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1.0 SUMMARY

1.1 Scope of Work

The Free-Piston Stirling Engine (FPSE) has been under development at Mechanical
Technology Incorporated (MTI) since 1976. As the design has matured and perform~
ance improved during the development/testing process, it has become important to
demonstrate the potential of the FPSE for long life and high reliability. The
first part of this demonstration, a 1000-hour endurance test, was defined and
testing has been successfully accomplished. This report presents the information

concerning this first test.

1.2 Objectives

The goal of this endurance test was to accumulate 1000 hours of engine operation,
which has been successfully completed with several typical loading conditionms.
Further, the test was structured to accumulate data on the wear and life of engine

components. Therefore, this program consisted of four phases:

l. Phase I - Low-Power Test - Accumulate 100 test hours at 0.5 kWe

power, 600°C mean heater head temperature to evaluate the stability &

of gross engine parameters.

2. Phase II - Full=-Stroke Test - Accumulate 300 test hours at full

piston stroke, 700°C mean heater head temperature to evaluate

A W

endurance at this load. _ ”

3. Phase [II - Duty-Cycle Test - Accumulate 300 test hours at loads

between 0.5 and 2.5 kWe, 700°C mean heater head temperature,

4, Phase IV ~ Stop/Start Test - Accumulate 300 test hours while

performing 1000 start/stop tests of the engine system. The engine

was to be cycled on and off approximately every 15 minutes, with

load between zero power and the power point defined in Phase II.




The goals of Phase III and IV were modified in that the duty-cycle test was
extended to nearly 700 hours, thus completing over 1100 hours of engine testing by
the end of Phase ITI. Phase IV was modified to accumulate V12 start/stop cycles
per running hour. The test was terminated after 262 start/stop cycles had been

accumulated.,

1.3 Resuits

The test was begun on 7 April 1983 with the low-power testing; 1000 hours of engine
testing were completed on 3 October 19833 and the test program was completed on 22
February 1984,

The engine used for this test was one of three engineering models (EM) EM No., 2
(Figure 1-1), which were built by MTI in 1981 and have been undergoing continuous
development since that time. The engine was tested in cell No. 6 of MTI's free-pi-
ston 3tirling lab. This cell has been prepared specifically for endurance testing

and is capable of automatic unattended engine operation,

1.4 Canclusions

Over 1100 FPSE test hours were successfully completed during the course of the
endurance program. The major conclusion is that there was no appreciable wear of
the critical bearing and sealing surfaces of the EM as documented by inspection.
This test program confirms the potential of FPSE's to provide long life and high

reliability., Other conclusions that resulted from the test program are:

* Test conditions and/or load did not affect wear or durabilicy.
Differences between the various test/load conditions did not appear
to have any effect on the condition of the hardware and/or perform-
ance. Start-stop testing did show a number of fine scratches on bear-

ing surfaces that did not seem to affect performance.

* Engine system was very mechanically reliable over the duration of the
test. Except for a digplacer magnet segment coming loose during oper-
ation, the engine hardware remained very reliable, with the last 400
test hours of duty-cycle testing accomplished in 432 available hours.

Unintentional shutdowns were primarily a result of facility type

A
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failures (i.e., pressure out of tolerance, loss of electrical power,

loss of shop air).

* A successful build of the EM requires time and care during assembly.
With regard to future FPSE designs, it wag seen that the design of the
EM engine, with its many displacer drive hardware stack-up fits,
requires significant attention to detail to achieve a successful
build (one with no rubs during bench checkout of the hardware),
Improvements in design to permit quicker and more reliable assemblies

should be considared.

1.5 Recommendations

The most important recommendation resulting from the test results and conclusions
to date is the need to continue endurance testing of this engine. The critical
1000~hour test confirms the potential for long life and durability, but many addi-
tional hourg (v10,000) are needed to fully demonscrate these FPSE features.
Continued testing will also identify long~term potential problems that may require

a redesign to achieve the goal of long life and high reliability.

At present, the chromium oxide (Cr203) material used to provide a durable zoating
of the critical surfaces has worked extremely well. It has been a tough and
forgiving surface. Crp03 has not been put on our small inner diameter (I.D.)
because of plasma spraying limitation. It is recommended that evaluation of other

CryQ3 processes and/or simpler alternatives to Cr03 be investigated.

Boch the complexity and energy requirements of the displacer drive system are
concerns. A lighter displacer would reduce input energy requirements, the materi-
al chosen must be compatible with existing materials to assure maintenance of the
proper clearances during operation. Information concerning light weight materi-
als and their dimensional stability as a function of ctime and temperature shouid

be soughe.

In summary, the recommendations that result from the Endurance Test Program are:

* Continue endurance testing with a goal of demonstrating 10,000 hours

* Eventually improve design for assembly consideration




i
* Evaluate alternative protective surface coatings ‘
* Investipgate material dimensional stability as a function ot tim~= and
temperature. ’
The engine, instrumentacion, and data acquisition system (DAS) are described in
Section 2.0. A history and discussion of the overall endurance test is given in
Section 3.0. Sections 4.0 through 7.0 present results of each phase of the endur-
ance test.,
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2.0 ENGINE AND INSTRUMENTATION DESCRIPTION

2.1 Engineering Model Description [

The major components of the EM power module are schematically depicted in Figure

2=-1l. The following subsections descr :e the design of the EM,

2.l.1 Engine Thermodynamics

Thermodynamically, the FPSE is similar to more conventional (i.e., kinematic)

Stirling engines except that the piston/displacer motions are controlled by a

resonant spring/mass system rather than a mechanical linkage.

The thermodynamic elements of the engine consist of an expansion and compression
space connected by three heat exchangers, 1) heater; 2) regenerator; and, 3) coel-
er, which convert thermal energy into mechanical energy at high efficiency. The b
expansion space is the volume enclosed by the displacer hot end and cylinder head, . ;

including the "shuttle gap" in the annular space between the displacer and cylin- )

der walls. The compression space is actually two displaced volumes that are .o
connected: one due to motion of the displacer cold end, and the other due to piston 4

=
P —

motion. A clearance seal at the cold end of the displacer isolates the LA
compression space from the expansion space. The compression space is also
isolated from the "bounce" chamber and gas springs by clearance seals around the Py
power piston and displacer rod. Since pressure in the bounce chamber is essen- E
tially conatant, the pressure difference across the rod and piston seals is the \
compression—space cycle pressure amplitude. Ducts through the displacr- post and ; i
flange assembly connect the two compression spaces. The displacer and piston }
elements are contained within the same cylinder. The purpose of the displacer is
to reciprocate the working gas through the heat exchangers. The engine derives
power from the changing pressure amplitude of the cycle acting on the power piston

face area (see Figure 2-2).

2.1.2 Digplacer Drive

The posted design is an MTI design feature that improved dynamics and relaxed

tolerances between the displacer and power piston. With the sgeparation of the .

e e NV LD 7

.
\‘

"
pacE 0 INTENTIONALLY BLANK g
@ﬁﬂ



Heater Head Combustor System
« Cast Finned Annular Regenerator o QPU-3 Oerwesve Combuster
« Extension of TOE Design ImK + Olesel Fuel
- Castadie —= Cast +» TDE-Qenvea Foided Fin
« 40 DAr —=80 bar - Prahanter
- 000°F ~=780°C « Temperature and Air-lo-Fusl
Cartols 10 Be Developed
« Metax Woven \\\L
N
Cooler
+ TDE-Dertved Axial Fins \ -
o Water N v i
o 140°F TN Displacer Drive
o o 5 « Integral PM Motar Controi
¢ Virus Qisplacer Onve”
— « Mydrostauc Gas Beanngs
Control System
+ Sisecy State Reguiaton
« Losd Following
]
Auxiliaries i
+ Combuston Blower o
o Buel Pump -
» Atomizer Compreasor » N
+ Water Pump ¢ L] \'/ l
) " . i ) o o |
« igniton System .y Alternator
+ Panel Meters "‘:Et

™ « Saturated Plunger
: / » Low-Zide Pull
vl ; /-"'

Alternator Orive

System
- h / ¢ Length = 340N
+ Dlameter — 115 in.

Figure 2-1 Engineering Model - Major Components



Heater Head

Regenerator

Cooler

& Stsans

Post and Flange Assembly

Power Piston
(Moving)

Expansion Space

Displacer Piston

Compression Space

Alternator

System

Bounce Space

e Length: 36.0 in
e Diameter: 13.5 in.

Figure 2-2 Schematic of Engine Componencs

)




power piston and displacer via the posted displacer dusign, the dynamics of the
FPSE system can be tuned to obtain the desired thermodynamics. The engine incor-
porates a variable-volume uisplacer gas spring, therefore allowing dynam-

ica/thermodynamics of the engine to be altered by changing the spring rate,

2.1.3 Engine Control

Typically, a FPSE is a low-stored energy, multidegree-of-freedam engine madz to
oscillate freely by designing the system parameters so that the dominant system
eigenvalue is neutrally damped. Such a system is simple to operate in a laborato-
ry cavironment at constant loady however, it is difficult to operate in a tran-
sient environment due to its low-stored energy capability and neutrally damped
dominant eigenvalue. Any significant change in a working parameter requires a
rapid change in another system dynamic parameter to maintain unit stability, which
is not practical without providing a hydraulic, pneumatic, or electric buffer
between the load and the engine. By driving the displacer with a linear motor at
all times, the controllabilicy of the EM is the single most important and proprie~

tary feature that makes it suitable for various applications and loads.

The combined EM posted displacor concept and linear motor drive consists of the
displs #° body and dome, hydrostatic gas bearing displacer rod, linear motor
drivs, and displacer gas springs. The displacer body contains the displacer
cylinder clearance seal, and an integrally fabricated, linear electric motor arma-
ture, which is a basic part of the engine pcwer-control system. The displacer rod
and body are supported on gas bearings within the post and flange assembly (Figure
2-3). The rod area, which is the difference between the effective expansion-space
face area of the digplacer and the effective compression-space face area, deter-

mines the thermodynamic input power to the displacer.

2.1.,4 Heat Exchanger System

2.1.4.1 Heater Head. The EM heater head (Figure 2-4) was designed as a monolithic

pressure vessel that is integral with the annular regenerator pressure wall (see
Figure 2-5). This design, which requires no high-temperature structural weld or

brazed joints, can be cast with integral internal and external fins.

10
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2.1.5 Combustion System

The EM combustor is a spin-off developed from the technology demonstrater engine
(TDE) with major improvements in the preheater. Fuel and air are supplied to the
combustor from an external air/fuel (A/F) control system. Inlet air is preheated
by the combustion exhaust in a folded fin preheater. The preheater air enters the
combustion chamber through a swirler cup to create a turbulent mixing zone, and
fuel is injected through the center of the swirler cup into the combustion zone.
The current combustor system (shown in Figure 2-6) is designhed to burn natural gas
at a peak firing rate of 16 kW. The combustor control senses heater head temper-
ature and adjusts fuel and airflow to maintain the heater head temperature at the

fixed operating temperature,

2.1.6 Regenerator

The regenerator is an annular, porous ring located between the heater and cooler.
The regenerator matrix (Figure 2-7) i3 metex, a .0035-in. diameter knitted wirve,

formed and pressed in a disk to the Specifled porosity.

2.1.7 Cooler

The engine cooler (Figure 2-8) ig located in an annulus between the regenerator
and compression spaces. The helium-side flow passages are rectangular slats
milled axially onto the inside of a thin, aluminum pressure wall, whereas the
water-side assages are circumferential grooves machined onto the outside of the
pressure wall. The cooler is connected to the compression-space volume through

the compression-space connecting duct,

2.1.8 Gas Bearings

Both the displacer and power piston are radially supported by hydrostatic gas
journal bearings. The displacer bearing feed holes, located in the engine post
and flange assembly, consist of a single-plane series of holes at one end and a
double-plane series of holes at the other end, while the power piston bearings
consist of two sets of double-plane feed holes located at each end of the alterna-

tor cylinder.

14
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2.1.9 Closae-Tolerance Seals

The EM utilizes close-tolerance, noncontacting seals to isclate the various gas

volumes in the power module, The engine seals (Figure 2-9) consist of the:

* Forward Gas Spring Seal - Isolates gas spring volume Erom compres-

gion-space volume

* Aft Gas Spring Seal - I[solates gas spring volume from compression-

space volume

* Forward and Aft Bearing Seals - Isolate the bearing drain pressure

(bounce pressure) from gas spring pressure

* shuttle Gap Seai - Isolates expansion—-space volume from compression-

gpace volume

* Power Piston Seal - I[solates compression-space volume from bounce-

space volume,

2.1.10 Alternators

The "partially~saturated plunger" alternator evolved from earlier flux-switching
alternator configurations. This concept {shown in Figure 2-10) is based on the
principle of minimizing the weight of the driven mass (plunger) at the sacrifice
of the stationary mass (stator). The result is that only the pole pieces
(required for "flux-switching') are needed to form the moving member. Further-
more, both inside and outside stator coils have been devised to optimize overall
packageability and to enhance the alternator conversion efficiency. The latter
can be achieved by virtue of the smaller mean diameter of the coil windings on the
inner stator relative to the outer colls, thereby reducing the overall 2R losses

for the alternator system.

The linear alternator consists of a 0.5-in. thick cylindrical plunger that reci-
procates between the inner and outer cylindrical stators. A DC field coil gener-
ates a toroidal flux path linking the inner and outer stators which passes through

the two magnetically active rings on the plunger and passes in and ovut of the two

18
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stators. Consequently, reciprocation of the plunger causes the flux toroid to
move axially along the statov, sinusoidally linking and unlinking four physically
separate AC output coils. These electrically connected coils act as a single

output coil, providing alternating AC voltage and power.

The EM alternator is relatively rugged and has a low plunger weight. The light-
weight plunger allows the EM to operate at 60 Hz without the use of an auxiliary
piston gas spring. A layout of the alternator and plunger configuration is shown

in Figure 2-11, and a photagraph of this configuration is shown in Figure 2~12.

2.1.11 Skid and Support

The EM, presently mounted in a horizontal orientation on a structural aluminum
stand, makes use of five soft rubber mounts, four of which are located on the
mounting Elange between the engine and alternator, and one on the alternator pres=
sure vessel (see Figure 2-13), The machine is allowed to vibrate freely in chis
configuration. A structural integrity problem with the combustor was encountered
during initial testing. Work is being performed on a new combustor design to
solve the problem. In the interim, the EM ig linked to a large mass, reducing the
casing vibration, located at the rear of the machine and attached by means of two

steel stringers fastened to the mounting flange of the EM (Figure 2-14).
2.2 Engine Instrumentation

The purpose of the test was to accumulate durability hours. In instrumenting the
EM No. 2, the primary consideration in selecting the parameters to be measured was
to be able to use the measurements to monitor the operation of the machine and be
able to use the measured values to observe changes in operating conditions that
would be indicative of component wear. Therefore, the measurements could be used
to trouble-shoot problem areas and be able to adjust, to some degree, for minor
wear or to shutdown shocld major problems occur. The entire instrumercation pack-
age was streamlined to exclude what was considered nonessential parameters, The
instrumentation chosen measures parameters of pressure (P), flow (V), position (XP
and Xp), case acceleration which indicates case position, and temperature (T)s
along with appropriate voltages (V) and currents (I). Table 2-1 is a listing of

those measurements along with a description of the measuring equipment used.

21
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TABLE 2-1
EMDURANCE ENGINE INSTRUMENTATION

Pregsures

Pmean Kistler 4045A100 wich 4601 amplifier

Phearing Kistler 40454100 with 4601 amplifier

PDGS2' Kistler Piezoelectric 601A with 5002 charge amplifier

PDGS2 Kulite XF-1-190-2000 with analeg device with 2B3lJ conditiomar

BC Druck PDCR/200 with analog device 2B3lJ conditioner

ppGsl' Kistler piezoelectric 60lA with 5002 charge amplifier

PDGS1 Kulite XF-1-190-2000 wich analog device 2B31lJ conditioner

Pair Dynigco APT-320J-25

Peyel Dynisco APT-320J-25

Flowg

Air Meriam LFE laminar flow element with Validyne DP=45-16/CD=~15
differential pressure transducer and carvier demcdulator

Fuel Meriam LFE laminar £low element with Validyne DP-45-16/CD~15
differential praessure transducer and carrier demodulator

Coolant Bearingless flow mater model E-100 with analog cdavicas AD 451J
frequency=-DC converter. Coclant temperatures ara monitorad
by thermistors (2252 © @ 25°¢C)

Digplacements

XDy, ¥D7 Kaman KD-2350-2UB Eddy current displacement measurament systams

XP1, ¥P2 Kaman KD-2350-lU Eddy current displacement measurement systems

Voltage, Vmotor, Imotor, Vlocad, Ilcad, Valt, Ialt are sensed by rssisture

Current voltage dweden, step~down potential transformers, current

tranaformaers
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The measurements taken can be classed in two categories, static and dynamic meas=

urements.

Static Measurements. The static measurements consist of DC readings,

along with some mechanical visual readings. Measurements of heater head
temperatures, air temperature, fuel temperature, coolant temperature,
air pressure, fuel pressure, mean charge pressure, combustor pressures,

and air, coolant, and fuel flows are all static measurements.

Dynamic¢ Measurements. The dynamic measurements consist of AC readings

and are parameters which change at the engine frequency, which is 60 Hz.
Examples of these measurements are piston and displacer posicion,
compression space pressure, and electrical input and outrnut measure-
ments (such as motor current and alternator output current)., The AC
measurements were made with an BMS voltmeter; the result was used to
calculate amplitudes. The disadvantage of this approach is that phase
angles are lost; therefore, parameters such as engine PV power and

gpring losses can not be routinely calculated.

2.3 Data Acquisition System

The DAS used for FPSE testing has been in use since January 198l. This overall
system is configured around two processing units; HPLOOOXL microcomputer and an
HP9825 calculator. The HPLOOOXL computer and its peripheral instruments is the
primary system. This system is used where detailed performance evaluation is
required, since it is capable of acquiring and analyzing dynamic signals generated
by position and pressure signals. This system is also used to acquire

"performance" test cells. The real~-time operating

steady-state data from several
system of the HP1D0O can coordinate and schedule several concurrent tasks, and is
thus capable of performing data acquisition tasks for several simultaneously oper-
ating cells as well as background program development and data reduction tasks.
The use of the HP1000 for this endurance testing was limited to analysis of up to
four dynamic signals during the duty-cycle test and post test storage and analysis

of data collected by the HP9825 calculator based system.

The 9825 calculator controls a satellite DAS, which was the primary system used

for monitoring and controlling the endurance test. This system includes the
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calculator, a frequency counter, a precision DVM, scanners, and a six-channel
relay actuator, which are used to acquire data and provide limited engine control.
The primary limitations of this system are that it can not quickly acquire and
analyze high-speed dynamic signals, and it must be dedicated te, basically, s
single task (limited multi-tasking has been implemented via user goftware}. To

support the endurance test, this system has been programmed f.o perform:

* Basic data acquisition and limited real time data analysis

* Continuous monitoring of critical engine operating parameters and

detection of out-of-tolerance conditions

* Automatic shutdown of the engine should one or more out-of-tolerance

conditions be detected

In spite of its limitations, this system provides all essential functions for
monitoring of the endurance test, including measurement of dynamic signal ampli-
tudes. This is accomplished by measuring these parameters with the true RMS func-

tion of the DvM and scaling the result, assuming that they are sinusoidal.

The measurement of PV power and internal Losses was limited during the test by
insufficient high-speed channel capability and the lack of necessary software to
@asily and efficiently measure these parameters. These limitations were substan-
tially eliminated near the end of the test; therefore, future endurance testing

will have DAS support which is very similar to that of the performance test cells.

2.4 Engine Control

There are three major control systems associated with the engine test cell:

1. Combustor control system
2. Power control system
3. Unattended operation interlock system

1

The combustor control is a digital electronic unit which monitors
and controls heater head temperature and combustor A/F ratio. The primary inputs

to the controller include 10 type K heater thermocouples (T/C), fuel flow and

1 Automatic combustor Controller Development and Liquid-Fuel Combustor
Design Program, Aerospace Laboratory, Wright-Patterson AFB, January, 1983.
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airflow. The required air and fuel flow rates are set points to PID algorithms
which control the position of the actual air and fuel control valves. This unit
also monitors the status of several contactors which are part of the unattended

operation function described below.

The power-~control system is an analog electronic control which monitors and
controls the alternator output voltage. For most of the first, second, and fourth
phases of the endurance test, this control was used in a manual mode {i.e., the
motor input wvoltage and frequency were set manually). However, during the
duty-cycle test, the operating frequency and required output voltage were set, and
the proportional/differential algorithm of the control unit determined the motor
voltage required to maintain a constant ocutput voltage for various load resistance

values.
The unattended cell control is provided by a variety of hardware, including:

* Combustor control system
* HP9825 DAS

" Hardwired relay and switch logic

The faults which this system protects against and the action taken for each is
summarized in Table 2-2, The basic control approach was to turn off the combustor
and engine motoring when any faults were detected. The more critical faults are
handled by hardwired relay logic. Several faults associated with the combustion
system are handled by the combustion control system. The least critical faulcts
are detected by the DAS. Due to the time required to complete a scan by the DAS
(30 s), these faults are rvelated to slowly varying or less critical to engine

parameters.
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3.0 GENERAL DISCUSSION AND HISTORY

The 1000-hour endurance test was divided into four phases as described in Section
1.0. A discussion of aspects common to all phases of the test, history of the

test, and a chronology of significant events are described in this section.

3.1 Test History

A complete chronological history of the endurance test, indicating signifirant
events during the test program is given in Table 3-1. This information is also
presented versus engine operating hours in Figure 3-1. In general, ctesting
proceeded smoothly, with few interruptions. However, there were three major

unplanned shutdowns during the program:

1. The heater head instrumentation necessary to moniteor and control
the heater temperature failed. This was caused by a combination of
rough handling and vibration which broke the sheathed thermocouples
(T/C's) that were brazed to the heater head. Since the T/C's were
brazed to the head, their repair was involved and caused a substan-
tial delay in cthe program. A subsequent redesign of the head :
instrumentation has substantially reduced the possibility of fail-
ure and, at the same time, will permit easy replacement of the T/C's

if they should fail.

2. After the completion of the full-stroke test, the engine was being

LS

rurt £o repeat selected test point performance. Due to an operator
error, the engine was run for approximately three minutes (+10000 |
cycles) without the hydrostatic gas bearings operating befere the
error was noticed and the engine shutdown. The subsequent
inspection showed a number of local scratches, attributed to the
dry-bearing operation, con the power piston (Figure 3-2) and mating
bearing. The depth of the local scratches were not measurable by
conventional instruments (micrometers); the surface profile (Figure
3-3) was measured in the areas shown in Figure 3-4 with a surface

analyzer. Further, the bearing flow rate increased less than 10%
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Figure 3-2 Piston Rub Due to
Dry Bearing Operation
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from pre-teqar meagurements, The seratches were  palighed  and

cleaned to remove high gpotsy and dehr o Aobave continging rhe tage,

3. A small (1/4" X 1/4") segment of the displacar drive magnet became
dislodged and jammed the displacer. Tfhe magnet matertal i3 very
brittle, altthough ir is securery bonded to rhe displacer and
protected fram chipping, it iy subject to damage during nanubtaceore
and asgsembly. The failed sepment had broben Adurivg asgembly prior
to the start of the endurance program and had heoen cementad back in
place with an anaerobic adhesive. This repair, however, proved to
be tamporary and the gegment didlndped 220 hourd 1nte the duty=nyclae
testing., The magnet bhecame lndped hetween rhe digplacer magret and
motor atator cauging significant damage ro "he phenolic motor
liner, The dislodged magnet was pulverized before the failure
hecame evident and the engine sropped. The engine was ropaired by
filling the void in the magner with cha same epoxy used Lo hond the
magnets to the displacer. The phenonlic liner was alsn replaced, No
noticeable loss of motor performance has eesuylted from the regulr-

ing reduction of magnetr volume,

Ocher causes of engine shurdown were rel-ted o the exrernal romhustor, engine

support stand, and support facilities,

3.2 Combustor

The combustor used to supply heat to the engine proved to be legq reliable chan
desired early in rhe regr program and was meditied several timas to correct vari-
ous problems. As the engine power mndule endurance (excluding rhe combustor) was
the objective of this test, its durability and tite porenrial will be only briafly

discussed.

The poor durability ~F the esr!y - miuygt o 10 ' rrihared to she relatively
high vibration levels (47 g's g+ v . voubieh phe combaggtor was
subjected, Substantial impr vement @ . 1o qmade - e cambuistar design durine the

endurance test, The latest combustor design (C3-DI1) was run for <380 hours with
the engine tied to an inertial mases (+1-1.% 2} tollowed hy "M hours of operation

at 7 g aperation where the ungine case was tree to vibrate {(gee bigure J=1). [he

-
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durability of the combustor in the high g environment was fuund to be Limited by
the relatively soft rigid insulation materialy used in its construction. While
substantial improvements in cthe combustor proper were made, the most successful

solution was to substantially reduce or eliminate the engine vibration,
3.3 Engine Support Stand and Facilities

There were several failures of the struts which connected the engine to the iner-
tial mass. This had no effect on power module; however, if not caught quickly,
operation after strut failure could cause rapid degradation of the combustor. The
facility and interlock system designed to protect the engine from faciliiy related
failures caused numerous engine stoppages early in the test program. These prob-
lems were corrected and the test continued. By the duty-cycle test phase, the
number of facility related stoppages were substantially reduced. The last 400
hours of duty-cycle testing were completed in 432 clock hours (18 days) or only 8%

down time.
3.4 Critical Clearance Inspection

Prior to each test phase, the critical wear surfaces were thoroughly inspected and
photographed. The engine was also inspected when a failure involving the power
modulie occurred and following each test phase. Critical measurements and
inspection locations are shown in Figure 3-5. These areas and the clearances are

outlined as fullows:

* Displacer Bearings/Seals - Clearance between displacer rod (rod that

attaches to the displacer body) and post manifold. This clearance is
important for proper operation of displacer gas bearings and to seal

the forward and aft displacer gas springs from the bearing drains.

* Displacer Motor Seal - Clearance between outer diameter (0.D.) of the

digplacer body in the area of the permanent magnets and displacer
motor liner which seals between the hot-expansion and cold-compres-

sion spaces,

* Displecer Gas Spring Seals - Clearance between the forward gas spring

and outside diameter of the post, or between aft gas spring and gas

40
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gspring cylinder. The purpege «t thig rlearance {9 v prevent leakage

between the pas aprings and angtae precjure wave,

* Power Piston Seal - Cloarance Lorween forward pawar piston and power
tston cylinder which proside ., seal e hoetgyeep the wenpgine pressure

P b4 ! ) P
wave acting on the tace of Coo pawer sigtap and engine mean or bounce

pregsure.

The ingpection data for the inirial teer wa4 tabutated un the torm shown in Table
3-2. As shown in Table 3-2, all ~ritisal qurfsces have heen given an item number
(Column 1), Figures -5 to 31-7 l-rq'ey each ‘ram on an overall assembly. The
detail drawing number for rhe part i« gt en ‘n Column ? and the serial number in
Column 3. The item is desaribed in 29" umn 4. The nominal print dimension for each
item ig given in Column 5, and Column 6 gives the average as measured dimension.
Column 7 lists the results of a Flow <henk For several bearings or seals; these
flow paths are shown in Figures J3=f and 3-7, The flow measurement rig used for
rhese checks is shown in Figure 1-%, C+lumns 8 and 9 ligr the design and as meas-
ured surface finish., These are done with a surface comparitor) the initial
surfaces are in new conditian, A Aderailed surface profile {(Column 10) will be
completed where appropriate, Ffor suhsequenr inspections. The part weights are
listed in Column ll; these are measured with a balance which has a resolution of 1
gm., Column 12 lisrs the picture numbers of the critical surfaces. For each
surface a picture is taken with the part in each of fnur orientacions (12, 3, 6 and

9 o'clock). The final column ts orovided far miscoellaneous remarks.

The clearance was determined by measuring the bore (I.D.) of the cylinder and
gubtracting the measurament of the -utside diameter ol the mating part. This
procedure resulted in a measuremert of +two relatively large diametersy the
gubtraction of one from the other resulting in extremely small clearance dimen-
sions. Since the inspection itselt was a difficulr task, care was taken to have
the samne inspector conduct each inspecrion in an attempt to maintain consistency.
Because of the instruments used and the number of measurements taken, the uncer-

tainty of the resulting measurement wa- /0-millianths of an inch (.00178 mm),

The results For the critical clearances as o funetion of test hours are graph-
b

ically presented in Figures 3-9 through -1y and tnclude measured clearances rela-

tive to the design value ni the displacer nearings, displacer seals, displacer
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Radial Clearance Deviation (in. x 107}

Radial Clearance Daviation (in. x 10
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Measurements Taken after 1220 hr
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Figure 3-9 Measured Clearances - Displacer Bearings
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Figure 3-10 Measured Clearances - Displacer Rod Seals
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Measurements Taken after 1220 hr
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Figure 3-12 Measured Clearances ~ Gas Spring Seals
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motor seal, gas spring geal, power pistan bearings, and power piston seonl,

regpactively,

As can be seen, no trend is exhibited in the critical clearance measurements, even
though variations between clearances exist at the various inspection points.
Since the variations over time are wirthin the measurement uncertainty band, they

are not statistically significant and du not represent a change in clearance,
3.5 Bearing Flow Measurement

As another check on bearing clearances within the displacer and power piston,
bearing flow measurements were made on the assembled engine at the beginning of
the test and prior to teardown for each inspection. Flow versus back pressure is a

very sensitive indicator of changes in the bearing surface clearances.

The change in bearing flow as a function of time, which is an indication of the
change in bearing clearance, shown in Figure 3-15. The flow is seen to slightly
increase during the first 400 hours of thé test, but is nearly constant throughout
the remaining 700+ hours. These [!ow measurements confirm these inspections of
the critical clearances that showed no significant increase in bearing clearances

during the test.
3.6 Internal Baaring Supply Development

Phases I, II, and IIl were al! counducted with externally supplied gas bearing

pressure.

The demonstration of internal bearing operation was carried out on MTI funds
between the end of the duty-cycle test and prior to beginning the start/stop task

of the 1000-hour endurance praogram.

The engine hardware was modified to add a check valve that would pump working
fluid from the engine compression space to the bearing supply plenum. The check
valves are based on a commercially available o-ring check valve in which an o-ring
expands radially when the valve opens, then springs back into a groove to close.
The power piston and cylinder were also modified to increase the mid-stroke port

area and to enlarge the passages between the ports and bounce space. The initial
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tests of this hardware showed the relatively small ports originally in the piston
would have been adeqyuate to maintain the piston mid-stroke position., During the
tusting, several improvements were made to tha check valve assemblies to reduce
the pressure drop in the valve and connecting tubing, Two chack valves were found
to be too restrictive for the desired bearing flow. Furthermore, the check valve
plenum was fouad to be too small, causing high pressure pulsacion in the discharge
when the valve opeted. Therefore, a plenum agsembly was fabricated which provided

for four check valves and substantially increased the plenum size.

When this assembly was tested, the discharge plenum was found to have a relatively
large pressure amplitude at a frequency corvesponding to the resonant frequency of
the plenum and discharge tube system. Several tests were carvied out to charac-
terize the internal compressor flow and prescsure for various discharge tube
lengths and frequencies. From these results, the bearing compressor was tuned to
give the maximum bearing pressure., Approximately 10-20 hours of exclusive inter-

nal bearing testing was accomplished.
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4.0 PHASE | - LOW-POWER TESTING

4.1 Objective

The objective of the low-power test was to accumulate 100 operational test hours
at v5 kW power and 600°C mean heater head temperature. The purpose of the test was
to provide check-out of the operating power module and tesc cell interaction, and
to evaluate engine performance to determine if changes occurrved to engine perform-
ance parameters. It was expected that engine performance parametrics would be
more gsensitive to small changes at low power, since parasitic losses represent a

higher percentage of power output.

4.2 Conclusions

The low-power test was successfully completed. Although there were indications
that some critical clearances did increase, they could not be confirmed by other
mesgurements. Mogt all clearance changes were in the level of inspection resol-
ucion. Grogs engine parameters remained constant throughout the test, Therefore,
the engine was readied for 300 hours of full-stroke testing.

4.3 Discussion

4,3.,1 Test Description

The engine seal and bearing clearances were ingpected prior to starting this phase

of engine testing.

This test was conducted with the engine load and motor input set to constant
values such that the piston stroke was v'50% of design. The heater temperature was

set to a constant 600°C and the engine pressure was 60 Bar.

Supplementing the inspection of critical clearances, photographs of all critical
parts and surfaces were taken prior to the start of the test. In addition, a flow
check was also made on the power piston bearings and displacer bearings. All

meaguvements and inspections are performed at the beginning and end of each test
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phase. The pre-test inspection performed prior to the 100~hour test is the nomi-

nal inspection from which magnitude of changes are evaluated,

4,3,2 Test History and Resultg

The 100 hours of low-power testing was uneventful, Testing vips initisted on 8
April 1983 and concluded on 15 April 1983. The engine performance did not change
from the start to finish of the test. The displacer motor power increased slight-
ly (20-30 watts), which may be due to even smaller changes in other operating
parameters. Power variation, which would indicate geoss changes in the éngine,
remained steady throughout che test (Figure 4-1}. Table 4=l presentrs 2 summary of

engine parameters Xp, Xp, Pmean, and THp as a function of test hnurs.

4,3.,3 Post-Test Ingpection

Post~test inspection of the hardware, which is also the pre~cest inspection for
the 300 full-stroke test, was completed on 20 April 1983. Visual inspection of
the hardware indicated a small scratch ¥0.2 in. (5.08 mm) wide in the area of a
feed hole of the forward power piston bearing. This may be due to debris from the
feed hole, since the damage was very localized. This damage also appeared in

piston bearing flow check which increased 26.9%.

The pre- and post-test inspections showed some clearance changes. Figures 3-10
through 3-15 indicate the clearance change between the initial inspection (No. 1)
and the inspection at the end of 100 hours (No. 3)., Table 4-2 summarizes these
particular measurements. Most of the clearance changes were on the order of the
measurement resclution. The displacer forward and aft bearing clearance, forward
displacer gas spring clearance, and displacer bearing seal, however, appear to be
significant. The motor clearance seal actually decreased during the test, which
may be due to shrinkage of the phenclic liner. There was some heat discoloration
of the liner. The increase in the displacer bearing clearance is not substanti-
ated by the bearing flow check, which indicated a slight decrease in clearance.
The other clearances, while siguificant, could not be checked against independent
measuremencs. These would tend to increase the respective gas spring losses and,
congsequently, displacer motor power. However, displ.,.er motor power and respec-

tive gas spring weasured losses only increased slighily during the 100-hour test.
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TABLE 4-2

CLEARANCE CHANGES BETWEEN INSPECTIONS NO. 1 AND 3

Item

26
a7
28
29
30
31
32

Description

Power Piston Seal

Power Piston FWD Bearing

Power Pistan AFT Bearing

Displacer Hotor Seal
Displacer FWD Bearing
Displacer AFT Bearing
FWD Gas Spring Seal
Displacer Bearing Seal
AFT Gas Spring Seal

Displacer Bearing Seal

58

Diameter Clearance
Change (in.)
0.0002
0.0001
0.0001
-0.0007
0.0002
0.0004
0.0006
0.0002
0.0001

0.0004

i'-'jé”ﬁn <
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System bearing flow checks, pre- and post-test, indicated that the AP increased by
11% which is indicative of the flow and, hence, a slight increase in clearance.
This increase in AP for a given inlet pressure increase ig attributed to the power

piston bearings, but has not been confirmed by inspection of hardware.
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5.0 PHASE Il - FULL-STROKE TESTING

5.1 Objoective

The objective of the full-stroke test was to accumulate 300 operational test hours
at 700°C mean heater head temperature and at 20mm (full stroke) power piston
stroke., Full-stroke testing is representactive of the most severe operating condi-

tion except for dry start/stop resting.
5.2 Conclusions

The EM endurance engine successfully compleced the Phase II full-stroke test
phase. The average power was 1.5 kW. There were no appreciable changes in the
hardware as determined by visual observation, flow test, and inspection of the
rardware. Engine parameters remained constant throughout this phage with no indi-
cations of degradation. The chrome oxide surfaces are particularly durable and
held up well, even without the gas bearimgs operating for a short time. Check out
and initial unattended operation went very well, with only minor corrections need-
ed to software and facility hardware. The engine hardware was judged acceptable

for Phase III duty-cycle testing.
5.3 Discussion

5.3.1 Test Description

The critical seal and bearing clearances were inspected as described in Section
3'01

The engine load for this phase of endurance testing was set to a constant resist-
ance with the load variac (Figure 6~1)., The load resistance was adjusted to give
design piston stroke {20 mm) at maximum motor current level (6 amps). The heater
head temperature was also set to a constant level (between 650 and 700°C). The

resulting electrical power cutput was between 1300 and 1600 watts.

The only hardware change was the displacer motor liner, which was replaced with a

new phenolic liner with nominal design displacer seal clearance. The liner seal
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clearance (item 26 of Figure 3-7) during the low-power test was 50% larger than
design. It was expected that the reduced displacer seal clearance (to deasign

values) would reduce the displacer motor current necessary to drive the displacer,

5,3.2 Test History

Limited full-stroke testing was initiated on 25 April 1983 but was suspended
because of poor combustor durabilicy and a lack of operating thermocouples on the
heater head. Corrective action was taken to resolve these problems prior to
restarting the full-stroke test. Combustor durability was improved by limiting
the amount of combustor vibration by adding mass to the engine test stand. The
heater head instrumentation was completely redone with 27 new thermocoupler tack=
welded to the heater head. With improved combustor durability and re-instrumented
heater head, the engine was checked out during the first two weeks of July for
full-stroke operation. An identified displacer rub was corrected by replacing the
liner and stuffer assembly. This substantially reduced the requifed motor power
for a given alternator load and stroke, On July 13, the 300 hours of full-stroke
testing was started. For this test, the inertial mass was attached to the case to

reduce combustor vibraticn,

The safety interlock system was fine-tuned early in this test and substantial time
was accumulated without operator attention. The interlock system shutdown the
engine a few times per day for various reasons. These were mostly "glitches" in
the cell exhaust airflow switch or in the primary coolant flow switch. The air and
water flow switch installation wag modified to veduce errant shutdowns. During
the course of the test, the bearing pressure transducer, the case accelerometer,
and the engine pressure trausducers failed. In each case, the transducer was
replaced or repaired and the test continued. Several shutdowns were thwu result of
very slow engine preggure leaks; the pressure would drop from 63 to 60.5 Bar in
aproximately six hours. Pressures outside this band de-tune the engine system,
regulting in excessive displacer motor curvent. A makeup system was installed for

later tests.

The engine was run at an electrical output of 1500 watts and v'20 mm piston stroke

during this test.
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The 300-hour full-stroke test phase was completed on 3 August 1983. At completion
of the test, the engine was run accidentally without operating gas bearings for
approximately three minutes. The engine was completely inapected between 5-15
August 1983,

5.3.3 Test Results

Engine parametric trends as a function of time during the 300-hour test phase are
shown in Figures 5-1 through 5-10. Load power varied between 1,3 and l.6 kW as
shown in Figure 5~4., Digplacer amplitude (Figure 5-2) was automatically adjusted
to maintain the power output (Figure 5-4) in response to changes in pressure (Fig-
ure 5-1), changes in heater head temperature {(Figure 5-7), and load resiscance
(Figure 5-9).

5.3.4 Post-Test Inspection

The engine was disassembled and inspected following the full-stroke test, and the
inspection was completed by 15 August 1983, The engine was in excellent condi-
tion, there was no damage to any cngine hardware. The bearings and seal surfaces
showed normal polishing and evidence of minor rubbing, however, no damage to bear=~
ing surfaces was found. The dimensional inspection of the hardware showed clear-
ance changes, which may be due to measurement technique rather than the actual
changes since there is no consistent trend over the pre- and post-test inspections

agsgociated with the L00 hour test phase.

The results of flow tests completed before and after this test are shown in Table
5-1. The piston bearings (i.e., alternator and aft gas spring bearings) show no
change in flow as indicated by the flow meter AP. The test does indicate a change
in the displacer bearing flow of 31%Z. The equivalent clearance change required
for this flow change is within the measuremant uncertainty of normal instrumenta-
tion £0.0007 in.

Surface sc-atches were visually observed in the area of the forward piston bear-
ing. The scratches were very local and did not affect inspection dimensions, nor
did they affecr power piston flow checks. It is very likely that these scratches
occurred during the short period of operation without the hydrostatic gas bearings

at the end of the 300-hour full-stroke test., It does demonstrate that the chrome
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Figure 5-1 300-Hour Full-Stroke Test
Mean Fressure versus Time
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Figure 5-2 300-Kour Full-Stroke Test
Displacer Amplitude versus Time
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Power Piston Amplitude versus Time
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Figure 5-4 300-Hour Full-Stroke Test
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Figure 5-5 300-Hour Full-Stroke Test
Displacer Motor -Current versus Time
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Figure 5-6 300-Hour Full Stroke Test
DC Field Current versus Time
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TABLE Y-1
PHASE Il - FULL STROKE TESTING HEARING FLOW CHANGES

AP in Hp0 ac 20 psig Inlet Pressure

Pre-Test Pogt-Test
Displacer Bearing 6.5 8.5
Alternator Bearing 5.0 5.0
AFT Gas Spring 5.1 4.9

oxide surfaces insorporated on the moving surfaces do provide a tough, durable
surface coating tiz.C cap protect against surface contact due to shock or momentary

wear or, as demonstrated later in this test program, dry (no bearing) start-up.

-

B T s 8 B e .

69

N

o

&,
i,



RARYELLLY L e DA s ot e o . )

6.0 PHASE Il - DUTY-CYCLE TEST

G.1 Objactive
The original objective of the duty-cycle test was to accumulate 300 operational
hours at loads between 0.5 and 2.5 kWe, and 700°C mean heater head temperature.

This objective was modified with NASA approval to extend the accumulated hours to
600.

6.2 Conclusions
The EM successfully completed 691 hours of duty-cycle operation, The cne major
engine failure 'displacer magnet dislodgement) was not related to the duty-cycle
operating mode,

6.3 Discussion

6.3.1 Test Description

The critical seal and bearing clearances were inspected as described in Section
3.0.

The electrical engine load was modified by the addition of a parallel clock-driven
resistive load, shown in Figure 6-1. Manual relays were also installed to allow
for use of the original "fixed" resistance load. The variac used to adjust the
"fixed" registance load provided the flexibility of proporticnally adjusting the

duty-cycle lLoad.

The duty-cycle load was designed to change the engine load to one of three levels
for a given alf~rnator voltage every l/2-hour according to the échedule shown in
Figure 6-2. The resistances are awitched such that the load{is at one of three
levels, 100%, 60X%, and 20%, for a period of v'1/2-hour, and the cycle repeats every
two hours. The power dissipated in the load will also depend on the engine output
voltage, which for this test was set by a power control that senses the load volt-
age and adjusts the displacer motor voltage to produce the required output volt-

age.
cev . e .
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The large load changes (20 to 100% and 100 to 20% steps) are provided with a 5-15
second delay at che 60% load level. Thig reduced the impact of these large load
changes. The engine and control responded very well to the duty-cycle load chang-
es. The output voltage was maintained very consistently, with little or no over-

shoot during load change .

The power levels at which the duty-cycle test was run were lower than the design
values to limit the motor input current. The available motor power supply was
limited toc £6-7 amps RKS; therefore, the load was adjusted to limit the motor
current to about 6 amps. The previous full-stroke testing was run at V1600 watcs
and was not increased prior to the duty-cycle test; therefore, the load was set to

the dashed curve in Figure 6-2.

The engine DAS was improved for this test. This involved implementing a program
which could take wave form data from the endurance cell No. 6§ with the HPL000 0AS.
Though the number of channels was limited to four, the basic engine dynamic (Xp
and Xp) and thermodynamic pressure wave {P.) could be measured on a routine basis.
With these measurements, the piston PV power was calculated and direct comparisons

with the firgt-order thermodynamic analysis could he made.

6.3.2 Test History

The 691 hours of duty-cycle testing was begun on 17 August 1983. The displacer
magnet failure described in Section 3.0 was the only major engine related failure
which occurred during this phase of endurance testing. Shortly after the engine
was re-started, one stringer, which attaches the engine to the inertia mass,
failed. This caused a combustor failure, Both were repaired and the testing
continued smoothly until 600 hours of duty-cycle testing were completed on 10

September 1983. The goal of 1000 hours of endurance testing was accomplished.
The engine was then separated from its inertia mass in order to accumulate hours

on the combustor at high (7 g's) vibration levels., The engine was run in this

configuration for 91 hours.
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6.3.3 Tast Results

The analysis was compared to test results to establish the empirical factors need-
ed to obtain an agreement in terms of the dynamic engine performance. In general,
empirical factors applied to total volume and seal leakage are necessary to obtain
an agreement in terms of dynamic engine performance, In general, empirical
factors applied to total volume and seal leakage are necessary to obtain an agree-
ment with test results (Table 6-1}. Volume adjustments of & and 14% are typical
for FPSE's, and are perhéps indicative of needed improvements in the analysis.
Seal leakage adjustments, on the other hand, may be more attriburable to the
difficulty of accurately measuring small clearances of relatively large diam-
eters. In this respect, EM No. 1 hardware was in very good condition, and a 3%
increase in the seal clearances could account for the observed differences., EM
No. 2 hardware wss in somewhat worse condition, so a 28% increase in seal clear-

ance would be required to account for the observed differences.

Performance of the two EM engines is compared in Figures 6-3 through 6-17 at vari-
ous power levels. EM No. 2 was operated‘;t constant load voltage and various load
impedances {Figure 6-3), while EM No. 1 was operated at a constant load impedance
and various voltage levels, The power piston amplitudes necessary to produce the
degired output voltages (Figure 6-4) indicate a resonable agreement between the
physical hardware and the model. The piston stroke versus power curves are
different for two reasons: 1) different loading conditions; and, 2) the hardware
differences in the two alternators {i.e., EM No. 2 has fewer AC turns than EM No.
1).

The pregsure amplitude and phase (Figures 6-~5 and 6-6) provide the force to drive
the alternators and determine the basic PV power dzilvered to the load by the
cycle (abscissa of Figures 6-3 through 6-9), The PV power, rather than total
cycle power, was uselected for comparison since it could be easily'measured on the
test engine. The cycle power delivered to the displacer is rélacively constant
over the test range. The pressure force must balance all other forces acting on
the power piston and is, therefore, indicative of any deviations between the
modeled load on the thermodynamic system and physical reality. Deviations of less
than 3Z are observed in the pressure amplitude where the worst case is at the low

power point for EM No. 2. Also, deviations on the ocrder of 0.5 degrees are
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TABLE 6-1

COMPARISON OF DATA TO CODE
PREDICTIONS EM's #1 and 2

EM #1 EM &2

Daca | Calc. | Daca | Cale,
Prequency (Hz) s8.1 | 58.1* 60 60%
Pressure (Bar) 59.9 | 59.9% 62 624
Haacer Temp (°*C) 710 710*| 680 ] 680
Cooler Temp (*Q) 32 324 37 37
Disp, Azp. (mm) 6.82 | 6.87 | 6.48 | 6.47
Disp., Phase (°} 67.7 { 67.8 | 59.0 { 58.6

Piston . np. (mm) 9.95 | 9.94 | 8.73 | 8.78
Preasure Anp. (Bar)| 9.57 | 9.55 | 7.63 | 7.64
Pressure Phasa (°) [-11.0 {-11.1 [-7.96 |-7.98

PY Powar (uatts) Jc1o0 | 3620 | 1800 | 1860
Heat Raj. (waccs) 7610 | 6310 | %650 | S840
py Efficiency 0.309 0,351 242 236

Daad Volume Factor 1.0 1.08 .o | 1.14
Seal Leskage Factor ©.82%) 0.90 1.52%] 3.15%

*messured operating conditionm
calculaced from measured geometry
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observed in the EM No, 1 pressure phage, indicatinyg vartattonsg 1y the glternator

load or bounce-gpace loss.

The displacer amplitude and phase for the EM engines i4 directly 'ntluenced by the
affective impedance of the engine working space 1r additinn tu the praton dynamics
and load. The effective working-space impedance is a direct result ol the thermo=
dynamic engine behavior and, therefore, of all parameters that intluence thermody-
namic performance. The displacer dynamics (Figures 6-7 and 6-8) show an agreement
between test and analysis, indicating that the harmonic thermndvnamics analysis is
a good model of the physical processes. The thermolynamic etiicrency 1y, atter
engine power, the most important engine pertormance parameter, The PV witiciency

used for comparison ig defined as!
PV Efficiency = PV Power/PY Powar + Heat Rejected

This was selected since the measured efficiency on this basis :s well detined, and
would, therefare, provide a well defined comparison with the calculated etticien-
cy. This definition was selected over those defined by Crowley', since, in this
case, his definition would invelve the addition of terms which could not be
directly measured. The PV efficiency of the EM engines is compared to correspond-
ing calculated values in Figure 6-9. The data from EM No. 2 was in agreement with
predictions across the power range tested. Considerable scatter iy geen in this
test data, may be dus to the transient nature of the duty-cycle test from which the
data was obtained. The data from EM No. 1 follows the trend predicted by the
harmonic analysis; however, it is two to four points lower than the prediction,
particularly at higher power, The running 23t results are also shown in Figure
6-10 through 6-17. This dara indicates that the engine perlormance way not

affected by the duty-cycle load changes.

'Crowley, J.L., "ORNL/CON-131 Efficiency Terms for Stirling Engines
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7.0 PHASE IV - START/STOP TEST

7.1 Objective

The original objective of the start/stop test was to accumulate 300 test hours
while parforming 1000 start/stop tests of the engine system. The engine was to be
cycled on and off approximately every 15 minutes, with load between zero power
power and the power point defined in Phase II. This task objective was modified
with approval from NASA to accumulate a minimum of 100 start/stop tests. The

engine was to be cycled on and off approximately every 5 minutes.

7.2 Conclusions

The EM engine successfully completed 262 start/stop cycles. While there was no
significant degradation of engine operating performance, there were subtle indi-
cations of engine degradation. On inspection of the bearings and seals, no damage
was observed in the seals or piston bearings, however, minor damage of the displa-
cer rod was noted.

7.3 Discussion

7.3.1 Test Description

The critical seal and bearing clearances were inspected as described in Section
3.0.

The test procedure was designed to demonstrate the most critical phase of engine
start-up relative to wear and durability of the engine proper. The start proce-
dure was abbreviated to obtain as many start/stop cycles as possible and to demon-~
scrate the basic durability of the engine bearings and seals. To this end, the
engine heater/combustor was operated continuously as was the engine cooling
system. The combustor control maintained the heater temperature at the set point
of 650-700°C by automatically controlling firing rate and airflow (Figure 7-1).
The cooling flow in the primary and secondary loops were maintained at constant
flow rates. The coolant inlet temperature is contvolled by the temperature of a

large storage tank, which is cooled by a cooling tower. The inlet temperature
L OT FILEITD
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cycled between 28 and 33°C (Figure 7-2) once the cooling system came up to temper=-
ature at the beginning of each day's testing. The engine outlet temperature

followed the inlet temperature with a constant AT (+13°C), Figure 7-2.

7.3.2 Test History

The start/stop test was begun following the demonstration of internal hearing
operations described in Section 4.0, The test was started on 13 February 1984 and
was completed on 21 February 1984, with a total accumulation of 262 "dry" (no

external pressure) bearing starts.

7.3.3 Test Results

The engine started easily during this test, achieving steady-state piston stroke,
displacer stroke, and bearing supply pressure in less than one second. A typical
start-up cycle (Figure 7-3) shows the displacer stroke comes up to 75% of the
steady level in three engine cycles, then stabilizes. The piston stroke and
compression space pressure amplitude oscillates at a Low amplitude for v'20 cycles,
at wﬁich point the piston and pressure amplitude increases rapidly for several
cycles (five), then increases slowly for another 25 cycles when full piston stroke
is achieved. The bearing supply pressure (AP bearing) came up to its steady level
as the piston stroke achieved its steady state level. Alsa, once the piston
stroke begins coming up to full stroke, the load on the displacer drops and the

displacer stroke increases to steady-stace levels.

The delay in the piston stroke, and thus pressure amplitude, in coming up to
stroke is due to the additional leakage lLoss of the mid-stroke ports. When the
stroke increases to the point where the ports beagin to close, the leakage Lloss
drops relative to the stroke and reduces the load on the thermodynamic cycle, thus

making more energy available for driving the power piston.

The steady state bearing AP (Figure 7-4) was relatively constant during the first
three days. On 21 February 1984, the bearing check valve system was modified to
improve the tuning, and thus the bearing supply pressure. The bearing pressure

was increased from 5.7 to 6.1 Bar.
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The bearing pressure dropped 0.l to 0.2 Bar in the first hour of running each day,
then scabilized. This is may be due to cold-start thermal transients, which are
affecting either the bearing clearance or the internal check-valve compressor

operation.

The piston and displacer amplitudes were maintained at a constant level during the
entire test (Figure 7-5). The consistency of the piston and displacer amplitudes

indicates that thermodynamic performance and losses are not changing over time,

The motor current (Figure 7-6) is proportional to the force that the motor iinposes
on the displacer and is the most sensitive to changes in dynamic or thermodynamic
logses. This ia evident by the scatter in the current during the first three days
of testing compared to other parameters, such as piston and displacer amplitude.
The data from 15 February 1984 indicates a potential increase in losses during the
first hour of operation, after which the current dropped to the same as the previ-
ous two days of testing. The data from 21 February 1984 exhibiks more scatter than
was observed on 13-153 February 1984, This may be an indication of intermittent
increases in losses which may be an early intication of engine degradation.
Subsequent engine inspection indicated rubbing between the displacer rod and the J
bearing it runs in, and could explain the intermittent high current observed in

the test data. _ﬂ
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%p mean
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Pdgs 1
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Flowey
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APPENDIX A

SYmMBOLS

STANDARD MEASURED DATA AND CALCULATED RESULTS

Standard Measured Data

mean engine pressure

bearing supply pressure

engine frequancy

mean displacer pogition

displacer amplitude

mean piston position

piston amplitude

mean pressure of displacer gas spring 1

mean pressure of digplacer gas spring 2

mean pressure of compression space

pressure amplitude of displacer gas spring 1
pressure ampliCufe of displacer gas spring 2
pressure amplitude of compression space
input motor voltage (RMS)

input motor current (RMS)

input motor power (watts)

alternator field voltage (PC)

alternator field current (PC)

alternator load voltage (RMS)

alternator load power (watts)

alternator load power (watcs)

differential pressure of fuel laminar-flow element
fuel supply pressure

fuel supply temperature

differential pressure of air laminar~flow element
combustion air supply pressure

combustion air supply temperature

engine cooling water inlet temperature
engine conling water outlet

engine cooling water flow rate

head temperatures up to 27 locations

combustion temperatures up to 10 locations

g7
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Tatrlmn

Thd Mean
Fire Rate
A/F Reio
Load Res
Field Pur
Field Res
Field Temp
Ht Rej
Brng dP
Gross Eff

Standard Calculacted Results

mean control temperature, average of heater thermocouples used for
temperature control (°C)

mean head temperature (°C)

gross heat input to combustor (watts)

combustor air/fuel ratio

calculated load resistance (9)

power input to alcernator field (wacts)

resistive independence of alternator field coil (§)

estimate of mean field coil temperature based on coil resistance ()
heat rejected to engine cooling warer (watcs)

pressure difference acrass gas begdarings

gross engine efficiency defived as electrical power at the load/

gross heat input tg combustor,
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