J = d0i^	 if J is even. If J is odd (J = 3 in the following
example), we calcu^ate dDi3 coming from the interval [XI, X3] and add to it

the value dDiJ coming from the interval [X3, X51 in order to obtain the final
value of D13. For the first and last values of Di.J, we simply have

	

Di,l = d01,1	

(43)

D i,N = dDi,N

	

Note now that	 Dij P 	 is independent of the load. At high loads the

J
dimensionless film thickness He becomes very small with respect to Ti.

However, by using an appropriate change of variable (X = x/bc), the maximum
deformation dmax can be kept equal to He. Using the last change of vari-

able, we have

di	 c L

N 

DiJPJ - 4 
In 

CR2 *
w c ?1	 (44)

J =1	 \	 J	 I

where DiJ are the new influence coefficients obtained with the new value
of X. From the definition of c we have

	

CE D i' J PJ = He	 (45)

The maximum deformation dmax
(defined in eq. (10))

/

, leading

- 4 In CR2 3w ) +

The value of c can t\\\\herefore

is close to the maximum Hertzian deformation dH
to	

\
21n2 +4 H e - 41n 

CR28Tc 2
/	

(46)

be defined as

L = 
1

exp (2He - 0.5)	 (47)

This numerical "trick" was definitively helpful at high loads but was not used
in the results presented herein.
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C N = AC N-1 + AC 
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APPENDIX B

CORRECTIONS TO BE APPLIED TO WEIGHTING FACTORS DUE TO X

For X - Xend, P = dP/dX - 0. It is assumed that between X N and Xend,
P(X) is described by a second-degree polynomial. To respect the previously

mentioned boundary condition, we have

P - (X - 
X end ) 2 

P

	

2 N	
(48)

_

(XN	 Xend)

dP	
2(X - Xend)

dX =	 X - X	 2 PN	 (49)

N	 end

For X = XN we have therefore

14.6 22	
P	 (50)

\dX N	 XN	 Xend N

which can also be expressed as

2
an,n-1 = 0 '	 a	

0	 (51)
n,n	

XN	 Xend	
an,n+l =

The integral of the pressure between X N and Xend leads to

f X epd P dX = 3 
Xend - X

N ] PN = eCN PN	(52)

XN

If N is odd, we substract from the value of C N the value dCN+1,N coming

from the interval [XN,XN+2] and add eCN to set the final value of CN. If

N is even, we modify C N-1 and CN . From C N_ 1 , we substract dCN,N-1

from the interval [X N_1, XN+1] and add the weighting factor eCN-1 coming from

the integration of P between XN_l and XN. Using the "trapeze" rule,

XN - Xp -1

AC N-12

The value of CN is finally defined as

(53)



with
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APPENDIX C

CALCULATION OF JACOBIAN FACTORS

The factors to be defined are

af i 	afi	 afi

a(PeHe) ' aP
i ' aH0

3dP	 -	 _ PeHe

f  = Hi (dXX) i - K 	 H i	 -
Pi

X
2	 N

Hi =H0 +
2 1 +
	

0i3P^=1

dP/dX, -i , and Pi are defined by equations (11), (19) or (20), and (18).

Before the final Jacobian factors are defined, we can define

8H  8H 

8H0 = 1 '	 aPi = Oij

(16)

(17)

a^i
aP = aP

H n i k
ij
	 if Barus' viscosity is used

an	 Z-1

aPi	
5.1x10

-9 
PH
 

(In "0 + 9.67)(1 + 5.1x10-9PHP1)	
nikij

if Roelands' viscosity is used

where kid is the Kronecker symbol (k i' = 1 if i = J; = 0 if 1 0 J)

e(1 /p i )	 0.6x10-9 PH
k

aP1	
1 + 2.3x10 -9 PH Pi	

ij

(55)	 1

a dXi =a	 k	 +a k	 +a	 k
aP3	i,i-1 i-1,^	 ii i^	 i,i+1 i+l,j

It is now easy to define the Jacobian factors



afi
	 K^i

a (PeHe )	 Pi

^	 a 
P

	

afi
	 2 /dP	 3	 dX/i 	 a^i	 PeHe

	aP	
3Hi 

VdX) i Did * H i	 aP	 - K aP	 Hi - -
	 (56)

	

^	 J	 J	 Pi

a_t

_	 i
K^i Did - PeHe aPP

aH i	
3H

i 
(
dX	 K

0	 \ )i	
n 

9

.a
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APPENDIX D

UEFINITION OF WEIGHTING FACTORS Cj

The weighting factors C	 are defined by using the three-point Lagrange

polynomial with a general me 	 (nonconstant step). In the interval [Xj-1,

Xj *1 ] the pressure is described by a second-degree polynomial in X'

X (X + X, - Xi+l)	 (X, + X - X	 ) (X , + X	 X

P	 +	 ^	 ^-1	 ^	 J+1) P

P ' (X	 - Xi)(Xj-1 - Xj+l ) 3-1	 (Xi - X
3-1 )(Xy - Xj+1)	 i

(X' + X i - X
J- 1 ) X1

+ (Xj+1	 Xi-1)(Xiil - X3) P
'+l	 (57)

We can now define the coefficients dCj , j - 1, dCjj, and dC3j + 1 such that

X1
max

P dX' = dC'.J_l P'-1 + dCiiPi + dCJ.J+lPj+1

fV n

with X
min ' (Xj_l - X'): Xmax = (X3+1 - Xi)

X'

max
_	 1	 X'3	 _	 X' 2dC

i.J- 1 	(X J-1 - Xi)(Xj-1 - Xy+l ) 	 3	 + (X3	 XJ+l) 2	 Xmin

1	 X'3	 _	 X' 2

	

dC
i,i ' (Xi - X^-1 )(Xi - X'+l) 3	

+ (2X1 - X
J-1	 Xj+1 ) 2

X'
max

+ (X^ - 
XJ-1 )(Xi	 Xj+1) X1

IXmin

X'
3	 2

max

dCj	
(Xj+1 - Xj - 1)(Xj+l - X j )	 3	 + (X1 - 

XJ
- 1)

_,
j+1 	 2	 X.

min

These coefficients are calculated for j = 2,4,..., N - 1. The coefficients
Cj are finally defined as

	

Ci - dCj,j	 if j is even

20
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When j is odd (j = 3 in the following example), we calculate dC?? 3 corre-	 j

sponding to the interval [X l ,X3] and add to it dC4^3 coming from tie interval

[X3,X5] in order to define Cj or C3 in this example. Minor corrections

are also applied on the last values of Cj in order to respect the boundary
condition for X - Xend, as shown in appendix B.
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