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ABSTRACT

Injection-locking has long been recognized as an effective method of

externall y controlling the spectral characteristics of a laser. This tech-

pique has been employed primarily in applications where high energy yet

narrow-]i tie width pulsed laser emission is required. In pulsed injection-

locked systems, line-narrowing is accomplished by injecting a low energy,

narrow-linewidth pulse into a high power laser oscillator. If injection

occurs prior to the onset of lasing in the high power oscillator, a "head-

start" is given to that radiation which is within the spectral band of the

injected signal. If this "head-start" is substantial enough, ]a_sing is ini-

tiated at the wavelength and the linewidth of the injected signal. In the

work presented here, this technique was applied to a cavity-dumped coax-

ial flashlamp pumped dye laser in an effort to obtain nanosecond duration

pulses which have both high energy and narrow-linewidth. In the absence

of an injected laser pulse, the cavity-dumped dye laser was capable of gen-

erating high energy (` 60mJ) nanosecond duration output pulses. These

pulses, however, had a fixed center wavelength and were extremely broad-

band (` 6nm FWHM). Experimental investigations were performed to

determine if the spectral properties of these outputs could be improved

through the use of injection-locking techniques. A parametric study to 	 j

determine the specific conditions under which the laser could be injection-

docked was also carried out. Significant linewidth reduction (to >

0.0015nm) of the outputs was obtained through injection-locking but only

at wavelengths near the peak lasing wavelength of the dye. It was found,

t
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however, that, by inserting weakly dispersive tuning elements in the laser

cavity, these narrow-linewidth outputs could be obtained over a wide

f (24nm) tuning range. Since the weakly dispersive elements had low inser-

tion losses, the tunability of the output was obtained without sacrificing

output pulse energy.

n



The author would like to express his deep appreciation to Professor

Frederic Davidson for the guidance, support and patience he provided dur-

ing the writing of this dissertation and throughout the author's entire bra-
A

duate education. I would also like to acknowledge the valuable assistance

of Professors Etan Bourkoff and C. Harvey Palmer throughout the course d

of this work. Much thanks go to Morgan Thoma and Peter Fuhr for their 	 g	 t
t

council and friendship during my years here. I am especially indebted to ►

Peter for his loan of the spectrometers used in these investigations.

Finally, I would like to acknowledge the Goddard Space Flight Center of

the National Aeronautics and Space Administration without whose fund-

ing this work would not have been possible. In particular, I would like to

thank Dr. John Degnan of NASA for his support of this research. This	 kI,

dissertation is gratefully dedicated to my parents.
^.̂^

U 	

II

ti

-	 iv

 5y

'	 ^	 A



TABLE OF CONTENTS

Page No.

CILILPTER I	 GENMRAL INTRODUCTION ......

CHAPTER 2	 INTROL,(JCTION TO DYE LASERS

AND INJECTION-LOCKING ......

2.1 Introduction ......	 8

2.2 Properties of Organic Dve Lasers ......
.

2.3 Basic Principles of Laser Operation .	 ......	 14

2.4 Early Dye Laser Systems ......	 19

2.5. Techniques for Tuning Dye Laser

Emission ......	 21

2.6 Historical Introduction to

Injection-Locking 21

2.7 General Principles of Injection-Locking ......	 28

2.8 Spectral-Temporal Evolution in

Injection-Locked Cavity-Dumped Lasers
.	

......	 30

2.9 Injection Time Considerations ......	 40

2.10 Injected Signal Strength Requirements ......	 47

2.11 Tunabilitv of Injection-Locked Systems ••••••

2.12 Triplet State Effects 	 ...... 52

CHAPTER 3	 DESIGN AND OPERATION OF THE

CAVITY DUIMPED CFP DYE LASER 	 ...... 55

3.1 Introduction	 •••••• 55

1U 	 3.2 Flashlamp Design and Operation 	 ...... 56

A
J 4%



:3.3 Dye and Coolant Circulation ....•.	 59

3.4 Determination of Optimal Dve Concentration ......	 64

3.5 Basic Oscillator Design and Operation ......	 69

3.6 Description of Oscillator Components ......	 73

3.7 Diagnostic Equipment ......	 75

3.8 Alignment of the Cavity-Dumped Oscillator ......	 78

3.9 Initial Temporal and Radiometric

Performance of the Laser ......	 80

3.10 Beam Waist Considerations ......	 87

3.11 Effects of the Organic Dye on System

Performance ...... 89

3.12 Time Dependent Waveleng th Development ......	 91

CHAPTER 	 - INJECTION-LOCKING OF THE

CAVITY-DUMPED CFP LASER ......	 95

4.1 Introdu* ction ...... 95

4.2 Master Oscillator ...... 96

4.3 Trigger and Timing Circuitry ...... 99

4A Injection-Locked Laser Alignment

4.5 Initial Injection-Locking Experimentnts ..... 108

4.6 MO Linewidth Considerations ......u2

4.7 Installation of High-Power Polarizing

Bearnsplitters •....• 114

4.8 Dependency of Injection-Locking Performance

on Cavity Dispersion •••••• 118

4.9 Injection-Locking Performance Using An

vi



1^ Intracavity Prism ...... 126

- 4.10 Additional Resonator Design Considerations ...... 131

-' 4.11 Effects of a Lower Loss Pockels Cell .•...• 134
i

CHAPTER 5 - PARS NIETRIC ANALYSIS OF LASER
w	 ^,

- PERFOR\, LkNCE ....13r,

5.1 Introduction ......136

tf 5.2 Direct Measurement of p Using An OMA .....• 138

5.3 Effect of Cavity Dispersion on p ......141
y .

5.4 Dependency of p on E, .... 146

5.5 MO Beam Diameter Considerations ......150
' 5.6 Evaluation of Fluorescence "Noise" Level . ......15 2

d

t 5.7 Variation of Laser Pulse Energy with E f 154

V 5.8 Spatial Profile of the Output Pulse .....158
i

CHAPTER 6 - CONCLUSIONS AND SUGGESTIONS

FOR FUTURE IN vrESTIGATIONS ...... 161
i

6.1 Conclusions ...... 161

6.2 Possible Use of CNY Master Oscillators ......263

6.3 Fiahlamp Rise-time Effects • ••••166

i REFERENCES ......169

y

VITA
_

......

r	 ^ t

Vii

e.	 - - ^,;	 ^	 , ,^ .^-ate:;•



2.2 —

LIST OF FIGURES

Figure No.	 Title	 Page No.

2.1 -	 Energy Level Diagram for an Organic Dye

Molecule (from (11)	 •••.•• 10

Absorption and Emission Processes for

Rhodamine 6G (from (1)) 	 ••••.• 13

Relative growth of the photon flux at the

natural wavelength of the cavity, 0a , and

at the wavelength of the injected pulse, O ,

with and without ( %P=0) an injected pulse for

injection occurring 500ns prior to the peak of the

flashlamp pumping pulse.	 .... 43

Relative growth of the photon flux at the

natural wavelength of the cavity, 0o , and

at the wavelength of the injected pulse, O_ ,

with and without (^P=0) an injected pulse for

injection occurring 400ns prior to the peak of the

flashlamp pumping pulse. 	 •..... 44

Relative growth of the photon flux at the

natural wavelength of the cavity, yh o , and

at the wavelength of the injected pulse, 0 i ;

with and without (*=0) an injected pulse for

injection occurring 300ns prior to the peak of the

viii

k:	 as t r_ . A {	
r

F.



G) tlashlanip pumping pulse. ......	 45

3.1	 - Flashlamp Trigger Circuitry .....	 57

3.2	 - Dye and Coolant Circulation System ......	 62

3.3a - Amplified CW Probe Beam ••••••	 66

3.3b - Fluorescence Present w/o Probe Beam ......	 66

3.4	 - Small Signal Gain Coefficient Measured as a

Function of Flashlamp Discharge Energy and

Dye Concentration ......	 67

3.5	 - Small Signal Gain Coefficient Measured as a

Function of Flashlamp Discharge Energy and

Wavelength ......	 68

3.6	 - Schematic of Basic Cavity-Dumped Ring

Oscillator ......	 70

3.7	 - Overall Optical System Schematic ......	 76

3.8	 - Temporal Profile of a Cavity-Dumped Pulse

Extracted - 200ns Prior to the Peak of the Pumping

Pulse . 81

3.9	 - Temporal Profile of a Cavity-Dumped Pulse

Extracted - 400ns After the Peak of the Pumping

P1u se ...... 82

ix

,.	 _	 .. .n sz^ Nn... _.._il.	 _	 ^ i	 . .^__..._._«..	 .,	 ..	 .. ...	 ^...._ _	 _` ^sr^h'^.!..""'Y^."_'•.-'.rz +fr. ..



f
S

s

E
I

r^

i
{

a

a

3.10-	 Double Exposure Taken of the Flourescence Emitted

from the Dye Cell With and Without Lasing 	 ...... 86

4.1 -	 Schematic of the Master Oscillator (MO) and

Coupling Optics	 ...... 98 i^

{

4.2 -	 Block Diagram of the Timing Circuitry	 ......101	 t.

4.3 -	 Passive Decay of the Injected Pulse 	 •••• •106

4.4	 - Transmission Profiles of the High Power

Polarizing Beamspiitters ......116

4.5 - Schematic of the Cavity-Dumped CFP Dye Laser

with a Birefringent Tuner ...... 119

4.6	 - Injection-Locked Output for a, =590nm ......121

4.7	 - Injection-Locked Output for X; =587nm ......122

4.8	 - Injection-Locked Output for a; =583nm ......123

4.9 - Schematic of the Cavity-Dumped CFP Dye Laser with a

Birefringent Tuner and a Polarizing Prism ......125

4.10- Schematic of the Linearly Configured CFP Dye Laser

with a Littrow Prism ...... 127

T

'!t

4.11 -	 Temporal Profile of the Injection-Locked CFP Dye Laser

Output Pulse

5.1	 F'int;l Configuration of the CFP Dye Laser Cavity

X

• •132

_ c9'

.....138



h	 ,^
1'	 'r

5.2	 -
r)	

r
ONIA Display of the Spectral Profile of the MO Output .....140

5.3	 - OMA Display of the Tuned Laser Output, (a) without

injection- locking and ( b) injection-locked with a 3pJ MO

pulse for 578nm<X; < 602nm ...... 143

5.4	 - OMA Display of the Untuned Laser Output, (a) without
a

injection-locking and (b) injection-locked with a 31tJ MO

pulse for X; =590nm ...... 144

5.5	 - Variation of p with A in an Untuned Cavity ...... 145	 ''
1

5.6	 - Variation of p with Injected Pulse Energy, E, , ...... 48

5.7	 - Injection-Locked Output Pulse Energy, E , as a FunctionP	 gY	 a
- r

(
of the Flashlamp Discharge Energy, E f .....Z56

5.8 - Injection-Locked Output Pulse Energy, E., as a Function

of Wavelength ... .157

5.9 Comparison of the Spatial Profile of the Ouput Pulses

with the Theoretically Predicted Profiles of a Completely

Gain Saturated Pulse and an Unsaturated TEMP Gaussian
i

Pulse ......160 ;t

r

i
3



I

ChIAPTER 1 - GENERAL INTRODUCTION

The development of laser systems which can produce nanosecond

duration laser light pulses that are spectrally pure, continuously tunable in

wavelength and that contain high energy (i.e. tens to 'hun(Ireds of milli-

joules) has become very important in recent years because of their many

applications in both applied and basic research. The continiiotisly "unable

organic dye laser is often used in atomic and molecular spectroscopy for

the determination of excited state lifetimes and relaxation rates [1,2j.

Moderate laser pulse energy is necessary for high resolution U spectros-

copy since the second harmonic conversion efficiency is proportional to the

-y

	

	square of the intensity of the fundamental [3]. The narrow laser pulse

linewidths are required in order to selectively excite the energy levels of

interest. Another common application of such laser systems is found in 	 i

their use as sources in LIDAR (light detection and ranging) systems [4].

LIDAR; techniques use the resonant scattering of high energy laser pulses

to make remote measurements of atmospheric constituents and parameters
k

(i.e. species concentration, temperature, pressure, etc.,). Here, the ideal

laser source consists of nanosecond duration pulses that contain as much 	
4

energy as possible, yet have optical linewidths that are as narrow as the
{

Fourier transform limit will allow. The maximum probing range of such

remote sensing systems is limited by the energy of the transmitted laser

signal whereas the accuracy is strong ly dependent on the spectral purity of l
the laser pulse. _ The use of a continuously tunable source, such as an

-777; fi	 ^,,y`,-^5
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organic clue laser, adds much versatility to the system as the laser,output

can be tuned to cover ,,, number of frequencies.

Narrowband, high peak- power dye: laser pulses have been commonly

generated for such applications by using either high power pulsed solid-

state or excimer lasers as the pimp source for the dye laser. These pump-

ing schemes. although effective, possess some inherent disadvant.,ages. For

example, the harmonic veneration of the infrared solid-state sources,

required for organic dye excitation. increases the overall complexity of the

system. And although excimer lasers have proven to be nearly ideal dye

laser pump sources in many ways (high average power, high repetition

rate, direct pumping), their high system cost and size make them incon-

venient for many applications.

This work :addresses an alternative means of generating dye laser

pulses with these characteristics using a standard coaxial flashlamp

pumped (CFP) system. High-energy nanosecond duration pulses from

CFP dye ' lasers have been obtained in the past through the use of a

variety of cavity-dumping or Q - {witching techniques [5,6] The output

pulses from such systems were typically broadband (AX - 1-10nm), how-

ever, as conventional line-narrowing techniques require the installation of

lossy dispersive elements such as etalons, gratings, etc., into the laser cav-

ity., The use of such lossy elements severely reduces the energy efficiency

of the system. As a rule, it is found that attempts to achieve both high

output power and narrow output linewidths from a single oscillator force

contradictory compromises. Using multistage systems, however, there are

two approaches that can be used to resolve this apparent dichotomy. One

method involves directing a low energy but spectrally pure pulse through a

i	 I
#I

1
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Y series of high power amplifier stages [7]. Without any wavel^xtgth discrim-

ination in the amplifiers, however, a significant percentage of the extracted

energy is in the form of broadband amplified spontaneous emission %vhich

reduces the spectral purity of the output [8]. This technique is also

extremely energy inefficient. An alternative technique is to control (,he

spectral properties of a laser externally without the use of intraeavity

dispersive elements and without loss of energy, by injection locking the

laser to a narrowband pulse. In such a pulsed injection- locked system, the

injected signal arri%•es at the laser just at the onset of lasing. If of

sufficient intensity, fhe pulse will act as a "seed", inducing a preferential

buildup of radiation in the laser at the wavelength of the .injected pulse.

Since the technique was first demonstrated with dye lasers, there has

been a variety of work published specifically on the injection-locking of
r 

_j flashlamp pumped dye lasers [0-15]. Injection-locked dye laser systems

have been developed that are capable of producing ` 100 kilowatt peak-

power pulses with linewidths as small as 35MHz [12]. The tuning range of

such systems, however, has generally been limited by the homogeneous

linewidth of the dye to about 2nm. All of these investigations have been

involved with the injection-locking of "Ion;-pulse" (` 1µs duration) flash-

lamp pumped systems. There have been no published accounts, to date,

of attempts to injection- lock Q-switched or cavity-dumped flashlamp

pumped dye lasers.

The principle objective of this work was to extend these previous

efforts and experimentallyp y investigate the feasibility of simultaneously gen-

erating high energy as well as narrow-linewidth nanosecond duration

1
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methods of extending the tuning range of the laser without sacrificing

either the spectral purity or energy of the outputs were also studied.

These efforts were accompanied by a parametric study to determine the

conditions under which the laser could he injection-locked. The Ofects can

f

overall laser performance of such parameters as injected pulse energy,

wavelength, and linewidth, the pulse injection time (with respect to the

flashlamp pumping pulse), and the dispersive properties of the cavity-

dumped oscillator were carefully measured. Although results obtained

from prior experiments on "lone pulse" non-cavity-dumped systems were

useful in yieldingsome expectation as to the important parametric depen-

dencies [16.17], they cannot be directly applied to explain or predict the

behavior of injection-Locked cavity-dumped dye lasers. Gain saturation.

triplet state and other time dependent effects, which are much more

significant in cavity-dumped systems, strongly influence these dependen-

cies. In addition, the behavior of a tuned cavity-dumped oscillator

depends on a number of parameters which are not of consequence in the

"long-pulse" systems.

A theoretical description of the spectral and temporal evolution of the

radiation in an injection-locked dye laser is presented in Chapter 2. A

general equation is developed to describe the relative growth of the photon

flux in the laser cavity at both the injected pulse wavelength and the

natural lasing wavelength of the system. This equation is given in the

•t	 1 f	 d	 t	 k	 1' 't th	 f	 1	 thmos genera orm in or er o ma a etp ik; a various actors t IWO e

injection-locking process i^ dependent on and the nature of these depen-

dencies. In particular, it highlights many effects peculiar to tuned, cavity-

dumped systems (i.e,. saturation effects, triplet state effects, etc.,) that are

-a



neglected in the analyses of "long-pulse" systei is. Because of the nrun ber

1
of independent parameters in the general equation, many of which can

P '

	

	 only be based on additional models, exact numerical predictions of the 	
1

various performance features of the system were not attempted. By rnak-

ing some simplifying assumptions, however, the development of the photon{

fluxes was computed for a brief period of time following the arrival of the

injected signal. During this brief time (` 100ris), saturation, and triplet

state effects can be neglected. These computations, performed for different

injection times, graphically illustrate many of the factors involved in

injection-locking the system.

The actual development and performance of the cavity-dumped oscil-

lator is discussed in Chapter 3. An inherent difficulty in generating high

energy dye laser pulses with flashlamp pumps is caused by the short

T ' excited state relaxation times of the organic dye molecules. Energy

delivered by the excitation source is only stored by the dye molecules for a

period of ' 5ns which corresponds to the fluorescence decay time of the

upper laser state. Because of this, the energy efficiency of the system is

generally related to how rapidly emission can be stimulated. Any spon-

taneous decay, whether radiative or not, represents a loss. The

effectiveness of the excimer and solid-state pumped s ystems is attributable

primarily to the fact that the excitation is in the form of a short, but

extremely intense, pumping pulse. The intensity of the laser radiation

grows extremely rapidly and saturates the gain of the dye within only a

few spontaneous decay times. In cavity-dumped UP systems the net

excitation occurs at a slower rate, so that the intensity of laser radiation

increases more gradually toward the saturation regime.. Because of this
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more gradual growth, the energy efficiency of tlasltlamp pumped systr.tn5 i5

r typically very low.	 The performance of the (,FP systern is primaril y lim-

ited by the optical cavity losses which determine, in part, the extent to

which the system can be driven into 5aturat}on. 	 These losses can be attri-

buted	 to either passive	 losses	 (relleel,}ort/ti- tittsmission 	 losses, scattering,

etc.,) or to more complicated, time and/or wavelength dependent losses

(triplet	 State	 losses,	 tl errnaily	 indltced	 losses,	 etc.,).	 The	 preliminary

phase of the research was devoted to studying the effect that intracavity }
losses	 due to	 resonator optics,	 dve	 concentration,	 flashlamp	 discharge

E
energy, and cavity-dumping time (with respect to the flashlamp pumping

! pulse) had on the energy and temporal profile of the output laser pulses.
l
1

The spectral characteristics of the laser• output are given in Chapter 4

where the preliminary investigations into the injection-locking of the oscil-

lator are described. 	 The theoretical analysis of pulsed injection-locking,	 {

presented in Chapter 2, indicated some of the factors which should have

influenced the performance (i.e. the energies, linewidths. tunability and

temporal cleanliness of the output pulses) of the system. 	 During this

second stage of the work, the primary objective was to experimentally ver-

ify these predictions and to, at least qualitatively, determine the exact

nature of the dependency on these factors. 	 The effect that various cavity

configurations had on system performance was also analyzed. 	 In particu-

lar, the effects of incorporating weakly dispersive, low insertion loss tuning

elements into the cavity were observed to see if broad tunability could be

achieved without sacrificing output pulse energy.	 It was expected that as

i_
long as the cavity losses were not increased substantially, that the added

dispersion would not only allow for wide tunability but, also enable the

l

i

i

i
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laser to be iiije:ction-lacked with weaker injected pulses.

Once the design of the amplifier was optimized, more precise and

quantitative measurements of the spectral (4aracteristics of the ociLputs

were conducted using an Optical Multichannel Anal yzer (OMA). A full

characterization of the system performance is presented in Chapter 5.

These results indicate a good qualitative agreement with the behavior

predicted by the spectro-temporal evolcltion equation presented in Chapter

2. More significantly, they indicate that injection-locking of a single stage

cavity-dumped amplifier is a useful technique for generating high energy,

narrow- Iinewidth, widel y tunable, nanosecond duration pulses.

It should be noted that, while these investigations were performed

using a CFP dye laser system, the techniques used in this work should be

directly adaptable to other types of laser systems as well. Some specific

examples of where these results can be applied as well as some suggestions

for improving the CFP system performance are discussed in the concluding

chapter.

x



CIIt1PTER 2 - INTR:ODUCTION TO DYE LASERS AND

}	 INJECTION-LOCKING

Y,

2.1 - Introduction

The overall objective of this wort: was to develop a laser system capa-

ble of generating pulses with the characteristics specified in Chapter I.

! These characteristics dictated much of the system development. 	 The gen.-
F-
F

eration of continuously tunable visible outputs, for example, dictated the

use of organic dyes as the laser medium. 	 Similarly, a cavity-dumped sys-
3

tern was chosen because it provided the best method of producing high-

I ` energy nanosecond duration pulses from a CFP system. 	 The additional

l
h

^^

requirement that these pulses be narrowband led to the investigation of
1

b,

- injection-locking the cavity-dumped CFP laser.

In I this	 chapter,	 the	 theoretical	 foundations for	 this	 work	 are

_ presented.	 The basic properties of organic dyes are detailed along with a

} historical accounting of the development of dye laser systems.	 Emphasis

will be placed on the development of previous injection-locked flashlamp
j.

pumped systems. 	 Various methods of tuning these systems are also dis-

cussed.	 Prominent among these is that of injection-locking, a technique

which, by using external spectral control, achieves both of the generally

contradictory	 requirements	 of high-power and	 narrow	 linewidths.	 A
t

detailed analysis of injection-locking is presented as well as a discussion of

the factors which affect the injection-locking process.

^l
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2.2 - Properties of Organic Laser Dyes

The term "organic dye" is a generic one which refers to any organic

substance containing a series of c:onitigated bonds (i.e. alternating single

and double bonds). Organic laser dyes constitute a particular subclass of

dyes that possess both strong absorptions and emission bands in the visible

region of the spectrum. Whereas the actual absorption profile of the dyes

cannot 1,e derived rigorously because of the complexities introduced by

their 1 u-4e molecular size (a typical dye molecule may contain more than

50 atoms), simple inodels_have been found that are capable of explaining

many experimental observations [1}.

The most often used model f'or describing the properties of organic

dyes is the energy level diagram shown in Figure 2.1. The states shown

are electronic energy states with So representing the ground state and S11

S., T r, T., representing bands of excited states. The number of active

electrons (i.e. those electrons in the molecule which contribute to the

molecules characteristic absorption and emission spectra) is always even.

In the ground state, the magnetic spins are always aligned for a total elec-

tron spin of zero, as required by the Pauli exclusion principle. When one

electron of the pair is excited (by the absorption of a visible or ultraviolet

photon), however, there is no such restriction on its spin-state. In a

singlet state, (i.e. So, S 1, ..., S„ , ...) the spins of the electron pair are

antiparallel, whereas in a triplet state. (i.e. T 1 , T.,, ..., T, , ...) the spins

are parallel. As detailed by Drexhage [1), for every singlet state, except for

the ground state, So, there exists an associated triplet state of slightly

lower energy. Absorption excites an electron from the ground state, So,

into another singlet state (S 1 , 5,,, ...) as this transition is spin allowed.

0F.	 7
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However, while In an excited state the electron may Lilt 'i'rgo a spin-flip	 j

and hence eventually reside in the associated triplet state.

ijach electronic: spin state (.gip, S t , '1' 1 , etc.,) possesses many substates
y

which correspond to the quantized vibrational states of he dye molecule

(indicated by the heavy lines in l' igure 2.1). The typical separation

between adjacent vibrational states is 1500eni " t as eorrrpa.red with a

20,000rin _r separation between adjacent spin states (18). The complexity

of the system is further compounded by a series of molecular rotational.

states, wi th separations as small as 15cm -t , that are superimposed on each

vibrational state [18]. The frequent collisions between the relatively large

dye molecule and the surrounding solvent molecules broadens each of these

states which results in a qu isi-continuum of states around each electronic

spin-state.

An electron in the ground state, a (Figure 3.1), as mentioned before.

is excited by the absorption of a visible or ultraviolet photon to one of the

states in the continuum around S 1 , (a,b ), or S (a —>c ), respectively.

Due to the large collisional rate of the dye molecule with the solvent

molecules (` 10 12 sec) thermalization by the nonradiative decay from b`

to the lowest vibrational state in S 1 , b, occurs within about one

picosecond (10-12 sec). The energy associated with this transition is dissi-

gated as heat which generates thermal _gradients in the solvent that

deteriorate the optical quality of the dye solution. For this reason, ultra-

violet excitation, corresponding to the a. —+c transition, is -.voided lvhen-

ever possible.

To achieve optimal lasing efficiency, it would be desirable for the dye

kJ
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molecules to remain in L , the upper laser level, until they were stinlulated

to return to the lower laser level, a , a thermally unpopulated state in the

So contlnumn.	 however, there are a variet y of competing deca y rnecllan-

? isms	 includitl;	 spontaneous	 emission	 which	 occurs	 rapidly

{ry = .5 * 10	 ;ec).	 Nonradiative decay	 mechanisms,	 b -,5 0 , (generivally

termed internal conversion) are generally negligible for efficient laser dyes,

such as Rhodanline 6G, the dye that will be used throughout this work.
j

The ► nost si-nificant con ► peting process, especially for Icing-pulse lasers, is

the G —d	 transition in which the excited electron undergoes a spin-(lip

and "crosses over' to populate the triplet state, T t . Although the proba-

bility for this process (called intersystem crossing) is generally small due to

the	 requisite	 r,pii:-flip	 as	 evidenced	 by a decay	 time,	 kST 	 100400tas

[19,20] several percent of the excited molecules in S ► may make this tran-

sition.	 tik>lecules which populated remain there for a time that is long

compared to the characteristic times involved in the laser transition as the

transition	 T I -- S O is spin-forbidden.	 Its relatively long relaxation time,

r	 ranges from 10-7 to l0 sec depending on the environment of the dyeT•,	 g	 P	 g	 y

molecule [19}.	 The triplet state, T ► , thus acts as a trap, and for high exci-

tation rates, a nonnegligible fraction of the total number of dye molecules

may accumulate in T 1 .	 An increasing T, population has the effect of

decreasing the number of active dve molecules that are available for the
1

lasing process. If NT , the population of T 1, gets too large it will stop

laser action altogether. Lasing may also be quenched when ArT <<N, for

j	 just as the transitions S O —S 1 . tit-- S., are spin-allowed, so are the trans!-
I

tions T I —T.,.  Tn fact, the T ► molecules have a large absorption cross- .I

section for the T 1 - T„ transitions. Unfortunately, however, this
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absorption spect:ruin overlaps the S t --,tio fluorescence of the clue. Thus,

the T I —T.)T., absorption process produces an optical loss at the lasing

wavelengths. As this loss is dependent on the triplet state population, the

greater N 7. becomes, the greater the loss becomes. Efforts to reduce these

losses, made during the development cif' the (lye laser, will be discussed

later.

The absorption an d emission profiles that correspond to these transi-

tions for Rhodamine 6G are shown in Figure 22. The strengtli of the

various absorption, fluorescence or phosphorescent processes is indicated

by the value of the molecular cross-section, er, as a function of wavelength.

The most significant feature of the profiles is the displacement of the

absorptioni. a ry and en ► ission, (fluorescence), a, , peaks (termed a Stokez,

shift). This displacement results from the nonradiative c –•b , V b

transitions. It is, of course, these nonoverlapping profiles that enable laser

action. The broad absorption profile with decided peaks in the visible

(- 5300.E ° for R6G/ETON) and the ultraviolet (" 2400A ° ) allow the dyes

to be pumped with a variety of excitation sources including broadband

flashlamp radiation.

2.3 - Basic Principles of Laser Operation

A population inversion, AA' =N (b )-!V (a ) (c.f. Figure 2.1), can be

induced in the dye solution, through the use of a sufficientl y intense exci-

tation source such as a flashlamp. Since the decay from the lower laser

state (cc ` ) is extremely rapid with respect to that of the upper laser state

(b 1, dye lasers are good examples of "four-level" systems where

ZAN ` N(b ). The population inversion allows radiation resonant with one
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of the b --d transitions to be coherently 'as it Basses through

the dye solution. the amplification res ►► lting from ;a. passage of distance l

throm,11 the dye sobition is given by the basic gain actuation

1 X (l )
--- G

IX(0)	
p(a)t	 (CLl j

where the exponential gain coefficient, b(X) is defined by

2

Where to is the decay time for spontaneOUs emission from b —+(i ! , and

g (v) is the linesl ►al)e function. which describes the distribution of the emit-

ted frectt► encies. The spontaneous emission time 'for Rhodatuine GG is

ins although this figua'e varies slightly depending on the solvent [20,21].

Dye lasers are homogeneously broadened systems which have lineshape

functions that closely follow a Lorentzian distribution, g (v), where

9 
(v) !	

L yv	 [II.3]
27r[(v-V" )-'+( , 1 ]

for a transition of center frequency vo The FWITM, width of the homo-

geneous broadening, Jv, is proportional to the interaction (or dephasing)

time of the dye molecules. As mentioned in Section 2.2, due to the large

l	 size of the dye molecules with respect to those of the solvent, the interac-

tion time is very small (typically < 10-1'=sec). For Rhodamine GG, the

€	 homogenaous linewidth, Av - 5x 10 12IIz [18] (corresponding to a AX of

Gnm).

i
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^-	 The	 basic gain equation given in	 equation	 [11.1)	 is,	 however, only
c

`	 applicable in those c-,Lses in which small signal intensities are involved.	 As

the intensity of the radiation increases, the presence of Stimulated (-mis- y

Sion, which also depopulates b , effectively decreases the b --a ` 	 transition

time.	 Thus, for a constant excitation rate, the 	 population inversion is

saturated to a lu%vcr value than that encountered in the small signal case, h f''

AN' . The depeadeney of AN on the signal intensity is given below

I	 ,^ 1, Vf v
AN =	 Ll	 [TL 1j

'1

1 ^' f ^ ^/ Is) ^.

In this relation, I. is the intensity of the radiation and I; , defined as the

saturation intensity, is the intensity at which the net inversion is reducedE t^

by a factor of 2.	 Implicit in this equation is the assumption that the laser

is operated in a quw;1-C%V manner. 	 In other words, it is assumed that the

laser pulse duration is at least comparable to the spontaneous emission

r	 time of the upper laser level. 	 The saturation intensity, which is solely a

function of the laser medium, is given by

I	 87rn 2h Lw	
II.5	

Al

s	
( tb I is ),\2

where tb is the net decay time out of b through all relaxatirn mechan-

isms, and n is the refractive index of the medium. Assuming that 	 i

tb /ts - 1, which is a realistic assumption for most dyes, the saturation

an etha,nol ic solution of	 amine 6G is - 22kWV cmi..i tenstty of	 n	 Rhod	 /

The basic laser gain equation [II.I) must also he modified to account

for distributed loss mechanisms in the gain medium such as the scattering

AN

ti'
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" of radiation from in ► purities in the dv( • solution or excited state absorption

(S I - S.), T I --- * TO).  These effects are ._Lccotu ► ted for in an inclusive lass

coefiieicnt, ct(\), in equation (ft.61 below. Additional losses contributed by

the optical resonator components (axe accounted for by the coefficient. R ,

which is the percentage of radiation that is returned to the laser medium

on each ro ►► nr_i trip. Thus, the res ► . ► lting threshold condition for oscillation

is that

ReW'\)."t-\))c — 1 [II.61

As the pumping rate is increased, the intensity of the radiation inside the

resonator will increase exponentially i ► ntil the net round trip gains equal

unity, where laser oscillation begins. :1ny further increase in the pumping

rate will momentaril y increase AA-' but, as th.e intensity ofthe radiation

increases, the inversion will be saturated to its previous level. The energy
a
i	 that was added to the system by increasing the pump rate is stored in the

oscillating field. The inversion, ,N. and the net gain b are thus

"clamped" to their threshold values which are determined by the net

[	 losses.
i

By varying the quality factor (i.e. Q) of the cavity, thereby circum-

r	 venting many of the restrictions imposed by steady state operation, very

intense short duration pulses can be obtained. The cavity Q is commonly 1
defined by

Q	 f field enertlu stored by the resonator 1	 (IL"1power dissipated by the resonator

In t ypical "Q-switching" arrangements, the cavity Q is degraded (i.e.

AJt	 Ai1*0010f w



losses are increased) to the point that, laser oscillation ceases. In the

absence of an oscillating field, AN is free to be pumped to a large, unsa-

turated value. When the inversion has been maximized, the Q is once

again switched to its originally high value. At this point, sit ► ce the net

gain is well above that regi6red to achieve threshold, the intensity of the

radiation builds up very quickly and, for a period of time determined by

the cavity losses, is much greater than that obtained under steady state

operation. A percentage of this high intensity radiation is then coupled

out of the cavity on each transit.

A special form of Q-switching, known as cavity-dumping, was used in

this work for the extraction of the high peak-power pulses. It is a special

case in that it functions in a manner opposite to that of *Host Q -switching

techniques. In cavity-dumped systems, the cavity Q is initially kept

extremely high. Typically, no output coupling is allowed and the only

losses that are permitted are those which are unavoidable in the resonator

design. Since the losses are kept to a minimum, the intracavity fields can

grow to large intensities before saturating the population inversion to the

point determined by the threshold condition. Thus, as the pumping rate

increases, energy is continuously added to the recirculating field as it tries

to fully saturate the inversion. When the radiation that is trapped inside

the resonator reaches its peak value, the cavity Q is spoiled and the radia-

tion is "dumped" from the resonator at one time. The resulting output

pulse then has a duration equalto the resonator transit time and an inten-

sity corresponding to the degree of saturation.
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2.4 - Early Dye Laser Systerns

The first success in achieving laser action with an organic (lye was

reported by Sorokin and Lankard in 1966 [221. They used a Q-switched

ruby laser i,o pump a solution containing chloroalriminum phthalocynanifie

and observed stimulated emission near 7560,1 " The .emission was broad-

band with Ja_
.
 40:1 ° . This observation was followed shortl y by the work

of Schaefer et al. [231 and Spaeth and Bortfield who used a polymethine,

dye [2-11. All of these early efforts used ruby lasers as the pump sources.

McFarland in 19, 67 [25], noting that dyes in the fluorescein family exhi-

bited near unity fluorescent efficiencies, suspected that they would make

ideal candidates for laser mediums. Using frequency-doubled, Q-switched

ruby or 3\d:YAG lasers as the pumping source. lie observed lasing. action

in fluorescein (X= 535nm) and a variety of rhodamine dyes over the

wavelengtlx region (565<a<585nm). Further investigations, by a variety

of authors, Nvas then undertaken to extend the range of lasing wavelengths

and to develop improved dyes [1}.

During this time, only Q-switched solid-state lasers were employed as

pump sources. This not only restricted laser emission to those dyes that L.
absorbed the harmonics of these sources, but also restricted the duration

of the dye laser pulse to the nanosecond regime (' 10-50ns). In 1967,

Sorokin and Lankard realized that the coherence of the pump source was

nonessentiai and discussed the feasibility of using flashlamps as pump

J
sources [26). The only requirements were a pump with high peak intensity

and a short -risetime. Later, Sorokin et. al. observed laser emission with a	 i

number of dyes, including F1'6G, using a coaxial air-argon flashlamp as a

pumping source [27[. However, it was noted that the laser pulse

X



21

terminated well before the flashlainp pumping reached its peak emission

(t - 300ns).	 This observation	 was	 attributed	 to	 triplet state	 losses	 as

observed Intersystem crossing rates were (_ 10)-:30011s). 	 At that time. it

Y was thouglit that the accumulation of molecules in the triplet states was

an inherent problem which precluded the development of longer pulse sys-
^

t 'r

f

tems.
1J

Snavel y and Schaefer, in 1069, demonstrated that 0,,, dissolved in

,	 { the	 dye	 solution,	 could	 be	 used	 to	 depopulate	 the	 triplet	 state- [28].

{ Throe h collisions with the d 	 ,e molecule	 the 0., s timulated^	 y	 ^	 mutated a spin-flip,

thus. 'allowing the desired T t—'So transition.	 They were then able to

observe dye laser pulses with durations as Tong as 140ps. 	 They believed

that the generatidn of longer duration pulses was limited by thermally

induced refractive index variations in the dye solution. It was later shown

by darling et al. [291, that for most dyes, there exists an optimum concen-

tration of 0, since 0 2, by collisionally inducing spin-flips, also increases

w	 +< the intersystem crossing rate, kST (S,--+T,)-
j

a Pap palardo et al. demonstrated the effectiveness of cyclooctatetraene

-(COT) as a triplet quencher, in obtaining dye laser pulses of - 800µs dura-

tion [301.	 Again, termination was attributed to thermally induced distor-

M
^	 t

tions in the dye solution which were due, primarily, to the ultraviolet exci-

tation of the flashlamp. The search for a CW dye laser finally reached

fruition in 1970 when Peterson, Tuccio and Snavely reported the first con-

tinuous operation of an organic dye laser by focusing, a CW argon-ion laser

beam to a small spot within a water solution of rhodamine GG to generate

laser emission near 507 nm [311.	 `(

S
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2.5 - Techniques for Tuning Dye Laser Emission

Most of the applications for (lye lasers were dependent on their r ► ni(lue

capability of being continuously tunable over a broad visible range and on

their ability to have the laser energy voupled, without substantial loss,

into a marrow spectral line. Thus, simultaneous with the attempts to over-

come the triplet state losses, so as to generate longer pulses, were investi-

gations into various Mining and line- narrowing techniq ► res.

In some of the first papers on dye lasers, tuning was achieved over a

range of " 200,1 ° by varying many of the parameters associated with the

dye solution including concentration (23], solvent (32( and temperature

133]. Schaefer et al. demonstrated that wide tunability could be achieved

b y varying the dye concentration and the Q of the laser resonator (231.

Weber et al. also investigated the effects of cavity Q and dimensions on

the laser wavelength [3 .1]. Almost all of these results were explained by

alterations in the long wavelength end of the ground state absorption

profile. As either the concentration, cell length, or cavity Q increased, the

singlet state absorption forced the laser emission to longer wavelengths.

The first significant narrowing of the output of dye lasers by the use

of a wavelength selective resonator (as opposed to just depending on the

absorption properties of the dye itself) was reported by Soffer and McFar-

land [35(. By using a diffraction grating in the littrow ccnfiguration in

place of one of the dye cavity mirrors, in a Q-switched laser pumped dye

laser, they observed bandwidths of -` 0.8x'1. The most significant feature,

however, was that the spectral narrowing occurred with only a slight loss

in energy. A similar grating arrangement was also used by Sorokin et al.

[271 in a flashlamp pumped dye laser.

i
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The use of one or more intracavity prisms provided a very convenient

method of tuning the dye laser emission. Prisms, although not as disper- i
sive as gratings (unless used in a chain), are also not as lossy. This pro-

petty made them ideal for CW dye laser applications and high-energy sys- 	 }

tems where cavit y' losses, not output linewid.th , wits the primary concern.
^a
{

Lyot and other forms of birefringent crystal tuners have also been corn- 	 I

monly used as low insertion loss tuning elements. In cases where narrow

linewidth was the prime concern, the use of tilted intracavity etalons

together with prisms have been effective in the production of single long!

tudinal mode outputs with output linewidr.hs corresponding to bandwidths

as low as ` 35UIIIz that were tunable_ throughout the full lasing spectrum

of the dye (361.

The vast number of -other techniques (i.e. acousto-optic tuning,

electro-optic tuning, etc.,) that have been used for tuning both M and

pulsed dye laser systems precludes the presentation of a very detailed his-

torical account here. However, the tuning elements mentioned above are

among the most commonly used.

2.6 - Historical Introduction to Injection-Locking

As mentioned above, linewidth reduction has been conventionally

achieved by incorporating various dispersive elements into the laser cavity.

One fact that is consistent among all types of tuning elements is that the

highly dispersive elements (i.e. -ratings, eta:lons) generally possess large

insertion losses. Thus, as a rule, it is found that attempts to achieve both
s

high output, power and narrow output linewidths force contradictory
-1

compromises. High-power systems are generally dependent on the

CID



Illallltellance. of Illltiinl al cavit y losses whereas the generation of narrow

linewidths requires the installation of lossy intracavity elements.

It was originally thought that with the use of a standard oscillator-

amplifier scheme, n arrow lin.ewi(ths and high-Powers could Ise )ituttLtalle-

ously achieved [7]. lhuwevur, with no wavelength discrimination in the

a.mplifi.er . the effects of broadband fluorescence and amplifier{ spontaneous

emission proved substantial enough so as to :significantly reduce the spec-

tral purity of the outputs [8]. It was discovered, though. Llhat if the nar-

rowband pulse :vas of Sufficient intensity and injected into the :amplifier

under the right conditions. that the build-up and oscillation of radiation in

the amplifier_ could be controlled. In this manner, the narrowband pulse,

instead of making sin -le Passes through a series of amplifiers, could be

regeneratively amplified in a multi-pass amplifier. This forrl of external

spectral control has been termed injection-locking and has become a

widely used technique for the simultaneous generation of high output

powers and narrowband outputs.

The classical problem of locking a pair of oscillators was analyzed as

long ago as 1946 by Adler [37). This work was later extended to

specifically concern the locking of laser oscillators. Experimentally,

injection-locking was first observed in 1066 by Stover and Steier who

i

	

	 achieved phase looking between two single mode He-Ne lasers (38]. Buczek

and Freiberg described frequency stabilization of a high-power CNV CO

ring laser by locking it to a stable low-power reference laser [301. These

investigations concentrated on the behavior of the system under C%V
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injection-locking. In this case, the injected signal had to be large enough

to extinguish the natural free-running frequency. The wavelength

i
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difference between the injected signal and the natctral free-running; fre-

quency had to be small.

In	 a	 pulsed oscillator,	 this constraint can	 be relaxed	 considerably.

Much snialler injected signals are rectuired since the mode competition dur-
i

ing	 the	 h0tial stage in lasing action is very sensitive. 	 Pulsed injection-	 G	 '

locking	 «, as	 reported	 by	 I3jorkholm	 and	 Danielmeyer	 for	 a	 pulsed
i

par inetrk- oscillator, which %vas locked to all 	 signal from a single

mode CAA A'D"+ :YAC	 laser [40[.	 Ntimerocis experiments applying; the

same principle to (l ye lasers have been performed in recent years. 	 Crick-

son and Szabo first demonstrated iiijcction-locking; of a pulsed dye laser in 	 K

1071 in which they locked a N 2-pumped (lye laser oscillator to a pulsed

Argon laser [9].	 Vrehen and Brenner also demonstrated this principle in

short ptilse (10-20ns), low energy (10-201cJ) dye laser systems [911. 	 In both

of these cases, althougli there was a significant reduction in the dve laser -

pulse linewidth, the "master oscillator" (MO) was a fixed frequency laser,

so the tunability of the dye was not exploited.

There have been numerous efforts made to injection-lock flashlamp

pumped (FLP) dye laser oscillators due to the potential of obtaining high
K

pulse	 energies	 with	 narrow	 linewidth	 and	 tunability.	 Magyar	 and

Schneider-Muntau demonstrated the narrowband operation of a high-

energy FLP dye laser which was injection-locked by another, smaller FLP

dye laser of 0.01nm linewidth [10[.	 These authors found it necessary to

include an absorbing dye cell in the high-power cavity in order to obtain a

clean spectrum and suppress unwanted modes of oscillation. Maeda et al.

used a similar configuration to obtain an amplifier output of 4J at a

linewidth of 0.005nm (14).

kld
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^. W*lien a F LP laser or otner pulsed source is used as the tit0 it is

difficult to obtain ultra-narrow bandwidths and the problem of synchroni-

zation between the two lasers is very critical. 'rhe use of CW dye lasers a5

the injection source can eliminate both of these problems. 'Turner et al. 	 3
4

u

used a C W* rive laser to injection-look a high- 'eyin FIT rive tnser to [-(..due(!
i

tile, linewidth of the ,ainplifier oictput to 0-Inns- This work wa:i also the

first to capitalize oil 	 turvibility of the (lye. By installing an eleetro-
^	 ti

optic tuning element in the F LIP laser, narrowband injection-locked out- 	 l^,
y

puts were obtainable over a broad frequency band [111. Also usin g a. CNNI
r

injection source, Blit et al. obtained extremely narrowband (3ON-tlIz), 50	 t

mJ pulses from a FLP dye laser [12]. These spectral brightness of these

pulses was ` 1010\V/nin.
x

All of the pulsed injection-locking studies reported on to date, how-

ever, have been performed with "long" (- lusec) pulse Qashlamp ptimped	 .:

systems. Microsecond duration outputs have been generated which.

although of only moderate peak-power (- 100kW), have large spectral

brightness. By injection- locking a cavity-dumped amplifier, much larger

peak-power pulses should be obtainable and, if complete locking is possi-

ble, these pulses should possess at Least the spectral brightness achieved

with longer pulsed systems. Tile installation of a low loss tuning element

into the amplifier should also allow such outputs. to be produced over a i
wide range of frequencies. Thus, by combining these techniques with a

cavity-dumping scheme, it should be possible to generate extremely high

power, nanosecond duration pulses from a fiashlamp pumped system. 	 }

Through injection-locking, these pulses should also be made widel y tun-

able and narrowband.	
l
l
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1t should he noted, at this time, that t he term "injection-locking" liar-,

been suggested b y several authors to be a niisrrotner when used to describe

the control of pulsed laser systems. There are, indeed, fundamental

differonce ,i in the C V locking techniques employed by Adler [371, Stover

and 1.3811 etc., and the pulsed injrctic>n-lacking of Erickson and

Szabo [01. fit the rigorous definition or the terns, the master oscillator

rrrust cont.roi the phase of the forced oscillator [ . 121. This is accomplished

as th V injected field acids to the recirculating field, compensating for *any

net phase shift caused by a difference between the recirculating field and

the cavity frequency. This is possible, of course, only under CNV or quasi-

steady-state conditions in which the piaster oscillator injected power is

significant with respect to the circulating field in the power amplifier [421.

In the pulsed case, the injected beans merely provides the initial con-

ditions from which 'oscillations can build-up preferentially (at the fre-

quency of the injected pulse) as opposed to building up from spontaneous

emission (noise). In this case, the recirculating field in the power amplifier

."forgets" the phase information of the injected master oscillator pulse very

early in the development of the amplified pulse.

Theoretical analyses have also distinguished the cases of CW and

	

pulsed injection-locking. Ganiel, Hardy and Treves [171 detailed the	 If	 t

	

injection-locking process in pulsed dye lasers by describing the amplifier 	 r.

through a set of coupled rate equations for the population densities and

t photon fluxes at all wavelengths. By imposing the appropriate initial and

boundary conditions, the numerical solutions then yielded information on

the s ectro-tem oral evolution of the p ulse,p	 p	 }	 parameterized by the charac-

teristics of the injected pulse.. Fla,mant and Megie [15[ derived an
l

^.
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anal ytical relation, for bath the C\V and pulsed canes. t'or the locking

efficiency of tine forced oscillator by lrsing a speeLro-temporal eq uation that

describes the behavior of the multimode pulsed dye laser.

Ill both of these studies, the modal fine str+ietnre eallsea by the

Fabry-Perot re5on mces of the cavity was disre g arded. The results

described only the !ilwo.ral i:nvelope of the laser radiation ILS they believed

that in order to phase-lock the an ► plifier (i.e. single mode operation) the

injected pulse must be intense enough to extinguish all other free-winning

modes thus limiting, the Lunability of the system. Analyses of injection-

locking in dye lasers where the injected radiation is resonant within the

forced oscillator has been performed more recently b y Chow [43] and Coul-

laird, et.al . [44]. AlLhou-;h some authors have tried to distinguish between

these two cases by referring to the pulsed case as "Injection-seeding" or

pulsed injection-locking" [42], the term injection-locking has been com-

monly used in the literature when referring to either case.

In this work, where we are only concerned with the pulsed: case, the

term injection-locking will be used as well. The analysis that we will be

concerned with here deals with the 'behavior of a pulsed dye laser system

with the injection of a pulsed narrowband signal. Specifically we are

interested in the temporal evolution of all of the spectral components of

the pulse, the tunabihty of the laser output as the injected wavelen gth is

tuned across the gain curve of the dye laser and its dependence on the

injected pulse intensity. Both the theoretical and operational analysis of

the injection-locked system are complicated by the interrelation_ of these

rr	 '1
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One 1'ca-tor that need riot he cousidered in this analysis, however, is

that of cavity resonance effects. In prior injection-locking studies, cavity

resonance became a concern when injected pulse bandwidths were on the

order of ►nagnitude of the lon.-itudinal ►node spacing of the aniplifie. r. All

previous injection-locking studies. however, have been performed using

long imise (> .300us) or C1V Systems. In Short pulse systems, such ,u5 the

one (iescribed here, i ►rtermoda.l frectu(,-tncy spacings are consid(er • abl y less

than the Fourier transforril limited bandwidths. For examplt!, bandwidths

obtainable fron ► a 3m, cavity- p lumped oscillator are transform limited to

> 100`Ili.z, a figure significantly lar ger than the a0tlliz longitudinal mode

spacing. Thus, analysis and operation of the system may be performed

without reg.►rd for cavit-v resonance effects.

2n7 General Principles of Injection-Locking

( After the initiation of the flashlamp pumping pulse, radiation at all

wavelengths begins to build up from spontaneous emission. When a thres-

hold inversion is achieved, the growth of the-radiation occurs very rapidly.

In the absence of an injected signal, radiation at X o , where the gain is the

greatest, would quickly reach the dye saturation regime and determine the

population inversion. Radiation at other wavelengths, having intrinsically

smaller gains, would experience net round trip gains, G , of less than unity

at the inversion level set by radiation at \ o . If an injected signal at some

=a, is present in the cavity just prior to threshold, it accelerates the

buildup processes at \; and gives the photon flux at that wavelength a

"head start" over all other wavelengths. If the head start is substantial

enough, radiation contained within the bandwidth of the. injected signal,

^M 
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AX i , will dominate during the first few round trips where the gain is still

exponential. :after several round trips, however, the intensity of the pulse

reaches the saturation regime where net round trip gains approach unity.

At this point, the population inversion is clamped so that G(\,•) .. 1. If'

\ j was not identical with \„ , the wavelength with the intrinsically highest

,gain, radiation -, ►.t \„ , for the inversion set by the oscillation at Xi,

AN(\; ), will still have gains such that G(,\,) > 1 and will continue to

grow at an exponential rate. Eventually, the photon flux at \,, will

approach that of \ j and will start to saturate AN towards a value less

than AN(\, ). Since the round-trip gains for \; will now be less than

unity, lasing will be terminated at this wavelength and radiation at \o

will take its place.

	

_	 This temporal laser wavelength shift is of prime importance in the

- analysis and performance of injection- locked systems. In injection-locked,

cavity-dumped systems, where the trapped radiation is regeneratively

amplified throughout much of the pumping pulse, this effect is of particu-

lar importance. In this case, the injection-locked period (i.e. time before

any spectral shift occurs) must be comparable to the pumping pulse dura-

tion to avoid sacrificing either output pulse energy or spectral purity. The

amount of head start given the radiation at \; is clearly a function of

1X 0 -\; 1 as well as of the injected pulse intensity.

Analyses performed by Ganiel et al. (171. and Flamant and Meyer (161

among others, have easefull y considered the spectral evolution in a pulsed

injection-locked system. These analyses yielded indications as to how the

injection-locking performance of the system depends on such parameters

I

I

i
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as the injected signal strength. G; ; injected signal wavelen-th. Xi;

injection - tirne (in cases where a pulsed NIO is used), duration of the pump-

in-, pulse, and amplifier dispersion utc, others. The basic analysis Cecil-

nique involves fill rnerically solving a set of coupled rate e(ptations for the

population :in(] photon densities as a function cif' wavelength. Steady-state

assumptions are iisually made which., while: generally applicable in most

pulsed cases. are not appropriate for cavity-clumped systems where the

intracavity fields are constantly increasing. The cavity-dumped oscillator

will not reach a steady-state condition until the field intensities are well

within the saturation re-ime.

In some cases the fine structure imposed by the Fabry-Perot reso-

nances of the cavity is considered and in others it is ignored. Modal cost

r
siderations are important in injection-locked CU lasers, where longitudinal

F mode matching is imperative in order to minimize injected signal strengtas

and in na,rrowband pulsed systems where minimal linewidths are desired

(12). In most pulsed applications, however, the desired linewidth reduction

is not that great and only the spectral envelope of the radiation needed to

be considered. For the cavity-dumped case, where output pulse durations

are 10-100 times smaller than the oscillator outputs, they can be ignored

for the reasons stated previously.

2.8 Spectre-Temporal Evolution of Cavity-Dumped Amplifiers

As indicated above, there are some fundamental distinctions between

standard pulsed and cavity-clumped injection-locked systems. Because of

this, analyses that have beenpreviously performed on injection-locking of

f	 pulsed oscillai.ors generally are not applicable for cavity-dumped systems.



Lxt"	 +^'	
4 `

•	

x a	
_	 _ , _ ^, a s ham_ ^_ a .

'I

ORIGNAL PAGE k!5

CIE WOR QUAU
Theses analyses have. nonetheless. yielded useful insights into the pa.i'N.rrte-

-ters which effect the ability to injection-loch a Riven amplifier. The basic:

eoncept emplo (,d in these analyses is that of detailing the temporal evolu-

Lion cif' I ho pl ► oton flux densities emitted at various wavelengths by the (lye

ill the amplifier. With particular re g ard to analyzing injection-locked sys-

tv ► n-i, the interest is in describing the (-volution or the photon density at a.

given wavelength. X , versus that of the natural oscillation %vavelength of

the systen ► , X when an external signal is injected into the System at X, .

It will be assumed throughout these discussions that X,• will be at least

outside or the homogeneous linewidth of the dye so that the evolution of

the photon fluxes at a o and X j may be treated independently. Although

this assumption has little effect oil generality of the analysis, especially

when a broadly tunable system is under consideration, cases when Jai —X , I

< w will be discussed later.

One analysis that is particularly useful in describing the spectral

shifts in injection-locked systems was presented by Meyer and Flamant

(16]. :Although their analysis,, like others. makes several assumptions that

are invalid for fl.asttlamp-pumped. cavity-dumped. systems (i.e. steady-state

assumptions, neglection of time dependent loss mechanisms. etc.), it is gen-

eral enough so that it can be adapted to highlight many of the factors

I!

	

	 which are peculiar to the system of interest. For this reason, it will be

used as the basis for the theoretical analysis presented here.

Before considering a specific analysis of injection-locking, a more gen-

eral analysis, describing the relative growth of radiation at two

wavelengths, is presented. -In this general case, the temporal evolution of

i	 the photon flux density, O(ao ,t) at wavelength, X o and tithe, t, after the
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	 onset of I::wing, (at !. =Io) is given by:

d ¢, _ ^^ [l ao AN (X o ,t )-1 ao T NT ( t )-cYo [	 [tI.HJ
(it	 7

where, T is Ow cavity round trip tune, l is the length of the dye cell, a^ T

is the triplet state absorption cross section, ct is the tractional flux loss per

round trim, rand AJ;V and NT are the time dependent population densities

for the inversion (N(G )-N( a 7 )), and triplet state respectively. Here,

a o :fit`'' with as representing the net gain cross section ((a„ -ao 	 in

Figure 2.2), can be used to represent the sy5tern gain so long rV3 the photon	 C?

cavity lifetime, t^ = l /(c a), is long with respect to r, . This assumption,

althou'h required for reasons detailed in Section 3.12, is not restrictive for

most cavity-clumped (lye laser systems. Because of the rapid -thermaka

Lion of the dye molecules out of the lower lasing states,

AN(\ O ,t )` N 1 (t ), where I(t ), the population density of the upper las-

ing state, is strictly a function of time. As this is true for all wavelengths,

a combination of equation [1I.8[ with an identical equation at a second

wavelength, \; , yields

dt ^o	 (tc

I [l (;,11' (t )(ao -a; )-1''T ( t )(ao 
T 

—a{ T ))_(ao —a
i )^

s

If the population inversion density is assumed to be time invariant and the

triplet state population small, then an integration of [II.01 from the onset

of lasing, at t =t,e, to some later time, t , gives the basic spectro-temporal

evolution equation

a
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rp o (^))	 i (t))
,ugh these assimiptions are generally ^-ery poor, and will be removed

for a more ^eneral treatment, use of them Vield.s a ili;l lll } , hia

itful. relatiorr. 1'or, by rlefirri ig a spectral evobition time coustant,

Ti o , as

7io =T [l AN((r o -ai )-(a, -a ^^-^	 [l.l.l L[
t

the evolution equation can he written as in terms of a simple exponential

decay

1	 ¢o(t} (^iW t

This basic expression has been used to describe a multitude of phenomena.

Examples of applicable cases include, among others, describing broadband

shifts in untuned oscillators, progressive narrowing in tuned cavities, and

enhancement of intracavity absorption [16].

The particular interest here is in the application of this equation to

the case of injection- locking. As such, the injected photon flu:, coming

from either a CW or pulsed laser, is introduced into the evolution equation

by setting P,: (t )==16 j ' (t Wp i (t )) where `l`i (t ) is the injected photon fluxl
at Xi and ¢ i ' (t_) is the emission naturally present in the oscillator at \i

at any time t up to the time that injection occurs. For the case of a con-

tinuous injected signal, this substitution is valid for all i , In a pulsed

case, however, the arrival time of the injected signal at the oscillator must
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be taken into account. To ma intain generality it will he assumed that tho

injected pulse arrives at the oscillator at some point, t =t 1, such that

` tl >to. (If the pulse arrives prior to the threshold point, it will be

attenuated until threshold occurs by the dye arid resonator losses. In this

case, the fraction of the pulse that still exists at t. =to, care be considered

as the c>il'ec-tiv(r injected signal, %P i at t. ==to'. Fronl the onset of lwsim; at

to to time t 1 there: is no injected signal and the basic evolution equation

for Oi (t ) can be used just as it had been for p o (t ) in equation [1I.8[

d
dt` = T [lQi AN(a i ,t HQ i T 

NT ( t )—ai)	 [II.13[

t
The solution to this differential equation for any t such that t <t t is

given below, in equation 111.14], where. again, the population inversion,

AN, is assumed to be time invariant and the triplet. state population, NT,

small.

^i (t) = ¢i ,
 (t'o)e ^'(!v,l^N -!Y,)	

[IL14J

Starting from t =t 1, however, the presence of the injected flux, ^P i , must

be accounted for. The evolution equation, akin to that presented in equa-

tion [I1 . 131, from t, to an arbitrary time t 2 such that t,)>t, 1 , is then given

by

d-3,(t)	 1	 T-'[la, N
dt	 (t )+q,

An integration of this expression from t to t, then yields

[II.15[

ti
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Cxponentiating this expression and combining it, with 1rquation (If.1•1(, 	 u

	

which ex licitly evaluates ¢	 t	 i iati<>n for (3 ; atp	 , ( t ), gives the cvolutic3n ec ^
,
It n.f

{¢; (t0)+fie 
T 11r1,vN-^,j )(e t ;lto,v;^' -^,,^I	

(lI.17(

The evolution equation for o„ (t.>) is .simply obtained by solving equation

(II.131 for ¢ o . Since no signal is injected at a o , the solution is given by

equation (II.181 belo%v and is valid for all t such that t > to.

f	
t 11 a, Oar-a,

	

o , ( 1 ,} _o ( t o)e 
T	 (IL13]

Now, in order for the injection-locking to be effective. the ratio.

'

	

	 must be large at the time the radiation exits the cavity. An explicit

expression for this ratio is obtained b y combining equations 1II.171 and

¢i { t '?)	 (¢ i (t f)) + 41 e	 )[e T 
j1 ON(a^ -a, }-(«, 

^x )^^ (II.1^^

O o ( t ,) 	 oo ( t o)

	

It is clear from this relation that, in the absence of an injected flux, 	 Ifi'

	

Laser oscillation develops at that wavelength where the net gains are the 	 3

largest;. After the onset of oscillation, the flux density at X" , grows at an

exponential rate with respect to the growth at all other independent

,vavelengths (represented by a, in (II.101). The flux density at dependent

JA
v

-	 ••	 ,^	 _	 —	 -
.$.	 ^- fir.,.,•-	 _ .
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wavelengths (i.e. those within the homogeneously broadened linewidth of

' X„ ) remains a constant fraction of that at X o . This value of this fraction

is determined by the lineshape function. For independent wavelengths.

however, the greater JXa -X i l becomes, the larger the exponential term

becomes, and the faster the relative growth at X o occurs. The only

means. then, by which to induce lasing at any X j -^4X,, is to introduce a

sufficiently intense flux, `fi r into the cavity during the onset of oscillation.

Although a more detailed discussion as to what constitutes a "sufficient"

intensity will be 1)resented in later sections, equation [H.iJ[ can be solved

for q, to determine the relative level of the injected flux required to main-

tain Ot /¢p at a desired value at a given point in time. Here, the required

injected flux density would be given with respect to the intrinsic noise

level in the cavity.

Equation [11.191 clearly indicates that even if lasing can be induced at

X; , by the injection of an external flux, it will only be for a period of time

determined by the relative growth rate. For this work, where regenerative

-	 amplification, is to occur throughout the 	 l Ecs duration flashlamp pulse,:

maintenance of large evolution times places many constraints on the sys-

tem design. The function of this theoretical analysis is to extract as many

of these constraints as possible.

Although equation [II.191 provides a useful determination of how some

factors affect the injection-locking process, it was based on some assump-

tions that are generally invalid for flashlamp pumped, cavity-dumped sys-

tems. Because of the approximately Gaussian profile of the flashlamp

pumping pulse and saturation effects, AN, contrary to the assumption

previously made, is a strong function of time. It was also improper to

,



j -	 assume a negligible triplet state population as the inter:systern crossing
Uy

time, tti,ST - 100- 30Uns, is comparable to the duration of the f ashlamp

pulse. If' these assumptions are not made in the derivation of equation

[II.141 then a more general form of the spectral evolution ec;nation becomes

r

	

11	

ti,l,„fA (t)dt la, r fN-,(t)dt	 r,l

	

`^i ( t 31	 ( 0	 (t0)+`P[e 
T'
	

o

	

ra n ( t '3)	 ^n ( t 0)	
[11.201

,	 r
l a r-TI t (v, -0%)f AN (t)dl-t (n, r -(r r)fR'r(t)dt -{ix, -a,)t 1

# ^^	
0	

[

One primary distinction between the cavity-dumped. case, cons`:dered here,

and standard pulsed systems is the fact that saturation effects assume

great importance. The dependence of the evolution time on saturation

effects can be made explicit by setting

AN O (t
1 +I ( t W,

where I (t) is the intensity of the laser oscillation, AN' (t) is the nonsa-

turated population inversion and Is is the saturation intensity of the dye
1

as defined in [11.5]. As 4 varies only slightly over the wavelength range of

interest, it will be assumed to be constant. Substituting equation [I1.211'

into equation 11I.20] yields a general form of the spectral evolution equa-

tion that is more appropriate for cavity-dumped systems

(
,q(

a

_ .	 _	 ei.s	 ..:.. ^ 	 _ v. _
Nezi 	 •q.	 .a ` .:	 ... y;v?•;r^'” 
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^.f ^N"{t) (t)dt•-1,,T fNr(t)dt-or,

(„ rt 0

-t=11 (rr° - rl, ) f ^1 N° (t } 
(t )dt -1 (rr, T •,, T i 1NT ( t )dt -( r: ° -+r, )t I

l r'

By making explicit the dependence of the evolution time on the inten-

sity of the laser oscillation, one non-obvious result is revealed. The

stronger the intensity of the intracavity fields become the greater the spec-

tral evolution time from a; to a o becomes. The net result is that cavity-

dumped systems, which quickly enter the saturation regime of the dye,

should require weaker injected signal strengths to induce the same degree

of injection-locking and tenability than standard flashlamp pumped sys -

tems.

Although numerically intractable, the spectro-temporal evolution

equation [II.22] does indicate the effect that various parameters have on

the injection-locking performance of the system. This performance is gen-

erally gauged by a factor, p, called the injection-locking efficiency, which is

a ratio of the output flux within the bandwidth of the injected signal to

the total output, flue

:since p, which is related to Or /¢o in equation [IL221, is a directly measur-

able quantity, it is used to relate empirical observations to the spectro-
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temporal evolution equation and to determine which factors the injection-

locking is most dependent on. The following sections will be devoted to

analyzing these dependencies both from a theoretical and operational level.

Specific interest will be given to those topics, such as System tunability

and injocted pulse energy recpuircments. which directly impact the objec-

Lives of this work and introduce constraints on the design of t.fre systern.

Other • topics sometimes considered in injection-locking studies, srrch as

spatial mode control, will not be considered in great detail but will be

mentioned biter.

The observed variations of p as a function of parameter changes will

only be qualitatively related to the evolution equation [1I.221 presented in

the last section. Actual predictions or fitting of experimental results are

complicated by the sheer number of " independent variables present in the

equation. Many of the these variables, themselves, such as I (t ), AN' (t )

and NT• (t) can only be described through complicated models which

require numerous other relations and parameters. The only method of

extracting reliable predictons of experimental results is through computer

generated numerical solutions to [I1.221. Even then, however, the simulo;

tions that are performed will only be as valid as ;1v l^,odels and estimates

of these parameters. For the sake of this work, Ulu important dependen-

cies of the injection- locking performance will be determined experimen-

tally. Estimates as to their accuracy can be obtained by using the less

general (and less accurate) relations of equations [II.171 and 11I.181

t

.z

b
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a^ 2.9 - Injection Time Considerations

One factor that can be immediately deduced from equation 111.22) is

the importance of the injection time,	 t 	 with respect to the point at

which
	

the	 amplifier :achieves	 threshold,	 t o .	 Clearly,	 because	 the	 ratio,

m
n	 hicrw,ises exponentiall y as a function of time, the initial conditions

.i

encountered for injection ,it	 t, are dilferent than those at to. 	 As t, i is

increased the impact that a given injected flux density will have on the

development of laser oscillation in the amplifier decreases. 	 This effect is
r

a

explicitly accounted for in equation [II:?-2] by the exponential coefficient to

%P,	 the injected	 flux density.	 As expected, the optimal injection time

occurs at to.	 For systems with a CNV master oscillator this is not a con-
i

cern as the injected signal is certain to be present when the amplifier

achieves threshold.	 This is, however, not the case with pulsed MO sys-

tems. In these cases the injected signal must be timed so that it arrives at

the amplifier as close to the threshold point as possible. 	 If it arrives after

threshold,	 the	 exponential	 "damping"	 of the	 injected signal strength

reduces the probability of sustaining the injection-locked period for a ^.
	

I

sufficiently long time. 	 On the other hand, if it arrives prior to threshold,

its effectiveness will also be exponentially damped by the absorbing dye
f

a

a

solution and the optical cavity losses. 	 Careful synchronization of the two

laser systems is, thus, imperative.

Iii order to examine how this dependency will effect the system of

interest in this work, a rough model of the growth of the photon fluxes at

both X i and \o will be given for cases where t 1 is varied with respect to
i
f the peak of the tlashlamp pumping pulse. Generalized version of equations

.

5

A
11A, N
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[1117[ aw.l [11.13 will be used for calculating the vrtir nirs flux densities rLS a

function of time. In this model, 111 is assumed to provide an instantaneous

addition of photons at X; to the radiation naturally present in the

amplifier cavity. Because of the inherent diliicult y of accounting for

saturation. triplet state and other time d petid(;nt effects, this model will

onl y account l'or the flux growths within 10(1ns of threshold where these

effects are still relativel y insignificant. Ne-lecting tiaturation effects, the15

populatir,n inversion, AN„ , is assumed to follow a standard normal Gaus-

sian prolile with a FMIM of 300ns where

A N (t) = OtNp e l -t -'/2)	 [II.241

The peak inversion. AA'p., used of 7.5* 1O r " t ern ;3 wa derived from meas-

urements of the small signal gain described in Section 3.4. The evaluation

t_

of 1AN(t )d (t) is given by the error function, erf(t,_ to) where the com-
to

moniti- tabulated erf(t) is defined as

t

er f (t)	
^^, f

e -y -dy	 [II.251

The development of the photon fluxes as a function of time for the

case where 1.. 1 precedes the peak of the pumping palse by 500ns is given in

Figure 2.3. For this, and the cases that follow. the parameters substituted

into equations [I1.171 [II.1$[ were a o = 5110nm, \;	 600nm, l = 40cm,

ao (.T ; 0.07 and the cavity transit time. T = IOns. The values of

the gain cross-sections, ao and a t , 1.5,+ 10-16cnt 2 and 1.3 * 10- l6 ean 2

respectively, as well as the ratio of 00 (t tl ) to (^ (t o) were obtained from

^I

t,

4

l
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Figure 2.2.

For the cavity-dumped case considered here, substantial laser oscilla-

tion will not develop in the amplifier until the cavity Q is switched to a

high value. Alt.hoitgh this point Wright occu r .after a threshold inversion

has been .achieved, arty laser radiation present prior to Q switching is lint-

;,	 ited by the polarization-sensitive optics to only two passes through the dye

cell. After the seeond pass the radiation exited the cavity. This "two-pass
It=	 lasing" will be discussed in more detail in Chapter 3. Thus, because of the

low level of radiation present inside the amplifier cavity prior to the initial

Q -switching, to will be identified as the point at which the cavity Q is

switched higli. The initial conditions for injection-locking are then essen-

tially independent of the cavity Q-switching time.

Although, as will be described later, the arrival of the injected pulse

was', carefully synchronized to the Q-switching time, Figures 2.3 - 2.5 indi-

calbe the consequences of making t t - to too large. From Figure 2.3 it is

clear that, in the absence of an injected signal (*=O), 0, will grow

exponentially with respect to 0j . In fact, in this relatively low gain region

well before the peak of the pumping pulse, radiation at X. dominates that

at \ t by an order of magnitude after only - 120ns. If however, a pulse,

where %P=100,, (t t), is injected into the cavity at t 1 = to a dramatically

different result is obtained. Radiation at X i , with the 'head start" pro-

vided by q, dominates that at /\,. This domination, however, is only for a

finite period of time for, as Figure 2.3 indicates, cb; /¢ o steadily decreases

as a function of time. For t 	 t 1 , in Figure 2.3, the ratio, ¢, /¢o was

10, but after 120ns this value had been reduced to a factor of 2. If

E

,l

-1
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Figure 2.3: Relative growth of the photon flux at the natural

wavelength of the cavity, 6, , and at the wavelength of the

injected pulse, d, , with and without ( %P=O) an injected pulse for

injection occurring 500iis prior to the peak of the flashlamp

pumping pulse.
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t t = 400 ns PRIOR TO

FLASHLAMP PEAK
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a
Figure 2.4: Relative growth of the photon flux at the natural

wavelength of the cavity, t^, ,, , and at. the waveltmig, tl, or the

_injected pulse, o, , With and wiLhout 	 an injected pulse for
l

injection occurring 400ns prior to the peak of the flashlamp

pumping pulse.
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Figure 2.5: Relative growth of the photon flux at the natural 	
g.

wavelength :)f the cavity, 0,, , and at the wavelength of the

injected pulse, 6 j , with and without ( %P=O) an injected pulse for

injection occurring 300ns prior to the peak of the flashlamp

pumping pulse.
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t r a injection occurs 100ns later, at a point -100ns prior to the peak of the flash

lamp pulse;, the. injected signal arrives during a higher gain period where

the intrinsic- noise level is greater. The development of Miser radiation,

because of these higher gains, occurs more rapidly at both \; and X, .

The first MOns of this development is traced in Figure 2A. In this case,

the more rapidly- growing (3 , requires only Wnsec to overcome the effects

of the injected flux and dominate the flux present at X; . It should be

noted that the injected flux level has been scaled by the intrinsic noise
r

level in the cavity at the point of injection. Thus. the actual injected flux,

in this case, is even larger than that considered in the case depicted by

Figure 2.3. In Fi-urc 2.5, which depicts the development of the radiation
a,

for injection occurrinc only 300ns prior to the peak of the flashlamp pulse,

I	 the situation is worse. Radiation at a o dominates that at X j at a point
i

only 60ns after injection.	 j

'l

1

As Figures 2.3 - 2.5 indicate, the period of time for which the radia-

tion at X; dominates that at a o is a function of a number of parameters.

As expected. these parameters include the injected signal strength. T, the

injection time, the gain of the system, the duration of the pumping pulse

and the difference I X o -X; I . These figures also illustrate that, for a given

system and a given choice of X; , the injected signal strength is the only

variable that can be altered to increase the evolution time. The effect of

do'i'ng this, however, can he substantial. For example, by setting

1060, ( t 1 ) in the cases considered in Figures 2.3 - 2.5, the evolution

times in each of these cases would have been pushed well beyond 100ns.

As will be shown in the following section, injected , flux densities of this
	 t	 -

magnitude are not unreasonable.

^	 r
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2.10 - Injected Signal Strength Requirements

Although not explicitly mentioned in the analysis presented in Section

2.8, the injected power requirement is a key parameter in the, ,- rialysis of

injection-lacked s ystems. The power• requirement rel'ers, in this case, to

the minimal intensit y of the y injected signal required to complei;ely (i.e.

R=I) injection-lock the minplifier• ►► nd maintain it for the period of regen-

erative amplification. Tlic specific intensity required depc,nds greatly on

both the characteristics of the injected signal and on those of the amplifier'

(e.g. its dispersive properties and the duration of the ampl'ifiCation period.)

For example, Turner et al. found that they required 30rnW from a CN%

NFIO to injection-lock their flashlamp pumped (lye laser amplifier (11]. By

locking onto a single longitudinal node131it et .al. only required 	 1-
	 . 33

10m\V C%V injected signal 1121. Using a pulsed MO, on the other hand.

Megie and Flamant found that they required + 10W/cm to completely

injection-lock their fiashlamp pumped amplifier (151.

It would be extremely difficult to predict in advance the requirements

that a MO would have to meet in order to injection-lock a given amplifier

without a more general means of estimating the the required injected sig-

nal strength. Equation (11.22) could be used if a knowledge of all of the

parameters was available. One parameter that is generally unpredictable,

however, is 0(0). A consequence of [11.221 though is that the basic require-

ment for injection-locking is that the power level of the injected radiation

exceed that of the spontaneous emission (noise) in the forced oscillator.

The injected signal then acts as a seed, providing an additional photon

flux at the injected wavelength so that radiation at X j will have a head

start in "winning" the diode _competition at the onset of lasing. It is



conceivable, howeve r , that in order to proc-id(, for a sufficient "head start' 	 }

(i.e. so that the system could be locked 1'or the duration of the pumping	 {

pulse) that the injected flux be significantl y larger than the fluorescence

noise it vompetes with. In fact, ti[c ie ;ind F lamant f'oj ► nd that they

required . ► bout 1000 times the intrinsic: noise level in order to completely

injection-lack the amplifier (151. The nature of the dependency of p on the

injected signal strength will be discussed later. However, a lower found

on the required 40 signal strength to, at least, initiate injection-locking

can be obtained by estimating the strength of the fluorescence noise with

which it has to compete to .establish, laser oscill::ction.

One model of this process was presented b y Ganiel et al. in (sl and

1171 ,where the injected radiation was treated is an equivalent noise input

signal, X11 (\). As such., *(.\) is defined as the input photon flux per unit

wavelength for which the rate of stimulated emission equals the rate of

spontaneous emission into the same spatial mode:

Or e (X) 41 (X) N 1 = E(k)r, -1 gN 1	 [II.26]

In this relation, E(X) is defined as the St-S O fluorescence spectrum nor-

malized so that: f E (X )d a=< where ( is the quantum efficiency; o, , (X),

the stimulated emission cross section, is given by:

f

X'{r (X)l
Q a =	 ((IL..

and g - - is that fraction of the spontaneous emission which is emitted into

the solid angle which has the potential of being coupled back into the

medium and developing into laser oscillation. Solving i'or WX) yields:
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which was identified as the equivalent noise in »ut Signal at a given

wavelength, X. 'I'll( , "noise" in direct competition %with the injected signal

cats be at s,n ,y wavelength, \ o , Such that 6 (X, )> G (\; ). A homogene-

ousl y broadened hiser ► nedium (such as organic dyes) is wisumed. Their

analvsis then concluded that the minimal injected signal intensit y-, %Pi

(photons sec -1 11'-'), is determined from:

Cr. N) min = f or e (X) q/(k)(I X
	

[11.291
A

where the range of irate--ration, ba. includes all competitive wavelengths.

Using the defining expression for ql (X) given above, the final expression for

the required injected signal strength. in photons/sec is

kp min = 2e 77-g f [o, e ( X )lo, e (X i )]d a
	

[II.301

All that is needed to obtain a numerical evaluation of q/m,n is an evalua-

tion of g. In their work, Ganiel et al. calculated Amin for two specific

cases one a single fundamental Gaussian mode (TEMOO ) and the other a

highly multimode case. For high-energy applications, where generally

large active mediums are to be injection-locked, the multimode case is of

particular interest. In this case, g can be estimated as AQ/47r, where v12

is the solid angle subtended by the opening of one side of the dye cell at a

distance of l , the eavity length, from the other end of the dye cell. %P min

then becomes:

--.
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%P m , n(t?vzhi►node ) _ 2c q, f [er e (a' )^ c.r e (\)](7rr2/\L )'d \/X = [IL31[

In order to provide a numerical example, the specific flsshlamp pnmped Jr

system	 that	 was used in this	 work will	 he	 considered.	 The	 relevant,

parameters are_ L = 3m, \ = 590nm, and r = 0.45cm.	 We will assume, a

for the moment that X i ` \ o	so that v, (\' )'	 a e (X i 	for all relevant

A competitive "noise" bandwidth of 5nm will also be w3sumed.	 Using this

information Pm, n can be approximated to be 60W. As will be shown later,

this figure is within an order of magnitude of the actual amount of power

berequired to injection-lock the system. 	 It should also	 noted that in this

multimode case the relation for Pmin is dependent on the geometry of the

forced oscillator.	 'Specifically, P m ,n is proportional to the square of the

effective Fresnel cumber of the amplifier.	 'Phis dependency was also esper-

(	 imentally confirmed.i
E,

An injected signal strength of P m ,n , however, only equals the intrinsic

fluorescence noise level in the amplifier. Although this should provide the

initial buildup of radiation at X; required to injection-lock the amplifier, it

is doubtful if this "head start" would be sufficient enough to stave off the

development of 6 n (which grows exponentially with respect to O; ) for the j

entire duration of the pumping pulse. 	 In such a case, ¢a will equal ¢; at

some point prior to cavity-dumping. 	 from this point until the amplified

pulse is extracted ^ j will decrease at an exponential rate. 	 Only a percen-

tage of the cavity-dum edo	 p	 pulse energy. would then be at ,\,, as desired.
i

and p would be less than unity. 	 Thus, p is dependent on both %P , which
a

,

provides the "head start", and T,,, which determines the growth rate of po

with respect to p; thereby determining how long the "head start" has to - l_

,

x	 n	 _. ^,,
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last. By perfor ring a numerical analysis based on a set of coupled rate

equations for the population and photon flux densities, (aaniel et al. were

able to show the a spectral shift rL5 a function of t.irne and wavelength [1.7].

Their results graphically illustrate the effect discussed above. The

spectro-temporal evolution equation can also be used to roughl y determine

the required signal intensity once the "noise" level Iras been determined.

With the proper parameters, it will yield the ratio that the injected signal

strength has to maintain over the noise level in order to attain a Given

value of p at a givers wavelength, a; for a given period of time, t .

2.11 - Tuna.biIity of Injection-Locked Systems

	

The tunability of injection-locked systems is a feature that is of pi-hrme	 !

concern for man y applications where high-energy but narrowband pulses

are required. The limitations on the tuning range arise as a consequence

of the spectro-temporal evolution equation discussed in Section 2.8. As

equation [II.22] indicated, complete (p=1) injection-locking is only attain-

able when the evolution time is at least equal to the duration of the pump-

ing pulse. Generally, however, this is not the case in untuned amplifiers

unless Xj a o . Even for small values of J X o -X i ] (i.e. ` 2nm), laser emis-

sion at X o has had enough time, by the termination of the pumping pulse,

to develop into a significant fraction of the total pulse energy. As J\ o -a, ]
increases further, the evolution time decreases until it is much less than

the flashlamp pulse duration. At this point. in order to keep high

injection-locking efficiencies, cavity-dumping inust occur before the net

gains have been fully saturated (at a sacrifice in pulse energy). This

reduction in p as an increasing function of JXo -a, ] has been observed in
f

.	 i

^h
	 NEW Jj.-y..
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_	 many investigations of pulsed injection-locked (lye lasers.

The inclusion of an intracavity tuning element can, however. siniul-

taneously extend the tuning range and eliminate any broad-band back-

round radiation. Ideally, even with a wide-band tuner, X. could be made

very close to X j . The function of the element would be to eliminate

wavelengths for which the spectral evolution time is small and thus

suppress the possibility of spectral evolution during the regeuera.tive

amplification period. This technique was proven successful by 'Corner et

al. who, by including an _SDP electro-optic birefringent filter into the

amplifier cavity, obtained narrowband injection-locking over the entire dye

emission profile [11].

Clearlv, the narrower the pass-band of the tuner, the longer that the

evolution time can be made. The inherent problem with the use of nar-

rowband tuners in cavity-dumped systems is that they generally have large

insertion losses. Since cavity-dumped system efficiencies are limited by

optical cavity losses [Gj, the inclusion of most narrowband tuners would

reduce obtainable pulse energies. Wide-band tuners such as that used by

Turner et al. are acceptable as long as they can be tuned so that Xo

roughly equals X i . As will be demonstrated later, the use of low-loss,

wide-band tuners such as birefringent (Lyot) filters and prisms provide

sufficient selectivity so that even high-power cavity-dumped amplifiers can

be injection-locked over a wide range of wavelengths.

2.12 - Triplet State Effects

In the analysis presented above, no mention was made of the effects

:t

_ :.	 ....	 .
->..>
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of the triplet .Mates. Because the intersystem crossing time, ksr . is duly

100-300ns. these effects tali only be neglected in short pumping pulse

systems. For most flashlamp pumped systems, however, with pumping

pulses in the microsecond regime, the triplet states have a significant

impact on the performance of the system. With injection-locked ziystems

in particular, there are two primary effects. First, a non-zero triplet state

popidation provides a loss mechanism to the laser radiation and to the

conversion efficiency of pump to laser photons clue to T I —T,, absorption.

Thus as ^v_r increases with time net gains decrease. This, of course. effects

the performance of all lonb pulse or CW dye laser systems.

Of specific importance to injection-locked systems, however, is the

wavelength dependency of this loss mechanism as it directly impacts on

the spectral evolution time. As illustrated in figure 2.2, Q T is a strong

i

	

	 function of wavelength in RGG as it decreases rapidly for a < 600nm.

The evolution time is a function of the difference between the total
r

round-trip losses at X; and Xa Being wavelength dependent, the triplet

state losses should thus, alter the evolution time. For example, if the tri-

plet state losses become increasingly greater at X o than at X; , injection-
s

locking should be maintainable for a longer period of time due to the

resulting increase in the evolution time. This increase reflects the gradual
r

	shift in X. , away from its original value, towards a; . Of course, the oppo-
	 9 f

site situation, where the evolution time decreases. is also possible.^.	 l

1	 .fin illustration of this effect was presented by Ganiel et al. [17[ in
r;	 '.

which a specific example was considered. The cavity photon fluff was com-

puted as a function of time at two wavelengths X = 590nm and 585rim.

Initially, injection into the RGG (lye laser amplifier was assumed to be at



500nm (=\,, for short pulsed systems). Neglecting triplet state efi'eets,

injection-locking was sustained throughout the duration of the pumping

pulse as \„ (t )=\, for all t. When the tinie-dependent triplet state losses

were considered, however, with \,, gradually shifting toward the lower

wavelengths, the increased gain experienced at these wavelcn-ths,

specifically at the 585nin line which was considered, caused a shift in the

lasing wavelength from 590nm to 585nm. The lockin g period was, in this

case, less than the duration of the flashlamp pumping pulse. When the

injected signal was -,it 585nm, however, and the "head start" provided the

photon flux at 585nm was great enough so that the injection-locked period

was greater than the evolution time, injection-locking could be maintained

throughout the duration of the pumping pulse. standard flashlamp 	

j

pumped systems.

s
^1

{
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CHAPTER. 3 - DESIGN AND OPERATION OF THE CAVITY-

DUMPED CFP DYE LASER

3.1 - Introduction

Cavity-dumping is commonly noted. as being the most efficient tech-

nique for extracting hi g h-energy, nanosecond duration pulses from flasli-

lamp pumped dye laser systems. The high efficiency can be attributed to

the fact that the laser radiation, being totally trapped inside the resonator,

f will grow in intensity until the net gains have been fully saturated. At

this point, where no further increase in pulse energy is possible, the radia-

tion is "dumped from the system resulting in a, liigh-energy pulse whose

duration is aq uivalent to the cavity round-trip time t =l /c (for rin7

lasers) where d is the cavity length. In order to optimize system perfor-

mance, the radiation must be allowed to saturate the gain of the dye as

much as possible. The primary limitation on its ability to do this (assum-

ing a sufficiently intense pumping source) is imposed by the optical resona-

tor losses. A minimization of these losses is, thus, imperative for good sys-

tem performance. In an effort to keep resonator losses low, a polarization-

sensitive cavity-dumping scheme was chosen as it required few intracavity

optical elements.

This chapter will concentrate on the development of a basic cavity-

dumped, -flaslilamp pumped dye laser oscillator. Included will be detailed

descriptions of the required resonator components, detection equipment,

t	 iil
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and system operation. The objective here was simply to demonstrate the

generation of temporally "clean", high-energy pulses and to study the

characteristics of the system so as to optimize its performance in this

respect. As such. the variation in system performance as a function.of a

such parameters as (lye concentration, d_ve solution and resonator optics

was investigated. The point in time at which cavity-durnping occurred

(i.e. the "extraction" time) was also found to be a critical parameter that

effected both the temporal prolile and energy of the output pulses.

3.2 Flashlamp Design and Operation

The efficient generation of high-energy pulses from dye lasers requires

an intense , excitation source. The flashlamp pumping system used in this

work, to provide this excitation. was commerciall y manufactured by ILC

r Technology Inc. and was indicative of typical high-energy commercial

units available at the time. It consisted of an. ILC Model DYB charging

and triggering network together with an ILC Model DYH-15 flashlamp

housing. The flashlamp housing coupled the 40cm x 1.1cm dia: inner

region of a 350J coaxial,,xenon gas flashlamp to the dye circulation sys-

tem.
S

The charging/triggering circuitry found in the DYB assembly is

shown in Figure 3.1. A positive ground 0-30kV supply was used to charge
t

a low-inductance, 0.7 pF capacitor, C 1 , through a network of charging

g>	 resistors, R. r. In addition to limiting the charging current, R r also served

as a, high-voltage fuse. During normal operation, at charging currents of 	 j
I

roughly 100mA. R r would dissipate ` 20%V, well below its maximum rat- 	 1

ing of 350W. If, however, the lamp was to break down. and form a short

IVA

tl
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circuit, the current surge through R 1 would be	 20A and the instantane-

ous power dissipation of ` 300kW would destroy the resistors. This action

would prevent more than one pulse from being discharged through a bro-

ken lamp.	 The	 Cl/anode and cathode-ground/ spark-gap connections

were made b y copper -,trip Lines to nihiimize circuit inductance.

The	 flashlamp	 discharge	 was,	 initiated	 by	 a	 triggered	 spark-gap

switch, SG 1 .	 An external trigger signal.	 amplified	 by the high-voltage

trigger	 transformer	 and	 pulse	 forming	 network	 shown	 in	 I' igure	 3.1,

induced conduction	 across the pressurized spark-gap.	 This caused the

high-voltage stored across C	 to be applied directly across the flashlamp.

The high-voltage across the lamp connections rapidly ionized the xenon

gas forming a conduction path through which the energy stored on C1

could be discharged.	 The duration of the flashlamp discharge is directly

dependent on the the value of C 1 .	 ILC studies have shown that use of a

LOMF capacitor at 25kV yielded a discharge pulse width of - 0.8psec

(FWHM) awhile use of a 0.2pF capacitor at a similar voltage produced out-

. put pulse widths of - 0.4psec.	 In general, the discharge duration was

found to be roughly proportional to 	 C 1 [451.

The spectrum of a coaxial flashlamp discharge approximates that of a

blackbody	 radiator	 whose	 temperature	 is	 typically	 between

15.000-30,000° K ['46]. The exact temperature is dependent on a variety of

factors which include lamp area, operating voltage and discharge duration.

A'crude estimate of the effective blackbody temperature of the lamp can

be obtained through use of ti., e Stefan-Boltzman relation by equating the

power generated per unit 	 °a zay the lamp, P1 =KCV2/2t,,l , to that gen-

erated by a blackbody, Py b , _ :a714 .	 In these relations, K is the percentage
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of energy stored by C, that is actr.tally dissipated in the discharge. t is the

duration of the dischar;e, A the radiating area, a is Boltzman's Constant

and T is the blackbody temperature. Using values appropriate for the

ILC system, where C =0.7uF , V =30.000 V, t_=_1.2psec (10' c max.),

A —7r(2 f.11cm*(l.lcm + 1.3cm)), and A7 =1,  the effective lanip tempera-

ture was calculated to be 26,000'K_. Wien's Displacement Law indi-

cates that the peak emission wavelength of the lamp will then occur at

X=110nin. 'rile UV absorption properties (Se--+S,) of the dye will. thus,

account for much of the excitation provided by this system.

3.3 - Dye and Coolant Circulation

In a coaxial cor ► figuration, the rel-Ltively cool dye solution is in direct
i

contact with the hot inner wall of the Aash.lamp. The resulting thermal-	 f

(~ diffusion creates strong temperature gradients which generate turbulence

in the dye stream and degrade the optical quality of the solution by

increasing diffraction losses. If the thermally induced refractive index vari-

ation is ;large and the thermal diffusion rate rapid with respect to the dura-

tion of the flashlamp pumping pulse the losses can be significant enough to

prematurely terminate laser action [471. Minimization of this rate is espe-

cially critical in highly gain-saturated systems where a significant fraction

of the laser pulse passes near the outer wall of the dye cell.

The thermal diffusion rate depends primarily on the thermal capacity

of the dye solution and to a lesser extent on the dye flow rate and the

pulse repetition rate. A high flow rate (` 10 dye changes/sec) and a low

repetition rate (<1Hz) help to maintain thermal equilibrium at the begin-

ning of each pulse but have negligible effects during the tisee duration

_... _ _ ... .... ... .. .. ...^_	 t ..y...	 .a
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pumping pulse. Alcohols, especially ethanol and methanol, the most corn-

monly used solvents for flashlamp pumped dyes, typically have a lame do
it 

T

S.5 * 10-`r per " G at 25° CG). Water is a much more suitable solvent from

a thermal perspective, as it has a much greater thermal capacity and a

do one third rLs large as that of most alcohols. Although many dyes do
d'1'

not readily dissolve in water, water-alcol ►ol mixtures have been commonly

used.

The absorption/emission process, as clescribeci earlier, also contributes

a significant arnount of heat to the system. About 65% of the energy of

each absorbed ultraviolet (X` 240um) Photon will be dissipated by the dye

molecule as heat. For absorption in' the visible. ` 10% of the absorbed

energy will be released as heat. D ye cells made with UV absorbing glass or

filters have been used to prevent the heating due to V'V absorption in sys-

terns where high repetition rates or dye lifetimes are major concerns.

However, since much of the excitation provided by the coaxial flashlamp is

ultraviolet, W Filtering would substantially reduce the excitation rate.

Such a reduction in the pumping rate would severely diminish the high-

energy capacity of the system.

The use of a triaxial configuration is one technique which has been

used to isolate the dye solution from directly contacting the flashlamp. In

these experiments, a triaxial conflguration was simply attained by the

insertion of a 0.9ern I.D. x 1.1crn O.D. UV-grade quartz tube through the

dye cell. This created an annular chamber which separated the dye solu-

tion, that was circulated through the quartz tube, from the inner wall of

the flashlamp. A coolant, typically deionized water' which has a large
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thermal capacity and is transparent to the pumping radiation, was then

circulated through this chamber for added thernial isolation. Occasionally,

however, a t.TV absorbing fluid (for reasons described above) or a spectral

transfer dve is circulated in place of or together with the coolant. There is

an inherent disadvantage with the use of a triaxial configuration, however.

The volume occupied by the triaxial adapter (i.e. the quartz tube) and the

coolant would otherwise be occupied by (lye solution. fn highl y gain-

saturated systems, even dye molecules near the edge of the dye cell contri-

bute energy to the pulse. Thus, the trade-off for reducing thermal

diffraction losses with this technique is that of a smaller active dye

volume. It was, nonetheless, felt that the added thermal stability, even at

the expense of a slight reduction in pulse energies, would ease Llze charac-

terization of - system performance. Once fully characterized, the triaxial

adapter could be removed.

A dual circulation system (Candela DCC-30L), shown in Figure 3.2,

was used to circulate both the dye and coolant solutions.	 This system

minimized thermal gradients by maintaining the dye solution (which was
r

also filtered to remove any impurities or bubbles) and the coolant at

nearly equal temperatures through use of a heat _exchanger. The heat

exchanger itself was immersed in a tap-water reservoir to cool both solu-

tions to near room temperatures. f
i;

9	 i',
f* j	 As mentioned above, a spectral transfer dye could be circulated in

t	 place of the deionized water in the coolant jacket. These dyes would

{  absorb the IN fiashlam radiation and emit visible radiation that wouldp

be absorbed by the Rhodamine 6G laser dye. In addition to being effective

.fit	 in reducing the thermal effects caused by UV absorption, the transfer (lye
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could also be used to convert flashlamp radiation at wavelengths that are

not strongly absorbed by the RGG to visible ones that are. Because of the

number of requirements that an effective transfer dye would have to meet

[ ,	 it is extremel y difficult to find one that actually increases system efficiency.

f; For example, the quantum efficiency of the transfer (lye must, be near

t	 unity to avoid attenuating the pumping radiation. The abso ► ption and

emission profiles must also be carefully matched to that of the laser (lye

' An investigation into the use of spectral transfer agents was made ;'

using a solution of '71- hydroxycoumarin dissolved in a 1:1 mixture of water f

and methanol.	 This substance appeared inost promising as it possessed a

c
^:

high quantum efficiency ((D=0.98) and its spectral profiles were suitable
y

c

for a transfer agent for R6G. Despite this, output pulse energies decreased

as an iner 'acing function of the transfer dye concentration. 	 The most

e " } likely explanation, which would be applicable for any spectral transfer

i attempt in a triaxial flashlamp pumped system, is that the transfer dye #

redirects some of the pumping radiation out of the system.	 When the

absorbed W flashlamp radiation is reemitted by the transfer dye, it is

emitted	 in	 a	 random	 direction.	 Thus,	 flashlamp	 radiation,	 initially

directed into the dye, could be reradiated out of the system, thereby again
5

effectively decreasing the pumping rate. :although not attempted, one

f fk investigation that might have proved successful in this respect was that of

dissolving the transfer dye into the laser dye solution.

1
1

P }



b4

^iij

3.4 - Determination of Optimal Dye Concentration
y`

In order to maximize system efficiency the number of pump photons

absorbed by the dye molecules must be maximized. Models of the absorp-

tion process are complicated by the broad spectral content of the ll:rsh-

lamp discharge and the variation of the discharge spectrum with varying

lamp parameters and operating conditions [.1-50,511. An additional compli-

cation arises because those wavelengths which are absorbed by the dye will

be absorbed with varying distributions througho-it the (lye cell depending

on as (X) and the dye concentration. It is clear. however, that the radial

distribution of absorbed pump photons is a strong function of the dye con-

centration. If, for example; the dye concentration is too small, manv of

the pump photons will pass through the dye cell unabsorbed. On the

other hand, if the dye concentration is too large the pump photons will be

absorbed rapidly near the outer wall of the dye cell. Although the net

absorption, and hence gain, is maximized using these larger concentrations

the output laser pulse assumes a somewhat annular spatial profile [45]. It

is, thus, generally preferable, at some expense in output pulse energies, to

maximize the pump photon absorption (i.e. gain) at the center of the dye

cell.

The dye concentration which maximized the gain at the center of the

dye cell was determined experimentally as follows. A 2mm dia. CW dye

laser "probe" beam was passed through the center of the dye cell and
S.

focused onto a photodiode. With only pure ethanol in the dye cell, the

CW probe beam simply generated a constant voltage level at the output of

the photodiode. T-iowever, when dye was added and the s ystem excited by

the flashlam pulse, the robe beam was amplified. The photodiodep p	 p	 p-	 p

[

f
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kz output of the amplified probe beam is shorn in Fi g ure 3.3a. Although

there was insufficient gain for hAsing action to be initiated on only one pass

through the dye cell, amplified spontaneous emission, whose intensity mir-

rors the intensity of the flashlamp pumping pulse, was detected by the	 r

photodiode in addition to the amplified probe beam. The detected spon-

taneous emission can be treated essentia,lfv wi backround noise, the level of	
a

which was determine(l simpl y by firing the flashlamp in the absence of the

probe beach (Figure :3.3b). A point-lay-point subtraction of the outptet

shown in Figure 3.3b (i.e. noise) from the output shown in Fi g ure 3.3a,

then yielded the output_ generated by the amplified probe beam alone.

Given this signal, together with knowledge of the signal when no

amplification occurred (i.e. the constant voltage level), the small-signal

gain at each point in the tlashlarnp pulse can be determined for the

i' wavelength of the probe beam.- The small-signal gain can also be meas-

ured as a function of wavelength simply by varying the wavelength of the

probe beam. Similarl y, the small-signal gain can be determined as a func-
r= .

tion of a variety of parameters including flashlamp discharge energy, dye

concentration and solvent.
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The small-signal gains, So =ANmaxQ, measured using this technique,

are shown in Figures 3.4 and 3.5 as a function of wavelength, flashlamp 	 A

discharge energy and RtG concentration in ethanol. The gains shown are

maximum gains (i.e. those observed at the peak of the pumping pulse).

Estimations of the gains at other points in the pumping pulse can be made

by an appropriate fitting of the flashlamp pulse to a Gaussian profile. It

should be noted that due to the shot-to-shot variations in the intensity of
g'	

the flashlamp pulse, the gains recorded were acoctally a statistical average

ti

ii



S
Ottf Ott^7AL_
OF	 e`4 i s

PO^^ QUALtT"y

t7
v
Ia

V	 C,
n i
C ,
L

G	 ..
c
ci

u	 rd

-' >	 c
c.	 c

U La

on

h
M _ '

L v

r	 ^^

66

3
y

v

T.
L - _

L^

Tj

r

L ^
►^ r

I C,



.10

.08

X=590nm

2 . 10-5 M/L R6G/ETOH

6 •-I0 -* M/L R6G/ ETON

o 1. 10-4 M/L R6G/ETOH	 /^

'E .0 6

.04

.02

OU	 CU	 IUU	 I du	 1 19+U	 IfOU	 ICU

Ef (J)

Figure 3 .4: Small Signal Gain Coefficient Measured as a Function

of Flashlamp Discharge Energy and Dye Concentration
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of the gains recorded during several firings of the Haslilamp.

The data presented iu Figure 3A displays the expected variation of 6,

with concentrations as the net gains varied only slightiv over the range of

10"5 - 1.2 * 10 -4 ANA/L. A slight maximum was observed, liowev(jr, with a

5 * 10-5 M/1, ethanolic, concentration. These findings were consistent with

those obtained by many commercial manufacturers of organic dyes and

coaxial fla::hlamp puinped (lye lasers (415,,16.52.531.
i

The variation of 60 with wavelength, shown in Figure 3.5, was some-

what unexpected. liowever. The manufacturer of the dye (Fxciton)

claimed, as had other commercial (lye manufacturers, that the peak lasing

wavelength of an etlianolie solution of R6G was at 590nm. Instead, sub-

stantially higher small signal gains were observed at U5rim. The reason

for this discrepancy, self-absorption effects, will be discussed in more detail

later, in Section 3.12. This data, nonetheless, still provides reasonable

numerical estimates, for the purpose of system analysis. of the small signal

gain, So . From this it can be seen that, for large pumping rates (i.e. flash-

lamp discharge energies > 200J), the single pass gains can, be as large as

50 1 or more. With single pass gains of this magnitude, the intensity of the

radiation trapped inside the resonator should approach the saturation

regime after only a few transits through the dye cell.

3.5 - Basic Oscillator Design and Operation
"I

The basic resonator used for cavity-dumping the flashlamp pumped

system is shown in Figure 3.6. It was designed using a minimal number of
f.	

optical components (for a ring laser) in order to keep the optical cavity
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losses as small as possible. To further reduce cavity losses, all of the con1-

ponents used were treated with either high-power anti-reflection (AR) or

high-reflection broadband dielectric coatings. The advantages of a ring

configuration will becorne apparent later when attempts to injection-Lock

the system are discussed.

Radiation emanating from the dve cell wasp olarized b y either of a

pair of broadband polarizing beamsplitter cubes (PBC 1 , PB(,',). The

PBC's reflected more th r..0 99% of the incident s -polarized light and

transmitted about 95c of tllc incident p -polarized light (the remaining

5% of the p -polarized light was reflected). Counter-clockwise propagat-

ing s -polarized light was reflected b y PBC 1 and directed via turning mir-

rors All and 11:> to PBC'z where it was again reflected back through the

dve cell. When. the proper \/2 voltage was applied to the Pbcl:els cell, it,

together with an achromatic a/2 prate, induced a net, 180' rotation in the

plane of polarization of the incident radiation. The light was then, once

again, s -polarized when it arrived at PBC 1 . In this way, if the laser radi-

ation was completely s-polarized, it could be totally (>99.%) trapped

inside the resonator for regenerative amplification. If, however, the radia-

tion possessed a significant_ "p " component, due either to polarizers with

low extinction ratios or to a misalignment of the birefringent elements, the

PBC's would function like output couplers. A "shoulder" comprised of

the p -polarized radiation exiting the cavity through the PBC's would pre-

cede the main cavity-dumped output pulse. The failure to maintain a	 F

high degree of linear polarization within the resonator, which _allows this

"leakage to occur, also has the net effect of increasing cavity losses. This,

in turn, restricts the extent to which the gain of the system can be
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saturated and, hence, the energy of the cavity-dumped output.

It should be noted that to minimize cavity losses, the trapped radia-

tion was chosen to be reflected by the PBC's where the loss for s -

polarized light was less than m 'rhe 5` o "p" transmission loss was, thus,

r a loss that was only encountered when the pulse exited the cavity during; ]
r;

cavity-dumping. 	 An additional advantage of using such a configuration is
^I

that	 the PBC's were cascaded.	 Before returning to the dye r_^ II,	 the

trapped radiation was reflected off both of the PBC's, thereby making the

effective exti nction ratio of the cavity the square of that provided by onl y ^ f

a single PBC

Due to the large single pass gains, the totally confined, regeneratively

begins	 the	 dye.	 Whenamplified radiation quickly 	 to saturate	 gain of the

G the intensity of this radiation reached the point where the gain of the dye

.," had been fully saturated, and no additional amplification occurred, the a/2
:r

e voltage on the Pockels cell was switched off. 	 After a final pass through

E the dye cell, the polarization of the light was now only rotated 90' (by the

X/2 plate). Left in the p -polarized state, it exited the cavity through

PBC 1 .	 The clockwise propagating beam, that coexisted in the ring laser,
a

similarly, exited the cavity through PBC..

Using the cavity-dumping procedure outlined above, the X/2 voltage

could be applied to the Pockels cell at any point prior to the initiation of

a the flashlamp pulse. The time at which the Pockels cell was switched off,

however, had a substantial impact on the output pulse energies. 	 If the

' Pockels cell was switched off early in the flashlamp pumping pulse, the

trapped laser radi.a,tion did not have sufficient time to fully saturate the

gain of the dye. resulting in less than optimal output pulse energies. 	 In

t_ ...	 _	 .
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fact,	 when	 cavit y-dtirnping	 occurred	 too	 early	 in	 the	 flashlamp	 pi.rlse,

sufficient gain rernained for the system to begin lasing again. 	 This time,

however; it functioned as a two-pass oscillator.	 If the X/2 voltage was

a=` switched off too late. when AN,, was decrea ing, the triplet state popula-

tion and thermal effects induced losses which decreased otitprrt energies.

The X/2 Voltage. "turn-off time" was thus set to opthnize extracted pulse

k energies.	 As will he shown later, the optimal turn-off time was generally

at ttie peak of the flaslilamp pulse.

" * 3.6 - Description of Oscillator Components

r *The Pockels cell initially used was a 95% deuterated KD	 P crystal

manuf'actirred by Lasermetrics. 	 It was surrounded by an index snatching
A

I fluid and housed in a chamber with broadband AR coated windows in

order to minimize losses.	 :'despite this, the transmission losses were, 	 8%.

Ld (This large loss figure later prompted the replacement of this cell with one

with substantially lower losses.) In the absence of an electric field, the

KD *P	 crystal is uniaxial. 	 Thus, there is normally only one refractive

'l index	 for	 light	 propagating	 in	 a	 direction	 parallel	 to the optic	 axis.	 {

Although some natural birefringence was observed, it was generally small
J^

enough to be considered insignificant for these applications. When an elec-

tric field was applied parallel to its optic axis the ICD *P crystal became

birefringent.	 The orthogonal ordinary and extraordinary waves would

then travel through the crystal at different velocities, generating a phase

shift between them. This net phase shift can be determined by the follow-

ing equation:

'^ F
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where:

-Y = number of wavelengths retarded

t fi

z

n o = ordinary index of refraction; (1.52 for ICD ` P )

r63 ' 	 electro-optic constant; (26.4 * 10-eEt/ V for KD ` P )

V = longitudinally applied voltage

X = wavelength of light (it)

A special consequence of this equation is that ir' the ordinary and extraor-

dinary waves of a linearly polarized beam were phase shifted by 180' (i.e.

-f=a /2), the beam would again exit the crystal linearly polarized, but with

the plane of polarization rotated by 90° . This particular case is the one

employed in the cavity-dumping scheme discussed here. As such, the vol

tage, V, was set to induce a 'y=a /2 phase shift for X = 590am. Although

slight, there was some variation in the X/2 voltage for the various

wavelengths within the emission range of the dye. This necessitated a fine

adjustment of V whenever the lasing wavelength was altered.

A fast photodiode, detecting the flashlamp discharge, was used to

trigger the Pockels cell electro-optic modulator (EOM) driver. The

triggering occurred well before the flashlamp intensity had induced a

threshold inversion in the dye solution. .After a built-in 30nsec delay, the

EOM driver applied the high-voltage X/3 pulse to the Pockels cell. The

rise-time of the high voltage pulse across the cell was 1-2ns.. Triggering

the EOM in this way eliminated the problem of trying to synchronize the



flashlamp pulse with the Pockels cell turn-on time. Due to the substantial

jitter (' 100nsec) in the spark-gap switch, this synchronization problem

became a major concern wheat more, sophisticated triggering circuitry

became necessary. The X/2 Pulse duration was adjustable front 100ilsec -

1.2psec so that the Pockels cell could be switched oil' at any point during

the flashlanip pulse.

As inerntioned, an Dichromatic X/2 plate provided the fixed 00°, rota-

tion. The turning inirrors, Al l and A1,,, both had broadband, high-power

reflective coatings. Reflectivities throughout the dye emission band were

measured to be greater than 00%.. Adr had an infinite radius of curvature

while f,, was made slightly concave (PC =20cn) in order to form a stable

resonator. The efi'erts of varying Lire Caauvsia,n beam characteristics of the

resonator. by replacing VI t and Al,, with mirrors of different curvatures,

will be presented later.

3.7 - Diagnostic Equipment

After exiting the cavity, the laser pulse had to be attenuated in order

to avoid damaging the detection equipment. As shown in the overall
ij

schematic presented in Figure 3.7, this was accomplished by reflecting the

beam ofl' of a series of glass plates until its intensity was such that more

conventional attenuators, such as neutral density filters and diffusers,

could be used. The exact value of the attenuation, required for

radiometric measurements, was determined by passing an identically polar-

!zed 2.2%V 514.5nm argon-ion beam through the networl.- _,f, 
glass plates.

Attenuated gutput pulse energies were measured using a UDT Model
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350 optonieter. Tf ► e detector head consisted cif' a silicon PIN photodiode

mounted in a UDT `'lodel 2500 integra,tin, sphere. Use of a radion ► etric

filter with the detector assured that a fiat response was obtained from

400-700n m .

The temporal profile of the oscillator output was monitored with a

fast (tr < I its ) PIN photodiode (PD t ) and a 275^%IHz storage oscilloscope.

Noise induced by the electromagnetic interference, caused by the high-

voltage switching, was minimized by mounting the diode in a well shielded

box. The batteries used to reverse bias the diode were also mounted inside

the shielded box in order to minimize external connections. Because of the

high. noise level all electrical connections were made using shielded cables.

A Candela LS-1 grating spectrometer was used to spectrally- analyze

the attenuated oscillator output. In the LS-1, the spectral components of

( the, beam were dispersed by the grating onto a linear photodiode array.

The array output was scanned and read into an integrate, sample-and-hold

amplifier whose output was fed directly to the vertical input of the oscillo-

scope. The oscilloscope then displayed relative light intensity vs.

wavelength, since time was correlated to position on the diode array (i.e..

wavelength). The spectrometer resolution was limited by the diode resolu-

tion to a minimum of 0.O1nm and by the length of the array to a max-

imum of 10nm. Linewidth resolution was increased to ? pm when an inter-

nally mounted Fabry-Perot etalon was used in place of the grating. The

resulting fringe pattern was then recorded by the photodiode array for

anal ysis. During the later phases of the work. when information about the

relative energy in a given spectral band was required, this spectrometer

was replaced with an optical multichannel analyzer (OMA.).
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Another fast photodiode, PD:_, was used to !nonitor the growth of the

laser pulse during amplification. It detected the spontaneous emission

which was focused onto the photodiode after being scattered from an edge

of the dye cell. With lasing inhibited, by blocking the path of the beam,

the spontaneoiis emission from the dye was directly proportional to the

intensity of the flashlamp pumping pulse. The presence of any stimulated

emission, however, reduced the spontaneous emission to a level less than

that when lasing action was forbidden. Thus, as the intensity of the

amplified pulse increased, increasing the stimulated emission rate, it was

accompanied by a commensurate drop in the spontaneous emission level

During amplification, the spontaneous emission steadily decreased mitil it

reached a constant value. At this point the intensity of the amplified pulse

was assumed to be well within the saturation regime. The display of the

PD 2 output was thus useful in optimizing the Pockels cell turn-off time.

3.8 - Alignment of the Cavity-Dumped Oscillator

As with most pulsed laser systems, cavity alignment had to be per-

formed using an external laser. Although a simple He-Ne laser would have

sufficed, the CW argon-pumped dye laser that was used for the small sig-

nal gain measurements, was used instead, primarily due to the larger

power available (- 50mW). It was also preferred because the wavelength

of the alignment beam could be made closer to the free oscillation

wavelength of the cavity-dumped oscillator. This was a concern because

of the dispersive properties of the EOM and the X/2 plate. The initial

alignment was performed with only pure ethanol circulating through the

dye cell in order to avoid the attenuation of the beam by the dye. Once

'`~ ^	 ^	 a	 r max.
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the alignment was completes! the (lye solution was then added to the
v	

1	
)x

ethanol.	 Subsequent alignment "checks" were performed using

wavelengths where absorption losses in the dye were small (i.e. X'
z600 nm ).	 a

	

Since the resonator would be aligned so as to sustain laser oscillation 	 t'
1

that propagated in the same direction -as the alignment beach, it was
i9

imperative that the aligmneent beam pass directly through the center of 	 r F
l

the dye cell where the gains were maximized. Once this was set, the reso-

nator optics were adjusted to return the alignment beam back through the

center of the dye cell along the same path that it had made on its initial

transit. With the a/2 plate set so as to induce a 90' polarization rota- 	 h

tion, the alignment beam would remain inside the cavity for at most only

two passes. Deliberately "misadjusting" the a/2 plate, however, resulted

in the generation of an elliptically polarized beam. a fraction of which, on

each transit, was reflected back into the cavity, by PBC_. In this way,

the cavity was aligned so that the second, third, forth, fifth, ..., passes of	 k

the alignment beam spatially overlapped each other, thus insuring a stably

aligned resonator. The fraction of the incident elliptically polarized beam.

transmitted by PBC 2 was used for the alignment of the attenuation stack

and the diagnostic equipment.

Before the X/2 plate was "misadjusted", however, the optic axis of

the Pockels cell had to be made parallel with the alignment beam iri order

to minimize the premature leakage of light out of the cavity. This pro-

cedure had to be performed prior to the resonator alignment because a

reorientation of the Pockels cell substantially altered the direction of the

alignment beam. With the X/2 plate set to induce a 00" rotation, the
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linearly (s ) polarized alignment beans was passed through the static

I (V =0) Pockels cell. Using PBS',) as an analyzer, the orientation of the

cell was then adjusted to minimize transmission through PBC_,. After

aligning the Pockels cell, the rest of the resonator optics were then aligned

using the "spatial overlapping technique described above.
I

3.9 - Initial Temporal and Radiometric Oscillator Performance

The initial operation of the system was performed with the oscillator

and detection equipment aligned and configured as shown in Figure 3.7.

Preliminary investigations were devoted to determining the factors that

influenced the capacity of the system to deliver high-power pulses and to

insure that these pulses possessed "clean", nanosecond duration temporal

profiles.

Spectrally, the output pulses had a fixed center wavelength of 590nm

with a linewidth of - 6nm FWHIVI. More detailed spectral characteriza-

tions of the outputs are considered in Chapter 4. Output pulse energies

and temporal profiles were first monitored as a function of the point in the

flashlam pulse when cavity-dumping occurred (hencewise known as the

"extraction time"). Regardless of the extraction time, however, the

observed temporal profiles were extremely poor. A significant fraction of

the output pulse energy was contained in "shoulders" that preceded and
	

Il
followed the cavity-dumped pulse. Figures 3.8 and 3.9 are traces of the

temporal profiles of the output for early and late extraction times respec-

tively. The existence of the trailing "shoulder" in Figure 3.8 was attribut-

able to the fact that, 1; hen cavity-dumping occurred early in the pumping

pulse, before net gains had decreased to unity, the system, with the

CD

^^
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Figure 3.8: Temporal Profile of a Cavity-Dumped Puke

Extracted 20Uns Prior to the Peak of the Pumping Pulse.

Iloriz: 200ns/cla
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Figure 3.0: Temporal Profile of a Cavity-Durnped Pulse

Extracted	 . tUUns ;tt'tc-r the l'ual, of the Ptmij)ing Pulse.

Iloriz: 200nF /crn
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r. , ofr, ,Pockels cell 	 continued to lase as a two-Fuss oscillator. 	 More will be

f said about this later.	 The existence of a leading " shoulder" when cavity-

dumping occurred late in the pumping pulse (Figure 3.9), however, indi-
;l	 a

cated that radiation was leaking out of the cavit y prior to the switching of

the	 Pockels	 cell.	 Apparently,	 despite the	 careful	 alignment procedin-e

used, the actual lasing axis differed slightly from the axis Oefined by the

alignment bearn. 	 The laser radiation then traveled through the Pockels ^ 1

cell along an axis that was not parallel to the optic axis of the crystal.

Because of this, it did not undergo an exact 90°	 rotation and, when

incident on PBC:, a fraction of the radiation exited the cavity.	 After an

iterative realm*nment, of the Pockels cell	 Burin	 operation. the intensity ofo	 -o	 P	 Y

I
the leakage became ne-ligible a,nd outputs resembled that shown in f irrure.
3.8.

The trailing "shoulder", attributable to a different phenomenon, stillis. existed.	 It was thought that if the extraction time was moved to a point,

late enough in the flashlamp pulse, where net gains equaled unity, that the

two-pass oscillation would be inhibited. 	 This. in fact, proved to be the
(
j case.	 However, as the extraction time was pushed from the peak of the

x-

I flashlamp pulse to a later point in time, the .intensity of the cavity-

dumped pulses decreased.	 This indicated that, due either to gain satura-

tion, triplet -state absorption. or other time-dependent loss mechanisms, the

net gain had been reduced to unity by the time when the flashlamp inten-

sity was the greatest.	 It was then questionable as to what sustained the l

two-pass oscillation.	 Through placement of a monochrometer, set to pass t

590nm light, in front of PD 1 , it was discovered that the cavity-dumped

pulse	 alone	 was	 centered at	 590n1n.	 The	 trailing	 "shoulder"	 was
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comprised of broadband radiation centered at 575nrn. As the triplet State

absorption cross section, aT , was considerably less at this wavelength than

at 590nin, it was conceivable that net gains at 575nm persisted until a

later point in the flashlamp pulse. Although this accounted for the

existence of the trailing "shoulder" it was uncertain as how to suppress it

without sacrificing the energy of the cavity-dumped pulse. The most

likel y solution was that of spectrally filtering out the 575nm radiation.

More will be said about this in Chapter 4 when the spectral characteristics

of the outputs will be carefully considered.

The output of PD,, shown in Figure 3.10, detailing the growth of the

laser radiation during amplification, graphicall y demonstrates these obser-

vations. The display is a .double exposure of two consee;itive flashlamp

firings, one taken with lasing inhibited and the other with the oscillator

lasing. These traces were overlaid to accentuate the differences in the two

spontaneous emission profiles. With lasing inhibited, the PD,, display

mimiced the Gaussian shaped profile of the flashlamp pumping pulse as

expected. The second trace, taken while the oscillator was lasing, illus-

trated how rapidly the system was, driven into saturation. The two traces

appeared identical until about 200ns after the initiation of the Hashlauip

discharge. At this point, when the laser reached threshold, the intensity of

the laser radiation increased rapidly and the spontaneous emission level

was driven well below that of the first trace. The saturation regime evi-

denced by the "leveling off' of the spontaneous emissionintensity was

reached quickly. As a further indication of saturation, note that the

minimum level the spontaneous emission was driven to coincided identi-

cally with the level at which threshold was reached. At both of these

11-

as	
aPt

^ * ?a';;.	 4w.ri	 mar	 ..,.sea fir-..	 . a
2Vt .̂ 	
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points thu net gain should be near unity. Tile gain saturated system was

i' then cavity dumped near the peak of the flashlarnp pumping pulse. 	 This

I. sudden absence of laser radiation in the cavity allowed the spontaneous

( emission level to increase, to the value attained at the same time Ill the l
{c
h

first trace.	 Once recovered, the system began to lase again -,s a two pass
lt:

oscillator.	 This was indicated by tare return of the spontaneous emission

' level to that of the first trace.,

z
Output pulse energies were monitored as a function of I, f , the !lash-

'
3'

lamp discharge energy, using late extraction times to minimize the arnpli-

tude of the trailing "shoulder". However, the recorded pulse energies were

less than optimal due to the late extraction times used.	 Lasing threshold f

-'I occurred at F, f	 = 90J and cavity-durnped pulse energies of " 10t11J were u

P observed with E	 = 150.1.	 When output energies approached - 20-25mJ
i

f

`(Ef	 200J), damage was observed on the dielectric coating of the PBC's.

This damage resulted from an inherent problem with the devices and

F forced the use of a different type of polarizing beamsplitter later in this

work.i
During the fabrication of the PBC's, the dielectric polarizing coating

1

was applied to one half of the cube while an optical cement, applied to the

other half, was used to adhere the two halves together. 	 It was believed

s' that the cement was heated by the absorption of a small percentage of the

incident radiation and that this temperature increase damaged the adja-

cent polarizing coating. 	 Damage, then, undoubtedly occurred when the

foscillator was cavity-clumped and the high-power pulse passed through the
t^

PBC's.	 Care had t.o be taken in subsequent work using the PBC's to

keep output pulse energies below ` 20mJ.

t

ti
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Figure 3.10: Double Exposure of the Fluorescence Emitted from

the Dye Cell With and Without Lasing.

Horiz: 200ns /cm; E f : 140J.
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3.10 - Beam Waist Considerations

Only the basic resonator design, described in Section :3.5, had been

used up to this point. With this basic design, however, the only influence

that the resonator had on pulse energies, discounting the passive corn-
J

ponent losses, was in the beam shaping through the use of focusin g. optics.

As described earlicr, the only focusing optic in the cavity was a ` 0inl^e

spherical	 mirror.	 This choice	 was made so that	 the resonator would

satisfy the Gaussian mode stability criteria while supporting as large a

beam diameter as possible. 	 It was thought that if a plane parallel resona-

tor were used, the diffraction losses, especially for higher order modes,

would offset the gains obtained through	 utilization of the entire	 dye

volume.	 Although diffraction losses could have been minimized by the use

of a shorter focal length mirror, astigmatic losses would then become a;

concern.	 The use of a shot-ter focal	 length	 mirror also would	 have

decreased the beam diameter, thereby using less of the active dye volume.

To test these hypotheses, output energies, E. , were recorded as a

function of the Gaussian beam waist which was set by varying the curva-

ture of the mirror used in place of M, (Figure 3.6).	 The system was 1

aligned and operated as discussed in the previous two sections with extrac-
{

tion times kept consistently late to insure temporally clean outputs.	 The
1

results are displayed in the table below where

I
_

uo =-- (- 
^o.s (^ )o2s (R _ —̂ )0.25	 (IIL^^

y

is the Gaussian beam waist found in a symmetric cavity of length 1, con-

taining a mirror with a radius of curvature I

n



Beam Waist Effects

RC(m) wp (mm) rf (J) Fo (mJ)

2 0.13 101 1A
11:3 3.9
126 6.5
140 8.5

20 0.93 101 1.5
113 4.8
126 7.5
1 . 10 10.5

00 00 101 1.4
11.3 3.6

.126 6.4
1-10 9
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The output pulse energies exhibited only a weak dependence on the

Gaussian beam waist. A possible explanation for this is that, due to the

large degree of gain saturation, the pulse developed in a highly multimodal

fashion. If this was the case, the beam radius would grow as the gain spa-

tially saturated until it filled the dye cell, regardless of the focusing ele-

ment in the cavity. The marginal decrease in system performance in the

plane resonator case was probably due to the increase in diffraction losses

as expected. With the 2mRC mirror, output energies were also lower than

those obtained with the ` 0mRC mirror, but not by the factor of ` 2

pridieted by the Gaussian beam calculations. The lower output energies,

in this case, were most likely attributable to increased astigmatic losses.
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3.11 Effects of the Organic Dye on System Performance

Time dependent losses within the organic dye itself also influenced the

performance of the system. These losses occurred both on a per pulse

basis, due to triplet state effects, and on a long term basis due to the pho-

todegradation of the dye molecules. Triplet state absorption provided a

likely explanation for the early cavity-dumping times required to optimize

output pulse energies. Since kST , the intersystem crossing time, has been

reported to be _ 100-:300ns, an appreciable triplet state population could

have developed by the time the peak of the flashlamp pulse occurred. The

	

	 .
i

increased losses due to triplet state absorption could have forced the	 p

optimal extraction time to be at such an early point in the flashlamp

pulse. It was thought that if these effects could be counteracted that the

optimal extraction time could be pushed to a later point in the flashlamp

pumping pulse. In this way, the trapped radiation could be regenei:a,tively

amplified for a longer period of time and output pulse energies could be

further increased.

Attempts were made, by the addition of triplet state depopulation

agents (quenchers) to reduce the triplet state lifetime, rT . As mentioned

in Chapter 2, these triplet quenchers reduce TT by enhancing the

intersystem-crossing rate, kTG , through either collisional or spin transfer-

ence mechanisms. One of the first triplet quenchers shown to be effective-

at this in R6G was O dissolved into the dye solution. Although it was

since shown that n 2 simultaneously increases kST , thereby counteracting

its effectiveness to a large degree, n ,, was bubbled through the dye reser-

voir in order to see if the optimal extraction time could be pushed to a

later point in the flashlamp pumping pulse. To determine this, output

.	 .^	 7w.x	 :.
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pulse energies were monitored as a function of the extraction time for vari-

ous Ef and 0 2 flow rates. There was, however, no noticeable change in

system performance as the optimal extraction time remained near the peak

of the flashlamp pulse.

The above experiment was repeated using cyclooctatetraene (COT) as

the triplet quencher instead of the O,. COT uses a triplet-triplet energy

transfer as the depopulation mechanism and although there are a number

of other substances which use this mechanism, COT is the most often used

and commonly regarded as being the most effective triplet depopulation

agent for R6G. Being a liquid, it was added directly to the dye solution.

A 10-N-1/L concentration of COT in the dye solution was. suggested by the

manufacturer (Exciton) although various concentrations ranging from

10-5M/L to 10-2M/L were used as well. As with the 0 2 , the optimal

extraction time remained near the peak of the flashlamp pulse. In this

case, however, output pulse energies were generally smaller than those

obtained previously and monotonically. decreased with increasing COT

concentration. This effect was previously noted by McManamon in his

work on flashlamp pumped dye lasers [51). In this work, he observed that

COT had a negative influence on laser gain which resulted in a reduction

in output pulse energies. He noted that the effect, however, was not as 	 l

significant in systems with a high Q cavity, thus explaining the modest

output energy reductions encountered here. Given that COT was con-

sidered to be the most effective triplet quencher, seemingly little was to be	 J

gained from further investigating techniques to reduce triplet state absorp-

tion losses. Throughout this work, the optimal extraction time remained
	 i

I
near the peak of the flashlamp. This problem is discussed further in

^	 I
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The photodehradation of the dye molecules also had a profound

impact on the performance of the system although over a much Ionger

term. When the (lye molecules degrade they no longer contribute to the

lasing process, thus the net effect is C at of gradually lowering the effective

dye concentration. The gains decrease with the effective concentration

causing output pulse energies to decrease. This is an intrinsic property of

laser dyes and although it is irreversible, there are ways of slowing the

degradation rate. Use of smaller beam intensities and low energy visible

pump sources are methods (although inconsistent with the objectives of

this work) of extending the dye lifetime. The dye lifetime was an impor-

tant parameter in this work, however, as it detailed the Dutput pulse ener-

gies that could be expected as a function of dye exposure time. The

"exposure time" actually measured was the total F, f seen per liter of dye

solution. (The concentration was kept at a constant 5 * 10-5M/L

throughout this work). The dye lifetime, generally considered to be the

"exposure time" at which output pulse energies have decreased by a factor

of two, was found to be - 20,000J/L. This figure is, of course, an average

as the actual value depended greatly on the range of E f 's used per batch.

3.12 - Time Dependent Wavelength Development

As mentioned in 'Section 3.6, the center wavelength of the cavity-

dumped pulses %vas 590nm. This is identical with the peak lasing

wavelength of Rhodamine 6G that was reported by the dye manufacturer

(Exciton). What was not expected, however, was the presence of the

yellowish-green radiation, centered at 575nm, after cavity-dumping. If
-w

^t

Ŷ .

..	 _	
7	 77
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cavity-dumping occurred early enough in the flashlamp pumping pulse, the

system had sufficient time and gain (especially at these wavelengtb5 where

triplet state losses were less; Figure 2.2) to begin to lase again. In this

case, however, with the EOXI "ofr', the system functioned as a two pass

oscillator due to the polarization sensitive components in the r esonator. In

fact, whenever the system was operated wil,hout the EOM in the cavity,

the center wavelength of the then - lttsec output pulse was identically

575nrn. 'There was naturally some confusion as to why the the same sys-

tem would lase at two wavelengths 15nm apart depending on its mode of

operation. One possible explanation was that the output pulse

wavelength, X^, was a function of the photon cavity lifetime, t c =l /cL

where l is the cavity length (a ring cavity is assumed here), and L is the

fractional loss per pass. In the cavity dumped mode, where t, was

extremely large, the system lased at 590nm, where the single pass gains of

the medium were the greatest. On the other hand, when the system was

operated as an oscillator, tc was extremely small (<20ns)-

To see if, in fact, tc was the critical parameter, X o was observed as it

was varied. By varying the roundtrip cavity losses, tc could be set to

man different values. The losses could be continuous) varied withoutY	 Y	
^.

changing the system design by "misadjusting" the a/2 plate. When prop-

erly adjusted, to yield a 90 0 rotation, the system functioned as a two pass 	 4
l

oscillator with all of the radiation being p -polarized on its second transit

through the system. When adjusted to yield a 0° or 180° rotation, the

cavity-dumped mode of operation was emulated. By adjusting the rota-

tion of the a/ 2 plate so that the linearly Polarized light was changed into

some elliptical polarization state, the PBC's would act as variable output

w
1#	 i	 ..w.J	 - .
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couplers. [rr this way the cavity phc^ on lifetinu^ could be adjusted to s^uy
f `

point between these two extremes. The results g iven below decidedly indl-

cated that the lasing; wavelength, X was indeed a strong function of 1,

Cavity Lifetime Effects

t,.	 (ns) a (nal)

143 590

125 X89

50 585

27 581

22 577

20 57.5 

A number of studies were performed in the late 1960's investigating

the factors which determined the natural lasing wavelength of various

organic dyes. One of the factors that was investigated was that of cavity

Q (i.e. cavity photon lifetime). These studies concluded that lasing is gen-

erally initiated at that wavelength where the fluorescence output of the

dye is maximized. But, as the intensity of the intracavity radiation grows,

absorption losses encountered at thh: wavelength begin to push the lasing

wavelength further toward the red where these losses are smaller. Since,

for a given pumping rate, the intracavity field. intensity is a function of the
t

cavity Q, the lasing wavelength, X, naturally increases as the photon cav-

ity lifetime increases. More details as to this dependency can be found in

[23,34,5 4 1. It is sufficient, for this work, merely to understand the origin of

this "yellow -green" radiation and to understand that it is inherent when
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ever two-pass busing is allowed to occur.

s

c

C
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a	 CHAPTER 4 - INJECTION-LOCKING OF THE CAVITY-
d

DUMPED CFP LASER

f ,	 t

4.1 - Introduction
y

In Chapter 3, the development and performance of the cavity-dumped

oscillator was discussed. 	 Detailed descriptions of system components were
$
4

given and a characterization of the properties of the dye was performed.

Using a polarization-sensitive ew.-ity- dumping technique, moderately high-

=- energy, Ions duration pulses were generated..	 Of primary importance dur-

ing this preliminary work were efforts to maximize output energy while

maintaining a temporally "clean", 10ns pulse shape.	 This required that

the spectral, temporal and radiometric profiles of the outputs be monitoredF	 i.

under a variety of operating conditions. 	 There was,.however, no attempt

made to control the spectral characteristics of the outputs. 	 Lasing invari-

ably was centered at a =590nm and the output pulses were very broad-

band (AX = 6nm FNkM4). Spectral features were only considered if they

impacted on the temporal profile. For example, the variation in X when

the _ system functioned as a cavity dumped oscillator -versus that of a

j "two-pass"	 oscillator became significant	 in optimizing	 cavity-dumping

times to obtain the "cleanest" possible outputs.
^ I ^

>	 ; This chapter, however, describes efforts aimed at suppressing the j

"two-pass" oscillation so that the extraction time may be made more

optimal and at controlling the spectral properties of the output pulses.

t' Specifically investigated was the use of injection-locking as a means of
s.
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spectral control. This tet.hnique, unlike more conventional means of con-

trolling Pulse wavelength and linewidth by the installation of lossy disper-

sive elements into the oscillator, (lid not compromise the capacity of the

system to deliver high-energy, temporall y "clean" outputs. Integral parts

of the injection-locked system, including the Master Oscillator (A10),

which generated the injected "seed" pulse, and the timing circuitry, which

properly synchronized the operation of the system, are described in detail.

Preliminary injection-locking investigations were then performed in order

to determine. experimentally, the factors on whichthe. system performance

was dependent and the nature of the dependency. Of the factors investi-

gated, most were explicitly mentioned in the general spectro-temporal evo-

lution equation derived in the theoretical analysis performed in Chapter 2.

The effects that various resonator designs had on system performance and

operation were also discussed. Of particular importance, in this respect,

were the effects that the installation of frequency selective devices into the

amplifier had on the tunability and injection-locking performance of the

system.

4.2 - Master Oscillator

As discussed in Chapter 2, the basic principle in an injection-locked

system is that when the output of a low-energy, but spectrally pure

source, called the master oscillator (A10 ), is properly injected into an 	
i

amplifier, the spectral characteristics of the amplifier can be controlled. 	
1
a
I

A N, laser pumped dye laser served as the pulsed master oscillator
i

;.	 for this work. Both the N,,-pump laser and the dye laser were commer-

cially manufactured by Molectron Inc., (.'Models W-24 and DL-300
I Aft
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respectively). A detailed schematic of the AIO optical design as viewed

from above is shown in Figure 4.1.

The DL-300 (lye laser was transversely pumped by the Orn.T, rectangu-

larly shaped (6 x 32 mm) N,-baser Ream. This UV pumping beam was

focused to a 8min long by 0.2 0.51nni high line in the quartz dye cell by

an aspheric quartz lens, G 1 . The dye cell contained ` 3ml of a 5 * 10-3`3IJl

concentration of R.60 in ethanol. A magnetically coupled stirrer kept the

dye solution from being bleached by the intense IN excitation.

The dye laser resonator, based on the Ilansch design [551, was formed

by a partially reflective output coupler and a grating used in littrow

configuration. The grating selecteda particular wavelength within the

emission band of the dye for return to the dye cell and subsequent

amplification in the laser cavity. Single-pass gains in the dye were so high

that a 96% transmission output coupler, M I , was used. The glass gratin;,

blazed at 2.70µm with 600 grooves/mm, was mounted on a sinedrive

assembly which converted the linear rotation of a remotely controiled DC

motor to the sine function wavelength response of the grating. This

resulted in a linear relationship between the motor rotation and the

wavelength increment of the dye laser output. Using R6G, the output

wavelengths were tunable from 575 - 602nm.

The dye laser cavity shown in Figure 4.1 also contained a 22.5x

beam-expanding telescope which helped to increase output power and to

reduce the optical linewidth of the beam. Use of this telescope together

with the grating in the 5th order reflection mode yielded output pulse

linewidths of 0.05nm. Further reduction in the optical linewidth and

f
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increased frequency stability, when required, were achieved by the installa-

tion of an etalon in the cavity.

Although the frequency stability of the output beam was generally

very good, its amplitude stability and spatial characteristics were quite

poor. The beam was decidedly nongaussi.m. It was ellipsoidal in shape

and had a large divergence. Because of this poor beam quality, exact cou-

pling of the MO beam into the amplifier was impossible. Instead, the

MO beam was spatially filtered by A 1• and ,4 and roughly mo de coupled

into the amplifier by the focusing systein L and L 3. The unpolarized

MO beam was polarized by PBC 1 as it entered the amplifier. Usable MO

output pulse energies, before spatial filtering were ` 1201iJ with shot-to-

shot amplitude variations of - 10°c. After spatial filtering, focusing and

polarizing, however, only - 40µJ could be injected into the dye cell.

4.3 - Trigger and Timing Circuitry

The flashlamp pulse, the MO pulse, and the EOM all had to be care-

fully synchronized in order to insure that infection-locking would occur

The MO pulse had to arrive at the dye cell just as the amplifier achieved

threshold. If it arrived much earlier, it would be attenuated as it passed:

through the amplifier by the losses associated with the optics and the dye

solution. By the time threshold was then reached, insufficient MO pulse

energy would remain to lock the amplifier. Typically, the injection time

	

	
t

^p
could precede threshold by as much as _ 50ns and sufficient signal

strength would remain to injection-lock the amplifier. The amount of f

"lead-time", of course, was a function of Ef and the injected pulse
.1

wavelength, X i . " The tolerance was not so great for injection occurring

F
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after the onset of lasin g; in the amplifier.	 Due to the rapid build-up of

laser radiation after threshold	 the	 injected pulse energy^	 p	 6Y soon became

insignificant in comparison with the already oscillating fields. 	 Injection-
ti
d

locking then failed to occur.	 The consequence of this w^3s discussed in
r

^	 a

more detail in Chapter 2.

The most critical timing consideration w as the synchronization of the

EO.,V1 turn-on tirne and the MO	 pulse injection time.	 The X/2 voltage

had to be applied between the first and second transits of the MO pulse

through the Pockels cell.	 Application of the X/2 voltage prior to its first

pass through the Pockels cell caused the initially p -polarized AID pulse to

undergo	 a	 net	 180'	 polarization	 rotation	 and	 to	 exit	 the	 cavity,
^l

unamplified, through PBC,,.	 If the EOM' switching lead riot occurred by x

the second transit of the now s -polarized 1 ,10 pulse through the Pockels
r

`	 cell, the MO	 pulse would be rotated another 90' 	 by the X/2 plate and

exit the cavity through PBC,.	 The cavity length thus had to be fixed to
i

accommodate not only the 6ns MO pulse but the 1-2ns EOM rise time
i,i

'	 and any jitter in the EOM or MO switching circuitry as well.

Due to the thermal problems mentioned earlier, the amplifier was gen-

erally run at a repetition rate of 0.25pps. Control of the system at these

low repetition rates with the accuracy required for the_EOJV switching

was obtained with use of the timing/ triggering circuitry shown in Figure

4.2_
t
A

The output of a stable function generator operating at - 16,400Hz

was frequency divided by a factor of 21s by a cascaded series of 4-bit

counters. This corresponded to the desired repetition rate of 0.25pps. The

repetition rate could be altered by changing the frequency of the function
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H p 3310A	 !	 Moor* apirr. 	 1018
FUNCTION	 FRFOUENCY

GE NERATOR	 r:r)tjN TFA

16394 Hr

L I NE16	 SIT	 TTL	 1

RECEIVER	 COUNTER

2 16 TH	 216-1 ST
PULSE DECODER	 PULSE DECODER

50-62 µs
VARIABLE DELAY

DUAL TTL LINE	 TTL LINE
DRIVER	 DRIVER

PULSE COUNTER
--(.25 Hz)— 	 (.25 NO

ISOLATED GROUND

HP HCPL-2601
HIGH CMR. HIGH SPED
OPTO-COUPLER CIRCUITS

E.O.M.	 N2--LASER FLASHLAMP
TRIGGER	 TRIGGER	 TRIGGER

s̀	 Figure 4.2: Block Diagram of the Timing Circuitry
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generator. Decoding the outputs of the counters yielded two successive

pulses, the 2 16 th and the 2 16-1 st pulses. The 2 16 th. pulse was used to

direct( trigger the MO and the EOat . A 750ns delay1 Y bo Y existed between

the arrival of this trigger pulse and the generation of the 11•/0 laser pulse.

This delay was very stable due to the low-jitter (-' ins) hydrogen thvra-

tron used in triggering the N.,-laser. Tile delay corresponding to the pro-

pagation tine between the MO al.ad the amplifier (` 12ns) also had to be

accounted for. A built-in, adjustable delay circuit in the EOM driver was

used to compensate for the resulting ` 762ns delay so that the Pockels cell

was switched-on at the proper time with respect to the A10 pulse.
r

The (2 16-1)st pulse was input to the flashlamp trigger circuitry shown

in Figure 3.1. The flashlamp discharge, however, did not begin until - 2-
4
F

5psec after the arrival of the trigger pulse. This delay varied considerably

depending on the energy stored on C 1 and the SG 1 operating conditions.

As the (216-1)st pulse occurred - 60psec earlier than the A-TO /EOM

trigger, a fined delay of 50psec together with a finely adjustable delay of

0-12psec were used to synchronize the flashlamp pulse with the arrival of

the MO pulse and the switching time of the E0111.

The proper synchronization of these components depended on minim-

izing any jitter present In the triggering circuitry itself. Unfortunately,

however, substantial jitter (up to 100ns) still existed in the flashlamp ii

trigger circuitry. When severe enough, the uncertainty in the flashlamp	 ► ',

firing time made injection-locking with the short duration ATO pulses

extremely difficult. With more than 100ns uncertainty, it became prohibi-

tively difficult to inject the X110 pulse close enough to the point at which

the amplifier reached threshold to fully injection -lock the amplifier. As	 3
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will be discussed later, (.his condition could possibly be remedied through

+ the use of CW 110's.

k In the fiashlarn	 tri gger circuitr y , 	 the spark-gap switch and theP	 g	 yg^	 .,	 P	 p i
i

fiashlamp were suspected of conLributing to the system jitter.	 The pri-

mary contributor, however, appeared to be the spark-gap switch as the r

jitter was a strong function of the gas pressure in the gap, and the eondi-

tion of the electrodes and the spark-plug. 	 The manufacturer (Tachisto)

suggested	 pressurizing	 the	 spark-gap	 with	 either	 nitrogen	 or	 carbon-

dioxide, but warned that use of nitrogen necessitated more frequent clean-

ing of the electrodes. Currently, spark-gap manufacturers are recommend-

ing pressurizing the gap with compressed air to minimize the jitter and

r cleaning	 intervals.	 As , the	 required	 electrode .cleaning	 interval	 was

expected to be greater than lUfi shots, nitrogen gas was used anyway.

Unfortunately, with nitrogen, cleaning was required much more frequently

than expected (- 10' shots) and at each cleaning, the spark-plug had to be

replaced due to excessive electrode wear. 	 Although no other pressurizing

gasses	 were	 tried,	 the	 use	 of	 nitrogen,	 undoubtably,	 contributed

significantly to the jitter problem. 	 Nonetheless, by maintaining the pres-

sure at just below the self-breakdown level and by periodically cleaning

the electrodes and replacing the spark-plug, the jitter was kept to a toler-

able level (< 50ns). 	 Even though the jitter problem in triggered spark-.

gaps can be overcome, it is strongly recommended, for minimum service e
E

and jitter, that thyra.tron switches be used instead.

In addition to the "innate" electronic jitter problem, substantial jitter

was induced by the high-voltage switching in the N,,-laser, the flashlamp,

and the EOM.	 This jitter was induced in two ways. 	 First, the high-
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w
voltage switching resulted in the presence of a large amount of electromag-

netic noise in the laboratory. The noise, when picked-up by the TTL

timing/triggering cis ,̂ uitry, caused sporadic trigger pulses to be generated,

ruining the required synchronization. Careful Shielding of all electronics

and cables, however, alleviated this problem. A more severe source of

electrical instability resulted from the direct appearance of voltage-spikes

on the electrical grounds of the high-voltage circuits. Although powered

from an isolated, float! nb ground supply, the voltage spikes were transmit-

ted to the TTL circuitry by the shielding in the trigger cable. The effects

were similar to those encountered above when radiated electromagnetic

noise was picked-up. To eliminate this problem, the TTL circuitry was

completely electrically isolated from the high-voltage circuitry by the

installation of an opto-isolator in each trigger channel. The opto-isolators,

located in a separate, shielded box, decoupled the TTL circuit ground from

that of the high-voltage circuits. Only unidirectional transmission of si g

-n als was allowed, thereby eliminating any means of high-voltage feedback.

4.4 - Amplifier Alignment

As discussed in Section 3.8, the cavity-dumped amplifier had to be

aligned, at least initially, using an external laser. Since injection-locking is

facilitated when the lasing axis of the amplifier is collinear with the path

of the injected pulse, the M0 output was used as the alignment beam in

place of the CNV dye laser beam used earlier. The alignment procedure,

however, was essentially identical to that described in Section 3.8.

The A-10 beam, run at high pulse repetition rates (", 20pps) to ease

visual CL p; ILment, was Polarized by PI3C 1 and directed to pass through the	 1j
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center of the dye cell. With only pure ethanol circulating through the dye

cell and the X/2 plate "misadjusted", as before, the amplifier cavity was

aligned to the MO beam using the same "spatial overlapping" technique

as described earlier. The extremely poor spatial properties of the MO

beam, however, made it difficult to determine when the beams perfectly

overlapped. This difficulty, coupled with the attenuation of the beam in

the cavity and slight directional variations of successive JVO pulses, made

this alignment technique coarse at hest.

A more sensitive alignment technique was also attempted. Again,

with only pure ethanol flowing through the dye cell, the jVO pulse was

injected into the amplifier and centered in the dye cell. This time, low

(0.25pps) IVO repetition rates were used and the a/2 plate was properly

adjusted to give a 00' polarization rotation. Using the timing/triggering

circuitry discussed above, the Pockels cell was switched "on" just after the

injected pulse had passed through the cell. With the X/2 voltage applied

to the Pockels cell, the injected pulse was trapped inside the amplifier cav-

ity. The amplitude of the injected pulse then decayed by an amount pro-

portional to the optical cavity losses on each pass through the amplifier

cavity. This decay was observed by placing a photodiode behind one of

the turning mirrors. Although dielectric coated for maximum reflectivity,

these mirrors (Al, and M,,) transmitted a small percentage of the incident

radiation which was detected by the photodiode. A typical decay,

although for a slightly different cavity configuration, is shown in Figure

4.3. Successive passes of the A O pulse, while trapped inside the amplifier

cavity, generated the pulse train.

V
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;ure 4.3: Passive Decay of the Injected Pulse.
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The cavity was aligned by adjusting the optics to maximize the
i

number of pulses observed. When the cavity was misaligned, the AN

beam would no longer strike the mirrors at the same point on each pass.

This would be indicated by a rapid decay in the intensity of the pulses

striking the photodiode. It was believed that the cavity could be very

accurately alined using this technique and that an exact figure for the 	 t

optical cavity losses obtained. The decay of the pulse train shown in Fi g-

tire 4.3 was ` 165o per pass (a linear configuration was used here, hence 	 1

two transits were required to generate one pulse) which was somewhat

higher than the expected cavity losses. It was believed that some of the

inaccuracy here was due to the divergence of the MO beam.

Developing an accurate alignment procedure for the amplifier, thus,

remained a formidable problem because of the poor spatial properties of u	
1

the MO pulse. The first of the two techniques presented above was the

alignment technique generally used despite the fact that the amplified

beam often developed along a different axis than that defined by the MO

beam during the alignment procedure. As discussed in Section 3.9, this

often resulted in the presence of a "shoulder" on the output pulse because

the path of the ampiified pulse was not parallel to the optic axis of the

Pockels cell. The Pockels cell then had to be slightly readjusted during

the operation of the system in order to eliminate the "shoulder".

The criterion that the lasing axis of the amplifier be made collinear
i

with the path of the injected pulse is an especially critical one when the

modal properties of the amplifier output are a concern. In this case, how-

ever, it was uncertain as to whether a high-power Gaussian or multimoJe

pulse would emerge when the amplifier was operated in the highly gain-

0%M07 7 k,
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1.	

Psaturated regime. 	 In any case, the system must be first injection ' . ')eked in

the region where threshold first occurs (i.e. near the center of the dye cell). 4

It was thought that as the intensity of the amplified pulse grew and

approached the dye saturation intensity it would begin to in^etion-lock

the radiation present in the extremities of the dye cell as the y approached

threshold.	 The entire dye volume would then eventually be injection-
Ilocked by the MO pulse.

4.5 - Initial Injection-Locking Experiments
i

With the system identical to that shown in Figure 3.7, with the

exception that .the MO assembly, shown in Figure 4.1, was used in .place

of the CW dye laser. initial attempts to injection-lock the amplifier were

made. Preliminary to these attempts, the amplifier was aligned using the

procedure outlined above and operated as an oscillator in order to set the

EOM switching times.	 The MO pulse wavelength, X, , was then set to

the peak wavelength of the oscillator output, a o = 590nm, to enhance the

. probability that locking would occur.

In order to optimize the MO pulse injection time (with respect to the

flashlamp pulse) the injection times were slowly varied until evidence of

injection-locking was observed. At this point it was assumed that the .410

pulse was being injected near the threshold point of the amplifier. The

flashiamp discharge energies, E f , were initially kept low.	 Once the sys-

tern exhibited indications of being injection-locked, the injection times

were optimized and E f was graduall y increased. Since thepoint in time

that the amplifier crossed threshold was a function of Ef , the injection

time had to be adjusted slightly for each value of E f
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The EOM "turn-off' time was then adjusted to maximize amplified

pulse energies, Ea . The factors involved in optimizing the cavity-dumping

time were discussed in Section 3.9. The intensity of the cavity-dumped

pulse (neglecting the trailing "shoulder" flue to the two-pass oscillation)

was generally maximized when cavity-dumping occurred near the peak of

the flashlamp pulse. The optimal cavity-dumping time, however, was a

slight function of Ef . For smaller values of Ef , the optimal extraction

times occurred somewhat after the peak of the flashlamp pulse. As Ef

increased, the optimal extraction time moved towards the peak of the

flashlamp pulse. Presumably, this effect was due to the thermal and tri-

plet state problems. which become more pronounced with increasing Ef .

It is, however. a very slight effect. The total variation in optimal extrac-

tion times as a function of Ef was - 100ns, and for a given Ef , there was

only a slight variation in E a within 100ns of the optimal extraction time.

With the system properly synchronized, the system could be almost

completely (i.e. p-1) injection-locked at 	 — 590nm. In order to get an

initial indication of how p and Ea would vary as a function of Ef , flash-	 j

i

lamp pumping energies were then gradually increased. Pulse extraction

times were set late enough in the flashlamp pulse in order to minimize the

intensity of the "two-pass" oscillation. The injection-locking efficiency, p,

remained equal to unity for all values of Ef recorded. - The experiment

was terminated when amplified- pulse energies reached 25mJ for fear of

again damaging the dielectric polarizing coating on PBC,.

Temporally, the shape of the injection-locked amplifier output

appeared similar to that of the oscillator output. The only difference, as

)
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expected, was that the injection-locked output pulse had a larger ampli-

tude.	 As a ring-oscillator, the pulse energy was stored equally in the two

counter-ro a atin	 fields.	 Thus, when cavi ty-dumpingoccurred	 onlP	 P g	 g 	 ^	 Y {
ai

half of the total energy would exit the cavity through PBC, and be

detected by PD i .	 The other half would exit the cavity through PBC 1.

i	 When completely injection-locked, however, the ;CIO forced the radiation
I

in the amplifier to circulate only in the direction of propagation of the !^

MO	 pulse.	 All of the stored energy would then exit through. PBC2.

Analyzing the output fror.1 both ends of the amplifier was useful in deter-

mining how complete the injection-locking was. 	 This will be discussed
1

later.

Using smaller flashla,mp discharge energies, investigations were then
!

performed to determine how tunable the injection-locked amplifier could
i{

i`

be made without a reduction in the injection-locking efficiency, p. 	 Since

the amplifier was untuned, it was expected that the amplifier would be

difficult to injection-lock once Ja; —a o I became large with respect to the j.

homogeneous linewidth of the dye. In fact, The results of previous invest!-

gations (detailed in Chapter 2) showed that, in untuned amplifiers, com-

plete injection-locking occurred only for JX; —X o I _	 20A.	 The observa-

tions presented below confirmed these findings.
t

The amplified pulse spectrum was analyzed as the MO wavelength

I	 was tuned in 2nm steps from 581nm to 601nm. Both amplifier (with injec-

1

tion)	 and oscillator	 (w/o	 injection)	 output	 pulse	 energies were	 also
i

recorded at each step. Due to the difficulty in obtaining information as to

the relative energy in a given spectral band, precise determinations of p as

a function of X, ' were not made at this time. 	 This measurement was

^y^^^''K411
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performed later (Chapter 5) using an ON/U. Only qualitative assessments

as to the degree of injection locking were used at this time.

There existed a definite correlation between the observed output crier

gies and the spectral content of the outputs. Injection-locking was

observed from 587nin<X; <503nm. Throughout this range;, amplified

pulse energies were roughly twice that of the oscillator outputs, a further

indication of the high degree of injection-locking. Incomplete locking was

evidenced by the presence of varying amounts of broadband, off-color (i.e.

X ?4X;) radiation which accompanied the amplified pulse. I+'or 583nm < X;

< 587nm and 503nm < X; < 597nm the amplifier was only partially .

injection-locked. Although most of the output energy appeared to be

within AX j , small amounts of off--color radiation were observed in the

amplified pulse. The ratio of the injection-locked output pulse energies to

the un-locked pulse energies dropped below 2 as expected for these values

of X; . This fact was consistent with the observation of significant amounts

of broadband radiation, centered at X = 590nm, exiting the cavity

through PBC 1 . This radiation in the.counter-clockwise propagating beam

was allowed to build-up at those frequencies and areas in the dye cell that

were not overridden by the presence of the MO pulse.

When X; was tuned even further from the peak of the R6G emission

profile (X = 590nm), the percentage of output energy in the amplified 1120

pulse decreased even more. For X= < 5831lm and X; > 599nm the spec-

trometer detected. strong amounts of off-color radiation. It seemed that

once JX; 590nmi exceeded the homogeneously broadened linewidth of the

dye, the molecules radiating at X 590nm could begin to lase indepen-

dently of those contributing to the MO pulse amplification. In fact, even
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with X 500nm, very small amounts of broadband green (centered at X

= 578nm) and red (centered at a = 602 a i) light were observed emanat-

ing from PBC 1 . Thus, a bandpass filter, with a passband centered at X;

must be installed to prevent the independent oscillation of light at other

frequencies and to completely injection-lock the amplifier. The

effectiveness of installing even a weakly dispersive filter (i.e. a prism), with

a passband of - lum, will be discussed in Chapter 5.

4.6 - MO Linewidth Considerations

Many of the applications which require tunable, high-energy laser

pulses also require that these pulses be narrowband (1-41. During the ini-

tial injection-locking experiments, presented in the last section, MO pulse

linewidths of 0.05um were'used. Considering the pulse energies obtained,

( their spectral brightness was extremel y high for dye laser pulses of this

duration. It was thus of interest to determine if the amplifier could be

completely .injection-locked to substantially narrower linewidths without

sacrificing output energies so as to further increase the spectral brightness

of the output pulses.

To conduct this experiment, a Pabry-Perot etalon was installed in the

MO (as mentioned in Section 4.2) to reduce JWO linewidths to 0.0015nm.

Installation of the etalon in the A10 reduced usable MO pulse energies to

a maximum of 1pJ. The experiment was performed in the same manner

as the one performed in Section 4.5, where p and Ea were monitored as a i
1

function of wavelength, except that only three values of X, were used
j

(585nm, 500nm, 505nm). Measurement of the linewidth of the amplified

pulses, with adequate precision, required the installation of the Fabry-
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Perot etalon in the LS-1 spectrometer, as discussed earlier. 	 With the spec-	 t

trometer operated in this fashion. however, no quantitative information as

to the intensity of any off-color radiation could	 be obtained..	 So, after

completing the linewidth rneastirements for a given wavelength, the etalon

had to be removed and the spectrometer operated in the standard mode,
f

using the diffraction gratin, in order to detect wideband emission.

With X; set to 590nm, output pulse linewidths remained identical to
'i

those of the narrowband A10	 pulse.	 Output pulse energies were also

identical to those obtained with AX i 	0,05nm and there was no evidence !

of any "off-color" radiation.	 For X, = 535nm and 595rrm, However, the

results were somewhat different. 	 In both these cases, the difference was }

attributable to the previously observed dependency of p on X_ . 	 Again,

' when X; -^A590nm , broadband,. "off-color" radiation emerged together with

the amplified MO	 pulse.	 Output pulse energies for these wavelengths

were also less than those obtained for X, 	 —— 590nm, where complete

injection-locking occurred.	 In fact, the ratios of E,, to Ea_ for X	 535nm

and 595nm were similar to those obtained using 0X = 0.05nm which indi-

cated that p(X) was not a strong function of AX i - A more significant indi-

cation of this, however, is that the linewidth of the injection-locked frac-

tion of the output pulse remained identical to that of the injected 1110

pulse (i.e. 0.0015nm).	 No evidence of any spectral broadening during

f amplification was observed.

In general, it appearedthat, given only the crude assessments of p
P

'	 - obtainable from the spectrometer and the radiometer, that the injection-.
i

locking process was independent of AX j for injected pulse linewidths >

0.0015nm.	 The spectral brightness of the output pulses at 590nm 	 using

!
f _
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these narrow linewidths increased to 3 * 1U ) It" /nin. Since no evidence of

spectral broadening had yet occurred, it was naturally of interest to see if

this figure could be improved on further. One fundamental restriction to

the amount of possible improvement was imposed by the courier

transform limit. For pulses of this duration, the transform bandwidth

limit is - 150^`4Hz which is roughly only a factor of q times smaller than

the 1.3GIIz bandwidth of the A-1O pulses used above. However, due to the

lack of available means for further reducing Da j , it was uncertain as to

how much closer to the transform limit the bandwidth of the amplified

pulses would get while still retaining the spectral purity of the low-energy

MO pulse.

4.7 - Installation of High-Power Polarizing Beamplitters

The results presented in the last two sections indicated that the sys-

tem could indeed be injection-locked to a narrowband MO pulse. While

these results were promising, the injection-locked tuning range was smaller

than desired and amplified pulse energies were -still limited to ` 25mJ.

The limitation on the output pulse energy was imposed by the damage

threshold of the PBC's, as flashlamp discharge energies had to be

moderated to keep from damaging these components. In order to safely

use larger E f 's, to extract more energy from the system, the broadband

PBC's had to be replaced with high damage threshold polarizing beam

splitters.

In addition to requiring that the beamsplitters possess a large damage

threshold, the devices must have low insertion losses and a reasonably

large extinction ratio, especially in the reflection mode. Two types of

fF
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polarizers were, thus, considered as replacements for the PBC's, a Clan-

type, air-spaced	 prison	 polarizer and an "open-faced", dielectric coated

polarizer.	 The	 prism	 polarizers	 provided	 broadband	 polarization with
•

extremel y high isolation of the polarized components. 	 When made of

high-grade,	 5clilieren	 Free calcite,	 and APB coated,	 the	 transmission of

these devices was	 9Vc.	 Their c:larnage threshold, however, was, only i

slightly larger that of that of the PBC's.	 The dielectric polarizers, on the q

other hand, possessed substantially larger damage thresholds. 	 For this
a

reason, dielectric coated	 polarizers, although inferior in many respects,

were used instead. C

The high-power polarizing beainsplitters HPB's) used in this workt

were manufactured b y C` 1 Laser Corporation (TFP`? Series). 	 Their darn-

age threshold was advertised as being 5G^M ``V	 for a nanosecond dura-

tion pulse.	 Like the	 PBC's, they reflected greater than 09 % of the
b:

z incident s -polarized light while transmitting over 95% of the incident p -

'	 ti polarized light.	 However, unlike the PBC's, they were not broadband

polarizers.	 The quoted efficiencies were only for a given wavelength at a

given angle of incidence 9 j.

The HPB's were coated for 590nm light incident at 5"'. Figure 4.4

shows the measured transmission and reflection characteristics as a func-

tion of a	 and 0...	 The most significant feature to note is that the

reflectivity for s -polarized light remained near unity over the entire R6G

, emission spectrum. Had this not been the case, the polarizers would sim- rq

ply have acted as output couplers for wavelengths where X=,;Z= 590nm,

thereby defeating the purpose of cavity-dumping the amplifier.
s

t
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The transmission of the p -polarized light, however, was a strong

function of both X and 0; . A5 will be discussed later, the design of the

amplifier had to be altered as result of this property. The net effect of the
i

wavelength dependent p-transmission was that output pulse energies

became proportional to the p-transmission at that wavelength. Since the

performance of the IIPB's was also a function of the angle of incidence, 	 l

the orientation of the IIPB's could be set to optimize performance at a

given wavelength. To do this, However, a complete realignment of the

amplifier would be required. The III'B's were set to maximize the

transmission of p--polarized light at a = 590nm.

With a; = 590nm the system was aligned and operated as it had

been with the PBC's. The output pulse waveforms, however, were totally

different than that of Figure 3.0. Large amounts of off--color radiation

exited the cavity through both IIPB I and IIPB2 prior to cavity-dumping.

The off-color radiation, primarily green light centered at 578nm, continued

to lase even after cavity-dumping. As no other changes in the system had

been made, the problem was assumed to be caused by the APB's. This

assumption was confirmed when the replacement of HPB I with a PBC

alleviated the problem. The system injection-locked properly as before

with little indication of off-color build-up.

As noted when the PBC's were used, it was difficult to suppress the

build-up of off-color radiation at a given a when IX - a; I greatly exceeded

the homogeneous linewidth of the d ye. Even for X j 590nm, small

amounts of off-color radiation were observed. in the output pulse The

increased intensity of the off-color light with the use of the IIPB's was

undoubtably due to the reflectance of a significant percentage of the

r
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incident p -polarized light. Thus, for the shorter wavelengths, p -polarized

light, in addition to the s -polarized light, was fed back into the cavity.

The amplifier then functioned as an oscillator for the p -polarized green

light, allowing _ 40% of the incident light to exit through the 11PB's on

each pass.

4.8 - Effects of Cavity Dispersion on Injection-Locking Perfor-

mance

	

The temporal profile of the output pulse could have been cleaned up 	 {

by the installation of a linear polarizer in the amplifier to compensate for

the poor extinction ratios of the IIPB s. Addition of a polarizer, however,

v	 ^	would not have improved injection-locking efficiencies beyond those 	 l

observed earlier with the PBC's. It was thought that the installation of a

birefringent (Lyot) filter would accomplish both objectives. In addition to

providing the spectral dispersion, required to increase p, the 3-element

filter, installed at Brewster's angle, would assist in removing the unwanted.

p -polarized light from the cavity. The passband of the filter, set by the

thickness of the thickest element in the filter, was - lnm FWHM. This

'increased dispersion (both polarization and spectral) was obtained with

minimal additional optical loss, as the measured insertion loss of the filter

	

was less than 1% for the transmitted s -polarized (with respect to the	 1

amplifier) light.
j

The filter was positioned in the cavity between the two turning mir-

rors, Af I and M,, (cf. Figure 4.5)... Amplifier alignment was performed

exactly as before except that Xo , now determined by the birefringent'

filter, had to be adjusted so that X. --X i for each X i . The filter was
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adjusted by rotating it until X; was transmitted with minimal loss and

without any polarization rotation.

With the addition of the filter, the amplifier injection-locked as it had

previously . The output pulses, however, were only "clean" when

X, =590nm. As X, and Xo were tuned towards shorter wavelengths a

"shoulder" appeared on the cavit y-dumped pulse (Figures 4.6 - 4.8). By

placing a monochrometer, set to pass X, , in front of PD 1 , the "shoulders"

were found to be of the same wavelength as the cavity-dumped puise.

Clearly, this was another manifestation of the dispersive properties of the

HPB's. When cavity-dumped, the high-power, p -polarized pulse was to

pass completely through HPB 2. But for X,• ^4590nm, a percentage of the
»x

p -polarized amplified pulse was reflected back into the cavity. The exact

percentage of the light reflected can be inferred from the HPB dispersion

curves of Figure 4.4. The birefringent filter,  although dispersive enough to

eliminate the relatively low intensity off- color radiation which occurred

prior to cavity-dumping, was not dispersive enough to stop a percentage of

the high-intensity cavity-dumped-: pulse from continuing to oscillate in the

amplifier cavity. The pulse waveforms shown in Figures 4.6 4.8 demon-

strate this extremely well. As X; and X, were tuned towards shorter

wavelengths, where the p -reflectivity of the HFP's increased, the intensity

and duration of the "shoulder" increased. The effect was not as pro-

nounced for a > 590nm because the p -transmission_ did not decrease as

rapidly for the longer wavelengths.

Clearly, additional polarizing was required to remove the reflected p -

polarized radiation from the cavity before it could he amplified again. It

was obvious from the experiments with the birefringent filter that the

a
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Figure 4.7: Injection-Locked Output for X, =587nm

Horiz: 20ns/cm; F.^ = 15rn.1: AX=0.05nm

r



V)
I

OF POOR QUAUTY

123

Figure 4.8: Injection-Locked Output for X; =583nrri

Iioriz: turns/cm; Ea =52rnJ; J,\=0.05nrn
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,. linear polarizer would have to have a large extinction ratio. It would also

have to present minimal loss to the transmitted component and have to be

capable of withstanding high peak powers.

The polarizes chosen was an air-spaced, Glan-type polarizing prism.

Made of calcite, a birefringent crystal, the prism used the air-spacing as a

dielectric interface at which one polarization component, due to the double

refraction, was reflected while the other was transmitted essentially

without loss. The prism was installed so that light, s -polarized with

respect to the amplifier, was transmitted through the prism. Transmission

loss was measured to be < 1% while the extinction ratio of the device, for

the transmitted s -polarized component, was 1000:1.

The amplifier cavity coiffiguration was then as "shown in Figure 4.9.

The use of the birefringent filter, as a low-loss tuning element, together

(~ with the linear polarizer, allowed the extraction of both temporally and

spectrally cleaner pulses than those shown in Figures 4.6-4.8. Although

these pulses were much "cleaner" than before, throughout the entire R6G

emission spectrum, some broadband, off-color green radiation still emerged

after cavity-dumping.

It was thought that the birefringent filter, with a passband of _ 1nm,

should have been dispersive enough to suppress any oscillation at these

frequencies. Birefringent (Lyot) filters, however, inherently have periodic

passbands, each with a number of lesser sidebands. The sideband spacing

and . passband periodicity are both dependent on the ratio of -the

thicknesses of the plates which comprise the filter. Although the filter pos-

sessed only one passband in the R6G emission band, a set of weakly

attenuating sidebands was found to exist at wavelengths approximately

t^	 y3,,	 - 	
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6nm from the central passband wavelength. Thus, green radiation cen-
C.7

tered at k t -6nm, encountering little attenuation	 from	 the	 birefringent

filter,	 would	 not be	 inhibited fromm,	 kisiu- after	 cavity-dumping had

occ:.irred-	 And,	 as	 described	 in Chapter 3, after cavity-dumping, the

amplifier became a two-pass oscillator with a propensity to lase in the

green.

4.9 - Use of a Prisrn as the Intra-Amplifier Tuner

From the experience with the birefringent filter, it was clear that the

installation of an intracavity tuning element dramatically improved the

injection-locking performance of the system. Output pulses were much

"cleaner" over a broader range of wavelengths both temporally and spec-

trally than those obtained using a untuned amplifier. Imperfections in the

output pulse profiles, discussed in the last section, were manifestations of

the inherent periodicity of the birefringent filter used as the tuning ele-

ment. Although by a proper combination of the plate thicknesses a suit-

able Lyot filter could have been designed to alleviate these problems, and

further "clean-up" the outputs, a simpler solution was to use a dispersing

prism as the tuning element. A littrow or Brewster dispersing prism would

function equally as well as a polarization sensitive, low insertion loss tuner

but would not exhibit the periodicity problems inherent with the Lyot

filter. The fact that these are only weakly dispersive elements was not

expected to be a factor.

The Lyot filter was removed and a littrow dispersing prism installed

in the cavity as shown in Figure 4.10. A littrow prism was chosen as the

tuner so as to minimize the number of alterations that had to be made to

i
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the cavity. T he only major change required was the reconfiguration of the

amplifier into a linear cavity. This reconfiguration, however, introduced a

number of new dimensional constraints into the design of the amplifier

cavity. The most significant of these emerged from an inherent problem of

cavity-dumping linearly configured oscillators. Unless an extremely accu-

rate ins) account of the elapsed time between the initial arrival of

the MO pulse at the EOAI and the cavity-dumping time is maintained, it

becomes probabilistic as to which IIPB the amplified pulse will exit

through. For only if the amplified pulse is between the EOAI and the lit-

trow prism (cf. Figure 3.6) when the EOM is switched off will the

amplified pulse exit through IIPB,, as desired. Thus, the distance from

the EOM to the littrow prism had to be made large in comparison to the

distance from the E01I to M 3. There was, however, also a constraint on

the distance from the EOM to AI3. This distance had to be made long

enough to store the Gns injected Af0 pulse while the EOM was switched

from "off" to "on". Hence, including the - 1-2ns rise time of the EOM,

the round-trip distance from the EOM to M3 and ._back had to be a

minimum of c * 8ns = 2.4m. The distance from the EOM to M3 used

was 1.25m. initially the littrow prism was placed a distance of 2.4m from

the EOM. With these cavity dimensions there was roughly a 2:1 probabil-

ity that, when t.} a amplifier was cavity-dumped, the MO pulse would exit

through IIPB 2-

With the prism, the alignment of the amplifier became a much more

significant concern for, unlike the Lyot filter, the prism is a directionally

dispersive tuner. The littrow prism had to be adjusted so that a,

returned through the dye cell along the same axis that it had on its initial
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pass.	 Due, in part, to the extremely poor spatial properties of the MO

beam, however, this alignment technique proved to be extremely coarse.

The amplified beam invariably emerged from the cavity on a slightly

different axis than that of the AIO beam which was used for alignment.

In fact, it was not unusual to have a o differ from a, , for which the cavity

.	 and prism were supposedly aligned, by as much as 3nm. 	 Tile system, -	 ?

thus. had to be operated first as an. oscillator in order to determine the
M

exact X. set by the prism. At this wavelength, the alignment of the Pock- j

els cell was checked, as described earlier, to ensure that the lasing axis was

.	 still parallel to the optic axis of the crystal. 	 A realignment of the Pockels

cell often induced slight changes in a 0 .	 Then, when necessary, X i was

tuned until X; = X, .	 Using the remotely controlled AM grating drive t'

assembly, this adjustment was performed in a matter of seconds.	 Once

j	 aligned for a given X o there was little drift in a o throughout the course of

j	 an experiment.
S

3

9 The only change that had to be made in the operation of the system

l	 was that, now, the cavity-dumping time (EOMJ turn-off time) required

adjustment as there was no guarantee as to which HPB the amplified s

pulse would exit through. This adjustment was performed by finely vary-

ing the a/2 pulse width control on the EOM driver until the EOM turn-

off time occurred when the amplified pulse was between the EOM and the

1	 littrowprism. Optimization of the EOM turn-off time was performed by

noting the changes in output pulse energy (through HPB 2) as a function of

the EOM switching time. When these were maximized, it was assumed

that the entire amplified pulse exited the cavity through HPB 2 as desired.

d

'• S
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_.. injection-locking performance of the system was evaluated in the

same manner as discussed in Section 4.5. The results obtained, however,

using the littrow prism as the tuning element, were much different than

those presented earlier. Even functioning as an oscillator, the performance

of the system improved dramaticall y. The temporal profiles of the outputs

were extremely "clean" as there was no indication of any laser radiation

exiting the cavity either prior to, or after, cavity-dumping (Figure 4.11).

As expected, the prism prohibited the build-up of the green, "two-pass"

oscillation that constituted the "shoulder" of the output pulse shown in

Figure 4.8 The prism, of course, set a o and reduced AX, to approxi-

mately lnm FWIFivI. Output pulse energies were comparable to those

obtained previously.

The most significant impact that the installation of the prism had

was on the injection-locking performance of the system. As observed while

using the Lyot filter, the ability to set X; =X, allowed the amplification of

the MO pulse to occur over a broad range of V s with near unity

injection-locking efficiencies. Using the prism complete injection-locking

was observed for 582nm<X<602nm. Amplified pulse energies were again

comparable to those previously obtained, but, this time the temporal

profile of the pulse was exceedingly clean.

With this configuration, it appeared that the generation of widely

tunable, narrowband, cavity-dumped pulses was indeed possible. And that

by injection-locking a weakly-tuned amplifier, which still had only minimal

optical cavity losses, that these characteristics could be obtained without

sacrificing output pulse energies. What needed to be investigated, at this

point, was the dependency of E,, on Ef and experiments which would

A.



a

131

detail the dependency of the injection-locking process on such parameters
r

E	
as. E; , AX j , etc..

4.10 - Additional Resonator Design Considerations

F

	

	 The reconfiguration of the amplifier into a linear cavity imposed

many constraints on the resonator design. Some of these were discussed in

t

	

	 detail in the last section although many were not mentioned. During the

course of these investigations a variety of different resonator designs were

used. Although, it is not feasible to detail the description and performance	 j

of each of these designs, certain general features which influenced system

f:
	 performance became apparent and are worthy of mention.

The placement of the prism with respect to the dye cell, in the

linearly configured resonator, was an important consideration. For, when

the positions of M 3 and the littrow prism (c.f. Figure 4.10) were inter-

changed there was a dramatic change in the output as the green, "two-

pass" oscillation that was observed earlier, after cavity-dumping, again

reappeared. Although unexpected, the reason for its reappearance was

obvious. After cavity-dumping, the green radiation propagating counter-

clockwise through the dye cell could be reflected back through the dye cell

by M 3, for a second pass, and exit the cavity without ever having "seen"

the dispersing prism that was to remove this radiation. The green radia-

tion propagating through the dye cell in a clockwise manner, however, was

4

	

	 dispersed by the prism so it never developed into laser radiation. It was

thus concluded that the tuning element must be placed so that the dye

cell is between it and 1	 2 , the output coupler.
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As mentioned in the last section, it was desired that the distance

between the prism and the EOdf be made as large as possible in order to

relax the constraints on the EOM "turn-off" time. Increasing this dis-

tance also had the desired effect of reducing Qa o which, in turn, reduced

the amount of fluorescence noise with which the injected MO pulse had to

compete. However, when the distance between the dye cell and either of

the end reflectors became much larger than half of the spatial displace-

ment of the Gns pulse (i.e. 0.9m), the performance of the system began to

degrade. Although output pulse energies remained constant, injection-

locking efficiencies dropped below unity, regardless of a, and the temporal

profiles of the output, pulses broadened. Apparently, during the period of

time that the amplified pulse was spread-out, spatially, between the dye

cell and one of the end reflectors, the depleted laser medium recovered and

laser radiation developed independently at a o . But, since, for this fraction

of the stored energy, AX = Da o (not AX j ), the net injection-locking

efficiency of the pulse was less than unity. The presence of this "indepen-

dent" oscillation also accounted for the observed temporal "broadening" of

the outputs. There, consequently, existed a range of cavity lengths were

optimal performance was obtained. The value of these lengths was

directly proportional to the duration of the MO pulse. For the 6ns dura-

tion MO pulse used in this work, cavity lengths of between 2.5m and 4m

worked extremely well.	 y

In order to examine the effects that an increase in cavity dispersion,

and the corresponding reduction in AX, , would have, without significantly

increasing cavity losses, a variety of configurations, which incorporated
I

two or more of the low-loss tuning elements were tried. For example, in

.^"yE
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one configuration, M3 was replaced with a second highly-reflective littrow

prism. In this case, as with most of the multiple tuner configurations, out-

put energies were significantly lower than those obtained using only one

tuning element. Considering the alignment problems faced with the use of

only a single littrow prism, it eemed likely that the reduction in the out-

put energies was due to the fact that multiple tuners could not be identi-

cally aligned (i.e. to the same wavelength). This was another problem

introduced by the poor spatial quality of the MO beam used for align-

ment. Although the use of multiple tuners would have reduced AX, , it is

highly doubtful that the reduction would have been substantial enough so

as to impact the already good injection-locking performance of the system...

4.11 Installation of Low Loss Pockels Cell

One other alteration made to the cavity was the relacement of the

original Pockels cell with a 99% deuterated, low insertion loss hD *P

Pockets cell. Despite the broadband AR coatings on the cell windows and

the refractive index matching fluid used in the original ILD * P Pockels cell

to minimize losses, the insertion loss for the device was still 8%. This loss

was considered excessive as it accounted for approximately half of the

_total cavity round-trip losses. The replacement cell, manufactured by

Cleveland Crystals (Model No. QX1630), with AR coated windows, had a

single pass insertion loss of 1.5% at 632.8nm. Its 10-90% risetim.e was

" ins when driven by the same Lasermetrics Model 5016 High Speed Elec-

tro Optic Gating System as used before. With the new cell installed, total

round-trip losses were reduced to 7%.

Y
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The effect that the reduction in cavity losses had on output pulse

energies was profound. Using the linear cavity configuration, shown in

Figure 4.10, output pulse energies at 590nm were an average of 23%

higher after the installation of the new Pockels cell than those recorded

with the previous crystal In highly ga;ici-saturated systems, such as this,

this strong dependency of E,, on cavity losses is expected. For this reason,

minimization of cavity losses was a fundamental consideration in the sys-

tem design.

{
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CHAPTER 5 - PARAMETRIC ANALYSIS OF LASER PER-

i	 FORMA.NCE

5.1 - Introduction

The past two chapters dealt primarily with the developmental stages

of the amplifier. Chapter 3 concentrated on various factors that

influenced the performance of the system as a cavity-dumped oscillator.

Specifically, efforts there were devoted to optimizing pulse energies while

maintaining a temporally "clean", thou g h broadband, output pulse.

In Chapter 4 it was discovered that• cinder the proper circumstances

the cavity-dumped oscillator could be injection-locked to a spectrally pure

master oscillator. Operated in this manner, the system was then capable

of generating narrowband, high-power output pulses although over only a

limited tuning range. Even larger amplified pulse energies were obtained

after the PBC's were replaced with the high-power, thin-film polarizing

beamsplitters. Once the dispersive properties of the HPP's were compen-

sated for and a tuning element was installed in the cav >,,,,, ,.. ; ;remely tem-

porally and spectrally clean output pulses were generated. By adjusting

the tuning element so that X. ==X,, these outputs were found to be obtain-

able over a wide tuning range.

In this chapter the final developmental stage of the system is

presented and a detailed characterization of the outputs is given. Included"

in this characterization are results indicating under what conditions the

nr ,
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system can be injection- locked and the effects of the installation of an

p

R	
^

r

1

I

intracavity tuning element.

To aid in the analysis, a Tracor Northern TN-1710 optical multichan-

nel analyzer (OM)1) was used in place of the spectrometer shown in Figure

3.7. The O1VL.-k functioned as a spectrometer with a - 0.1nm resolution,

and had an integrating feature that enabled the relative energies of the

various spectral bands emitted by the amplifier to be compared. Casing

this feature, an exact determination of p, the injection-locking. efficiency,

as a function of a variety of parameters was performed.

The final amplifier cavity configuration used was actually only a

slight modification of that shown in Figure 4.10. By installing the littrow

prism so that the incident beam struck its highly-reflective back surface at

an angle of incidence, 0 j , of - 2° , the amplifier, once again. became a ring

laser. The primary advantage of this configuration, shown in Figure 5.1,

was that it removed the constraint on the a/2 voltage pulse width which

was required in the linear cavities to insure that the amplified pulse exited

the amplifier through IIPB , (Section 4.9). The use of a ring configuration

also removed a number of dimensional constraints that the use of a linear

cavity imposed on the resonator design. Many of these were discussed in

detail in Section 4.10.

It should be noted that the degree to which the prism could be tilted

was limited by the reflectivity of the dielectric coating applied to the back

surface of the prism. Transmission loss, through the coating, was a strong

function of 0j . For 0; less than 5° this loss remained negligible (< 1%)

However, when 0, exceeded 10° , a significant fraction. of the incident light

was transmitted through the coating. Again, although a brewster or other

OU
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type of dispersing prism could have been used, the littrow prism, for small

-^► 	 6, , was easier to install and made the cavity relatively easy to align. 'rile
i r

alignment, following the procedure discussed in Sections 3.0 and 4.0, how-

ever, still remained extremely coarse.

5.2 - Measurement of N Using the OMA

When properly aligned, the amplifier again generated pulses with

extremely clean temporal profiles ror wavelengths throughout the range

from 553nm - 602nm. These profiles were identical to that shown in Fio-

ure 4.11 However, as discovered during the development of the cavity-

dumped oscillator in Chapter 3, the temporal cleanliness of the output

pulses revealed little information as to their spectral content.

The IfO pulse linewidth (without the intracavity etalon), AX_ . , was

measured by the LS-1 spectrometer to be 0.05nm. Although these

linewidths were slightly beyond the resolution of the OMA, its O.Inm reso-

lution was thought to be adequate enough to indicate any significant spec-

tral broadening of the amplified `LIO pulse or the presence of any off-color

radiation. An OMA display of the MO pulse with AX = 0.05nm is

shown in Figure 5.2. When the linewidth of the amplified pulse, AX,,,

appeared identical to the display shown in Figure 5.2, and there was no

indication. of any off-color radiation, complete injection-locking was

assumed to have occurred.

Using an untuned amplifier, complete injection-locking had been

observed only for wavelengths close to 590nm (X,). When IX, —X : l

exceeded _ 2nm, broadband radiation centered at X= 500nm was emitted

together with the amplified pulse at X i . The intensity of this broadband
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Figure 5.2: OMA Display of the Spectral Profile of the M0 Out-

put.
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increased as IXo —X; j increased. Use of the ONL4 allowed a

quantification of the corresponding reduction in p as a function of X.

In the ONL4, the intensity of the radiation incident on a given pixel

was digitized by a 12 bit A-17 converter and displayed linearly on the CRT

screen. An integrating feature of the OMA automatically integrated the

digitized intensity information within a user specified range of pixels. As

the linewidth of the output pulse niost certainly did not exceed the

50nm display range of the ONIrk, an integration of the total display

yielded a number which was proportional to the total output pulse energy.

(Counts induced by uniform backround radiation were automatically sub-

tracted.) By observing the total number of counts within a specified spec-

tral band,- the percentage of the total pnNe energy contained within that

band could be inferred. In this manner, a direct quantitative assessment

of p was obtained for each output pulse.

5.3 - Dependence of p on Cavity Dispersion

The use of the OMA enabled a quantitative determination of the

dependence of p on a variety of parameters. for a given X j . Since a

broadly tunable system was desired, the dependence of p on X was of fun-

damental concern. The investigations performed in Chapter 4 made clear

the effects that the installation of an intracavity dispersive element had one

the tunability of the system (i.e. the range of wavelengths where p - 1). 	 $'

At, that time, however, due to the limitations imposed by the spectrome-

ter, only qualitative assessments of the dependence of p on X; were possi-

ble. In order_to more precisely evaluate this dependence, the following

measurements, using the 01VIA, were performed.
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With the amplifier configured as shown in Figure 5.1, p was recorded

for various X i in the R6G emission band. For each value of X; , the prism

was adjusted so that X a =X;. MO pulse energies varied from 1-5µJ,

depending on X, :chile E f was kept constant at 140J. In each case, from

578rim <X < 602nnr, the amplifier was capable of being completely

injection-locked. The spectral profiles of typical oscillator and amplifier

outputs are shown in Fi g ures 5.3a and 5.3b. The linewidth of the oscilla-

for output, determined by the dispersiveness of the prism and the dimen-

sions of the amplifier, was about 1.0nrn F'WILM. No significant changes in

either of these profiles was observed as a function of X. The temporal

profiles were again identical to that displayed. in Figure 4.11 and were also

independentof X.

The completeness of the injection-locking was manifest in several

ways. First, as displayed by the OivLA, there was a visually obvious reduc-

tiontion in the linewidth of the output pulse with no evidence of any

significant "off-color" radiation. These observations were both quantified

using the integrating feature of the ONT U as discussed in Section 5.2. The

OMA also quantified the dramatic increase in the spectral brightness of

the amplified pulse as compared to the oscillator output. This was seen by

noting the CNT readouts (indicating the relative intensity of the

highlighted pixel) present on the O« displays in Figures 5.3a and 5.3b.

An independent verification of the data extracted from the OMA was pro-

vided by noting the relrtive energies of the oscillator and amplifier out-

Outs. The output pulse energies when the system was injection-iocked

were double those of the unlocked system. When completely injection

locked, all of the radiation was coupled into the direction of the IMO pulse

and no radiation exited the cavity through 11PB It should be noted that
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due to the jitter i p the ftashlamp discharge circuitry, p varied occasionally

from shot-to-;not for a given X; For this reason, only average values of p

were recorded.

By replacing the prism with a plane mirror, the variation of p as a

function of X; was then investigated for an untuned cavity. The spectral

composition of both the injection-locked and "unlocked" outputs are

shown in Figure 5.4. The procedure for this experiment was identical to

that used with the littrow except that, of course, a o remained fixed at

590nm. _<1 similar, but more qualitative, investigation was performed in

Section 4.5 prior to the installation of the OMA. The results, plotted in

Figure 5.5, although more precise, are essentially identical to those

obtained earlier as complete injection-locking occurred only for X j within

20A of 590nm.

r-	 5.4 - Variation of p With L,

For many of the applications discussed in Chapter 1, compactness

was one of the key advantages of using a flashlamp as the dye laser pump.

Indeed, when used as an oscillator, the system was capable of being made

extremely compact. However, with the current injection-locking scheme,
'	 t3

the rather large size of the MO compromised the compactness of the sys-

tem. It was thus of interest to determine if the relatively large pulse ener-

gies output by the current h,0 were required, or whether a smaller, less

powerful MO would suffice. Consequently, measurements were made to

determine the minimum MO pulse intensity necessary to force complete ,
injection-locking of the amplifier stage.

For this investigation, the exact synchronization of the two laser sys-

1

3
t	 ,
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i
tems was imperative. Any jitter in the timing circuitry would significantly

alter the amount of fluorescence noise the A1O pulse would have to com-

pete with in the amplifier as it attempted to induce a preferential buildup

of radiation at X i . This was especially critical when the MO pulse inten-

sity was the same order of magnitude as the spontaneous emission noise

present in the amplifier at threshold. T-Iowever, as discussed previously,	 r

the electronic jitter could not be completely eliminated. Timing jitter of	 s

50ns, attributable primarily to the flashlamp discharge circuitry, was

typical. Thus, for smaller AIO pulse intensities, it became difficult to dis-

cern whether the failure of even partial locking was due to a fundamental

deficiency in the energy of the injected pulse or because the injected pulse

failed to arrive at the amplifier precisely at threshold due to the electronic

jitter.

By attenuating the MO pulse a known amount, through the use of
E

	

	
neutral density filters, the variation of p with the injected pulse energy,

E; , was directly observed. The data was taken with X; = 590nm (AX

0.05nm) so that the injected MO pulse would not have to compete with

fluorescence noise at frequencies which exhibited intrinsically higher gains.

This condition was only required for the d.ispersionless amplifier and could

have been simulated for other X; 's by the inclusion of a tuning, element in

the amplifier. The tuning element would then have simply removed noise

E` present at those frequencies with intrinsically higher gains than that at the

desired X; Since a characterization of p as a function of X_ for the

dispersionless case had been previously performed it was considered

unnecessary to conduct this investigation as a function of X.

The experimental results are plotted in Figure 5.6. Injection-locking,
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although incomplete (p = 0.15), was first observed using injected. pulse

energies as small as IOpJ. Complete injection-locking of the laser

required 100nJ. Between these extremes, the injection-locking efficiency,

p, exhibited a logarithmic dependence on E, . The observed logarithmic

dependence of p on E, was consistent with both the analysis presented in

Chapter 2 and the {findings of previous injection-locking studies 1171. The

amplified pulse energies were also monitored as a function of E; . They

exhibited a dependency on E j which was similar to the variation of Ea

with p that was discussed in Section 4.5 and was attributable to similar

causes.

	

As detailed in Chapter 2, the amount of -fluorescence noise present in 	 1)

the amplifier prior to threshold should be proportional to the square of the

E Fresnel number of the cavity. It was thus thought 'that, by decreasing the

amount of noise that the injected pulse had to compete with during the

buildup of laser radiation, the injection-locking threshold (i.e. the lowest

value of E= such that p = 1) could be decreased. In an effort to demon-

strate this, apertures were installed near both ends of the dye cell. Res-

tricting the aperture diameter decreased the effective Fresnel number of

the cavity by decreasing the exposed cross sectional area of the dye solu-

tion. This not only decreased the radiating area, and hence the radiated

noise, but it also reduced the solid angle that the noise would have to be

3 emitted into in order to be fed back to the dye cell. 'Together, these fac-

tors contributed to the square law dependence of p on the Fresnel number

of the cavity. With the use of the apertures, the value of E; required to

't	 obtain a given value of p should thus be reduced.

The diameter of the apertures, centered on the cylindrical axis of the

r - _	
JAM
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%4.7 ,  ,Verc Set to 3.C'mm and resulted in a -fold reduction in the area

of the exposed dye: solution. The AIO pulse still passed completely through

the apertures leaving the unattenuated value of E, unchanged. As before,

p was monitored as a function of E . A comparison of this data, plotted

in Fi-ure 5.6, along with the data taken without the apertures, revealed

that the amount of injected pulse energy now required to achieve a given

value of p was reduced by about two orders of magnitude. Under these

conditions, evidence of injection-locking was observed with C, 's as small

as 1pJ while the injection-locking threshold was reduced to about 1nJ (as

compared to the previous 100nJ figure). Although the injection-lockin g

-threshold was significantly reduced by this technique, output pulse ener-

gies were severely diminished. Pulse energies were " 8 times smaller than

those obtained when the entire dye volume was exposed. As will be shown

later, there was a nearly linear relation between the active (exposed) dye

volume and the output pulse energy which is characteristic of highly gain-

saturated systems.

5.5 - MO Beam Diameter Considerations

Throughout these experiments, the MO beam diameter was set to

3mm so as to maximize the injected pulse energy present at the center

of the dye cell. Since the dye concentration was set to maximize gains in
f,

£` this region, it was here that threshold should first have been achieved. It

was thought that if the presence'of the MO pulse could induce a preferen-

Mal build-up of radiation at a t in this region, then, as the amplified pulse

grew and spatially broadened due to saturation effects, that its presence

would injection-lock the outer regions of the dye cell as they, in turn,

reached threshold. If, however, the outlying dye volume achieved

s^

;1
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More the amplified MO pulse had spatially broadened enough

to 'influence the development of laser oscillation in the region, broadband

laser radiation would develop independently at X„ . Complete injection-

locking would then fail to occur.

This hypothesis is consistent viith the observation, made during these

experiments, that for E,'s where p<1, the spectral content of the

amplified pulse was spatially dependent. Evidence of this was obtained by

monitoring the "unlocked" radiation exiting the amplifier through IIPB 1.

Since the injection-locked fraction of the radiation propagated in the same

direction as the AfO pulse, only unlocked radiation, which developed

independently of the MO pulse, propagated in the direction so as to exit

the amplifier through HPB I . The annular shape of this pulse then directly

indicated that the unlocked fraction of the total pulse emanated from dye

molecules which were in the outer regions of the dye cell. It was thus con-

ceivable that by enlarging the MO beam diameter that less energy would

be required to injection-lock the entire dye volume. If the energy density

of the MO pulse "near" the center of the dye cell was greater than that

required to injection-lock that- particular region, then by enlarging the

MO beam diameter a greater percentage of the dye volume could be

injection-locked for a given E; . Since the spatial broadening of the

amplified pulse would occur at a more rapid rate the entire system would

be capable of being injection—locked using smaller MO pulse energies.

A proper investigation. of this hypothesis would have required a MO

beam with ver y good spatial quality. That is, the beam would have had

to possess a known energy profile (e.g. Gaussian) and have been capable of

being smoothly enlarged and coupled into the amplifier. The output of

, J,

V
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the Nq-pumped dye laser, serving as the ,t•fo for this work, certainly did

not meet these requirements. It had a decidedly nongaussiaa2 profile and

was incapable of being nicely collimated and expanded. For the experi-

ments described herein, the beam had to be gradually focused so that its

spot size on. the initial pass through the dye cell was 3mm. The primary

consideration was that the MO pulse not converge or diverge too rapidly

during the first few transits through the dye cell. After a few masses, how-

ever, the spatial profile of the amplified pulse became independent of that

of the injected pulse. The poor spatial quality of the MO beam made pre-

cise studies of these effects impossible.

5.6.- Evaluation of Spontaneous Emission Noise Level

As revealed in the last section, injection-locking was observed using

injected pulse energies as low as 1pJ (p = 0.15). At this point, where

injection-locking was first observed, it can be assumed that E, was com-

parable in magnitude to the inherent radiation "noise" level within the

oscillator. Thus, as an independent test of this data, the fluorescence

"noise" level, which competed with the MO pulse during the onset of laser

oscillation, was measured. An accurate evaluation of the noise level would

yield information as to the lower limit on E; required to injection-lock this

system. Also, if the measured noise level was on the order of magnitude of

1pJ, the lowest E, for which injection-locking occurred, it would

independently support the validity of the data presented above.

The spontaneous emission (fluorescence) noise level was monitored by

placing the UDT radiometer along the lasing axis - 25cm from one end- of

the dye cell. A pair of apertures, centered on the lasing axis, were placed

i
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between the dye cell and the entrance to the detector. The diameters c

these apertures were set to produce the solid angle that the radiation emi

ted from one end of the dye cell would have to be coupled into in order t

return to the other side of the dye cell and hence have a chance

developing into laser radiation. The temporal profile of the fli ►orescenc

was monitored, as before, with PD,,. Fla ►.shlamp discharge energies wei

identical (140.1) to those used in the previous experiment.

The radiometer detected 25uJ of fluorescence energy that was coupled

into a solid angle capable of sustaining oscillation. This energy, however,

was emitted during the entire duration of the flashlamp discharge hence

f
only a small percentage of it actually contributed to the initiation of laser

oscillation. To determine this percentage, a Gaussian distribution was

E	
used. to model the temporal distribution of the radiated noise energy. A

Gaussian distribution was chosen because it closely approximated the 	 x

600ns FNVMM temporal profile of the spontaneous emission displayed by

PD 2 . Using the Gaussian model, it was determined that only about 0.7%

of the total noise energy was emitted . within a ` lOns interval around the

threshold point.

The fluorescence was also distributed spectrally over a broad range.

Since a, was set to 590t►m, for this experiment, much of the radiation

noise is at frequencies where the gain was significantly less than that at
i

X . Hence, even much of the noise emitted near threshold did not directly

compete with the M0 pulse during the onset of laser oscillation. In fact,

only the noise whose frequencies were close to 590nm needed to be con i

sidered.

11

The spectral distribution of the fluorescence was governed by the

Ur
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singlet state absorption and emission cross sections of the dye. The percen-

tage of the noise within a range of frequencies AX is given by:

f (or , (X)-a. (X))d (X)

00	 IV-11

Specifically, using the stimulated emission and absorption cross sections

given in Figure 2.2, the ratio of the fluorescence within 2nin of Xi

590tim to the total noise level was .036.

The net amount of "noise" in direct competition with the i110 pulse

at threshold if then given by: (25nJ x .007 x .036 x .43) = 2.7pJ where the

^c•factor of .43 accounted for the optical cavity and polarization losses.

Although this value is subject to a good deal of error, due to the estima-

tion 	 it should be representative within an order Of magnitude of

the competitive fluorescence "noise" energy. As such, it is a value which is

consistent with the data presented in Section 5.4.

5.7 - Power Curve

Most of the data characterizing the injection-locking process,

presented in the preceding sections, was taken using moderate flashlarnp

discharge energies (i.e. E  - 150J). It was assumed that the' characteriza-

tion was independent of E  , although this had not been formally verified.

To verify this and to determine the output power capability of the system,

both p and Ea were measured as a function of E 

The amplifier cavity was, again, configured as shown in Fi gure 5.1.

Since p was previously shown to be independent of X i and AX j , values of



f

590nm	 and 0.05nm, respectively, were	 used,	 although other arbitrary

.. w choices could have been made. 	 Injected pulse energies, E; , were set to

I

` 3µJ.	 It was assumed that the E; required for complete injection-locking

would riot be a function of Ef . If, however, p did appear to be a function

of Ef , this assumption would have to be checked.

t -	 Amplified pulse energies, plotted -as a function of Ef , are shown , in

l Figure 5.7.	 The variation of Ea with Ef	 was nearly linear from the point
4

at which threshold occurred, at Ef	 = 59J, to Ef	 = 220J where Ea

reached 62mJ.	 The slope efficiency of the system was thus - 0.01%.

Although the flashlanip was capable of discharging up to 350J, Ef	 waS

limited to 220J because minor damage to the IiPB's was observed at this

point.	 As the damage occurred only sporadicall y, it was highly doubtful
1

j that the amplified pulse intensity exceeded the quoted HPB damage thres-

hold of	 5GW/cm 2	Rather, it was suspected the the damage resulted

from either the existence of "hot spots" in the beam or local defects in the

'dielectric coatings of the IIPB's. If the slope efficiency remained constant

at 0.04% the system would be capable of producing " 115mJ, 20MW

(peak-power) pulses.

The	 data	 presented	 in	 Figure	 5.7	 is,	 however,	 only	 valid	 for

k=?90nm.	 Although p is independent of a, the extracted pulse energy,

Ea, is not. This is due to the dispersive properties of the HPB's.	 Figure'

5.8 sh(Avs the output of the system as a function of X. As expected, this

curve closely resembles the "p" transmission profiles of the HPB's.
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5.8 - Spatial Profile of the Output Pulse

Although there were definite indications that the system had been

driven well. into the saturation regime, there was no information as to

whether or not the system had been fully saturated (i.e. that as much

energy as possible had been extracted from the system). In order to deter-

mine the level of saturation the spatial profile of the amplified pulse was

examined.

If the amplified pulse had developed strictly as a TEW OO Gaussian

pulse, its beam waist, while inside the dye cell, would have been - 1.Omm.

In this case ` 86% (1/e 2 ) of the amplified pulse energy would have been

extracted from only the central 5% of the total dye. volume. In such a

highly gain saturated system, however, this type of pulse development was

considered unlikely. The rapid gain . saturation experienced by the TEAIoo

pulse together with the high gains that existed throughout the remainder

of the dye cell made higher-order modal development highly probable.

The higher-order modes, by increasing the size of the beam, allowed the

.contribution of dye molecules which had little effect on the TEX1 00 mode.

Through this multimodal development the circulating radiation would

eventually fill, and saturate the gain of, the entire dye volume. Eventually

for a, completely saturated system the energy output per unit of dye

volume would be identical throughout the cross-section of the dye cell. In

this manner the maximal amount of energy could be extracted from the

system.

To determine the spatial profile of the amplified pulse an aperture

was placed near the entrance of the dye cell. Output pulse energies were

then recorded as a function of the aperture diameter, which was directly

1
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1related to the cross sectional area of the active dye molecules. The data is

plotted in Figure 5.9. Also depicted in Figure 5.9 are a pair of theoretical

spatial profiles. In one instance the pulse obeys a TEM OO Gaussian profile,

while, in the other, the gain-medium has been fully saturated. Both

profiles shown have been normalized to assume identical output pulse

energies of 13mJ.

In a fundamental Gaussian mode, as mentioned above, most of the

pulse energy emanates from a small fraction of the total dye volume. In

the other limiting case, in which complete gain-saturation occurs, a per-

fectly linear relationship exists between the output pulse energ y, Ea , and

the percentage of the total active dye volume. The actual recorded spatial

profile came close to that of the latter case, indicating that the system was

approaching complete gain saturation and that little additional energy was

capable of being extracted. The data did indicate, however, that a slightly

greater percentage of the pulse energy was concentrated near the center of

the dye cell. It was difficult to attribute this observation to a particular

cause as many explanations, including poor alignment or the presence of

thermally induced turbulents in the dye solution, were plausible.
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	 CHAPTER 6 - CONCLUSIONS & SUGGESTIONS FOR
I	 ^^

FUTURE INVESTIGATIONS

6.1 - Conclusions

These investigations have demonstrated the feasibility of simultane-

ously generating high energy as well as narrow-linewidth nanosecond dura-

tion pulses by injection-locking a cavity-dumped laser. Using this tech-

nique, a standard CFP dye laser generated Ens duration output pulses

which had energies in excess of 60mJ and linewidths as narrow as

0.0015nm. The investigations also indicated the effectiveness of using low

insertion loss tuners in the injection-locked laser. The low loss tuners,

although only weakly dispersive, allowed the free oscillation wavelength of

the cavity-dumped laser to be coarsely tuned to the wavelength of the

injected pulse. In this way, the narrow-linewidth injection-locked outputs

were obtained over a tuning range of 24nm without the appearance of

significant broadband backround radiation. The added dispersion also

minimized the injected pulse energies required to obtain these outputs.

Injected pulse energies of only - 100nJ were found to be sufficient in

obtaining near unity injection-lacking efficiencies over the entire emission

profile of the dye. It is suspected that even lower injected pulse energies

would be sufficient if the arrival time of the injected pulse could be better

synchronized to the flashlamp discharge.

The overall performance of the system was gauged by the energy,

linewidth, temporal "cleanliness", and tunability of the output pulses.

:tx
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Optimizing this performance required investigating the effects of varying a

number of parameters. Specifically, experimental investigations were con-

ducted to determine performance dependencies on such parameters as

injection time and cavity dispersion as well as on such injected puk

parameters as wavelength, energy, and linewidth. This parametric study

enables an analysis of the differences between the injection-locking of

"long-pulse" systems, which has been reported on, and the injection-

locking of cavity-dumped systems. The primary theoretical distinctions

between the two cases were exposed during the development of the

r

	

	 spectro-temporal evolution equation in Chapter 2. This equation sug

gested that both triplet state and saturation effects, which are insignificant
L

in the_ performance of "Ion;-pulse" injection-locked systems, "aid" the

injection-locking of the cavity-dumped system by increasing the spectral

evolution time. With the experimental characterizations performed here, a

more• direct and quantitative comparison of the two cases is now possible.

Although the development and characterization of the system has

been carefully detailed in this work, there were a number of additional

considerations and investigations that there was neither time, equipment

or funding to pursue at this time. Included in this chapter are some

specific suggestions of areas where further study could prove useful as well

as some possible means of increasing system performance. It should be

noted that, while these investigations were performed using a CFP dye

laser system, the techniques used in this work should be adaptable to

other types of laser systems as well. In particular, it is anticipated that

these techniques could be directly applied to the tuning and linewidth con-

trol of tunable solid-state lasers such as emerald and alexandrite. Due to

^I
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the longer excited state lifetimes and higher saturation intensities of such

lasers, pulses with much larger peek-powers and greater spectral brightness

should he attainable.

6.2 Use of CW Master Oscillators

Throughout the course of this work, numerous problems were encoun-

tered with the use of the N2-pumped dye laser as the master oscillator.

Most of these resulted from the poor spatial properties of the 4,1O beam.

For example, amplifier alignment, performed usin g the MO beam, could

be made, at best, extremely coarse. This alone, undoubtedly, adversely

affected system performance in a number of ways. The poor spatial

characteristics of the 11fO beam also restricted the analysis of the

injection-locking performance of the system that was described in

Chapters 4 and 5. Clearly, the use of a CW 1110 would provide many

advantages over the current pulsed system. The JV10 beam would be tem-

porally, spatially, spectrally and radiometrically more stable than that pro-

duced by a pulsed source. It would also be more "flexible" in that the spa- .
	 Di

tial properties of the beam could be varied as desired. Detailed below are

some of the advantages, disadvantages and considerations of using CW

master oscillators.

The first and foremost consideration of the use of CW MO's is the

injected energy requirement. As discovered in Section 5.5, MO pulse ener-

gies of roughly 100nJ were required from the N_,--pumped dye laser system

to force complete, locking (p=l) of the amplifier. In order to insure that

at least this much energy would be present in the - 3m resonator, at any

given time, a 1OW CW source would be required._ While there are no such
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r sources of continuously tunable CW radiation, monochromatic injection-

locking studies could be performed on this system using commercially

available CW sources as the master oscillator. For example, the 5145x1

line of an Argon-ion laser could be used to injection-lock the amplifier

where a dye such as Coumarin 504 is used. Operationally, the loss of

tunability is a concern; but for the purpose of system characterization it is

not since, as evidenced in this work, the characteristics of a tuned,

injection-locked system are essentially wavelength independent.

To minimize the l;; s required for injection-locking, the path of the

injected beam must be collinear with the natural lasing axis of amplifier.

In an attempt to insure collinearity, in this work, the MO beam, itself,

was used to align the amplifier cavity. However, due to the difficulty in

collimating the pulsed dye laser beam, its divergence and shot-to-shot spa-

tial instability made accurate alignment impossible. As mentioned above,

this problem undoubtedl y had an adverse effect on system performance

and on some of the characterization studies performed in Chapter 5. In

particular, if the MO and amplifier assembly were properly axially cou-

pled, smaller E;'s would probably have been sufficient to lock the system.

Using a more spatially stable CW MO beam, where a proper axial and

mode coupling of the two lasers can be assured, the alignment would,

undoubtedly, have been more accurate.

Use of a CW MO would also have relaxed some of the stringent tim-

ing considerations discussed in Section 4.3. With a pulsed MO , the arrival

time of the pulse must be carefully synchronized to the switching of the

EOM, and the firing of the flashlamp so that the pulse is present and

trapped inside the amplifier as it achieves threshold. A CW injected, signal

M	 a
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1

would be constantly circulating through the (lye cell so that the only tiro-

in- consideration would be that of synchronizing the switching of the

r EOM with the proper point in the flashlamp discharge.	 There is one

minor complication introduced by this arrangement, however.	 Once the

EOVI is switched, the fraction of the CW beam that is not trapped inside, {

the amplifier would continuously pass through the dye cell, and exit the ;a
,i

Y cavity after only a single pass. 	 Assuming single-pass gains of 	 - 50, a ,a

small, but nonnegligible, CW backround signal (< 0.05% of the. polver of

the cavity-dumped pulse) would be present.	 This "noise" could be elim-

inated completely by the installation of a second EOM switch, between the

A110 and the amplifier, which, when activated, would isolate the amplifier
t

from the MO. Nonetheless, since the second EOM could be switched syn-

chronously with the one inside the amplifier, the timing problem is still

= much simpler, in this case, than that encountered with a pulsed MO sig-

4 nal.

sAbetter characterization of the dependency of the injection-locking

efficiency on various MO beam parameters could be obtained using a CW

A10. One such study, the dependence of p on AX;, was considered in

Section 4.6.	 This investigation, however, had to be halted although no {
evidence of spectral line broadening had yet been observed as there was no

available means of reducing Da, to below eJ times the transform limit.
_ ys

Use of a CW MO, where 0X, would be significantly below the transform

limit of the cavity-dumped pulses, would have given a quick indication as

to the attainability of transform limited pulses.

Since the CW beam diameter could be easily enlarged, studies detail-

ing the dependency of the injection-locking threshold on the injected beam

^,W
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diameter could also be performed. It is conceivable, as explained in >See-
;h

tion 5.5 7 that for a larger MO beam the injection-locking threshold would

be smaller. If true, MO energy requirements could be reduced

significantly. Use of a CW MO, where the TE mode the MO beam can

be coatroiled. also allows p and possibly the modal development of the

amplified pulse to be characterized as a function of the TC mode of the

A10 beam

6.3 - Use of Shorter Rise-Time Flashlamps

In typical cavity-dumped systems, energy from the pump source is

continuousl y- added to the recirculating field throughout the duration of

the pumping pulse. With the radiation totally r trapped inside the resona

tor, the cavity photon flux should increase monotonically as long as the

(
	

net gains exceed unity. The output pulse energies obtained at a given

Extraction time are directly related to the photon flux at that point the

growth which is limited only by cavity losses and the pump-laser photon .

conversion efficiency. It was thus unexpected and undesirable that the

optimal extraction time for our system occurred near the peak of tht. flash-

lamp pulse. This indicated that the intracavity photon flux was maxim-

ized at the mid-point of the pumping pulse. The pumping energy dissi-

pated in the later half of the flashlamp pulse, thus, made no contribution

to the output laser pulse which resulted in extremely low slope efficiencies

0.0417o - see Figure 5.7).

By solving a simplified set of rate equations, Morton et al. (61 arrived

at an analytical expression for the resonator photon density in a cavity-

dumped oscillator. Based on this expression, they concluded that if cavity

e	
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losses could be kept to extremely low levQls (i.e. < 5%) that the cavity

photon flux would ;follow the integral of the flashlamp pulse. The peak

photon flux would then occur well after the peak of the 'flashlarap pulse as

desired. In this way more of the the pumping energy would be coupled

into the recirculating field resulting in larger output energies. They Stated

that such a situation might be expected if the cavity decay time,

tc =l /cL (ring lasers) was comparable- to the flashlamp pulse duration.

Here, l is the cavity length and L is the fractional loss per round trip.

However, if cavity losses were higher (- YT >0.05) the cavity photon flux

tended to follow the profile of the flashlamp pulse, rather than its integral,

resulting in early extraction times and lower system efficiency. They con-

eluded, however, that, even for cavities with small intrinsic cavity losses,

the actual loss is dominated by the self-absorption and triplet losses in the

dye and thus, regardless of the intrinsic loss level, the cavity photon den-

sity followed the profile of the pumping pulse.

If this analysis is correct, as their theoretical and experimental inves-

tigations indicate, significantly larger pulse energies and higher slope

efficiencies should be obtainable by using shorter rise time flashlamps.

Assuming equal discharge energies, the short rise, time flashlamp peak

would not only occur earlier, it would be more intense. The advantage of

having the peak occur earlier is obvious. Extraction times could be pushed

to a later point in the pumping pulse before triplet state and other time

dependent losses terminated the net gains. This would allow both the

slope efficiency and output energies to be increased. However, even if the

time dependent loss mechanisms were still significant, and the photon flux

followed the profile of the pumping pulse, output pulse energies would still

G
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__ .__„-_ 1tie to higher peak intensity of the flashlamp pulse. In the work

quoted above, Morton et al. demonstrated this experimentally. Using a

300nsFNV1-IM coaxial flashl-amp and a basic polarization sensitive cavity-

dumping scheme, they were able to generate - 400mJ, 20ns pulses using

flashlamp discharge energies of onl y - 100J. Their reported slope

efficiency was as high as 0.85% which was + 20 times larger than that

obtained in our work.

With shorter pumping pulse, durations, however, th recirculating

radiation makes fewer passes through the gain medium before cavity-
^f

dumping is required. Thus, if the pumping pulse is made too short,

extraction occurs before the gain has been fully saturated resulting in

lower output pulse energies. Pulse time compressions of the order of 1.0-20

have been shown to be obtainable without a loss in the efficiency of the

system (G)•

As mentioned in Chapter 3, the coaxial flashlamp system used in this

work was chosen simply because it was indicative of a standard high-

energy flashlamp system. Any results obtained with it then could be

extended to most other flashlamp pumped systems as well Nonetheless,

based on our results, where "premature" extraction times were required,

and those of Morton et al. presented above, one criteria that should be

considered in the choice of the flashlamp is its rise time. To obtain both

maximal system efficiency and output pulse energies, the flashlamp pump

source should be as intense as possible (with the proviso, as noted above,

that the pumping pulse not be made too short).
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