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1. INTRODUCTION
The purpose of the current study is the theoretlcal investigation
of the relationship between physical conditions in coronal disturbances
and the iloanizatir 1 states of the resulting perturbed solar wind.
Available meszaurements of active solar wind assoclated with solar flares

*17y | implying that

often show an enhanced degree of ionization (e.g. Fe
the measured solar wind material {s flare-heated at its coronal source,
In contrast, other active solar wind flows sometimes show anomalougly
low degrees of ionization (e.g. He'), implying that some solar material
1is expelled from the corona without ever reaching coronal temperatures.
In order that such qualitative inferences can be developed into
quantitative constraints on coronal conditions that give rise to solar
wind disturbances, it {s necessary to conduct systematic investigations
of the effects of impulsive heat and/or momentum addition in the corona
on the hydrodynamics and ionization state of the corona ahd solar wind.
The results of such studies should facilitate the interpretation of

+6/0+7

interplanetary spacecraft data (g.g. the O ratlo measured by
ISEE-3), because it would allow an improved assoclation of the local
physical state of the solar wind with conditions of the coronal source

material.

2. SOFTWAKE DEVELOPMENT
One of the primary objectives of the current grant was the
development of a software package suitable for (1) generating models for
the effects of impulsive heat and/or momentum deposition on plasma

temperatures, densities and flow velocitie§ and (2) calculating the
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ionization state of the solar wind as a functicon of the location,
duration and magnitude of heat and/or momentum deposition. In order to
accomplish this goal it was neceasai'y to modify an existing time-
dapendent isothermal solar wind code to allow temperature variations and
interface the results with a solar wind ionization code developed by S.
Jwocki. The first code had been used to study the development of
stationary shocks in solar wind flows with multiple critical points (g{.
Habbal and Tsinganos 1983, Habbal et al. 1983, Habbal and Rosner 1984).
The original version assumed an isothermal corona, The revised code can
calculate time-dependent polytropic models in which the temperature,
dansity and flow speed of the plasma can vary in time (Habbal 1985).
Heat addition by, for axample, an impulsive energy release in the
corona, can be simulated in the new code by the Introduction of a time-
varying temperature 1increase over a specified range of heights. The
resulting effects on the temperature, density and flow speed of the
solar wind can then be followed as a function of time and space.

The second computer code was developed by S. Owoeki for calculating
the ionizations s ate of the solar wind in a steady-state or time-
varying flowing plasma {(Owocki 1982, 1983). This code, whichﬂﬁas
developed for use on a computer system at another institution, was
adapted for use on the Solar Stellar Division computer system by S.
Owockl and a research assistant. In addition, an interface routine was
developed which enables thls ionlzation state code to caleculate as a
function of time and space the fonization state for the time.varying

golar wind models calculated from Habbal's solar wind code. In the
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latter stages of thu development of the combined software package (solar
wind, interface and ifonization codes) we encountered several tough
problems in getting the entire software package to perform amoothly as a
unit. Solving these sof'tware probems requlred significantly more time
and effort than anticipated, particularly since S. Owooki, who developed
the original ionization code used in the preject, had moved to another
institution when the software problems surfaced. The problems were
succassfully solved and we now have a sophlsticated software package
that can perform calculations needed to address solentific questions
concerning the effects of coronal disturbances on the physical

conditions in the corona and the lonization state of the solar wind.

3. APPLICATIONS

In order to demonstrate the capablilities of the software package
discussed above, we calculated the effects of Impulsive momentum
deposition in a coronal region in which there was a standing shock. As
shown by Habbal and collaborators (Habbal and Tsinganos 1983, Habbal et
al. 1983, Habbal and Rosner 1084, Habbal 1985} standing shocks can
develop in regions with multiple coritical polnts such as coronal holes
with rapidly diverging geometries. Figure 1 shows the radlal varlat on
of the density in the model as 2 funetlion of time. The Inital state 1s
the lowest curve. Density curves {"or later times are displaced unward.
The time interval between curves is 2000 sec., By comparing the
different curves c.2 sees how the addition of momentum causes the shock

which was initially stationary to move outward so that approximately
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120,000 sec (™30 hr) later the corona within 7 solar radii of the sun
has evolved to a steady-state with no standing shock. Figures 2 and 3
show the corresponding evolution of the {low veloclty and temperature.

The effects of the ghanging coronal conditlons on the lonizatlon

+6 and 0+7) was

state of the two most abundant stages of oxygen (0
calculated. Some of the results are plotted in Figures 4.7. The upper
panel in Figure 4 gives the ionizatlon "temperature' determined from the

+6/0+7. Curve {a) traces the

ratic of the number densitles of O
variation of the ionizatlon temperature for a fluid parcel starting out
at the solar surface at cime "O" and which passes the shook located at
about 1.5 solur radii and continues outward in the solar wind. For
comparison curve (b) gives the corresponding varlation of the electron
temperature. We gee that the lonization temparature “freezes in" at
.77 % 106 K, a value much larger than the approximately 106 K electron
temperature near tha upper boundary of the model at B solar radii.
Curve {a) in the bottom panel of Figure U shows the radiai variation of
the number density of 0+6 gs a fraction of the total number of oxygen
ions summed over all stages. For comparlson curve (b) illustrates the
radial variation that would be obtained if the ionizatlon states did not
freeze in (as would be the case in a static atmecsphere) and depended
only on the electron temperature.

Figure 5 shows the same parameters plotted for a fluld parcel
gtarting out from the surface 13.9 hours later and passes the shock when
it 1s slightly farther from the solar surface (at ™ 1.6 solar radii).

We see that the resulting “freezing in" temperature is 1.8 x 106 K and

-
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thus has changed very llttle from that illustrated in Figure 4§, Durlng
this time interval, 13.9 hr after the deposition of momentum the shock
is propagating outward at a very small veloeclty, hence there is little
difference in the physlcal conditlons in the reglon where the oxygen ion
states freeze in. Figure 6 shows the sltuatlon 5.5 hr later (19.4 hr
after the momentum depositlon). Now the shock is beginning to propagate
outward at a higher veloolty and has moved to approximately 2.5 solar
radit. The freezing Ln temperature is now stgnificantly higher, 1.93 x
106 K. Figure 7 shows the situation when the shock has moved to nearly
4 solar radii (at a time 21.7 hr after the momentum depositlon) when the
freezing-in temperature has risen to 1,99 x 106 K. The difference ("2 x
105 K) between the freezing-in temperatures for parcels starting out at
time O (Figure U) to those starting out much later (Figure 7) is that
the flow veloeitles within several solar radii of the surface where the
region where the oxygen ionlzatlon states freeze-in are much larger
after the shock has moved out beyond this region. Thils céuses the
oxygen ion states to Freeze in closer to the surface where the
temparature is higher.

Future work will be devoted to exploring the effects of impulsive

hsat, pressure and momentum depositlon in a variety of scenarios which

may represent different types of coronal disturbances.

4, SUMMARY
A sophistlicated computer code has been developed for modeling the
effects of impulsive heat, pressure and/or momentum depositlion on

coronal plasma temperatures, densities and flow veloclties and
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caleulating the fonlzation state of the solar wind as a function of the
location, duration and magnitude of heat/pressure/momentum deposition,
Some of the capabilities of the code have been demonstrated by
caloulations of the effects of momentum deposition In a coronal reglon

- in which there was a stationary shook. Future applicatlona will be
concerned with detalled investigations of relationshlps hetween physical
conditions in coronal disturbances and the Lonization states of the

resulting solar wind disturbances.
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FIGURE CAPTIONS

Flgure 1. Radial variatlon of the coronal density ns a funoctlon of
tlme. Tho densities in the Lnltial model are given by the lowest ocurva,
Density curves for late times wre dlsplaced upward., The time interval
batween vcurves is 2000 seo,

Figure 2, Radial variatlon of the [low veloclty as a funotlon of time.
Same format as Figure 1.

Figure 3. HRadlal varlation of the coronal temperature as a function of
time, Same format as Figure 1,

Figure U, Upper panel. Radial variation of the lonization temperature
determined from the calculated ratlos 0+6/0+7. Curve (a) traces the
variation of tenperature for & [luld parcel starting out at the solar
surface at time "0% and which passes the shock located at about 1.5
solar radii and continues outward 1nto the solar wind. For comparison
ocurve (b) gives the corresponding electron temperaturea.

Lower panel. Radial variatfon of the number density of 0+6 as a
fraction of the total number of oxygen lons summed over all stages.
Curve (a) shows the variatlon calculated from the model. For comparison
curve (b) shows the variation tﬁab would be obtained if the lonization
temperature remained equal to the electron temperature instead of
freezing-in.

Figure 5. Same as Figure 4, but for a fluid parcel leaving the solar
surface 13.9 hr later.

Figure 6, Same as Figure 4, hut for a fluid parcel leaving the solar

surface 19.4 hr later.

&~




T S e T O e TP P e R RS
LAY LG, ML TR N
A, AR et o M "

Figure 7. Same as Flgure U, but for a fluild parcel leaving the solar

surface 21.7 hr latoer.
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