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1.0 SUMMARY

1.1 Scope of Work

The Free-Piston Stirling Engine (FPSE) has been under development at Mechanical

Technology Incorporated (MTI) since 1976. As the design has matured and perform-

ance improved during the development/testing process, it has become important to

demonstrate the potential of the FPSE for long Life and high reliability. The

first part of this demonstration, a 1000-hour endurance test, was defined and

testing has been successfully accomplished. This report presents the information

concerning this first test.

1.2 Objectives

The goal of this endurance test was to accumulate 1000 hours of engine operation,

which has been successfully completed with several typical loading conditions.

Further, the test was structured to accumulate data on the wear and life of engine

components. Therefore, this program consisted of four phases:

1. Phase I - Low-Power Test - Accumulate 100 test hours at 0.5 kWe

power, 600°C mean heater head temperature to evaluate the stability
	

A

of gross engine parameters.

2. Phase II - Full-stroke Test - Accumulate 300 test hours at full

piston stroke, 700°C mean heater head temperature to evaluate

endurance at this Load.

3. Phase III - Duty-Cycle Test - Accumulate 300 test hours at Loads

between 0.5 and 2.5 kWe, 700°C mean heater head temperature.

4. Phase IV - Stop/Start Test - Accumulate 300 test hours while

performing 1000 start/stop tests of the engine system. The engine

was to be cycled on and off approximately every 15 minutes, with

Load between zero power and the power point defined in Phase II.

1
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The goals of Phase III and IV were modified in that the duty-cycLe test was

extended to nearly 700 hours, thus completing over 1100 hours of engine testing by

the end of Phase III. Phase IV was modified to accumulate /'12 start/stop cycles

per running hour. The test was terminated after 262 start/stop cycles had been

accumulated.

1.3 Results

The test was begun on 7 April 1983 with the low-power testing; 1000 hours of engine

testing were completed on 3 October 1983; and the test program was completed on 22

February 1984.

The engine used for this test was one of three engineering models (EM) EM No. 2

(Figure 1-1), which were built by MTI in 1981 and have been undergoing continuous

development since that time. The engine was tested in cell No. 6 of MTI's free-pi-

ston Stirling Lab. This cell has been prepared specifically for endurance testing i

and is capable of automatic unattended engine operation.
i

1.4 Conclusions

Over 1100 FPSE test hours were successfully completed during the course of the

endurance program. The major conclusion is that there was no appreciable wear of 	 e

the critical bearing and sealing surfaces of the EM as documented by inspection.

This test program confirms the potential of FPSE's to provide long life and high
9

reliability. Other conclusions that resulted from the test program are:

A

• Test conditions and/or load did not affect wear or durability.

Differences between the various test/load conditions did not appear	 j

to have any effect on the condition of the hardware and/or perform-

ance. Start-stop testing did show a number of fine scratches on bear-

B8	ing surfaces that did not seem to affect performance.

Engine system was very mechanically reliable over the duration of the

test. Except for a displaces magnet segment coming Loose during oper-

ation, the engine hardware remained very reliable, with the Last 400

test Yours of duty-cycle testing accomplished in 432 available hours.

Unintentional shutdowns were primarily a result of facility type

2
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failures (i.e., pressure out of tolerance, loss of electrical power,

loss of shop air).

e A successful build of the EM requires time and care during assembly.

With regard to future FPSE desifns, it was seen that the design of the

EM engine, with its many displacer drive hardware stack-up fits,

requires significant attention to detail to achieve a successful

build (one with no rubs during bench checkout of the hardware).

Improvements in design to permit quicker and more reliable assemblies

should be considered.

1.5 Recommendations

The most important recommendation resulting from the rest results and conclusions

to date is the need to continue endurance testing of this engine. The critical

1000-hour test confirms the potential for Long life and durability, but many addi-

tional hours (,'10,000) are needed to fully demonstrate these FPSE features.

Continued testing will also identify Long--term potential problems that may require

a redesign to achieve the goal of Long Life and high reliability.

At present, the chromium oxide (Cr203) material used to provide a durable coating

of the critical surfaces has worked extremely well. It has been a tough and

forgiving surface. Cr203 has not been put on our small inner diameter (I.D.)

because of plasma spraying Limitation. It is recommended chat evaluation of other

Cr203 processes and/or simpler alternatives to Cr203 be investigated.

Bach the complexity and energy requirements of the displacer drive system are

concerns. A Lighter displacer would reduce input energy requirements, the materi-

al chosen must be compatible with existing materials to assure maintenance of the

proper clearances during operation. Information concerning light weight materi-

als and their dimensional stability as a function of time and temperature shouid

be sought.

In summary, the recommendations that result from the Endurance Test Program are:

• Continue endurance testing with a goal of demonstrating 10,000 hours

• Eventually improve design for assembly consideration

4 a^
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• Evaluate alternative protective surface contingq

• Investigate material dimensional stability as a f,inction fit tim- :ind

temperature.

The engine, instrumentation, and data acquisition system (DAS) are described in

Section 2.0. A history and discussion of the overall endurance test is given in

Section 3.0. Sections 4.0 through 7.0 present results of each phase of the endur-

ance test.

5

- __('411



2.0 ENGINE AND INSTRUMENTATION DESCRIPTION

2.1 Engineering Model Description

The major components of the EM power module are schematically depicted in Figure

2-1. The following subsections descr'.e the design of the EM.

2_1.1 Engine Thermodynamics

Thermodynamically, the FPSE is similar to more conventional (i.e., kinematic)

Stirling engines except that the piston/displacer motions are controlled by a

resonant spring/mass system rather than a mechanical linkage.

i
The thermodynamic elements of the engine consist of an expansion and compression

space connected by three heat exchangers, 1) heater; 2) regenerator; and, 3) cool-

er, which convert thermal energy into mechanical energy at high efficiency. The

expansion space is the volume enclosed by - the displacer hot end and cylinder head,

including the "shuttle gap" in the annular space between the displacer and cylin-

der walls. The compression space is actually two displaced volumes that are

connected: one due to motion of the displacer cold end, and the other due to piston

motion. A clearance seal at the cold end of the displacer isolates the 	 i

compression space from the expansion space. The compression space is also

isolated from the "bounce" chamber and gas springs by clearance seals around the

power piston and displacer rod. Since pressure in the bounce chamber is essen-

tially constant, the pressure difference across the rod and piston seals is the

compression-space cycle pressure amplitude. Ducts through the displace- post and 	 j
i

flange assembly connect the two compression spaces. The displacer and piston

elements are contained within the same cylinder. The purpose of the displacer is

to reciprocate the working gas through the heat exchangers. The engine derives

power from the changing pressure amplitude of the cycl.e acting on the power piston

face area (see Figure 2-2).

2.1.2 Displacer Drive

The posted design is an MTI design feature that improved dynamics and relaxed

tolerances between the displacer and power piston. With the separation of the

7
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power piston and dispLacer via the posted displacer design, the dynamics of the

FPSE system can be tuned to obtain the desired thermodynamics. The engine Lncor-

porates a variable-volume uisplacer gas spring, therefore allowing dynam-

ics/thermodynamics of the engine to be altered by changing the spring rate.

2.1.3 Engine Control

Typically, a FPSE is a low-stored energy, multidegree-of-freedom engine mad2 to

oscillate freely by designing the system parameters so that the dominant system

eigenvalue is neutrally damped. Such a system is simple to operate in a laborato-

ry environment at constant load; however, it is difficult to operate in a tran-

sient environment due to its Low-stored energy capability and neutrally damped

dominant eigenvalue. Any significant change in a working parameter requires a

rapid change in another system dynamic parameter to maintain unit stability, which

is not practical without providing a hydraulic, pneumatic, or electric buffer

between the, load and the engine. By driving the dispLacer with a linear motor at

all times, the controllability of the EM is the single most important and proprie-

tary feature that makes it suitable for various applications and Loads.

The combined EM posted displacer concept and linear motor drive consists of the

displ* k- body and dome, hydrostatic gas bearing displacer rod, linear motor

drive,., and displacer gas springs. The displacer body contains the dispLacer

cylinder clearance seal, and an integrally fabricated, Linear electric motor arma-

ture, which is a basic part of the engine power-control system. The displacer rod

and body are supported on gas bearings within the post and flange assembly (Figure

2-3). The rod area, which is the difference between the effective expansion-space

face area of the dispLacer and the effective compression-space face area, deter- 	
1

mines the thermodynamic input power to the displacer.

2.1.4 Heat Exchanger System

2.1.4.1 Heater Head. The EM heater head (Figure 2-4) was designed as a monolithic

pressure vessel that is integral with the annular regenerator pressure wall (see

Figure 2-5). This design, which requires no high-temperature structural weld or

brazed joints, can be cast with integral internal and external fins.

10
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2.1.5 Combustion System

The EM combustor is a spin-off developed from the technology demonstrator engine

(TDE) with major improvements in the preheater. Fuel and air are supplied to the

combustor from an external air/fuel (A/F) control system. Inlet air is preheated

by the combustion exhaust in a folded fin preheater. The preheater air enters the

combustion chamber through a swirler cup to create a turbulent mixing zone, and

fuel is injected through the center of the swirler cup into the combustion zone.

The current combustor system (shown in Figure 2-6) is designed to burn natural gas

at a peak firing rate of 16 kW. The combustor control senses heater head temper-

ature and adjusts fuel and airflow to maintain the heater head temperature at the

fixed operating temperature.

2.1.6 Regenerator

The regenerator is an annular, porous ring located between the heater and cooler.

The regenerator matrix (Figure 2-7) is metex, a .0035-in. diameter knitted wire,

formed and pressed in a disk to the specified porosity.

2.1.7 Cooler

The engine cooler (Figure 2-8) is located in an annulus between the regenerator

and compression spaces. The helium-side flow passages are rectangular slots

milled axially onto the inside of a thin, aluminum pressure wall, whereas the

water-side assages are circumferential grooves machined onto the outside of the

pressure wall. The cooler is connected to the compression-space volume through

the compression-space connecting duct.

2.1.8 Gas Bearings

Both the displacer and power piston are radially supported by hydrostatic gas

journal bearings. The displacer bearing feed holes, located in the engine post

and flange assembly, consist of a single-plane series of holes at one end and a

doubLe-plane series of holes at the other end, while the power piston bearings

consist of two sets of double-plane feed holes located at each end of the alterna-

tor cylinder.

14
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2.1.9 Close-Tolerance Seal

The EM utilizes close-tolerance, noncontacting seals to isolate the various gas

volumes in the power module. The engine seals (Figure 2-9) consist of the:

• Forward Gas Spring Seal - Isolates gas spring volume from compres-

sion-space volume

• Aft Gas Spring Seal - Isolates gas spring volume from compression-

space volume

• Forward and Aft Bearing Seals - Isolate the bearing drain pressure	
i

(bounce pressure) from gas spring pressure

i

• Shuttle Cap Seal - Isolates expansion-space volume from compression-

space volume

• Power Piston Seal - Isolates compression-space volume from bounce-

space volume.

2.1.10 Alternators

The "partially-saturated plunger" alternator evolved from earlier flux-switching

alternator configurations. This concept (shown in Figure 2-10) is based an the

principle of minimizing the weight of the driven mass (plunger) at the sacrifice

of the stationary mass (stator). The result is that only the pule pieces

(required for "flux-switching") are needed to form the moving member. Further-

more, both inside and outside stator coils have been devised to optimize overall

packageability and to enhance the alternator conversion efficiency. The latter

can be achieved by virtue of the smaller mean diameter of the coil windings on the

inner stator relative to the outer coils, thereby reducing the overall 1 2 R losses

for the alternator system.

The Linear alternator consists of a 0.5-in. thick cylindrical plunger that reci-

procates between the inner and outer cylindrical stators. A DC field coil gener-

ates a toroidal flux path Linking the inner and outer stators which passes through

the two magnetically active rings on the plunger and passes in and out of the two

18
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stators. Consequently, reciprocation of the plunger causes the flux toroid to

move axially along the stator, sinusoidally linking and unLLnking four physically

separate AC output coils. These electrically connected coils act as a single

output coil, providing alternating AC voltage and power.

The EM alternator is relatively rugged and has a Low plunger weight. The light-

weight plunger allows the EM to operate at 60 Hz without the use of an auxiliary

piston gas spring. A layout of the alternator and plunger configuration is shown

in Figure 2-11, and a photograph of this configuration is shown in Figure 2-12.

2.1.11 Skid and Support

The EM, presently mounted in a horizontal orientation on a structural aluminum

stand, makes use of five soft rubber mounts, four of which are located on the

mounting flange between the engine and alternator, and one on the alternator pres-

sure vessel (see Figure 2-13). The machine is allowed to vibrate freely in this

configuration. A structural integrity problem with the combustor was encountered

during initial testing. Work is being -performed on a new combustor design to

solve the problem. In the interim, the EM is linked to a large mass, reducing the

casing vibration, located at the rear of the machine and attached by means of two 	 i

steel stringers fastened to the mounting flange of the EM (Figure 2-14).

2.2 Engine Instrumentation

The purpose of the test was to accumulate durability hours. In instrumenting the

EM No. 2, the primary consideration in selecting the parameters to be measured was

to be able to use the measurements to monitor the operation of the machine and be
I

able to use the measured values to observe changes in operating conditions that

would be indicative of component wear. Therefore, the measurements could be used

to trouble-shoot problem areas and be able to adjust, to some degree, for minor

wear or to shutdown should major problems occur. The entire instrumentation pack-

age was streamlined to exclude what was considered nonessential parameters. The

instrumentation chosen measures parameters of pressure (P), flow (V), position (Xp

and XD), case acceleration which indicates case position, and temperature (T);

along with appropriate voltages M and currents M. Table 2-1 is a listing of
those measurements along with a description of the measuring equipment used.

21
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TABLE 2-1

ENDURANCE ENGINE INSTRUMENTATION

4

Pressures

Pmean Kistler 4045A100 with 4601 amplifier

Pbearing Kistler 4045A100 with 4601 amplifier

PDCS2' Kistler Piezoelectric 601A with 5002 charge amplifier

PDCS2 Kulite XP-1-190-2000 with analog device with 2B31J conditioner

PC Druck PDC$ /200 with analog device 2B31J conditioner

PDCS1' Kistler piezoelectric 601A with 5002 charge amplifier

PDCS1 Kulite XF-1-190-2000 with analog device 2B31J conditioner

Pair Dynisco APT-320J-25

Pfuel Dynisco APT-320J-25

I

Flows

Air	 Meriam LEE Laminar flow element with Validyne DP-45-16/CD-15
differential pressure transducer and carrier dev*d"' ator

Fuel	 Meriam LEE Laminar flow element with Validyne DP-45-16/CD-15
differential pressure transducer and carrier demodulator

Coolant	 Bearingless flow meter model E-100 with analog devices AD 4511
frequency-DC converter. Coolant temperatures are monitored
by thermistors (2252 S2 @ 25°C)

Displacements

XD1, XD2 Kaman KD-2350-2UB Eddy current displacement measurement systems

XP1, XP2 Kaman KD-2350-1U Eddy current displacement measurement systems

Voltage,	 Vmotor, Imotor, Vload, Iload, Valt, Ialt are sensed by resisture
Current	 voltage dweden, step-down potential transformers, current

transformers

26



The measurements taken can be classed in two categories, static and dynamic meas-

urements.

Static Measurements. The static measurements consist of DC readings,

along with some mechanical visual readings. Measurements of heater head

temperatures, air temperature, fuel temperature, coolant temperature,

air pressure, fuel pressure, mean charge pressure, combustor pressures,

and air, coolant, and fuel flows are all static, measurements.

Dynamic Measurements. The dynamic measurements consist of AC readings

and are parameters which change at the engine frequency, which is 60 Hz.

Examples of these measurements are piston and displacer position,

compression space pressure, and electrical input and outs-it measure-

ments (such as motor current and alternator output current). The AC

measurements were made with an 8MS voltmeter; the result was used to

calculate amplitudes. The disadvantage of this approach is that phase

angles are lost; therefore, parameters such as engine PV power and

spring losses can not be routinely calculated.

2.3 Data Acquisition System

The DAS used for FPSE testing has been in use since January 1981. This overall

system is configured around two processing units; HP1000XL microcomputer and an

HP9825 calculator. The HP1000XL computer and its peripheral instruments is the

primary system. This system is used where detailed performance evaluation is

required, since it is capable of acquiring and analyzing dynamic signals generated

by position and pressure signals. This system is also used to acquire

steady-state data from several "performance" test ce11s. The real-time operating

system of the HP1000 can coordinate and schedule several concurrent tasks, and is

thus capable of performing data acquisition tasks for several simultaneously oper-

ating cells as well as background program development and data reduction tasks.

The use of the HP1000 for this endurance testing was Limited to analysis of up to

four dynamic signals during the duty-cycle test and post test storage and analysis

of data collected by the HP9825 calculator based system.

The 9825 calculator controls a satellite DAS, which was the primary system used

for monitoring and controlling the endurance test. This system includes the
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calculator, a frequency counter, a precision DVM, scanners, and a six-channel

relay actuator, which are used to acquire data and provide limited engine control.

The primary limitations of this system are that it can not quickly acquire and

analyze high-speed dynamic signals, and it must be dedicated to, basically, a

single task (Limited multi-tasking has been implemented via user software). To

support the endurance test, this system has been programmed to perform:

Basic data acquisition and limited real time data analysis

Continuous monitoring of critical engine operating parameters and

detection of out-of -tolerance conditions

Automatic shutdown of the engine should one or more out-of-tolerance

conditions be detected

In spite of its limitations, this system provides all essential functions for

monitoring of the endurance test, including measurement of dynamic signal ampli-

tudes. This is accomplished by measuring these parameters with the true RMS func-

tion of the DVM and scaling the result, assuming that they are sinusoidal.

The measurement of PV power and internal losses was limited during the test by

insufficient high-speed channel capability and the lack of necessary software to

easily and efficiently measure these parameters. These limitations were substan-

tially eliminated near the end of the test; therefore, future endurance testing

j	 will have DAS support which is very similar to that of the performance test cells.

2.4 Engine Control

There are three major control systems associated with the engine test cell:

1. Combustor control system

2. Power control system

3. Unattended operation interlock system

The combustor control is a digital electronic unit 1 which monitors

and controls heater head temperature and combustor A/F ratio. The primary inputs

to the controller include 10 type K heater thermocouples (T/C), fuel flow and

1 Automatic combustor Controller Development and Liquid-Fuel Combustor
Design Program, Aerospace Laboratory, Wright-Patterson AFB, January, 1983.
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airflow. The required air and fuel flow rates are set points to PID algorithms

which control the position of the actual air and fuel control valves. This unit

also monitors the status of several contactors which are part of the unattended

operation function described below.

The power-control system is an analog electronic control which monitors and

controls the alternator output voltage. For most of the first, second, and fourth

phases of the endurance test, this control was used in a manual mode (i.e., the

motor input voltage and frequency were set manually). However, during the

duty-cycle test, the operating frequency and required output voltage were set, and

the proportional / differencial algorithm of the control unit determined the motor

voltage required to maintain a constant output voltage for various Load resistance

values.

The unattended cell control is provided by a variety of hardware, including:

• Combustor control system

• HP9825 DAS

Hardwired relay and .switch Logic

The faults which this system protects against and the action taken for each is

summarized in Table 2-2. The basic control approach was to turn off the combustor

and engine motoring when any faults were detected. The more critical faults are

handled by hardwired relay Logic. Several faults associated with the combustion

system are handled by the combustion control system. The least critical faults

are detected by the DAS. Due to the time required to complete a scan by the DAS
I

( f'30 s), these faults are related to slowly varying or Less critical to engine 	 i

parameters.
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3.0 GENERAL DISCUSSION AND HISTORY

The 1000-hour endurance test was divided into four phases as described in Section

1.0. A discussion of aspects common to all phases of the test, history of the

test, and a chronology of significant events are described in this section.

3.1 Test History

A complete chronological history of the endurance test, indicating signifirant

events during the test program is given in Table 3-1. This information is also

presented versus engine operating hours in Figure 3-1. In general, testing

proceeded smoothly, with few interruptions. However, there were three major

unplanned shutdowns during the program:

1. The heater head instrumentation necessary to monitor and control

the heater temperature failed. This was caused by a combination of

rough handling and vibration whi7ch broke the sheathed thermocouples

(T/C's) that were brazed to the heater head. Since the T/C's were

brazed to the head, their repair was involved and caused a substan-

tial delay in the program. A subsequent redesign of the head

instrumentation has substantially reduced the possibility of fail-

ure and, at the same time, will permit easy replacement of the T/C's

if they should fail.

2. After the completion of the fu11-stroke test, the engine was being

run to repeat selected test point performance. Due to an operator

error, the engine was run for approximately three minutes (X10000

cycles) without the hydrostatic gas bearings operating before the

error was noticed and the engine shutdown. The subsequent

inspection showed a number of local scratches, attributed to the

dry-bearing operation, on the power piston (Figure 3-2) and mating

bearing. The depth of the local scratches were not measurable by

conventional instruments (micrometers); the surface profile (Figure

3-3) was measured in the areas shown in Figure 3-4 with a surface

analyzer. Further, the bearing flow rate increased less than 10%
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Figure 3-4 Location of Profile
Measurement on Power Piston
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from	 pre-te9r	 measurement •;,	 I'ho	 rarrhe; • +. , r,	 poIishod and

c Leaned to remove high Spot ; and Ieb r-v ',rf , ,, ,,	 ,	 r ing ncc re';r,

3.	 A smaLL (1/4" X 1/4") segment. nt the displaces drive inagner becsrne

dislodged and jammed the di9plarer, 	 the mapnI,I material i-; very

Britt Le, although it i9 securery bnrid —I to rile di"p Lacer and

protected from chippi rig , it is •ruhlec , t., damage during n.anut1ctnre

ant assembly. The failed segment had hr , il • en •Lirirg av •;embl y prior

to the stnrt of the endurance pr, u,rarn and hart boon cementod barb in

place with an anaerobic adlie9ijo.	 Flii9 repair, however, proved to

be temporary and the segmenr di y l ideed 220 hour; inI - trie d ti cy - rvcle

testing. The magnet became Iod¢,od be I ween the , Ii Ill, l ace r magn e t and

motor stator causing significant damage to the phenolic motor

Liner. The dislodged magnet was pulvorired before the failure

became evident and the engine 9rnpped. 1'he engine wa y repaired by

filling the void in the magner with C t,e g ame epn 3 y used to bond the

magnets to the displacer. 'rho phenolic lin g we.s alin replirod. No

noticeable Loss of motor performance ha, roqulrod fr,m the rasut-

ing reduction of magnet volume.

Other causes of engine shutdown were rrl-•red r ri the external rnmho9tor, engine

support stand, and support facilities. 	 4t

3,2 Combustor

The combustor used to supply heat to the engine proved to be le y , reliable than

desired early in the resr pr •igram and was ,modified several r imes to correct vari-

ous problems. As the engine power module endurance (excLuding the combusror) was
I

the objective of this test, it? durabi l it y =nd li!e porPntial wi!l be only briefly

discussed.

The poor durability of rho t — t -i - riJ, ,ii , r	 t,	 ar,rih•ired t  the relatively

high	 vibration	 levels	 ( 3'7	 g •	 i•	 ,,rr	 -	 •	 . , t i,h	 r , re	 • rt!rl :;t^r	 was

subjected.	 Substantial i I II Lr ^v„meot	 —t. , TWdr	 '•.e ,-•rrLu y tor design during the

endurance lest. The latest combustor .lesign (C3-t`1) wa •i r.in for 3'380 hours with

the engine tied to an inertial mai l, ( X I-1.) v,) loll i,.rer! 'iv •-90 Irn,in: (it operati rn

at 7 g operation where the engine ca ,ic war; tree to +ibrat. ( y ve bi.gure 3-1). 1he

^.	 .iC =+y /^!.	 K	 n	 ..



durability of the combustor in the high g environment was fuund to be limited by

the relatively soft rigid insulation materials used in its construction. While

substantial improvements in the combustor proper were made, the most successful

solution was to substantially reduce or eliminate the engine vibration.

3.3 Engine Support Stand and racilltles

There were several failures of the struts which connected the engine to the iner-

tial mass. This had no effect on power module; however, if not caught quickly,

operation after strut failure could cause rapid degradation of the combustor. The

facility and interlock system designed to protect the engine from facility related

failures caused numerous engine stoppages early in the test program. These prob-

1	

Lems were corrected and the test continued. By the duty-cycle test phase, the

I	
number of facility related stoppages were substantially reduced. The last 400

1	 hours of duty-cycle testing were completed in 432 clock hours (18 days) or only 8%

down time.

3.4 Critical Clearance Inspection

Prior to each test phase, the critical wear surfaces were thoroughly inspected and

photographed. The engine was also inspected when a failure involving the power

module occurred and following each test phase. Critical measurements and

inspection locations are shown in Figure 3-5. These areas and the clearances are

outlined as follows:

• Displacer Bearings/Seals - Clearance between displacer rod (rod that

attaches to the displacer body) and post manifold. This clearance is

important for proper operation of displacer gas bearings and cc seal

the forward and aft displacer gas springs from the bearing drains.

• Displacer Motor Seal - Clearance between outer diameter (O.D.) of the

displacer body in the area of the permanent magnets and displacer

motor liner which seals between the hot-expansion and cold-compres-

sion spaces.

• Displecer Gas Spring Seals - Clearance between the forward gas spring

and outside diameter of the post, or between aft gas spring and gas
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spring cylinder. The purpose ^,f this clearance is r,, prevent Leakage

between the vas sprin p.i and ar ,.v+". pr , ;ure wave,

Power Piston Seal - Ctoaranre Iorween F orward power piston and power

piston cylinder which prnridr, inil* q v. he r ween the engine pressure

wave acting nn the face u l _ . ra y,,., pi.; I nr and er.g l ne mean or bounce

pressure.

The inspection data for the inirO Of te , t was tabulated on the_ term shown in Table

3-2. As shown in Table 3-2, all -K ,;—nl surfaces have been given an item number

(Column 1), Figures 1-5 to 3-7 l- ci on each ;rem on an overall assembly. The

detail drawing number for the part is gi.-en !n Vlumn 2 and the serial number in
9

Column 3. The item is described in 7Y awl 4. ?he nominal print dimension for each

item is given in Column 5, and Column 6 gives the average as measured dimension.

Column 7 Lists the results of a Ft )w -h p ak for several hearings or seats; these

flow paths are shown in Figures 3-6 snd 3-7. The flow measurement rig used for

these checks is shown in Figure 3-9. C+limns 9 and 9 lis r the design and as meas-

ured surface finish.	 These are done with a surface comparitor; the initial

surfaces are in new condition. A detailed surface profile (Column 10) will be

completed where appropriate, For suhsequenr inspections. The part weights are

listed in Column 11; these are measured with a balance which has a resolution of 1

gin. Column 12 lists the picture numbers of the critical surfaces. For each

surface a picture is taken with the part in oach of four orientations (12, 3, 6 and

9 o'clock). The final column is p rovided For miscellaneous remarks.

The clearance was determined by measuring the bare (1.D.) of the cylinder and

subtracting the measurement of the outside d i ameter of the mating part. This

procedure resulted in a measuremenr of two relatively Large diameters; the

subtraction of one from the other resulting i n extremely small clearance dimen-

sions. Since the inspection itself was a difficulr task, care was taken to have

the sane inspector conduct each insper t ion in an attempt: to maintain consistency.

Because of the instruments Used and the number of measurements taken, the uncer-

tainty of the resulting measurement war 70-millionths of nn inch (.00178 mm).

The results for the critical clearances a; a Eunction of test hours are graph-

ically presented in Figures 3-9 through ' -14 and include measured clearances rela-

tive to the design value of the disp!ace r oearings, dispLacer seals, displacer
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Figure 3-7 Critical Alterantor Clearances (numbers reference
items on Inspection Summary Sheet, Table 3-2)
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Measurements Taken after 1220 hr
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Figure 3-9 Measured Clearances - Displacer Bearings
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Figure 3-10 Measured Clearances - Displacer Rod Seals
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motor seal, gas spring seal, ptwer piston bearings, and power piston seel,

respectively.

As can be seen, no trend is exhibited in the critical clearance measurements, even

though variations between clearance-; exist at the various inspection points.

Since the variations over time are within the measurement uncertainty band, they

are not statistically significant and do not represent a change in clearance.

3.5 Bearing Flow Measurement

As another check on bearing clearances within the displacer and power piston,

bearing flow measurements 4ere made on the assembled engine at the beginning of

the test and prior to teardown for each inspection. Flow versus back pressure is a

very sensitive indicator of changes in the bearing surface clearances.

The change in bearing flow as a function of time, which is an indirntion of the

change in bearing clearance, shown in Figure 3-15. The flow is seen to slightly

increase during the first 400 hours of the test, but is nearly constant throughout

the remaining 700+ hours. These t:ow measurements confirm these inspections of

the critical clearances that ,hawed no significant, increase in bearing clearances

during the test.

3.6 Internal Bearing Supply Development

Phases I, II, and III were all conducted with externally supplied gas bearing

pressure.

The demonstration of internal bearing operation was carried out on MTI funds

between the end of the duty-cycle test and prior to beginning the start/stop task

of the 1000-hour endurance program.

The engine hardware was modified to add a check valve that would pump working

fluid from the engine compression space to the bearing supply plenum. The check

valves are based on a commercially availabLe o-ring check valve in which an o-ring

expands radially when the valve opens, then springs back into a groove to close.

The power piston and cylinder were also modified to increase the mid-stroke port

area and to enlarge the passages between the ports and bounce space. The initial

50
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tests of this hardware showed the relatively small ports originally in the piston

would have been adequate to maintain the piston mid — stroke position. During the

tasting, several improvements were made to the check valve assemblies to reduce

the pressure drop in the valve and connecting tubing. Two chock valves were found

to be too restrictive for the desired bearing flow. Furthermore, the check valve

plenum was found to be too small, causing high pressure pulsation in the discharge

when the valve opened. Therefore, a plenum assembly was fabricated which provided

for four chock valves and substantially increased the plenum size.

When this assembly was tested, the discharge plenum was found to have a relatively

large: pressure amplitude at a frequency corresponding to the resonant frequency of

the plenum and discharge tube system. Several tests were carried out to charac-

terize the internal compressor flow and pressure for various discharge tube

lengths and frequencies. From these results, the bearing compressor was tuned to

give the maximum bearing pressure. Approximately 10-20 hours of exclusive inter-

naL bearing testing was accomplished.
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4.0 PHASE I - LOW-POWER TESTING

4.1 Objective

The objective of the low-power test was to accumulate 100 operational test hours

at s5 kW power and 600°C mean heater head temperature. The purpose of the test was

}	 to provide check-out of the operating power module and test cell interaction, and

to evaluate engine performance to determine if changes occurred to engine perform-

ance parameters. It was expected that engine performance parametrics would be
t

more sensitive to small changes at Low power, since parasitic Losses represent a

higher percentage of power output.

4.2 Conclusions

The low-power test was successfully completed. Although there were indications

that some critical clearances did increase, they could not be confirmed by other

measurements. Most all clearance changes were in the Level of inspection resol-

ution. Cross engine parameters remained constant throughout the test. Therefore,

the engine was readied for 300 hours of full-stroke testing. 	 I

4.3 Discussion

4.3.1 Test Description

The engine seal and bearing clearances were inspected prior to starting this phase

of engine testing.

i
This test was conducted with the engine load and motor input set to constant

values such that the piston stroke was r 50% of design. The heater temperature was

set to a constant 600°C and the engine pressure was 60 Bar.

Supplementing the inspection of critical clearances, photographs of all critical

parts and surfaces were taken prior to the start of the test. In addition, a flow

check was also made on the power piston bearings and displacer bearings. ALL

measurements and inspections are performed at the beginning and end of each test
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phase. The pre-test inspection performed prior to the 100-hour test is the nomi-

nal inspection from which magnitude of changes are evaluated.

4.3.2 Test History and Results

The 100 hours of low-power testing was uneventful. Testing igoq initiated on 8

April 1983 and concluded on 15 April 1983. The engine performance did not change

from the start to finish of the test. The dispLacer motor power increased slight-

ly (20-30 watts), which may be due to even smaller changes in other operating

parameters. Power variation, which would indirdte gross changes in the engine,

remained steady throughout the test (Figure 4-1). Table 4-1 presenra o summary of

engine parameters XD, Xp, Pmean, and THD as a function of test hoar,).

4.3.3 Post-Test Inspection

Post-test inspection of the hardware, which is also the pvc-test inspection for

the 300 full-stroke test, was completed on 20 April 1983. Visual inspection of

the hardware indicated a small scratch 70.2 in. (5.08 mm) wide in the area of a

feed hole of the forward power piston bearing. This may be due to debris from the 	 I

feed hole, since the damage was very Localized. This damage also appeared in 	
Y

piston bearing flow check which increased 26.9%. 	 ,

The pre- and post-test inspections showed some clearance changes. Figures 3-10

through 3-15 indicate the clearance change between the initial inspection (No. 1)

and the inspection at the end of 100 hours (No. 3). Table 4-2 summarizes these

particular measurements. Most of the clearance changes were on the order of the

measurement resolution. The displaces forward and aft bearing clearance, forward

displacer gas spring clearance, and displacer bearing seal, however, appear to be

significant. The motor clearance seal actually decreased during the test, which

may be due to shrinkage of the phenolic liner. There was some heat discoloration

of the liner. The increase in the displacer b,saring clearance is not substanti-

ated by the bearing flow check, which indicated a slight decrease in clearance.

The other clearances, while significant, could not be checked against independent

measurements. These would tend to increase the respective gas spring Losses and,

consequently, displacer motor power. However, d.=.fiplA ,._er motor power and respec-

tive gas spring measured losses only increased slith?;y during the 100-hour test.
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TABLE 4-2

CLEARANCE C14ANGES BETWEEN INSPECTIONS NO. 1 AND 3

Diameter Clearance
Item	 Description	 Change (in.)

7 Power Piston Seal 0.0002

8 Power Piston FWD Bearing 0.0001

9 Power Piston AFT Bearing 0.0001

26 Displacer Motor Seal -0.0007

27 Displacer FWD Bearing 0.0002

28 Displacer AFT Bearing 0.0004

29 FWD Gas Spring Seal 0.0006

30 Displacer Bearing Seal 0.0002

31 AFT Gas Spring Seal 0.0001

32 Displacer Bearing Seal 0.0004
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System bearing flow checks, pre- and post-test, indicated that the AP increased by

11% which is indicative of the flow and, hence, a slight increase in clearance.

This increase in AP for a given inlet pressure increase is attributed to the power

piston bearings, but has not been confirmed by inspection of hardware.
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5.0 PHASE II - FULL- STROKE TESTING

5.1 Objective

The objective of the full-stroke test was to accumulate 300 operational test hours

at 700 0 C mean heater head temperature and at 20mm (full stroke) power piston

stroke. Full-stroke testing is representative of the most severe operating condi-

tion except for dry start/stop testing.

5.2 Conclusions

The EM endurance engine successfully completed the Phase II full-stroke test

phase. The average power was X1.5 kW. There were no appreciable changes in the
i

hardware as determined by visual observation, flow test, and inspection of the

rdrdware. Engine parameters remained constant throughout this phase with no indi-

cations of degradation. The chrome oxide surfaces are particularly durable and

held up welt, even without the gas bearings operating for a short time. Check out
i

and initial unattended operation went very well, with only minor corrections need-

ed to software and facility hardware. The engine hardware was judged acceptable

for Phase III duty-cycle testing.

5.3 Discussion

5.3.1 Test Descriotion	 I

The critical seal and bearing clearances were inspected as described in Section

3.0.

The engine load for this phase of endurance testing was set to a constant resist-

ance with the Load vari.ac (Figure 6-1). The Load resistance was adjusted to give

design piston stroke (20 mm) at maximum motor current level (6 amps). The heater

head temperature was also set to a constant Level (between 650 and 700 0 C). The

resulting electrical power output was between 1300 and 1600 watts.

The only hardware change was the displacer motor liner, which was replaced with a

new phenolic liner with nominal design displacer seal clearance. The liner seal

;•.i	 r I':1,"FD

e
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clearance (item 26 of Figure 3-7) during the low-power test was 50% larger than

design. It was expected that the reduced dispiacer seal clearance (to design

values) would reduce the displacer motor current necessary to drive the displacer.

5.3.2 Test History

Limited full-stroke testing was initiated on 25 April 1983 but was suspended

because of poor combustor durability and a lack of operating thermocouples on the

heater head. Corrective action was taken to resolve these problems prior to

restarting the full-stroke test. Combustor durability was improved by limiting

the amount of combustor vibration by adding mass to the engine test stand. The

heater head instrumentation was completely redone with 27 new thermocouplen tack-

welded to the heater head. With improved combustor durability and re-instrumented

heater head, the engine was checked out during the first two weeks of July for

full-stroke operation. An identified displacer rub was corrected by replacing the

liner and stuffer assembly. This substantially reduced the required motor power

for a given alternator load and stroke. On July 13, the 300 hours of full-stroke

testing was started. For this test, the inertial mass was attached to the rase to

reduce combustor vibration.

The safety interlock system was fine-tuned early in this test and substantial time 	 i

was accumulated without operator attention. The interlock system shutdown the	 1,

engine a few times per day for various reasons. These were mostly "glitches" in

the cell exhaust airflow switch or in the primary coolant flow switch. The air and

water flow switch installation was modified to reduce errant shutdowns. During

the course of the test, the bearing pressure transducer, the case accelerometer,

and the engine pressure transducers failed. In each case, the transducer was

replaced or repaired and the test continued. Several shutdowns were the. result of

very slow engine pressure Leaks; the pressure would drop from 63 to 60.5 Bar in

aproximately six hours. Pressures outside this band de-tune the engine system,

resulting in excessive displacer motor current. A makeup system was installed for

Later tests.

The engine was run at an electrical output of X 1500 watts and X20 mm piston stroke

during this test.
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The 300-hour full-stroke test phase was completed on 3 August 1983. At completion

of the test, the engine was run accidentally without operating gas bearings for

approximately three minutes. The engine was completely inspected between 5-15

August 1983.

5.3.3 Test Results

Engine parametric trends as a function of time during the 300-hour test phase are

shown in Figures 5-1 through 5-10. Load power varied between 1.3 and 1.6 kW as

shown in Figure 5-4. Displacer amplitude (Figure 5-2) was automatically adjusted

to maintain the power output (Figure 5-4) in response to changes in pressure (Fig-

ure 5-1), changes in heater head temperature (Figure 5-7), and load resistance

(Figure 5-9).

5.3.4 Post-Test Inspection

The engine was disassembled and inspected following the full-stroke test, and the

inspection was completed by 15 August 1983. The engine was in excellent condi-

tion, there was no damage to any engine hardware. The bearings and seal surfaces

showed normal polishing and evidence of minor rubbing, however, no damage to bear-

ing surfaces was found. The dimensional inspection of the hardware showed clear-

ance changes, which may be due to measurement technique rather than the actual

changes since there is no consistent trend over the pre- and post-test inspections

associated with the 100 hour test phase.

i

The results of flow tests completed before and after this test are shown in Table

5-1. The piston bearings (i.e., alternator and aft gas spring bearings) show no

change in flow as indicated by the flow meter AP. The test does indicate a change

in the displaces bearing flow of 31%. The equivalent clearance change required

for this flow change is within the measurement uncertainty of normal instrumenta-

tion ±0.0007 in.

Surface sc-atches were visually observed in the area of the forward piston bear-
,

ing. The scratches were very local and did not affect inspection dimensions, nor

did they affect power piston flow checks. It is very likely that these scratches

occurred during the short period of operation without the hydrostatic gas bearings

at the end of the 300-hour full-stroke test. It does demonstrate that the chrome
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TABLE !1.1

PHASE II - FULL STROKE TESTING R&MING FLOW CHANGES

AP in H2O at 20 psig Inlet Pressure

Pre-Test	 Post-res^

Displacer Bearing	 6.5	 8.5

Alternator Bearing 	 5.0	 5.0

AFT Gas Spring	 5.1	 4.9

oxide surfaces incryrporated on the moving surfaces do provide a tough, durable

surface coating tv.:c can protect against surface contact due to shock or momentary

wear or, as demonstrated later in this test program, dry (no bearing) start-up.

01
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6.0 PHASE 111 - DUTY-CYCLE TEST

6.1 Objective

The original objective of the duty -cycle test was to accumulate 300 operational

hours at loads between 0 . 5 and 2.5 We, and 700°C mean heater head temperature.

This objective was modified with NASA approval to extend the accumulated hours to

600.

6.2 Conclusions

The EM successfully completed 691 hours of duty -cycle operation. The one major

engine failure ' displacer magnet dislodgement) was not related to the duty-cycle

operating mode.

6.3 Discussion

6.3.1 Test Description

The critical seal and bearing clearances were inspected as described in Section 	 ;r

3.0.
ii

The electrical engine load was modified by the addition of a parallel clock -driven

resistive load, shown in Figure 6-1. Manual relays were also installed to allow 	 1

for use of the original " fixed" resistance load. The variac used to adjust the	 ti,

"fixed" resistance load provided the flexibility of proportionally adjusting the
q ^

duty-cycle load.

The duty-cycle load was designed to change the engine load to one of three levels

for a given alr"rnator voltage every 1/2-hour according to the schedule shown in

Figure 6-2. The resistances are switched such that the load ' is at one of three

levels, 100%, 60%, and 20%, for a period of sl / 2-hour, and the cycle repeats every

two hours. The power dissipated in the load will also depend on the engine output

voltage, which for this test was set by a power control that senses the load volt-

age and adjusts the displacer motor voltage to produce the required output volt-

age.
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The large load changes (20 to 100% and 100 to 20% steps) are provided with a 5-15

second delay at the 60% load level. This reduced the impact of these Large load

changes. The engine and control responded very well to the duty-cycle load chang-

es. The output voltage was maintained very consistently, with little or no over-

shoot during load change .

The power levels at which the duty-cycle test was run were Lower than the design

values to limit the motor input current. The available motor power supply was

limited to =6-7 amps RMS; therefore, the load was adjusted to Limit the motor

current to about 6 amps. The previous full-stroke testing was run at J'1600 watts

and was not increased prior to the duty-cycle test; therefore, the Load was set to

the dashed curve in Figure 6-2.

The engine DAB was improved for this test. This involved implementing a program

which could take wave form data from the endurance cell No. 6 with the HP1000 SAS.

Though the number of channels was limited to four, the basic engine dynamic (XD

and Xp) and thermodynamic pressure wave (Pc) could be measured on a routine basis.

With these measurements, the piston PV power was calculated and direct comparisons

with the first-order thermodynamic analysis could he made.

6.3.2 Test History

The 691 hours of duty-cycle testing was begun on 17 August 1983. The displacer

magnet failure described in Section 3.0 was the only major engine related failure

which occurred during this phase of endurance testing. Shortly after the engine

was re-started, one stringer, which attaches the engine to the inertia mass,

failed. This caused a combustor failure. Both were repaired and the testing

continued smoothly until 600 hours of duty-cycle testing were completed on 10

September 1983. The goal of 1000 hours of endurance testing was accomplished.

The engine was then separated from its inertia mass in order to accumulate hours

on the combustor at high (,r7 g's) vibration levels. The engine was run in this

configuration for 91 hours.

I
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6.3.3 Test Results

The analysis was compared to test results to establish the empirical factors need-

ed to obtain an agreement in terms of the dynamic engine performance. In general,

empirical factors applied to total volume and seal leakage are necessary to obtain

an agreement in terms of dynamic engine performance. In general, empirical

factors applied to total volume and seal Leakage are necessary to obtain an agree-

ment with test results (Table 6-1). Volume adjustments of 8 and 14% are typical

for FPSE's, and are perhaps indicative of needed improvements in the analysis.

Seal leakage adjustments, on the other hand, may be more attributable to the

difficulty of accurately measuring small clearances of relatively large diam-

eters. In this respect, EM No. 1 hardware was in very good condition, and a 3%

increase in the seal clearances could account for the observed differences. EM

No. 2 hardware was in somewhat worse condition, so a 28% increase in seal clear-

ance would be required to account for the observed differences.

r; Performance of the two EM engines is compared in Figures 6-3 through 6-17 at vari-

ous power levels. EM No. 2 was operated at constant load voltage and various load

impedances (Figure 6-3), while EM No. 1 was operated at a constant load impedance

and various voltage Levels. The power piston amplitudes necessary to produce the 	
.i

desired output voltages (Figure 6-4) indicate a resonable agreement between the

physical hardware and the model. The piston stroke versus power curves are

different for two reasons: 1) different loading conditions; and, 2) the hardware

differences in the two alternators (i.e., EM No. 2 has fewer AC turns than EM No.

1).

The pressure amplitude and phase (Figures 6-5 and 6-6) provide the force to drive

the alternators and determine the basic PV power delivered to the load by the

cycle (abscissa of Figures 6-3 through 6-9). The PV power, rather than total

cycle power, was ::elected for comparison since it could be easily measured on the

test engine. The cycle power delivered to the displaces is relatively constant

over the test range. The pressure force must balance all other forces acting on

the power piston and is, therefore, indicative of any deviations between the

modeled load an the thermodynamic system and physical reality. Deviations of Less

than 3% are observed in the pressure amplitude where the worst case is at the low

power point for EM No. 2. Also, deviations on the order of 0.5 degrees are
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TABLE 6-1

COMPARISON OF DATA TO CODE
PREDICTIONS EM's #1 and 2

EM •1 1	 EM	 02
Data Colo. I Data I	 Calc.

Frequency (8s) 38.1 58.1, 60 60,
Pressure (Bar) 59.9 59.94 62 62,
Heater Temp ( e C) 710 710, 680 6B0
Coals Tamp ( e C) 32 32, 57 37
Disp. Amp.	 (mm) 6.82 6.87 6.48 6.47
Disp.	 Phase	 ( e ) 67.7 67.8 59.0 58.6
Piston . ap.	 (nm) 9.95 9.94 8.73 8.76
Pressure Amp. (Bar) 9.57 9.55 7.63 7.64
Pressure Phase ( e ) -11.0 -11.1 -7.96 -7.98
PV Power (watts) 3410 3420 1800 1800
Heat Raj.	 (watts) 7610 6310 5650 5840
PV Efficiency 0.309 0.751 .242 .136
Deed Volume Factor 1.0 1.08 1.0 1.14
SeAL Leakage Factor 0.82 6 0.90 1.52 b 3.15

measured operating condition
calculated from measured geometry
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observed in the EM No.	 1 pressure phase, iudivat ing varia l i.m, r t I.. rl , •triator

load or bounce-space loss.

The displacer amplitude and phase for the EM engine, i, directly ntlue•nred b y the

effective impedance of the engine working space in addition I  tho pint " n dynamics

and load. The effective working-space impedance i•, a direct r,•nilt ,I the thermo-

dynamic engine behavior and, therefore, of all parameters that influence thermody-

namic performance. The displacer dynamics ( Figures 6 -7 and 6-3) vhuw an agreement

between test and analysis, indicating that the harmonic thennndvnamics analysis is

a good model of the physical processes. The thermodynamic •-tli • iem v t,, after

engine power, the most important engine performance parameter. 'he P etti1 - iency

used for comparison is defined as:

PV Efficiency = PV Power/PV Power + Heat Rejected

This was selected since the measured efficiency on this basis is well defined, and

would, therefore, provide a well defined comparison with the calculated Liticien-

cy. This definition was selected over t[Tose defined by Crowley r , since, in this

case, his definition would involve the addition of terms which cuuld not be

directly measured. The PV efficiency of the EM en , ines is compared to correspond-

ing calculated values in Figure 6-9. The data from EM No. 2 was in agreement with 	 i

predictions across the power range tested. Considerable scatter is seen in this

test data, may be due to the transient nature of the duty-cycle test_ from which the

data was obtained. The data from EM No. 1 follows the trend predicted by the i
harmonic analysis; however, it is two to four points Lower than the prediction,

particularly at higher power. The running ist results are also shown in Figure

6-10 through 6-17. This data indicates that the engine periurmanee was not

affected by the duty-cycle Load changes.

i Crowley, J.L., "ORNL / CON-131 Efficiency Terms for. Stirling Engines

i
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7.0 PHASE IV - START/STOP TEST

7.1 Objective

The original objective of the start/stop test was to accumulate 300 test hours

while performing 1000 start/stop tests of the engine system. The engine was to be

cycled on and off approximately every 15 minutes, with load betweer. zero power

power and the power point defined in Phase II. This task objective was modified

with approval from NASA to accumulate a minimum of 100 start/stop tests. The

engine was to be cycled on and off approximately every 5 minutes.

7.2 Conclusions

The EM engine successfully completed 262 start/stop cycles. While there was no

significant degradation of engine operating performance, there were subtle indi-

cations of engine degradation. On inspection of the bearings and seals, no damage

was observed in the seals or piston bearings, however, minor damage of the displa-

cer rod was noted.

7.3 Discussion

7.3.1 Test Description

The critical seal and bearing clearances were inspected as described in Section

3.0.

The test procedure was designed to demonstrate the most critical phase of engine

start-up relative to wear and durability of the engine proper. The start proce-

dure was abbreviated to obtain as many start/stop cycles as possible and to demon-

strate the basic durability of the engine bearings and seals. To this end, the

engine heater/combustor was operated continuously as was the engine cooling

system. The combustor control maintained the heater temperature at the set point

of 650-700°C by automatically controlling firing rate and airflow (Figure 7-1).

The cooling flow in the primary and secondary loops were maintained at constant

flow rates. The coolant inlet temperature is controlled by the temperature of a

large storage tank, which is cooled by a cooling tower. The inlet temperature

1, 1T. ^%11,D
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cycled between 28 and 33% (Figure 7-2) once the cooling system came up to temper-

ature at the beginning of each day's testing. The engine outlet temperature

followed the inlet temperature with a constant AT ( ,% 3 0 0, Figure 7-2.

7.3.2 Test Histoa

The start/stop test was begun following the demonstration of internal bearing

operations described in Section 4.0. The test was started on 13 February 1984 and

was completed on 21 February 1984, with a total accumulation of 262 "dry" (no

external pressure) bearing starts.

7.3.3 Test Results

The engine started easily during this test, achieving steady-state piston stroke,

displacer stroke, and bearing supply pressure in less than one second. A typical

start-up cycle (Figure 7-3) shows the displacer stroke comes up co 75Z of the

steady level in three engine cycles, then stabilizes. The piston stroke and

compression space pressure amplitude oscillates at a low amplitude for f20 cycles,

at which point the piston and pressure amplitude increases rapidly for several

cycles (five), then increases slowly for another 25 cycles when full piston stroke

is achieved. The bearing supply pressure (AP bearing) came up to its steady level 	 f

as the piston stroke achieved its steady state level. Also, once the piston

stroke begins coming up co full stroke, the load on the displacer drops and the

displacer stroke increases to steady-state levels.
r

The delay in the piston stroke, and thus pressure amplitude, in coming up to
4

stroke is due to the additional Leakage toss of the mid-stroke ports. When the

stroke increases to the point where the ports b n.gin to close, the leakage Loss

drops relative to the stroke and reduces the load on the thermodynamic cycle, thus

making more energy available for driving the power piston.

The steady state bearing AP (Figure 7-4) was relatively constant during the first

three days. On 21 February 1984, the bearing check valve system was modified to

improve the tuning, and thus the bearing supply pressure. The bearing pressure

was increased from 5.7 to 6.1 ear.
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The bearing pressure dropped 0.1 to 0.2 Bar in the first hour of running each day,

then stabilized. This is may be due to cold-start thermal transients, which are

affecting either the bearing clearance or the internal check-valve compressor

operation.

The piston and displacer amplitudes were maintained at a constant level during the

	

,i•	 entire test (Figure 7-5). The consistency of the piston and displacer amplitudes

indicates that thermodynamic performance and losses are not changing over time.

The motor current (Figure 7-6) is proportional to the force that the motor imposes

on the displacer and is the most sensitive to changes in dynamic or thermodynamic

losses. This is evident by the scatter in the current during the first three days

of testing compared to other parameters, such as piston and displacer amplitude.

	

!
u	 The data from 15 February 1984 indicates a potential increase in losses during the

i first hour of operation, after which the current dropped to the same as the previ-

ous two days of testing. The data from 21 February 1984 exhibir.s more scatter than

was observed on 13-15 February 1984. This may be an indication of intermittent

	

p	
increases in Losses which may be an early indication of engine degradation.

F Subsequent engine inspection indicated rubbing between the displacer rod and the

bearing it runs in, and could explain the intermittent high current observed in

the test data.
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APPENDIX A

SYMBOLS
STANDARD MEASURED DATA AND CALCULATED RESULTS

_A^- .

if

t

Standard Measured Data

Pmean - mean engine pressure

Pbrng - bearing supply pressure

feng - engine frequency

Xd mean - mean dispLacer position

Xd amp - displacer amplitude

Xp mean - mean piston position

Xp amp - Piston amplitude

Pdgs 1 M - mean pressure of dispLacer gas spring 1

Pdgs 2 M - mean pressure of dispLacer gas spring 2

Pc M - mean pressure of compression space

Pdgs 1 A - pressure amplitude of displacer gas spring 1

Pdgs 2 A - pressure amplitude of displacer gas spring 2

Pc A - pressure amplitude of compression space

Vmtr - input motor voltage (RMS)

lmtr - input motor current (RMS)

MTR Pwr - input motor power ( watts)

Vfield - alternator field voltage (PC)

l field - alternator field current (PC)

Vload - alternator Load voltage (RMS)

I load - alternator load power ( watts)
Load Pwr - alternator Load power ( watts)

dPfuel - differential pressure of fuel laminar-flow element

Pfuel - fuel supply pressure

Tfuel - fuel supply temperature

dPambair - differential pressure of air Laminar - flow element
Pambair combustion air supply pressure

Tamb-i. r - combustion air supply temperature

Tcwin - engine cooling water inlet temperature

Tcwout - engine cooling water outlet

Flowcw - engine cooling water flow rate

Thd - head temperatures up to 27 locations

Tamb - combustion temperatures up to 10 Locations

i
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Standard Calculated Results

Tetrlmn	 - mean control temperature, average of heater thermocouples used for

temperature control (°C)

Thd Mean	 - mean head temperature (°C)

Fire Rate - gross heat input to combustor (watts)

OF Rtio	 - combustor air/fuel ratio

Load Res	 - calculated load resistance (S1)

Field Pwr - power input to alternator field (watts)

Field Res - resistive independence of alternator field coil (Q)
J

Field Temp - estimate of mean field coil temperature based on coil resistance 01)
Ht Rej	 - heat rejected to engine cooling water (watts)

g rng dP	 - pressure difference across gas bearings

Cross Eff - gross engine efficiency defiled as electrical power at the load/

gross heat input to corabL.n,ror.
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