General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA Technical Memorandum 87047

Filter Induced Errors in Laser Anemometer Measurements Using Counter Processors

(NASA-TH-87047) FILTER INFUCEL EERORS IN N85-30268 LASER ANEMOMETER MEASUREMENTS USING COUNTER PROCESSORS (NASA) 15 p EC A02/MF A01 CSCL 14B Unclas G3/35 21723

Lawrence G. Oberle and Richard G. Seasholtz Lewis Research Center Cleveland, Ohio

Prepared for the International Laser Anemometry Symposium ASME Winter Annual Meeting Miami, Florida, November 17-21, 1985

Lawrence G. Oberle and Richard G. Seasholtz National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

ABSTRACT

Previous simulations of laser Doppler anemometer (LDA) systems have focused primarily on noise studies or biasing errors. Another possible source of error is due to the choice of filter types and filter cutoff frequencies.

In general, before it is applied to the counter portion of the signal processor, a Doppler burst is filtered to remove the pedestal and to reduce noise in the frequency bands outside the region in which the signal occurs. Filtering, however, can introduce errors into the measurement of the frequency of the input signal which leads to inaccurate results.

With the results of this paper it is possible to evaluate errors caused by signal filtering in an LDA counter-processor data acquisition system and to choose filters for a specific application which will reduce these errors.

NOMENCLATURE

- As amplitude of Doppler burst peak, counts/sample period
- A_{dc} DC or background component of Doppler burst, counts/sample period
- F1 lower cutoff frequency of the filter, cycles/ sample period
- F_u upper cutoff frequency of the filter, cycles/ sample period
- f_D Doppler frequency of the burst, cycles/sample period
- G maximum value of |H(f)
- H(f) frequency response function of a given filter
- |H(f)| magnitude of H(f)
- K comparison switch constant (generally set to 10)

- K_A arbitrary constant (usually 3 or 4) for setting counter thresholds
- N number of cycles used in comparison testing
- Nc number of cycles used in Doppler frequency measurement
- N_f number of fringes in the burst
- N_{bw} noise bandwidth, cycles/sample period
- Pn noise power
- Ps mean signal power
- r comparison ratio, 1/2 or 5/8
- SNR peak signal to noise ratio
- T_N time interval between zero-crossing time at the end of the first cycle to exceed TH2 and the zero-crossing time at the end of the last cycle in the comparison envelope
- T_{NC} time interval between zero-crossing time at the end of the first cycle to exceed TH2 and the zero-crossing time at the end of the last cycle in the measurement envelope
- TH1 low counter threshold (K_A x background noise level)
- TH2 high counter threshold (5 x TH1)
- to time of peak of Doppler burst
- 9 visibility of the burst
- x(t) time domain output of the photomultiplier
- <x(t)> expected value of x(t)

σ rms noise

phase angle of Doppler burst

INTRODUCTION

To date, most LDA data acquisition system analyses have focussed on the errors caused by noise or biasing. This paper evaluates the errors caused by signal filtering through a computer simulation of the signal processing sequence.

In general, a Doppler burst is filtered before being applied to the counter-processor to remove the DC component (pedestal) and to reduce noise from outside the frequency region containing the Doppler signal. The ideal filter for this application possesses three significant characteristics (1): linear phase (sometimes stated as constant time deTay) in the passband, constant amplitude in the passband, and infinite attenuation outside the passband. While an ideal filter is theoretically impossible, approximations to this ideal can be made. These approximations to the ideal are the general filter types analyzed herein.

Filter-induced errors can be divided into three broad categories which correspond to the lack of perfection in the previously mentioned characteristics. These error categories are as follows: skewing of the zero-crossings used in determining the input frequency, caused by nonlinear phase delay in the filter; biasing or preferential selection of certain frequencies in the passband, caused by ripples in the filter amplitude within the passband; and errors caused by insufficiently attenuated noise from outside tre passband.

Adrian and Earley (2) evaluated LDA counterprocessor performance as a function of the noise attributes of the signal received by the photomultiplier. Dopheide and Taux (1) compared the counter-processor to a transient recorder but did note that "electronic filtering of the Doppler signal introduces the most important systematic error" to the data acquisition process. Hosel and Rodi (3) emphasized noise induced errors and determined that noise errors were a function of the signal to noise ratio (SNR), the noise spectrum bandwidth, and the counter control parameters. Except for Dopheide and Taux, when electronic filtering was mentioned at all, it was assumed that the filtering being done was appropriate for the signals being measured. The emphasis of the work by Dopheide and Taux, however, centered on the comparison of two data acquisition techniques, rather than filter type and use.

DIGITAL SIMULATION OF SIGNAL PROCESSING WITH THE COUNTER-PROCESSOR

Doppler Burst

The output of the photomultiplier tube is assumed to be a Gaussian modulated sinusoidal wave of frequency equal to the Doppler frequency. It is further assumed that the seed particle velocity vector which generates this signal is parallel to the fringe normals of the measurement volume. The parameters that describe the burst are the amplitude A_S , the number of fringes N_f (equal to the number of cycles between e^{-2} intensity points), the visibility V, the Doppler frequency fD, the time at the peak of the burst t_0 , and the phase ϕ . The constant background level is A_{dc} . The

$$x(t) = A_{dc} + A_{s} \left\{ 1 + V \cos \left[2\pi f_{D}(t - t_{\phi}) + \phi \right] \right\}$$
$$e^{-1/2 \left[4f_{D}(t - t_{0})/N_{f} \right]^{2}}$$
(1)

which is shown in Fig. 1(a) (in the time domain), and in Fig. 1(b) (in the frequency domain as represented by the magnitude along the positive frequency axis). Assuming a "short-term" counting condition (4), the number of counts (photon events) in a given interval (t-(dt/2), t+(dt/2)) is approximately x(t) dt. The actual number of counts in each time interval dt has a Poisson probability distribution. The probability of k counts in the interval dt is

$$P(k,m) = \frac{m^{k}}{k!} e^{-m}$$
 (2)

where m is the expected count at time t

$$m = x(t) dt$$
(3)

The Doppler burst of Fig. 1(a) with shot effect induced white noise added is shown in Figs. 1(c) and (d). Figures 1(e) and (f) show the signal after filtering with a bandpass filter. Figure 1 illustrates the desired elimination of the pedestal and the reduction of the noise. The number of visible fringes has a direct affect on the apparent performance of the filters. Figure 2 shows an exaggerated view of this affect. The Doppler frequency of the bursts was shifted upwards to the upper cutoff frequency of the filter to highlight the pedestal leakage. Figure 2(a) depicts the spectrum of a Dopple burst with $N_f = 4$, while Fig. 2(b) shows the spectrum of a Doppler burst of identical frequency with $N_f = 12$. As can be seen in Figs. 2(c) and (d) (showing the signals of Figs. 2(a) and (b), after filtering), the pedestal in the 4 fringe case is much less attenuated than its 12 fringe counterpart. This pedestal leakage can result in frequency measurements which are much lower than the actual Doppler frequency.

Filters

The filters were simulated using classical analog filter designs, with the low pass prototypes being used to calculate the high pass filters using the usual transformation (5). The conversion to the digital domain is done by sampling the complex frequency response of the analog filter which is equivalent to impulse invariance (6, p. 198). For this to be a valid procedure the impulse response must decay to near zero in the time record. The bandpass filters were formed by cascading low and high pass filters of the required types. A haroware realization of these bandpass filters would require that an amplifier be inserted between the filters to maintain an acceptable signal level.

Four five-pole filters were examined in an attempt to determine which of the three criteria were the most significant in terms of filter-induced errors. The Butterworth filter (Fig. 3(a)) was chosen because the low pass prototype provides a transfer function which is "maximally flat" in the passband, although this characteristic is not maintained in the transformation to create the bandpass filter. The Bessel filter (Fig. 3(b)) low pass prototype exhibits a transfer function which is "maximally flat" in terms of the time delay in the passband, but again, this highly linear phase characteristic is not maintained when the low pass filter (5). Finally, the Chebyshev filters were chosen as examples of filters with transfer functions of the lowest order which meet the specified attenuation criteria. The 1-dB filter (Fig. 3(c)) is an example of a filter with a fast falloff outside the passband, and the 0.1-dB filter (Fig. 3(d)) is an example of a filter with a low ripple. As a result of the low ripple, the Chebyshev 0.1-dB filter also has a flat passband magnitude.

Signal Filtering Using Discrete Fourier Transform (DFT)

For the digital simulation, the time record x(t)of the burst was represented as 1024 uniformly space samples. The Fourier transform of this record reveals the Doppler frequency. In this paper, the simulated frequencies are expressed in units of cycles per sample period. Consider a Doppler burst of frequency f_D sampled 25 times per cycle with $N_f = 8$ visible fringes. The Doppler frequency of this signal is then 1/25 or 0.04 cycles/sample period, and the burst width is $N_f/f_D = 8/0.04 = 200$ sample periods. A scaling factor is used to relate these numbers

A scaling factor is used to relate these numbers to actual signals obtainable from an '.DA sy .em. For example, with a scaling factor of 10^9 sample periods/ second, the 0.04 cycles/sample period signal would correspond to a signal of frequency 40 MHz. The burst width would then be 200 sample periods/ 10^9 sample periods/second or 200 nsec in a time record of 1.024 µsec.

Because of the Nyquist criterion, the Doppler signal must be sampled at least twice per cycle to avoid aliating in the reconstructed time mecord. This puts an upper limit on the simulated woppler signal of 0.5 cycles/sample period. One would prefer to sample the signal or the order of 10 times/cycle, yielding an effective upper limit of 0.1 cycles/sample period. Furthermore, in order to use discrete Fourier transform to perform linear convolutions without aliasing, the sum of lengths of the nonzero portions of the Doppler burst and the nonzero portion of the impulse response of the filter must be less than the length of the time recoid $(\underline{6}, p. 111)$. This constraint places a lower limit on

A ratio of upper to lower cutoff frequencies of ? to 1 was considered general enough to serve the purposis of this paper. The upper cutoff frequency of the filters was chosen as 0.08 cycles/sample period to fall well within the upper frequency limit. The lower cutoff frequency was therefore 0.04 cycles/sample period. With the two cutoff frequencies specified, the impulse response of the filter (equal to the inverse discrete Fourier transform of the frequency responses of the filters) could be calculated. It was found that for the four filters, these functions approach zero at or about 256 sample periods. The nonzero portion of the Doppler burst could then extend to 750 sample periods and still meet the convolution constraint. This leads to a lower frequency limit on the Doppler burst (for $N_f = 8$) of $f_D = N_f/\text{length} = 8/750 = 0.011$ cycles/sample period. Since the frequencies of interest fall well within the range of 0.011 to 0.1 cycles/sample period, the frequency limits imposed by the Nyquist criterion and the discrete Fourier transform are satisfied.

Counter-Processor Simulation

The filtered signal, either noise-free or noiseadded, is then applied to the counter simulation program. The algorithm for the processor is based on a commercially available signal processor used at NASA Lewis for laser Doppler Anemometry (LDA) measurements (7). The processor model performs two primary functions - input conditioning and timing.

Input conditioning can be viewed as defining the envelopes used in making the measurement. These envelopes are the burst envelope, the envelope of the number of cycles used in calculating the average (the $N_{\rm C}$ envelope), and the comparison envelope. The burst envelope detector determines the beginning and end of a Doppler burst using the thresholds TH1 and TH2 as shown in Fig. 4. The lower counter threshold TH1 is set to $K_{\rm A}$ times the background noise level, where $K_{\rm A}$ is an arbitrary constant. The high threshold TH2 is usually set to five times TH1. The beginning of the burst is defined as the first Doppler cycle which crosses TH2. The burst continues until a cycle crosses TH1 but not TH2. In Fig. 4, the burst envelope encompasses six valid cycles. The $N_{\rm C}$ envelope starts at the first valid cycle and continues until $N_{\rm C}$ cycles are found. This is shown in Fig. 4 for $N_{\rm C}$ = 4. If the burst envelope to the number of cycles in the comparison envelope to the number of cycles in the comparison envelope to the number of cycles in the $N_{\rm C}$ envelope (called the comparison ratio r) is generally set to 1/2 for $N_{\rm C}$ = 2 and $N_{\rm C}$ = 4 and to 5/8 for $N_{\rm C}$ = 3. Figure 4 shows the comparison envelope applicable for $N_{\rm C}$ = 4.

The timing portion of the model uses the negativegoing zero-crossings of the valid cycles (circled locations in Fig. 4) to determine the Doppler frequency. These zero-crossings are found using linear interpolation between the time domain samples that bracket the zero-crossing. In the actual processor, Schmitt triggers are used to find the zero-crossings. The Doppler frequency is then calculated as

$$f_{\rm D} = \frac{N_{\rm C}}{T_{\rm NC}}$$
(4)

where T_{N_C} is the time interval between the first and last zero-crossings within the N_C envelope. To determine if the Doppler frequency is changing

To determine if the Doppler frequency is changing drastically from cycle to cycle within the burst, a comparison test is made. T_N is defined as the time interval between the first and last zero-crossing in the comparison envelope. In the actual processor, the measurement passes the comparison test if

$$rT_{NC} - K < T_N < rT_{NC} + K$$
 (5)

where K is a constant number of clock counts set from the front panel. For the simulation program, the comparison test uses the relationship

where the comparison accuracy used is generally set to 5 percent. The simulation comparison test is percentage based, while the actual processor measures the difference in counts. What this implies is that in the real processor, as the Doppler frequency increases, the tolerance on the comparison validation increases because the limits are a fixed number of clock counts. In the digital simulation, the comparison validation is given as a percentage of T_{NC} . The comparison was performed in this manner so as to generalize the results of this naper. To relate the percentage to the actual processor switch setting, the Doppler frequency must be specified.

Signal to Noise Ratio (SNR)

Since the noise output of the photomultiplier is assumed to be white, one cannot speak of SNR until the signal has been filtered. Herein, we define the peak SNR as the ratio of the mean signal power at the filter output to the filtered mean noise power where both are averaged over one cycle, with the exponential term appearing in Eq. (1) set to its peak value, unity. Therefore, the mean signal power can be written as

$$P_{s} = 0.5(A_{s}V)^{2} |H(f)|^{2}$$
(7)

With the assumption of shot effect induced white noise, the power spectral density (at a given time) is equal to the expected photoelectron rate. The noise power is

$$P_n = 2 \langle x(t) \rangle N_{bw}$$
(8)

where the noise bandwidth Nbw is

$$N_{bw} = \frac{1}{G^2} \int_{\phi}^{\infty} |H(f)|^2 df \qquad (9)$$

and G is defined as the maximum value of |H(f)|. Note that the rms noise (ensemble average at a given time) is

$$\sigma = \sqrt{P_n}$$
(10)

The noise power averaged over one cycle is thus

$$P_{n} = 2N_{bw} \left(A_{dc} + A_{s} \right)$$
(11)

and the peak SNR is

$$SNR = \frac{(A_{S}V)^{2}|H(f)|^{2}}{4N_{bw}(A_{dc} + A_{s})}$$
(12)

RESULTS

The output of the filter was determined by finding the inverse Fourier transform of the product of the Fourier transform of the input signal and the Fourier transform of the filter. The noise-free signals were evaluated primarily to determine the ability of the filters to attenuate the pedestal without arrecting the Doppler frequency. As shown in Fig. 2, pedestal leakage is a strong function of N_f. However, it is not clear whether the pedestal leakage is a problem in determining the Doppler frequency.

A more obvious source of error in measurements is the number of cycles used in calculating the Doppler frequency. Figure 5 depicts the percent error as a function of frequency of the average of four fringes (i.e., $N_c = 4$) for $N_f = 4$, 8, and 12. It is apparent that one should not choose Nf to be equal to Nr, even if the flow is parallel to the fringe normals. Either the amplitude is not large enough to allow the four cycles to be counted (as is the case with the Bessel filter, Fig. 5(b)), or the error in the later cycles is large enough to induce relatively large errors in the average (as happens with the other filters). Otherwise, the general trend is that the larger the number of fringes, the more accurate the measurement will be. Other considerations, such as the size of the measurement volume, force the number of fringes to be as small as possible. It was our experience that if Nf is chosen to be roughly twice N_{C} , the measurement accuracy is sufficient. For purposes of this report, it was determined that the combination of $N_f = 8$ and $N_c = 4$ was adequate. These values will be used throughout the remainder of the report.

Another observation can be made from Fig. 5. The Butterworth filter frequency response exhibits a marked slope as a function of frequency. This implies that the measured frequency will tend to be biased toward the center of the filter passband. It is desirable that the slope of the error curve be very nearly flat over a wide range in the passband. The Bessel and both Chebyshev filters more nearly approach this condition. However, the slopes of the error curves in the Chebyshev filters become pronounced at the passband edges.

Table I shows the normalized frequency for individual cycles of the filtered bursts as a function of both frequency and filter. The amplitude was increased in each case until 10 cycles were accepted by the counter processor. In general, the later cycles result in a lower frequency than the earlier cycles, and the bursts of higher input frequency are biased toward the lower frequencies. The exceptions to these general trends are the two Chebyshev filters. At the higher frequencies, the later cycles are of higher frequency than the earlier cycles. This does not appear in the averages because bursts of high enough amplitude to be processed first cross TH2 (see Fig. 4) at cycle 4 or earlier. Those bursts which cross the upper threshold at cycle 5 or higher will not have 4 consecutive cycles

As noise is added to the Doppler signal, a number of observations can be made. Figure 6 is the comparison of normally distributed random amplitude signals (mean value equals 10 counts/sample period, standard deviation equals 10 counts/sample period), both noise-free and noise-added, as a function of frequency. For the noisefree case, the Bessel filter and the 0.1-dB Chebyshev filter appear less sensitive to amplitude fluctuations than the other two. But, again, for the four filters, the general trend is downward as the frequency increases. With Poisson-noise added, the signal accu-racy deteriorates, as expected. The "bumps" in the Bessel filter frequency response occur because fewer bursts are accepted by the pro essor for this filter than for the other three. Sir e the Bessel filter attenuates the input signal, ignals of higher input amplitude are necessary to c - ss the upper threshold. The data rate using the Bessel filter will be necessar-ily lower than for the other filters. The 0.1-dB Chebyshev filter exhibits the flattest profile throughout the frequency range.

Another consideration in the use of laser anemometers is the measurement of turbulence intensity. Figure 7 shows the standard deviation of the measurements as a function of frequency for the four filters for random amplitude signal with noise added. The four filters are clustered around the 1- to 1.5-percent range. This implies that turbulence intensities of this magnitude cannot be measured accurately using the standard techniques. Also, measurements of mean velocity will be biased near the band edges because of the variation of the measurement rate with frequency caused by filter attenuation. For these measurements, the Bessel filter exhibits the highest standard deviation at the higher frequencies. It is desirable that this curve be nearly flat to avoid errors in turbulence intensity as a function of frequency. The flattest profile can be seen to be the Butterworth filter, especially in the center of the passband, although the differences between these filters in this respect are not especially significant.

Figure 8 shows the SNR of the four filters as a function of frequency for fixed-amplitude, noise added input signals. The Bessel filter exhibits the least variation in SNR across the passband, but the SNR is significantly lower than for the other filters. The O.1-dB Chebyshev filter also has a fairly flat profile,

but at higher magnitude than the Bessel. Both the Butterworth and the 1-dB Chebyshev filters exhibit a large variation of SNR as a function of frequency. This implies that the input signals will be biased more strongly by these filters than by the Bessel and the 0.1-dB Chebyshev filters. This observation is borne out by the graphs of Fig. 6.

CONCLUSIONS

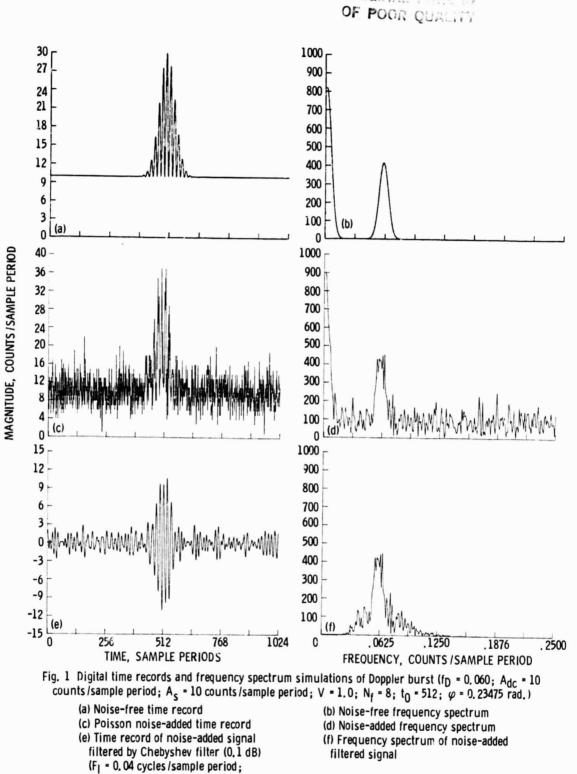
From this admittedly limited study, several important conclusions can be reached. First, the error in the signal can be viewed to be partially a function of the ratio between Nf and Nc. As a rule of thumb, if $N_f/N_c \approx$, the errors caused by the large variation in cycle frequencies at the end of the burst will be minimized. Second, for the four filters studied, there is generally strong signal biasing near the band This can be avoided by defining "effective" edges. cutoff frequencies inside the actual cutoff frequencies of the filters. A 10-percent shift upwards for the low edge, and downwards for the high edge, should be sufficient to limit these errors. Third, biasing errors caused by the filters can be linked to the variations in SNR across the passband. A filter with a flat SNR profile is then more desirable than a filter with a large variation in SNR as a function of frequency. Fourth, variations in standard deviations, which can cause errors in turbulence intensity measurements, can be interpreted as a function of the magnitude of the SNR of the filtered signal. For this reason, and for the obvious reason that a higher SNR yields a higher data rate, a filter should be chosen which allows as high an SNR as possible. With these four points in mind, the Chebyshev filter with the 0.1-dB ripple is the best filter of the four studied.

It should be noted that this study is by no means exhaustive. No effort was made to determine the errors

induced by these filters on the measurement of turbulent flow or of flows for which the mean velocity vector crosses the measurement volume at an angle to the fringe normals. Furthermore, there exist a large number of filters not evaluated here as well as higher order filters of the types examined. A more extensive study of these systematic errors is required to minimize the inaccuracies of the measurements made by fringe-type laser anemometry systems.

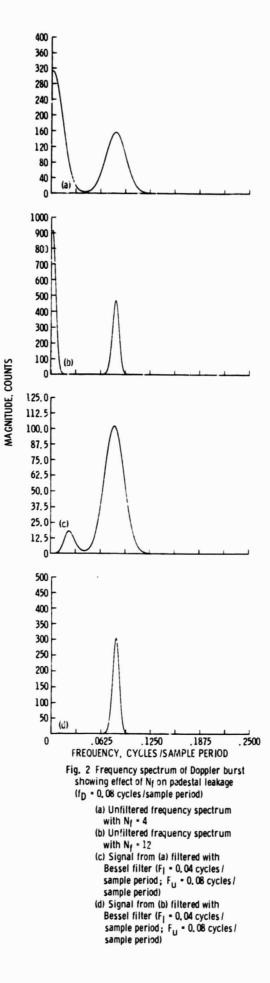
REFERENCES

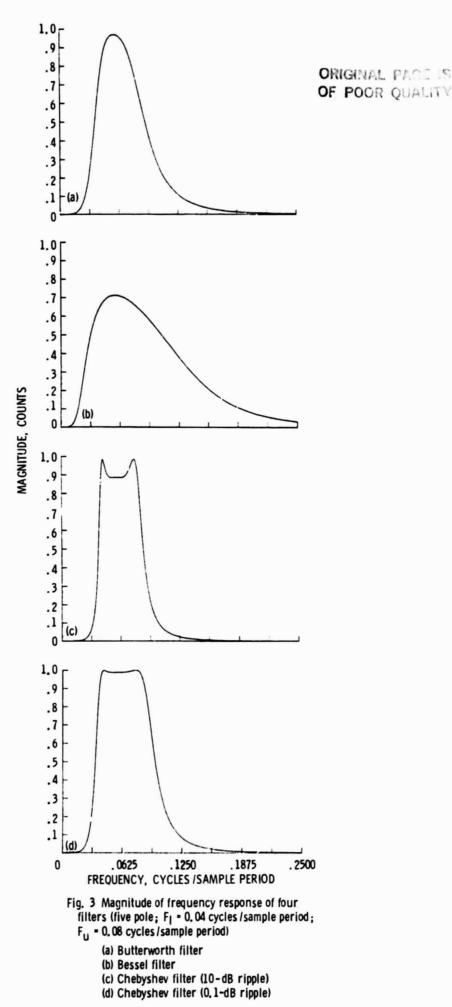
- Dopheide, D., and Taux, G. "Accurate Frequency Measurements of Noise-Added Doppler Signals by Means of Transient Recorders and LDA Counters Using a Laser Diode Simulator," <u>Second International Symposium of Applications of Laser Anemometry to Fluid</u> <u>Mechanics</u>, Lisbon, Portugal, 1984, pp. 4.3 to 4.3-7.
- Adrian, R.J., and Early, W.L. "Evaluation of LDV Performance Using Mie Scattering Theory," <u>Minnesota</u> <u>Symposium of Laser Anemometry</u>, Univ. of Minnesota, Bloomington, MN, 1975, pp. 426-454.
- Hosel, W., and Rodi, W. "Errors Occurring in LDA-Measurements with Counter Signal Processing," <u>The</u> <u>Accuracy of Flow Measurements by Laser Doppler</u> <u>Methods</u>, Skovlunde, Copenhagen, Denmark, 1975, pp. 251-257.
- Gagliardi, R.M., and Karp, S., <u>Optical Communica-</u> tions, Wiley, New York, 1976, p. 63.
- Weinburg, L., Network Analysis and Synthesis, McGraw-Hill, New York, 1962, p. 535.
- Oppenheim, A.V., and Schafer, R.W., <u>Digital Signal</u> Processing, Prentice-Hall, Englewood Cliffs, NJ, 1975.
- "Instruction Manual, Model 1990 Counter Type Signal Processor for Laser Velocimeter," TSI P/N 1990147, TSI Inc., St. Paul, MN.

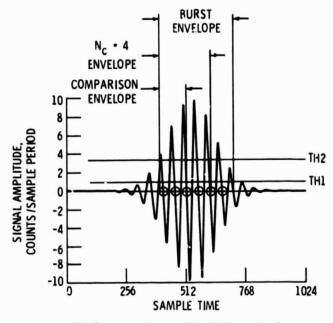

OF POOR QUALITY

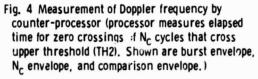
.

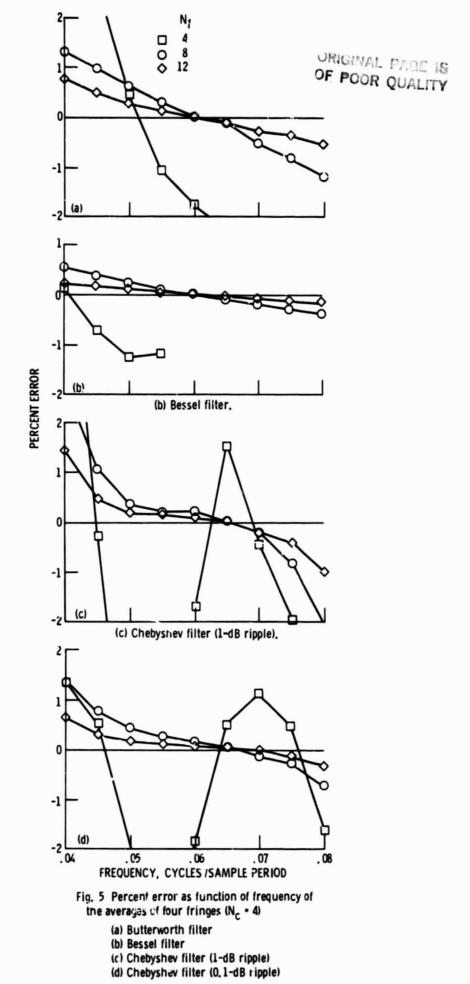
BANDPASS FILTER CUTOFF FREQUENCIES BE = Bessel Fl = .040 cycles/sample period BW = Butterworth CH = Chebyshev Fu = .080 cycles/sample period Number fringes (Nf) = 8 CYCLE Fd filter cycles/ 3 4 5 6 7 8 9 10 sample period 1 2 1.008 1.007 1.006 1.005 1.004 1.003 1.001 1.000 0.998 0.997 .040 BE 1.017 1.017 1.016 1.016 1.015 1.014 1.012 1.010 1.008 1.004 BW CH-1dB 1.026 1.026 1.026 1.025 1.024 1.021 1.018 1.014 1.009 1.006 CH-.1dB 1.017 1.016 1.014 1.012 1.008 1.003 0.996 0.986 0.970 0.948 .045 BE 1.006 1.005 1.004 1.003 1.002 1.001 1.000 0.999 0.997 0.995 BW 1.012 1.011 1.010 1.009 1.007 1.005 1.002 0.997 0.992 0.984 CH-1dB 1.016 1.015 1.013 1.009 1.004 0.996 0.983 0.963 0.930 0.891 CH-.1dB 1.011 1.009 1.007 1.004 0.999 0.994 0.987 0.977 0.963 0.941 .050 BE 1.004 1.004 1.003 1.002 1.001 1.000 0.999 0.998 0.996 0.995 1.008 1.007 1.005 1.004 1.002 1.000 0.996 0.993 0.987 0.981 BW CH-1dB 1.011 1.009 1.006 1.003 0.998 0.992 0.985 0.978 0.985 1.184 CH-.1dB 1.007 1.006 1.004 1.001 0.998 0.995 0.992 0.991 0.993 1.000 1.003 1.003 1.002 1.001 1.000 1.000 0.998 0.997 0.995 0.994 .055 RF 1.006 1.005 1.004 1.003 1.001 1.000 0.998 0.995 0.993 0.991 RH CH-1dB 1.007 1.006 1.004 1.001 0.999 0.996 0.994 0.995 0.999 0.995 CH-.1dB 1.006 1.005 1.004 1.002 1.000 0.999 0.997 0.995 0.994 0.994 1.002 1.002 1.000 1.000 0.999 0.999 0.998 0.996 0.993 0.990 .060 RF 1.004 1.002 1.002 1.000 0.799 0.998 0.996 0.995 0.995 0.994 BW CH-1dB 1.004 1.003 1.003 1.001 1.000 0.998 0.995 0.991 0.986 0.978 CH-.1dB 1.005 1.003 1.003 1.001 1.000 0.999 0.997 0.996 0.995 0.992 .065 1.001 1.001 0.999 0.999 0.999 0.998 0.998 0.996 0.991 0.986 RE 1.000 1.000 0.998 0.997 0.997 0.995 0.995 0.994 0.994 0.997 BM CH-1dB 1.001 1.000 1.001 1.001 1.001 1.002 1.003 1.003 1.000 0.978 CH-.1dF 1.002 1.002 1.001 1.001 1.000 0.999 0.999 0.999 0.996 0.995 1.000 0.999 0.999 0.998 0.997 0.997 0.998 0.998 0.988 0.981 .070 0.996 0.997 0.996 0.994 0.993 0.993 0.991 0.991 0.993 0.992 BW CH-1dB 0.997 0.997 0.997 0.999 1.002 1.008 1.019 1.040 1.085 1.157 CH-.1dB 0.999 1.000 0.999 0.999 1.000 1.001 1.002 1.003 1.004 1.006 1.000 0.998 0.998 0.997 0.996 0.997 0.998 0.995 0.989 0.967 .075 BE 0.994 0.994 0.991 0.991 0.990 0.988 0.988 0.985 0.986 0.985 BW CH-1dB 0.989 0.990 0.990 0.990 0.994 0.998 1.007 1.021 1.037 1.052 Ch-.1dB 0.998 0.996 0.996 0.997 0.997 0.999 1.003 1.008 1.016 1.031 .080 BE 1.000 0.997 0.997 0.995 0.996 0.996 0.998 0.996 0.987 0.954 0.990 0.991 0.988 0.987 0.986 0.983 0.982 0.979 0.976 0.974 BW CH-1dB 0.981 0.980 0.978 0.977 0.977 0.979 0.981 0.985 0.989 0.989

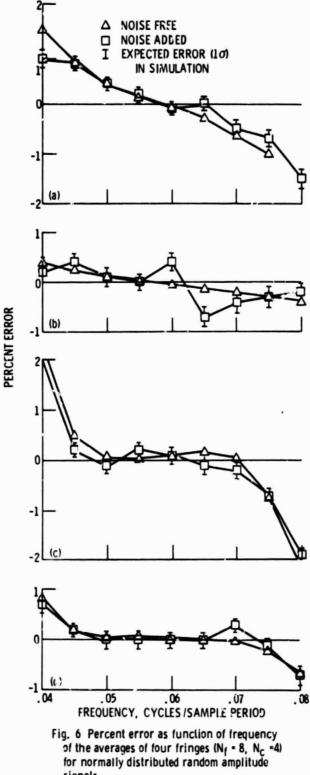

CH-.1dB 0.991 0.993 0.992 0.993 0.994 0.998 1.002 1.012 1.027 1.045

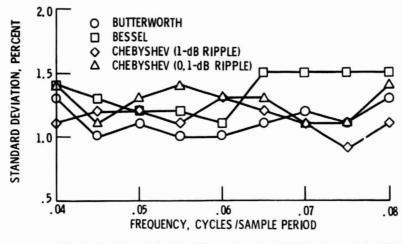

TABLE 1. - NORMALIZED FREQUENCY FOR INDIVIDUAL CYCLES OF FILTERED SIGNAL

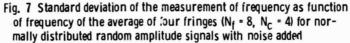


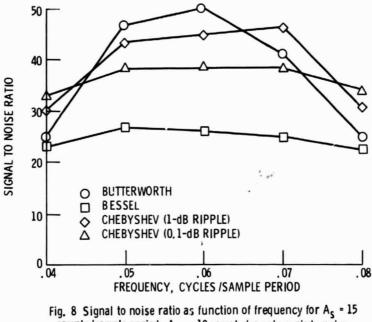

F_{LI} = 0.08 cycles /sample pericd)

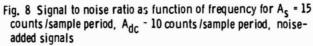

ORIGINAL PACE 19










- (a' Butterworth filter
- (b) Bessel filter
- (c) Chebyshev filter (1-dB ripple
- (d) Chebyshev filter (0.1-dB ripple)

ORIGINAL PAGE IS OF POOR QUALITY

1. Report No.	2. Government Accession	n No. 3	Recipient's Catalog No.	
NASA TM-87047				
4. Title and Subtitle			Report Date	
Filter Induced Errors in Laser Anemometer Measurements Using Counter Processors		6	6. Performing Organization Code 533-04-1A	
7. Author(s)			Performing Organization	Report No.
Lawrence G. Oberle and Ric		E-2609		
			10. Work Unit No.	
9. Performing Organization Name and Address			Contract or Grant No.	
National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135			13. Type of Report and Period Covered	
			Technical Memorandum	
12. Sponsoring Agency Name and Address			lechnical Men	lorandum
National Aeronautics and Space Administration Washington, D.C. 20546			Sponsoring Agency Cod	le
15. Supplementary Notes				
Prepared for the International Laser Anemometry Symposium, ASME Winter Annual Meeting, Miami, Florida, November 17-21, 1985.				
16. Abstract Previous simulations of laser Doppler anemometer (LDA) systems have focused pri-				
marily on noise studies or biasing errors. Another possible source of error is due to the choice of filter types and filter cutoff frequencies. In general, before it is applied to the counter portion of the signal processor, a Doppler burst is filtered to remove the pedestal and to reduce noise in the frequency bands outside the region in which the signal occurs. Filtering, however, can introduce errors into the measurement of the frequency of the input signal which leads to inaccurate results. With the results of this paper it is possible to evaluate errors caused by signal filtering in an LDA counter-processor data acquisition system and to choose filters for a specific application which will reduce these errors.				
17. Key Words (Suggested by Author(s)) 18. Distribution Statement				
Laser anemometry		Unclassified – unlimited STAR Category 35		
19. Security Classif. (of this report) 2	0. Security Classif. (of this	Dade)	21. No. of pages	22. Price*
Unclassified	Unclassified			