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Abstract

A one-way wave equation 1s a partial differential equation which, 1n some approxi-
mate sense, behaves like the wave equation 1n one direction but permits no propagation
1n the opposite one The construction of such equations can be reduced to the approxi-
mation of V1-s? on [-1, 1] by a rational function r(s)=p,(s)/q,(s) This paper
characterizes those rational functions r for which the corresponding one-way wave
equation 1s well-posed, both as a partial differential equation and as an absorbing boun-
dary condition for the wave equation We find that if r(s) mterpolates V1-s? at
sufficiently many ponts i (-1, 1), then well-posedness 1s assured It follows that absorb-
ing boundary conditions based on Padé approximation are well-posed if and only 1if
(m,n) les in one of two distinct diagonals in the Padé table, the two proposed by
Engquist and Majda Analogous results also hold for one-way wave equations derived
from Chebyshev or least-squares approximation
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1. Introduction

The wave equation
Uy = Ugg + Uy (11)
admits plane wave solutions
u(z,y,t)=e'(H+éz+m) (12)
for any &, , 7 € R that satisfy the dispersion relation
P=8+n (13)

In the (&, n) plane, the curves of constant 7 determined by this equation are concentric

circles The phase and group velocities of (1 2) are 1dentical and equal to
v=_(v,,v,)= (—ﬁ-, —%) = (cosf, smd), 8 € [0,27] (14)
T

Thus for each frequency 7, (1 1) admits plane waves traveling with speed 1 1n all direc-

tions

In certain applcations, what 1s 1deally wanted 1s a one-way wave equation or paraz-

tal equation that admits only half of these solutions in this paper, all those with v, < 0,
1e 0 €|

-72L, 37” This 1dea has been introduced over the years in various fields, and some
early references are given 1n the Appendix to [Ta77] In the past decade and a half,
one-way wave equations have come into heavy use in three areas First, they were mtro-
duced by Claerbout 1n 1970 for geophysical migration of seismic waves, in which the

alm 18 to construct images of geological formations underground by downward
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extrapolation of sound wave reflection data measured at the surface [7] For subsequent
developments see [4,8,25] and recent volumes of Geophysics Second, they were intro-
duced ndepedently by Tappert in 1977 for underwater acoustics calculations, where
the simulation of waves 1n the ocean can be speeded up greatly by assuming one-way
lateral propagation away from the source [26] Further developments in this area are
described 1n {22,24], the last of which contains many references, and i recent volumes of
the Journal of the Acoustical Society of America Finally, one-way wave equations were
proposed again independently by Engquist and Majda n 1977 10,11}, in extension of
earlier 1deas of Lindman (23], for application as approximate absorbing boundary
conditions in numerical computations where artificial boundaries must be mtroduced to
limit a computational domain For subsequent developments of this and related 1deas,

see [3,9,18] and recent volumes of the Journal of Computational Physics.

Solving for £ 1n (1 3), we get
§=:i:7'v1—772/72, (15)

where v denotes the standard branch of the square root By (1 4), the plus and minus

signs correspond to leftgoing and rightgoing waves, respectively
E=+71V1i-9¥7? <= v,<0, (1 6a)
E=-1V1-9%/7 = v,>0 (1 6b)

Consequently the ideal one-way equation would be an equation with dispersion relation

(1 6a), or equivalently,

E=1V1-s% s=21—=_sms. IDEAL OWWE (17)
T

In the (& n) plane, the curves of constant r determined by this equation are concentric
semicircles  Since V1 —s? 1s not rational, however, (1 7) 1s not the dispersion relation of
a partial differential equation, but of an equation containing a pseudodifferential opera-
tor Such an operator 1s not local 1n space or time, and cannot readily be implemented

numerically, especially when the problem 1s generalhized to allow variable coeflicients.

To construct practical one-way wave equations, therefore, we will approximate (1 7)

with the aid of a function

_ Pal(s)
re)= gn(s)’
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where p,, and ¢, are real polynomials of exact degrees m > 0 and n > 0 with no com-
mon zeros We say that r 1s a rational function of ezact type (m,n) The aim 1s for
r(s) to be a good approximation to V1—-s? on [-1,1]. From any such approximation,

we will derive a corresponding partial differential equation by replacing (17) by the

dispersion relation

E=r1r(s), s=-L—=_smd APPROXIMATE OWWE (18)
T

2

For example, suppose r 1s the Taylor approximant r(s) =1- %s Substituting this

for V1—-s21n (17) gives

2
e=r(t-55%)
or equivalently
fr=r1- %rﬂ
which 1s the dispersion relation of
Ugp == Uy — %“yy

This is the original one-way wave equation, now classical, and 1s called the parabolic
equation In the general case (1 8), we multiply both sides by f“ax{m‘l'"}q,,(n/r) to clear

denominators, and get
#eg (L) = (L), d = max{m,n+1) (19)
This equation has the form

P(&n,1) =0, degree(P)=d, (110)

where P 1s a homogeneous polynomial with real coefficients 1n three variables Thus 1t
1s the dispersion relation or symbol of a homogeneous partial differential equation of

orderd mz,y,t

The most usual method for obtaining r 1s by Padé approximation [10,11] (Our
example above 1s the Padé approximant of type (2,0).) The disadvantage of Padé
approximants 1s that although they are very accurate for s = 0, they are inaccurate near
the singularities at s = +1, and as a result, the corresponding one-way wave equations

T 3

behave poorly for 8 =~ > 7 Therefore 1t 15 tempting to consider alternative choices of
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r Two reasonable candidates that we treat here are Chebyshev (L) approzimation
and least-squares (Lo) approzimation (Certan least-squares approximations for one-
way wave equations have been investigated previously [2,23,29] ) There are many other
possibilities too, such as Chebyshev-Padé approzimation [12], and we hope to compare

the practical merits of various approximation schemes 1n a later work

The purpose of this paper i1s to investigate the well-posedness of one-way wave
equations Depending on the application, various well-posedness questions arise, of

which we will consider two

Initial value problem (IVP). A one-way wave equation could be applied as a
partial differential equation i the domam £> 0, z,y € R, subject to mitial data at
=0 Well-posedness refers to the existence of a unique solution whose norm at t = ¢,

can be estimated 1n terms of the mitial data.

Initial boundary value problem (IBVP). In absorbing boundary condition
applications, the domamn is z,{ > 0, y €R, and the one-way wave equation 1s applied
as a boundary condition along z=0 for (1 1) Well-posedness 1s now the existence of a
unique solution whose norm at ¢ = f; and along z =0 can be estimated 1n terms of the

mnitial data

Our main result 1s that for most methods of approximation of \/1_—?, problems
IVP and IBVP are well-posed 1if and only if (m,n) lies in one of three diagonals of the
table of approximants, or two in the case of even approximants Our method consists of
reducing each well-posedness question to algebraic criteria involving the function r,
whose relationships to each other are studied systematically Here 1s an mtuitive expla-
nation of why the result comes out so simply even for the relatively complicated problem
IBVP an absorbing boundary condition permits wave propagation in one direction,
while 1ll-posedness amounts to the possibility of propagation in the other Thus absorp-

tion and well-posedness are naturally related

Analogous three-diagonal results have been obtained previously for other problems
In the numerical solution of ordinary differential equations, the Ehle congecture, proved
by Wanner, Hairer, and N¢rsett [30], asserts that a certain class of discrete approxima-
tions 1s stable in precisely three diagonals More recently, Iserles and Strang have esta-
blished a three-diagonal stability result for discrete approximations to hyperbolic partial
differential equations [17] The connections between these results and ours are at present

not understood

Well-posedness results for one-way wave equations have been proved previously 1n

[1,2,9,11,29,31], and elsewhere In particular, Engquist and Majda showed m [11] that
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Padé approximation leads to a well-posed problem IBVP for all m=n and m = n+2,
but an ill-posed one in case (4,0) Thus another way to summarize our results is as fol-
lows we show that the boundary conditions proposed by Engquist and Majda are the
only Padé absorbing boundary conditions that are well-posed, and we extend an analo-

gous conclusion to other classes of approximations and to initial value problems

Two topics must be mentioned that are not discussed n this paper First, we do
not consider the well-posedness of one-way wave equations as evolution equations in z
rather than ¢, although this i1s their most common use i geophysics and underwater
acoustics Second, nothing is said here about discrete approximations to one-way wave
equations, which may be unstable even when the differential equation 1s well-posed We

hope to repair these omissions 1n the future.



2. Statement of results and outline of the paper

Our results can be summarized as follows Throughout, problems IVP and IBVP
are based on the one-way wave equation derived by (1 8) from an arbitrary real rational

function r of exact type (m, n) with r (0)5%4 0, co Also, the integer X,,, 1s defined by

{0 f m+n is odd,
Xmn = | 1 f m-+n 1s even (21)

Theorem 1. Problem IVP 1s well-posed if and only 1f the zeros and poles of%

are real and simple and interlace along the real azis

Theorem 2. Problem IBVP 1s well-posed 1f and only i1f the zeros and poles of%)—

are real and simple and interlace along the real axzis, and furthermore r(s)> 0 for
s € [-1,1]

These results imply

Corollary 1. Problems IVP and IBVP can be well-posed only ifn < m < n+2
Corollary 2. IBVP well-posed => IVP well-posed.

Corollary 1 has the following converse-

Theorem 3. If n < m < n+2, and 1f r(s) interpolates V1 - 5% at m+n +1+Xmn
points in (-1, 1), counted with multiplcity, then problems IVP and IBVP are well-posed

The approximants one might consider n practice usually satisfy this interpolation condi-
tion In particular, this is true of Padé, Chebyshev, and least-squares approximants
(The least-squares approximants in question are required to be even, for as we will

explain, the situation becomes more complicated otherwise ) This implies finally

Theorem 4. The Padé, Chebyshev, and least-squares families of one-way wave
equations yield well-posed problems IVP and IBVP in precisely two distinct diagonals of

the tables of approximants, namely m=n and m = n+2
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A remark should be made about odd values of m and n Usually, as 1n Theorem
4, r 1s an even function, and the resulting one-way wave equation 1s symmetric about
0= In this event m and n are even, so the case m = n+1 of Theorem 3 does not
occur But there are also applications in which one wants a one-way wave equation
tuned asymmetrically to be accurate near some angle 6y = 7, and here, m or n may be
odd We have therefore considered 1t important to derive results for arbitrary m and n

rather than assume these numbers are even

Here 1s an outhne of the remainder of the paper Section 3 1s devoted to investigat-
ing certain purely algebraic properties of r that constitute the heart of our argument
First, Lemma 1 establishes three equivalent statements to the interlace condition of
Theorem 1, assuming r(0) > 0 Thus a fuller assertion than Theorem 1 would be that
problem IVP 1s well-posed if and only if r or —r satisfies the conditions of Lemma 1
Next, Lemma 2 establishes three equivalent statements to the condition of Theorem 2,
problem IBVP 1s well-posed if and only if r satisfies the conditions of Lemma 2 One of
these 1s an interpolation condition from which Theorem 3 will follow Finally, Lemma 3
shows that a rational function r can imterpolate V1—s2 m at most m+n+1+x,,,
points 1n the plane This conclusion has been used already n the proof of Lemma 2, and
will be applied again later to establish nondegeneracy of Padé and Chebyshev approxi-
mants Because of 1t, Theorem 3 would be unchanged if 1t read at least m+n +14x,,,

points of interpolation

Section 4 treats well-posedness of problem IVP by reducing 1t to one of the alge-

braic conditions of Lemma 1 This proves Theorem 1

Section 5 treats well-posedness of problem IBVP by reducing 1t to one of the condi-

tions of Lemma 2 This proves Theorems 2 and 3.

Finally, Section 6 shows that various families of even approximants to V1 - s2
mcluding Padé, Chebyshev, and least-squares, satisfy the interpolation condition of

Theorem 3 Together with Corollary 1, this proves Theorem 4



3. Lemnmas on the rational function r

Our first lemma identifies a class of functions that decrease monotonically along R
except for simple poles Parts of this result have appeared elsewhere, for example 1n
[1,2,31]

Lemma 1. Let r be a real rational function of ezact type (m,n) with

r (0) £ 0,00 The following conditions are equivalent

(a) If s 1s finite withIms > 0, then r(s) 1s finite with Im r(s) <0
s s

(b) r(0) > O, and the zeros and poles of rs) in C are real and simple and inter-
s

lace along the real azis

(c) r(s) can be written in the form
s

n+l }
-’—(sil=a_bos+g ; (31)

k=15 Sk

Jor some a, by, s, ER, where s; < s, < - <841, bg>0,and b, >0 fork>1

Proof (a)==> (b) We will show that if any of the four assertions of condition (b)
fails, then (a) cannot hold First, if r (0) < O, then r(s)/s behaves like a positive multi-
ple of —-1/s near s =0, and necessarily maps t€ into the upper half plane for small
enough € Second, if r(s)/s has a zero or pole sy € C —~ R, we can assume Imsy > 0 by
symmetry, and r(s)/s must take values near s, in both the upper and lower half-
planes Third, if r(s)/s has a multiple zero or pole so €R, then r(s)/s must take
values mm both half-planes for s in a one-sided neighborhood of s, with Ims > 0
Finally, suppose the zeros and poles are real and simple but do not interlace -- there are
two zeros sy, s; € R with no pole in-between, or the reverse. Then r(s)/s has a local
maximum or mmimum o at some pomnt s* € (s, §5), so r(s)/s— o has a multiple zero at
s*, and this is inconsistent with (a) as before.

(b) => (¢) Condition (b) imphes that r(s)/s has exactly n+1 simple poles and
n+2 simple zeros, hence order at most O(s) at s =oco Therefore 1ts partial fraction
decomposition has the form (3 1) for some a, by, s ER with s, < < 8,41 and
with by 5% 0 for k > 1, and if kg 15 the index with s, =0, then b = r(0) > 0 Now if
by < 0 for some k> 1, there must be a pair b, b, with b, b, ,; <O But in this
event there are an even number of zeros between s, and sg,, contradicting the inter-

lace condition On the other hand if by > 0 for all £ > 1 but by < 0, then r(s)/s has




-9-

constant sign and 1s therefore nonzero on (-0, ;) and (s, 41, 00) It follows that 1if the
mterlace condition holds, r(s)/s has only n real zeros out of n+2 zeros altogether,

which 1mplies the existence of a conjugate pair of zeros off the real axis, contradicting
(b)
(¢c) => (a). Trivial i

The conditions of Lemma 1 are enough to ensure that r(s) does not mterpolate
—V1- 5% in the upper half-plane or at s=0 For well-posedness of problem IBVP, this
will have to be strengthened to exclude interpolation throughout [-1,1] In what fol-

lows, V1 - s? denotes the branch of the square root defined by branch cuts (—co, -1] and
(1, co) that takes the value 1 at s =0.

Lemma 2. Let r be a real rational function of ezact type (m,n) with

r(0) £ 0,00 The following conditions are equivalent:
(d) r satisfies the conditions of Lemma 1, and moreover r(s) > 0 for s € -1, 1]
(e) r(s) = —V1 - s? has no solutions 1n C — (—o0, -1) - (1, oo).

(f)l) n <m < n+2, and r(s)=+V1-52 has m+n+1+xy,, solutions in
C - (-0, ~1] = [1, 00), counted with multiplicity

Proof. (d)=> (e). For Ims > 0, we have Im [—l\/l - % > 0, while by condition
s

(a) of Lemma 1, Im r(s) < 0 Therefore r(s)=-V1-s2 has no solutions in the
s

upper half-plane, or by symmetry, in the lower half-plane. On [-1, 1] 1t cannot have any

solutions either, since -V1-s2<0 < r (s) by assumption.
(e) => (f) Squaring r(s) = £V1 - s? yields the polynomial equation

prls) - (1-5%g,%(s) =0, (32)
which has exact degree 2d = 2max{m,n +1}, hence has 2d solutions counted with mul-
tiphcity, which can only le m C - (-o0,-1] - [1, 00) since (e) prohibits solutions at
s =1 Each of these 1s a solution of r(s)=V1-s?orof r(s)=-V1-s2 but not
both, so if (e) holds, there must be 2d solutions of the latter equation. Since
2max{m,n+1} > m+n +1+Xpn, , with equalty if and only if n < m < n+2, condition

(f) now follows from Lemma 3, below
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(f) => (d). Condition (f) can hold only if the estimates are sharp in the proof of
Lemma 3, below, and this implies the interlace property (b) of Lemma 1; we omit the
details. Moreover, r(s) must be positive on [-1,1], for otherwise r(s =-V1-s2
would have a solution there, and for n < m < n -2, this would put the total number of

solutions of (3 2) above the hmit 2max {m,n+1} |

Finally, Lemma 3, whose proof we have just appealed to, hmits the number of
times r(s) can interpolate V1-s% m the plane. The following argument is based on
1deas suggested to us by Peter Borwein of Dalhousie University. See also Lemma 4 1 of
[17], where Rolle’s theorem 1s used to himit the number of mnterpolation points on an
mterval Arieh Iserles has further indicated to us that an alternative proof of Lemma 3

can be based on order stars [17,30]

Lemma 3. Let r be a real rational function of ezact type (m,n), and let L be the

number of solutions of r(s)=V1-s2 in C—(-00,-1)-(1, ), counted with multipl-
city Then

L < m4n+14+Xmp,- (33)

Proof If there is a solution at s = +1, 1its multiplicity 1s defined to be 1, since
r (s ) cannot match the nfinite derivative there But we can dispose of this possibility
by considering a new rational function r.(s)=r(s+e¢) or r(s) =r (s +es), depending
on the signs of r(s) near the endpomts of [-1,1] For e sufficiently small and of
appropriate sign, r, = V1= 2 will also have L solutions, all of them in the open region
C - (-o0, -1] - [1, 0). So without loss of generality, we can assume r (+1) £ 0

The number L 1s the number of zeros of
¢(s) =pm(s)— v 1—s2qn(s)

i C - (-0, -1] - [1, 00) For sufficiently large R, these must all lie 1n the region shown
in Figure 1 Therefore ¢ has winding number L along the boundary a-B-v-v-B-& This
implhies that Im¢(s) and Red(s) must each have at least 2L zeros interlacing on this
boundary In what follows we assume m > n+1, and bound the number of zeros of

Im¢(s), for m < n+1, one proceeds analogously by bounding the number of zeros of

Re (s )
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Figure 1. Contour for counting zeros of r (s) - V1 - 52

On B, ¢(s) behaves approximately like As™—1Bs"*1 where A and B are the lead-
ing coefficients of p and ¢, respectively Therefore Im ¢(s) has at most m + x,,, zeros
on (3, where the x,,, results from the fact that if m and n are both even or both odd,

the lower-order term iBs"*!

may bring about one extra crossing of the real axis On G
the count 1s the same On «, 7, 7, and & we have Red(s)=pn.(s) and

Imé(s)=-1V1-52q,(s), and therefore Im #(s ) has at most 2n+2 zeros on these con-
tours, mcluding those at s = 41 Adding these bounds together gives

oL < 2m +2Xmy + 28 + 2,

which reduces to (3 3). §
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4. Well-posedness of problem IVP

Let r be a real rational function of exact type (m,n), and consider the
corresponding homogeneous partial differential equation of degree d= max {m,n+1}
obtammed from (1 8)-(1.10). Throughout this section, we assume r (0) 7% 0, co, which 1s no
restriction 1n practice since V1-s®=1at s =0 By (19), the condition r(0)#0
amounts to the assumption that the coefficient of 7% 1n P (&, n, 1) does not vanish, so
that t =0 is not a characteristic surface for the differential equation Here 1s the stan-

dard result on well-posedness

Well-posedness criterion. Problem IVP 1s well-posed 1f and only of P (€, 1, 7) =0
has no solutions with £, n ER andIm 1< 0

A partial differential equation that satisfies this condition 1s said to be hyperbolic

For a precise definition of well-posedness and a derivation of this criterion, which 1s
due originally to Garding, see Section 5 2(b) of [19] or Sections 12.3-12 5 of [15] The
essential idea 1s Fourier analysis For suppose Problem IVP admits as a solution a mode
(12) with §, 7 €R and Im 7 < 0 By homogeneity, for any a > 0 there 1s another solu-
tion with parameters (€, an, ar) that grows at the rate e®!m7| and as a can be arbi-

trarily large, the growth up to a fixed time £, cannot be bounded

Here 1s the proof of Theorem 1

Theorem 1. Problem IVP s well-posed if and only if the zeros and poles of —rij—)-
are real and simple and interlace along the real azis.

Proof. Smce the zeros of P(§, n, ) are continuous functions of 7, mn the well-
posedness criterion 1t 1s enough to look for normal modes with %0 By (19) and
(1 10), since p,, and ¢, have no common zeros, an equivalent well-posedness criterion 1n
therefore that if £ € R and n € R — {0}, then

7 Pm(n/7)
1 gn (n/7)

£
1

has no solutions with Im 7 < 0 -- or with Im 7 > 0, since the solutions come in conjugate
pairs This 1s further equivalent to the statement that if % €R for some

s € C-{0}, then s€R Contrapositively, f s € C-R, then %fs)e C-R Since

r(s)
s

1s a continuous function of s away from poles, this 1s equivalent to the statement
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that %l maps the upper half plane either into itself or into the lower half plane That

is, either r or —r satisfies condition (a) of Lemma 1 By that lemma, this is the same a

saying that either r or —r satisfies condition (b), which 1s the assertion of Theorem 1 |

As mentioned earlier, we have actually proved a stronger result: problem IVP 1s

well-posed 1if and only if r or —r satisfies any of the conditions of Lemma 1

5. Well-posedness of problem IBVP

Again let r be a real rational function of exact type (m,n), and consider now the
use of the corresponding one-way wave equation as a boundary condition at 2 =20 for
the wave equation (11) mn the domain z>0, y€R For simplicity we continue to
assume r (0) 3£ 0, 00, as 1n the last section. . To determine well-posedness, we turn to the
theory published by Kreiss in 1970 [20], specialized for the wave equation m the interior,

and obtain:

Well-posedness criterion. Problem IBVP 1s well-posed if and only if
P(&n,7)=0 and (18) have no mutual solutions (€ n,7)5%(0,0,0) with n €ER,
Im 7 <0, and with & belonging to the branch (1.6b).

Since 7 and £ are now complex, we have to be careful about what 1s meant by the
branch (1.6b) For 7 € R and Im 7 < 0, 1t means £ = —/7 — ?, the analytic function of
7 and 5 obtained by analytic continuation from the values £ = -7 for =0 These
values of £ satisfy Im&>0. For r€R, £ 1s defined by hmits in the half-plane
Im7< 0, and satisfiesIm € > 0f |7| <|n|, €L 1] |7|>]|n].

For the definition of well-posedness and a derivation of this criterion, see [20] and
[10,11]. Again, however, the essential idea is to look for ill-posed normal modes Sup-
pose problem IBVP admits a solution (12) with In§>0 and Im7<0 IfIm§>0
(decay as z —o0) but Im 7 < 0 (growth as t —o0), then by homogeneity, as 1 the last
section, unbounded exponential growth as a function of ¢ 1is possible. If
Im 7=1Im £ = 0 and (1 6b) holds, on the other hand, the solution is a plane wave with
v, > 0 that radiates energy from the boundary into the interior, generating weaker but

still unbounded growth See [13] for a presentation of the Kreiss theory from this
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physical point of view, and [27] for the analogous discussion of stabiity of finite

difference models.

Here 1s the proof of Theorem 2.

Theorem 2. Problem IBVP 1s well-posed if and only i1f the zeros and poles of%

are real and simple and interlace along the real azis, and furthermore r(s)> 0 for
s € [-1,1]

Proof 1If there 1s an normal mode (12) with 7=20, then £ =417, and by (19),
the equation P (€, n, 7) = 0 reduces to

+iAr I grtl = Brd-mym - d — max {m,n+1}

for nonzero real constants A and B Whether or not m = n+1, this imphes # =0 and
thus £ = 0. Therefore we can assume 7% 0 Now for 7 € R and Im 7 < 0, the variable
s=1n/7 hes m C - (-o00, 0) - (0, c0) Taking himits Im 7— O with 7 # 0 amounts to let-
ting s range over all of C, with points on the two sides of the cuts (oo, 0) and (0, o0)
viewed as distinct By (1 6b) and (1 8)-(1 9), the well-posedness criterion now reduces to
the condition that for s 1 this region, the equations é =-rV1-s®?and é=rr (s) are
never simultaneously satisfied. That 1s, the equation r(s) = -V1-5s% must have no
solutions, where as m Section 3, the square root 1s defined by branch cuts (—oo, -1] and
[1, o) and the value 1 at s =0

On (-o0,-1) and (1,00), r(s) = V1= 52 cannot be satisfied, because the left-
hand side 1s real or infinite while the right-hand side is imaginary, finite, and nonzero
Thus we have reduced the well-posedness crtierion to condition (e) of Lemma 2 By that
lemma, an equivalent condition 1s (d), and by Lemma 1(b), this 1s equivalent to the

assertion of Theorem 2 |

Agam, we have actually proved a stronger result problem IBVP 1s well-posed if and
only if r satisfies any of the conditions of Lemma 2. In particular, by condition (e), 1t 1s
well-posed 1if and only if r(s) nterpolates m at m+4n+414x,,, poimnts m
C — (-0, -1] - [1, 00) Therefore a sufficient condition for well-posedness is the existence
of m+n+1+Xn,, points of mterpolation mn (-1, 1), and together with Corollary 2, this

proves Theorem 3.

If one or two points of interpolation lie at 1 nstead of mn (-1, 1), problem IBVP 1s
ill-posed This 1s a borderline case of weak ill-posedness, corresponding to a wave (1 2)

that propagates tangentially to the boundary z =0
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6. Families of one-way wave equations

In this final section we will examine various families of approximants r(s) to
V1—s®on [-1, 1], which correspond to various families of one-way wave equations By
Theorem 3, well-posedness 1s assured for n < m < n+21f r(s) interpolates V1 - s2 at
m+n+1+xp,, powmnts of (-1, 1), and conversely, the approximants one might consider in
practice will almost always satisfy this condition In fact, different methods of approxi-
mation of \/1—7 can fruitfully be interpreted and compared as diﬂ'erent strategies for

the allocation of interpolation ponts in (-1, 1) -- hence of angles in (= = 5 ) at which the
ideal and approximate one-way dispersion relations comncide

Until the end of the section, r 1s an even function First, we will show that

1-s2

can be interpolated i an arbitrary set of ponts symmetrically distributed in
(-1,1) Then we will consider Chebyshev, Padé, and least-squares approximation, and
show that each leads to the appropriate number of interpolation points, thereby proving
Theorem 4. (These methods of approximation are illustrative; we make no claim about
what method may be best in practice.) In Chebyshev and Padé approximation, unique-
ness mmplies that r(s) 1s automatically even, for otherwise, r(-s) would be a distinct
and equally good approximation. In least-squares.approximation approximation, unique-

ness does not hold, so we have to impose evenness of r as an explicit constraint

Symmetric interpolation in arbitrary points. The following construction has
been pointed out to us by Philip Roe. For any even K > 2, let +s,, - , £k be 2
set of K pomnts m (-1, 1), counted with multiplicity, except that one of these pairs may
be +1 Set m =2L-}:—J and n =2‘-§-|—2, so that m=n or m= n+2 and
K= m+n+2 Let p be a nonzero polynomial of degree -;i that is zero at /1 — 8;° for

each k, and set

1 e pEt)
=G+ (6.1
2

where ¢ =V 1—-5° Since the numerator 1s even as a function of ¢, 1t 1s a polynomial in

s of degree m, and since the denominator 1s even as a function of ¢, 1t 1s a polynomial
m s of degree n. Also, since |p(-t)| > |p(t)| for t >0 and p'(0)5£0, r(s) can

have no poles or zeros 1 [-1, 1| (we exclude the trivial case K=2, s; =1, r(s)= 0).

Thus r (s) = V1 - 52 1s equivalent to
p(t)+p(-t)=-p(t)+p(-t),

that 1s, p (t) =0 In other words, (6 1) interpolates V'1 —s? at the points +s;, and by
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Theorem 3, the corresponding one-way wave equation 1s well-posed

An alternative and more transparent presentation of this construction 1s implicit 1n
Section 9 of a paper by Higdon [14] If we wnite 4/1 - s;2 = —cosfl, , then p (¢/7)=01s

equivalent to
K/2
IT (€+cosdy 1) = o, (62)
k=1

which corresponds to the partial differential equation

K/2
II (8; +cosb 3;)u = 0, (6 3)
k=1

which is satisfied exactly by plane waves at the angles +0,. Conversely, given a one-
way wave equation in the form (6 3), let us use (1 3) to ehminate all powers of £ higher
than 1 1n 1ts dispersion relation (6 2) The result 1s a new dispersion relation that inter-
polates V1-52 in the pomnts s; and 1s equivalent to a rational expression (18) For
example, Higdon points out that the Engquist-Majda absorbing boundary conditions can
be generated i this fashion from (9, -9, )K/2u =0, an observation that highlights

their close relation to the boundary conditions of Bayliss and Turkel (see Section 2 of

3))

Now we turn to Chebyshev, Padé, and least-squares approximation In what fol-
lows, let r denote a real rational function of type (M, N) but not necessarily ezact type
(M, N), that is, r has exact type (m,n) for some m < M, n < N Assume further,
until further notice, that M, N, m, and n are even integers and that r 1s an even

function The defect of r (as a function of type (M, N)) 1s the mnteger
8§ = mm {M-m, N-n} > 0. (6 4)

Also, let K be the number of zeros of V1-s%-r(s) m (-1,1) By defimtion K< L,
where L 1s the integer of Lemma 3, and so by that lemma, since x,,, =1 when m and

n both even, we have

K < m+n+2 (65)

Chebyshev approximation. The Chebyshev approximant of type (M, N) to
V1 - 52, denoted ryn(s), 1s defined by the condition

I| V1-5%-riin(s)]|o = mimimum,
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where || [|co is the supremum norm on [-1,1]. It 1s well known that ryy exists, 1s
unique, and 1s characterized by the following “equioscillation condition” [5,27] Let r be

a rational function of type (M, N), exact type (m,n), and defect § Then r = ryy if

and only of V1-s2—r(s) attains alternating values £ || V1-s2—r(s)|| o on some
sequence of points -1 < s¢ < < sy <1 with

J > M4+N+1-6 (6 6)
Let r = ryy be the Chebyshev approximant to m of type (M, N) Between
any two equioscillation points there must be a zero, so we have K > J, and by (6 6),
K > M+N+1-6 (6.7)
Together with (6 5), this yields
M+N+1-6 < m+n+2,
or by (6.4),
M+N+1-6 < (M-6)+ (N-6)+2.

Therefore § <1 Since § 1s even, however, we must have § =0 Since K is even also,
(6 5) and (6 7) now yield

m=M, =n=N, K = m+n+2 (68)

(That 15, the Chebyshev table for V1 - 52 1s normal except for the even-odd degeneracy-
1t breaks mto distinct 2X2 blocks of 1dentical entries rp , =rp.;, =rn 0
=r, +1,n+1 ) This establishes the hypotheses of Theorem 3, proving Theorem 4 for

Chebyshev approximation

Padé approximation. The Padé approximant of type (M,N) to V1-s?
denoted rfy, 1s defined by the condition

V1-5%2-rfn(s) = O (smamum) as s—0

Again one has existence and uniqueness (the former is trivial) For this particular case,
rfiv 1s known explicitly and can be constructed from a continued fraction expansion
[4,11,30], from hypergeometric function identities [16], or from (6 1) Alternatively, to
emphasize the analogy to Chebyshev approximation, one can reason by means of the fol-
lowing equioscillation-type characterization [28]. Let r be a rational function of type
(M, N), exact type (m,n), and defect § Then r= rfyy if and only if

V1i-s2-r(s)=0(s’) as s—0 (6.9)
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for some J satisfying (6 6) Since (6 9) asserts that r (s ) interpolates V1 —s? at least J
times at the origin, we again have K > J, and the argument leading to (6 8) goes
through exactly as before (That 1s, the Padé table for V1 - s2 is also normal except for

even-odd degeneracy.) This proves Theorem 4 for Padé approximation.

Least-squares approximation. Rational least-squares approximation, unhke 1its
polynomial counterpart, has certain troublesome properties -- notably nonuniqueness and
the possibility of local best approximations that are not global To begin with, let us
drop the assumption that M, N, m, and n are even It 1s known that a least-squares
approximant of type (M, N) to V1 - s? exists, so let us denote such a function by rA(f
Here 1s the remarkable property that distinguishes this problem from Chebyshev and
Padé approximation, proved by Cheney and Goldstein in 1967 [6): r,&,%?, always has 6 =20
As a corollary, first pointed out by Lamprecht [21], iR cannot be even when M and N
are odd, and so 1t cannot be unique We do not know whether 1t 1s unique when M and

N are even.

Nevertheless, certain conclusions about T'A(f]zl can be reached despite 1its lack of

uniqueness. Since § = 0, one can show that V1 -s%— rﬂ(f,?, must be orthogonal on [-1, 1]
to all polynomials of degree M+N +1, and accordingly, must have K > M+N +1 zeros
m (-1,1) (Cheney and Goldstemn point this out as their final corollary ) Since
K < m+n+1+x,, by Lemma 3, we now reason as follows if M and N are both even
or both odd, then m= M and n= N, but we are assured of only m-+n +1 interpola-
tion points, not the m +n +2 required by Lemma 3. On the other hand 1f one of M and
N 1s even and the other 1s odd, then the possibilities are m=M and n= N,
m=M-1 and n=N, or m=M and n=N-1, and m each case,
m+n +14+X,me = M+N+1, which guarantees a sufficient number of interpolation

pownts

We conclude that if one-way wave equations are derived by general least-squares
approximation, problems IVP and IBVP are well-posed if M= N+-1, but whether they
are well-posed for M = N and M = N+2 1s uncertain

Symmetric least-squares approximation. The situation returns to normal if,
rather than permitting an arbitrary approximant of type (M, N), we require r to be
even. (Formula (6 1) will now be a computational help, for we can take the interpolation
points as 1ndependent variables and vary them systematically to minmimize

|| V1-5%=r(s)||s) Assume again that M, N, m, n, and K are even The problem
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1s equivalent to that of approximating V1-o on [0, 1] by a rational function of type
(M/2, N/2) in the least-squares sense with weight function 0™/2 By an adaptation of
the Cheney-Goldstein argument, we get § =0 again, from which (6 8) follows. This

completes the proof of Theorem 4
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