The Use of Moments of Momentum To Account for Crystal Habits

Patrick G. Barber

GRANT NAG1-498
JULY 1985

LIBRARY COPY

j1. : 83
LANGLEY RESEARCH CENTER
LIERARY, NASA
HAMFTON, MIRGINIA

N/S^

The Use of Moments of Momentum To Account for Crystal Habits

Patrick G. Barber
Longwood College
Farmville, Virginia

Prepared for
Langley Research Center
under Grant NAG1-498
the use of moments of momentum to account for crystal habits
by

Patrick G. Barber*
Department of Natural Sciences, Longwood College Farmville, Virginia 23901, USA

ABSTRACT

A 3-step theory of crystal growth is proposed which involves first an association of molecules or ions in solution to form an impinging growth unit, then second the orientation of this unit prior to its impact on the surface of a crystal, and finally the attachment of this unit to the crystal face. From this theory the habit of a crystal is dependent upon the moments of momentum of the impinging growth unit. The results of sample calculations are presented for sodium chloride, succinic acid, sucrose, and chromium boride. The faces predicted by this proposed theory are compared with those predicted by other, energy-based calculations and with those experimentally observed.

The proposed theory suggests alternative strategies for crystallization and habit modification which may be of technological importance.

Listings of the two computer programs that were used are provided in Appendix B.
*On temporary leave assigned to NASA Langley Research Center, Hampton, Virginia, 23665, USA, for 1984-1985.

Crystal habits are economically important as well as being scientifically useful for understanding the crystallization process. In commerce, many high volume solids such as sodium chloride and sucrose are sold in crystalline form. In electroplating, the success of a metalic deposit often depends upon the crystal form of that deposit. In the electronic high technology fields, the properties of semiconductors such as silicon and gallium arsenide are dependent upon crystal purity and habit. In medicine, the crystal habit and in vivo growth of crystals such as urea and weddellite are important in diseases such as gout and kidney stones. Since the properties of materials often depend upon crystal structures, an understanding of the crystallization process itself and the various factors that influence this process are important.

There have been a number of proposals made for understanding the crystallization process and the resulting crystal habit. An early, empirical method presented by J.D.H. Donnay and D. Harker (1) simply observes that crystal faces are usually the ones that have large interplanar spacings in the unit cells. The area of importance of a crystal face is proportional to the reciprocal of the interplanar spacing of each face as is summarized in relationship 1 below.

$$
\begin{equation*}
A_{h k 1} \quad \alpha \quad 1 / d_{h k l} \tag{1}
\end{equation*}
$$

Other more sophisticated methods of accounting for crystal habits have been developed based on Gibbs' principle that the crystal habit is the one with a minimum in surface energy (2,3). Typical of these is the molecular
theory of crystal growth which determines the importance of crystal faces from minima in free energies. Thermodynamics, molecular dynamics, Monte Carlo calculations, computer simulations, and graph theory (topology) with and without kinks, steps, and surface roughening have all been used to estimate crystal habits and growth (4-18). The Periodic Bond Chain (PBC) method of P. Hartman and W. G. Perdok $(19,20)$ is typical of this type of calculation. Most of these methods assume that molecules are adsorbed from solution onto a crystal face and that the habit regulating event is the incorporation of the adsorbed species into the crystal. Such methods have been used to calculate equilibrium crystal habits in such compounds as sucrose, chromium boride, succinic acid, biphenyl, and weddellite (21-27). These methods focus attention on the bonding in a crystal or microcrystallite as the most important factor governing crystal growth. Much of what happens in crystal growth, however, occurs in solution during diffusion to the growing crystal.

PROPOSED THEORY

A 3-step, kinetically based theory of crystal growth is proposed to offer an alternative to the existing thermodynamically and statistically based ones. The first step is the association of molecules and ions in solution to form an impinging growth unit. The largest size of this unit is the crystallographic unit cell; but the actual impinging growth unit is expected to be smaller than this, since in most unit cells atoms and ions are shared among several adjacent unit cells. The formulation of this growth unit is a function of the degree of saturation, which in turn is dependent upon solvent, temperature, and ionic strength of the solution. Any proposed growth unit must, of course, be a chemically reasonable
association of ions or molecules that can geometrically build up the entire structure. Intermolecular forces can enhance the association process that originiates in the solution. This association step is assumed to be a rapid process which quickly attains equilibrium as indicated in figure 1 and the following seven equations.
Step \#1: Association
$n A+m B \Longleftrightarrow A n B m$ (random)
k_{1}

If the association quickly attains equilibrium, the previous equilibrium approximation can be made for the reaction in equation 2 above, and the following six equations can be obtained:

$$
\begin{gather*}
k-1\left[A_{n} B_{m}(\text { random })\right]=k_{1}[A]^{n}[B]^{m} \tag{3}\\
{\left[A_{n} B_{m}(\text { random })\right]=\left(k_{1} / k-1\right)[A]^{n}[B]^{m}} \tag{4}
\end{gather*}
$$

where

$$
\begin{align*}
& k_{1}=A_{1} \exp \left(-\Delta G_{1}^{f}\right) / k T \tag{5}\\
& \text { and } \\
& k_{-1}=A_{-1} \exp \left(-\Delta G_{-1}^{\neq}\right) / k T
\end{align*}
$$

thus

$$
\begin{equation*}
\left(k_{1} / k_{-1}\right)=\left(A_{1} / A_{-1}\right) \exp \left[-\left(\Delta G_{1}^{\neq}-\Delta G_{-1}^{f}\right) / k T\right] \tag{6}
\end{equation*}
$$

From this it follows that

$$
\begin{equation*}
\left[A_{n} B_{m}(\text { random })\right]=\left(A_{1} / A_{-1}\right) \exp \left[\left(-E_{a}\right) / k T\right][A]^{n}[B]^{m} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{a}=\left[\Delta G_{1}^{\prime}-\Delta G_{-1}^{\neq}\right] \tag{8}
\end{equation*}
$$

The concentration of the impinging growth unit is thus given by equation 7 and is a function of the solute concentration, the temperature, the activation energies, and other factors such as molecular geometry which are summarized in the pre-exponential factors, A_{1} and A_{-1}. The unit formed, $A_{n} B_{m}$, is randomly oriented in the solution unless the geometry or conditions of crystallization impose a preferred orientation. Such an imposition may occur in gel growth and in MOCVD systems which have streaming reactant solutions in which solute concentrations are inhomogeneous.

There is some experimental evidence that these impinging units exist in solution. The existence of large molecular associations is accepted for colloids, and there is evidence that aggregations occur on smaller scales as reported by J. J. Burton $(28,29)$, M. Hoare and P. Pal (30-32), and D. Bonchev, 0. Mekenyan, and H. Fritsche (33).

Two simplifying assumptions are made at this point in the proposed theory. It is assumed that growth units do not change during or after attachment to the growing crystal face, and as such they have the same molecular arrangement in solution immediately prior to impact that they have within the crystal after incorporation. It is further assumed that only one type of impinging growth unit occurs in a given solution.

Step \#2: Orientation

This randomly oriented unit must migrate from the bulk of the solution to the face of the growing crystal; and while migrating, this unit must acquire the correct orientation so that upon impact with the crystal it can attach. This second, orienting step is assumed to be the rate determining one.

$$
\begin{equation*}
A_{n} B_{m} \text { (random) } \stackrel{k_{2}}{\Longleftrightarrow} A_{n} B_{m} \text { (oriented) } \tag{9}
\end{equation*}
$$

The following equations are a consequence of the above reaction step:

$$
\begin{gather*}
k_{2}\left[A_{n} B_{m}(\text { random })\right]=k_{-2}\left[A_{n} B_{m} \text { (oriented) }\right]_{n k 1} \tag{10}\\
{\left[A_{n} B_{m} \text { (oriented) }\right]_{n k 1}=\left(k_{2} / k_{-2}\right)\left[A_{n} B_{m}(\text { random })\right]} \tag{11}\\
{\left[A_{n} B_{m} \text { (oriented) }\right]_{n k 1}=\left(k_{2} / k_{-2}\right)\left(A_{1} / A_{-1}\right) \exp \left(-E_{a} / k T\right)[A]^{n}[B]^{m}} \tag{12}
\end{gather*}
$$

The rate of growth-unit disorientation depends upon the moments of momentum of the migrating, impinging growth unit. It is assumed that

$$
\begin{equation*}
k_{-2}=c / J_{h k 1} \tag{13}
\end{equation*}
$$

where c is a constant of proportionality and $J_{h k 1}$ is the moment of momentum of the impinging growth unit about the axis through the center of mass perpendicular to the hkl-plane. The larger this moment of momentum the less easily the impinging growth unit will be moved away from the hkl-orientation needed for the proper impact, and thus the faster will be the growth of the corresponding face. Each hk1-direction and each molecular association has a different rate constant for disorientation, k_{-2}. In equation 13, however, it is assumed that this difference in rate constants is due only to the difference in moments of momentum about each hkl-axis. Thus, the constant of proportionality, c, in this equation is the same for each orientation. As a consequence, equation 12 can be rewritten.

$$
\begin{equation*}
\left[A_{n} B_{m} \text { (oriented) }\right]_{h k 1}=\left(k_{2} / c\right)\left(A_{1} / A_{-1}\right) \exp \left(-E_{a} / k T\right)\left(J_{h k 1}\right)[A]^{n}[B]^{m} \tag{14}
\end{equation*}
$$

From equation 14, the concentration of the correctly oriented, impinging growth unit is dependent upon its angular momentum. When this moment of momentum is small, the concentration of the impinging growth unit having the correct orientation for subsequent attachment and growth also will be small. Crystal faces that grow slowly are the ones that are observed ultimately to be the main facets of the crystal habit, since fast growing faces grow themselves out of existence. Thus, axes having the smallest moments of momentum in the impinging growth unit will be the same ones observed as facets in the resulting crystal.

Step \#3: Attachment

The third step of this theory is the actual attachment of the correctly oriented impinging growth unit onto the growing face.

$$
A_{n} B_{m} \text { (oriented) } \stackrel{k_{3}}{\Longleftrightarrow} A_{n} B_{m} \text { (attached) }
$$

The energies of the intermolecular bonds formed in the crystal are larger than the association or orientation energies of the growth unit in solution; and the rates of this third step have been assumed to be faster than the preceeding two steps, since the second step was considered to be the rate determining one. During crystal growth, a crystal can grow only as fast as correctly oriented material arrives at the growing surface, and all material is incorporated into a crystal upon reaching a growing surface. During dissolution of a crystal, however, the situation is
different. The energy of attachment in this third step may be the rate determining one during dissolutions, since the bonds holding the units into the crystal must first be broken before material can be carried away from the surface.

As a consequence of reaction 15 , the following two kinetic equations can be obtained.

$$
\begin{gather*}
\left.\left[A_{n} B_{m}(\text { attached })\right]_{h k 1}=\left(k_{3} / k_{-3}\right)\left[A_{n} B_{m} \text { (oriented }\right)\right]_{h k 1} \tag{16}\\
{\left[A_{n} B_{m}(\text { attached })\right]_{h k 1}=\left(k_{3} / k_{-3}\right)\left(k_{2} / c\right)\left(A_{1} / A_{-1}\right) \exp \left(-E_{a} / k T\right)\left(J_{h k 1}\right)[A]^{n}[B]^{m}} \tag{17}
\end{gather*}
$$

The ratio of the rate constants, k_{3} / k_{-3}, for the attachment step is dependent upon the strength and energy of that attachment, which is a function of the number and strength of the bonds holding the unit to the growing face. This ratio is a function of the particular hkl-face being considered. Although ratios of rates for the forward and reverse reactions of different faces are not necessarily equal, it greatly simplifies the subsequent calculations if one assumes that these k_{3} / k_{-3} ratios for the different hkl-faces are approximately equal. Because of this approximation this theory will be used to order crystal faces only among those faces which the Periodic Bond Chain (PBC), Burton, Cabrera, and Frank (BCF), or other energy-based theories have indicated are faces in which there are strong intermolecular forces of attraction to hold the added units to the crystal and are thus faces for which one may assume that the orientation step is rate determining. If all possible impinging unit orientations were considered, rather than just limiting the calculations to those orientations with favorable energies for attachment, one could easily obtain misleading results. Some high order planes may be found which have favorable moments of momenta indicating that the concentration of these
orientations are small and that the corresponding faces should be dominant in the crystal. However, it does little good to find planes of favorable momenta if upon impacting on the crystal surface the energies do not favor attachment. In such cases the principal assumption of this proposed theory has been violated, and the orientation step (step \#2) is no longer the rate determining one.

The rate of growth of a face, $R_{h k}$, is proportional to the concentration of the attached, correctly oriented impinging growth units.

$$
\begin{gather*}
R_{h k 1}=k_{4}\left[A_{n} B_{m}(\text { attached })\right]_{h k 1} \tag{18}\\
R_{h k 1}=\left(k_{4}\right)\left(k_{3} / k_{-3}\right)\left(k_{2} / k\right)\left(A_{1} / A_{-1}\right) \exp \left(-E_{a} / k T\right)\left(J_{h k 1}\right)[A]^{n}[B]^{m} \tag{19}\\
R_{h k 1}=k \exp \left(-\dot{E}_{a} / k T\right)\left(J_{h k 1}\right)[A]^{n}[B]^{m} \tag{20}
\end{gather*}
$$

The above three equations have a constant of proportionality, k_{4}, which is needed primarily to convert from units suitable for concentrations to those suitable for rate of growth. The differences in rates of attachment among the various hkl-faces have been considered above in the discussion of step \#3. Consequently, k_{4} is not dependent upon the hkl-direction being considered.

Since slowly growing crystal faces are the ones that ultimately have the greatest areas, the area of a particular face, $A_{h k l}$, is proportional to $R_{h k 1}{ }^{-1}$, and

$$
\begin{equation*}
A_{h k} 1 / A_{h k} 1^{\prime}=R_{h k} 11^{\prime} / R_{h k} 1 \tag{21}
\end{equation*}
$$

where the primed factors are those for the most prominent hkl-face.
Thus, by equation 21 , the ratio of areas of crystal faces should be proportional to the inverse ratio of the rate of growth and thus inversely
proportional to the moments of momentum about the axes in the impinging growth units. A ratio parameter, $\Gamma_{h k}$, is defined in equation 22.

$$
\begin{equation*}
\Gamma_{h k 1}=A_{h k 1} / A_{h k 1}{ }^{\prime}=J_{h k 1}^{\prime} / J_{h k 1} \tag{22}
\end{equation*}
$$

SAMPLE CALCULATIONS

By equation 22 the relative surface areas of crystal faces could be calculated from the moments of momentum of the impinging growth units. The calculation involves a computation of the moments of momentum about axes for several expected impinging growth units. These growth units should be reasonable molecular associations derived from the crystallographic unit cell. The same set of possible crystal faces considered by other theories will be considered in this paper. The moments of momentum will be used to rank the planes in order of expected importance for each model. A summary table is presented for each of the four compounds used as examples in this paper. The tables give the J-values, Γ-values, the order of the most prominent faces predicted by other theories of crystal growth as well as the experimentally observed order.

The calculations were performed using two programs written in BASIC and run on an IBM-PC computer. Listings of the programs is given in Appendix B. The first program calculates the direction cosines of the vectors through the center of mass about which the moments of inertia are computed for each hkl-plane of the assumed growth unit, and the second program calculates the moments of momentum using equation 23. A derivation of equation 23 is given in Appendix A.

$$
\begin{equation*}
J_{h k 1}=(M U) \quad \sum_{i=1}^{n}\left(M_{1}\right)\left[\left(x_{j}\right)^{2}+(2 / 5)\left(r_{i}\right)^{2}\right] \tag{23}
\end{equation*}
$$

Since literature summaries of observed crystal habits list only the most prominent crystal faces in a qualitative manner, quantitative analysis was not possible. The tables summarize the experimentally observed order of facet prominence as reported in the literature. Plus marks are used in the tables to indicate the extent of predominance if such information is available from the literature.

The calculated values of the moments of momentum were obtained from equation 23 with the value of the multiplier factors, MU, selected to scale each calculation to the same number of atoms or ions as found in the unit cell. The values of $\Gamma_{h k l}$ were calculated by dividing each moment of momentum into the smallest value calculated for that trial impinging unit, as indicated by equation 22.

Sodium Chloride, $\mathrm{NaCl}:$
Table 1 summarizes the results for the calculations of the moments of momentum for several impinging growth units for the sodium chloride structure. The impinging growth units are illustrated and labeled in figure 2. The crystal structure is the rock salt one with $a=0.563 \mathrm{~nm}$ (34).

From this table and accompanying figure, the impinging unit that likely associates in solution prior to impact and growth consists of the simple association of Na^{+}and Cl^{-}ions into $(\mathrm{NaCl})_{1}$ units. As the degree of association increases (100) and (111) are more likely faces to appear. The associated growth unit consisting of $2 \mathrm{Na}^{+}$and $2 \mathrm{Cl}^{-}$ions arranged in a plane as $(\mathrm{NaCl})_{2}$ is the structure used for model B in table 1 and illustrated in figure 2. Model D consists of exactly half the unit cell with an even greater degree of association and favors the (111) faces.

The moments of momentum for a few higher order faces were also calculated in Table 1. These terms all have large moments of momentum, which is in agreement with the observation that higher order faces are not common in crystals.
A. Julig and B. Deprick have observed that the (110) faces appear and become more predominant as the degree of supersaturation increases in aqueous sodium chloride solutions containing glycine (35). As the degree of supersaturation increases one would anticipate a greater degree of association, and this theory predicts that (110) faces should become more likely, as the degree of association increases from model A to model B in table 1. Julig and Deprick also observed that (110) faces become less likely at any degree of supersaturation as the pH of the solution deviated from the isoelectric point of glycine. Buffers and electrostatic charges in solution can alter the degree of association and thus the resulting habit.

Sodium chloride has been subjected to extensive studies to ascertain the effects of various additives on the resulting crystal habits (36). These studies conclude that selective adsorption of the additive onto crystal faces is the modus operandi. This could still be the mechanism under the theory proposed in this paper; but the proposed theory would allow for two further mechanisms for crystal habit modification. Altered habits could result from the attachment of the additive to the associated impinging growth unit while it is in solution. Such an attachment would alter the moments of inertia of this unit; or, the additive substance could alter the solution properties enough to cause a change in the size and shape of the impinging growth unit thus also altering its moments of momentum and thereby the resulting crystal habit.

The work of J. D. Birchall and R. J. Davey (36) on the effects of polysaccharides on the crystallization of sodium chloride suggests that the polymer adsorbs on the crystal surfaces and on the heterogeneous nucleation sites in solution. The theory presented in this paper suggests that the role of polymers in altering the rheological properties of solution should be considered also, especially since they conclude that "the polysaccharides are most active in influencing nucleation and growth when in chain extended configurations." This is just the configuration in which polymer solutions have the most altered rheological properties.

Succinic Acid, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$:
J. S. Broadley, D. W. J. Cruickshank, J. D. Morrison, J. M. Robertson (FRS), and H. M. M. Shearer reported the refined crystal structure of B-succinic acid in 1959 (37). Using their data, the moments of momentum and the $\Gamma_{h k 1}$-values for B-succinic acid were calculated by the programs described in this report. The results are summarized in Table 2, and the various impinging growth units considered are illustrated in Figure 3. Impinging units B, C, and E, consisting of molecules oriented along the c-axis, agree with the experimental observation that (001) is the most prominent face (24). These are reasonable molecular associations, since the c-axis is also the direction for hydrogen bonding in succinic acid. Model D has (010) predicted as its most favored face.

The PBC analysis done according to the calculation method of Hartman and Perdock by R. J. Davey, J. W. Mullin, and M. J. L. Whiting (24) indicated that (110) should be the most pronounced face, but as they noted this is not in agreement with the observation that (001) is observed to be the most prominent face. The proposed theory of this paper using model C
predicts that (001) should be the face with the largest area and that the next face should be the $(1,1,-1)$. The third most favored face in this model should be (110). This ordering of faces is in better agreement with the experimentally observed order of $(001) \gg(010)>(11-1)>(110)$ than is the ordering predicted by the PBC method.

Impinging unit B emphasizes the ionic intermolecular forces at the ends of the molecule parallel to the c-axis. A review of the gamma values for this model in Table 2 indicate that this model may overemphasize the (001) face in the anticipated crystal habit. Nevertheless, Davey, Mullin, and Whiting (24) observed that the crystals of succinic acid become needle-like when grown out of isopropanol. This solvent has a smaller dipole moment than water, and perhaps the theory of this paper would suggest that isopropanol encourages the formation of another, competing impinging growth unit such as B, which is expected to favor more greatly the formation of the (001) face.

Sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$:
Using the crystal structure of sucrose reported by George M. Brown and Henri A. Levy (38), the values for $\mathrm{J}_{\mathrm{hk} 1}$ and $\Gamma_{h k 1}$ were computed and summarized in Table 3 and figure 4.
D. Aquilano, M. Franchini-Angela, M. Rubbo, G. Mantovani, and G. Vaccari (21) observed the disagreement between the rates of growth predicted by a PBC analysis which they did using the methods of Hartman and Perdok and the experimental data for sucrose. From Table 3, impinging growth unit B agrees with the reported observation that the prominent face of sucrose is the (001) face. It is interesting to note that both the PBC calculation of Aquilano et al. and the BCF calculation of Saska and Myerson
assign a low value to the (001) face, yet this is an experimentally observed one. Saska and Myerson conclude that "The agreement of the calculated growth form with observed habits is fairly good and the reduction of the growth velocity in the c-axis direction [which is likely due to the preferential water adsorption on the (001) face] would result in an excellent agreement with the observed forms." [Page 554 of (22)]. The moment of momentum calculations predict the most prominent face and some of the other experimentally observed ones for sucrose without recourse to adsorption of water onto one of the faces.

Chromium Boride, CrB:
Using the data cited by R. Hamar and S. Hamar-Thibault (23), the moments of momentum for the faces for which they calculated the energies with a PBC calculation are summarized for several impinging growth units in Table 4. Various impinging growth units considered in these calculations are illustrated in Figure 5.

From this table, impinging growth unit B agrees best with the observed crystal structure predicting not only that the faces (010) and (130) should be most pronounced but that they should both be about equal in surface area. This seems to be the observed order of preferred faces as reported by Hamar and Harmar-Thibault (23). Unit B in figure 5 has the two chromium and the two boron atoms arranged in a pseudotetrahedron.

DISCUSSION AND CONCLUSIONS

A 3-step theory of crystal growth has been presented in this report. The steps of association, orientation, and attachment occur in that order during crystallization with the orientation step being the rate determining
one. From this, a working hypothesis results by which the relative areas of facets of crystals can be predicted from the calculated moments of momentum of the associated, impinging growth unit using the $\Gamma_{h k}$ of equation 22.

The qualitative results of the moment of momentum calculations for several impinging growth units in the crystal structures of sodium chloride, succinic acid, sucrose, and chromium boride are compared with the observed order of importance of crystal faces. From this comparison, it is possible to select a chemically reasonable impinging growth unit that agrees with the observations. This theory allows for events occurring in solution to contribute to regulating crystal growth. Crystal habits may not be only a consequence of the thermodynamics of the solid.

This proposed theory also provides alternative explanations for the mode of action of modifiers of crystal habits. Additive substances can adsorb onto the face of growing crystals as advocated by existing theories of crystal growth, but two additional modes are possible in the theory of this paper. The additives can adsorb onto the associated, impinging growth unit while it is still in solution and in this way modify the moments of momenta of this unit and thereby the resulting crystal habit. The additives can also modify the properties of the solution such as its viscosic or electrolytic properties to induce the formation of an altered impinging unit which will have different moments of momenta and an altered crystal habit.

The results of calculations on four crystals have been summarized in tables and figures. The results of this theory are as good as the predictions made by other methods. The method easily allows for the possibility of quantitative comparisons and more detailed refinements of
the structures of impinging growth-units when relative crystal face areas are available from experiments.

The modified model of crystal growth encouraged by this theory also suggests technological improvements in methods of crystal growth. Crystals of preferred orientations may be obtained if one is able to encourage the formation of appropriate associated, impinging growth-units in solution prior to crystallization. Such considerations may affect the growth of simple and compound semiconductors allowing desired crystal orientations to be more easily obtained. For example, large-area crystalline silicon from the catalytic decomposition of silicon compounds may be more easily obtained by selecting the decomposing compound or the gas flow conditions to encourage the formation of appropriate impinging growth-units. Similar considerations may assist in the growth of single crystals of GaAs in MOCVD systems and in epitaxial semiconductor growth studies.

The theory as presented assumes the existence of a unique impinging growth unit. In solutions there may be a statistical distribution of several impinging growth units. Also, the energies of attachment may alter the molecular arrangements within the growth units upon attachment. Thus, the molecules in the impinging growth unit need not have the same molecular arrangement as the final solid. Consideration of these two additional factors may improve quantitative agreement between predicted and observed crystal habits.

[A] and [B]	molar concentration of species A and B
$\mathrm{A}_{\boldsymbol{i}}$	pre-exponential factor in the rate constant expression
$A_{\text {hkl }}$	surface area of the hkl-face in a crystal
c	a constant of proportionality between the rate constant for disorientation and the moment of momentum
$\mathrm{d}_{\text {hkl }}$	distance between hkl-planes in the crystal unit cell
E_{a}	activation energy for formation of impinging unit
ΔG_{j}^{\neq}and $\Delta G^{\neq}{ }_{-1}$	free energy of activation for forward and reverse chemical reactions respectively
$\mathrm{J}_{\mathrm{hk} 1}$	moment of momentum for molecular model rotated about an axis through the center of mass and perpendicular to the hkl-face
k	Boltzman's constant
k_{i}	kinetic rate constants for forward chemical reactions
$\mathrm{k}_{\text {-1 }}$	kinetic rate constants for reverse chemical reactions
K	a constant equal to $\left(k_{4}\right)\left(k_{d} / k_{-3}\right)\left(k_{2} / c\right)\left(A_{1} / A_{-1}\right)$
M_{i}	mass of atom \mathbf{i}
MU	normalization factor for each model
r_{i}	covalent or ionic radius of atom \mathfrak{i}
$\mathrm{R}_{\mathrm{hk} 1}$	rate of growth of the hkl-face
T	absolute temperature
x_{1}	perpendicular distance from the hk 1 axis of rotation to atom \mathbf{i}
$\Gamma_{\text {hk } 1}$	ratio of the area of an hkl-face to the area of the largest or most prominent face.

ACKNOWLEDGEMENTS

The author wishes to thank Dr. Roger K. Crouch and the DDF of the NASA Langley Research Center for making available a research environment which encouraged the completion of this project begun at Longwood College.

APPENDIX 1: The Calculation of the Moment of Momentum

The moment of momentum for a collection of n particles is defined in physics texts (40) to be

$$
\begin{equation*}
\bar{J}=\sum_{i=1}^{n} \bar{x}_{i} \times m_{i} \bar{v}_{i} \tag{A1}
\end{equation*}
$$

where x_{i} is the perpendicular vector from the $i-t h$ particle to the axis of rotation.

Since

$$
\begin{equation*}
\bar{v}_{i}=\bar{\omega} \times \bar{x}_{i}, \tag{A2}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\bar{J}=\Sigma_{i}\left[m_{i} \bar{x}_{i} \times\left(\bar{\omega} \times x_{i}\right)\right] \tag{A3}
\end{equation*}
$$

which contains a triple cross product made up of moments and products of inertia, which are terms having the forms given below:

$$
\begin{equation*}
I_{i, x}=\sum_{i} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right) \tag{A4}
\end{equation*}
$$

and

$$
P_{x y}=\Sigma_{i} m_{i} x_{i} y_{i}
$$

In the case of an associated impinging unit, it is assumed to be a rigid collection of spherical atoms, each one of which has a uniform density. The contribution that each spherical atom makes to the total moment is small compared to that contributed by the rotation of these same atoms about the axis of rotation. This is because the distance from the axis of rotation, x_{i}, is large compared to the radius of each atom, r_{i}; and
these distances enter the calculation squared. The contribution of each individual atom to the moment is given by

$$
\begin{equation*}
2 / 5 m_{i} r_{i}{ }^{2} \tag{A5}
\end{equation*}
$$

where $m_{\mathbf{i}}$ is the atomic mass of the \mathbf{i}-th atom (40).

The contribution of each atom to the moment is the sum of its atomic component plus that arising by virtue of the rotation of this atom about the axis of rotation normal to the hkl-plane. The total moment for each atom is thus

$$
\begin{equation*}
J_{h k 1, i}=m_{i} x_{i}^{2}+2 / 5 m_{i} r_{i}^{2} \tag{A6}
\end{equation*}
$$

where r_{i} is the atomic radius and x_{i} is the perpendicular distance from the i-th atom to the axis of rotation.

The total moment for the hkl-plane is the sum over all the atoms in the model being considered, or

$$
\begin{equation*}
J_{h k T}=\Sigma_{i} m_{i}\left[x_{i}^{2}+2 / 5 r_{i}^{2}\right] \tag{A7}
\end{equation*}
$$

Since each model may have a different number of atoms, it is convenient to introduce a scale factor, MU, which scales the total moments to the number of atoms found in the crystallographic unit cell. This does not change the relative order or crystal faces within a model but does facilitate comparisons among models. As an example, if a model has four molecules while the crystallographic unit cell has only two, then the scale factor MU is $1 / 2$. Thus,
(A8)

$$
J_{h k 1}=(M U) \quad \sum_{i-1}^{n}\left(M_{1}\right)\left[\left(x_{i}\right)^{2}+(2 / 5)\left(r_{j}\right)^{2}\right]
$$

Equation $A 8$ is the same as equation 23 used in this report.

APPENDIX 2: Computer Program Listings Used for the Calculation of the Moments of Momenta

This appendix contains the listings of the computer programs used to calculate the moments of momenta described in this report. The first program computes the direction cosines to the normals of the selected crystallographic planes, and it computes the areas of those planes. The flow diagram for this program is given in figure 6.

The second program listed in this appendix uses the direction cosines computed for each crystallographic plane and the atomic positions of the model being considered to compute the moments of momenta. Lines beyond 2000 must be changed by the user for each space group and model. Use of this section eliminates the need to enter atomic parameters for atoms related by symmetry to the atoms of the first molecule entered. The flow diagram for this program is given in figure 7.

Program I: COMPUTABO SUPERFICIES

This program computes the direction cosines of the normals to selected crystallographic planes and calculates the areas of those planes.

```
100 REM FROGRAM=COMFUTABO SUPERFICIES by F.G. Earber, (c) 1984
110 REM Keysville, Virginia 23947
120 FEM
130 DIM H(S),K(S),L(J),R(3,3),RF(S)
140 REM *********data entry
150 PI=5.14159/180
160 INFUT "Do you wish the results printed (Y/N): ":Y直
170 INPUT "Enter unit cell lengths, a,b, %c: ";A,B,C
180 INFUT "Enter unit cell angles, alpha, betag & gamma: ":AA,BA,CA
190 IF Y婁="Y", THEN LFRINT "Unit Cell Farameters = "A;B;C;AA;EA;CA
200 AA=AA*FI:EA=BA*FI:CA=CA*FI
210 INFUT "Do you wish to enter coordinates of the points (Y/N): ";Z$
220 IF Z知`"Y" THEN 270
230 INPUT "Enter coords of first point, hi,k1,11: ";H(1),k(1),L(1)
240 INFUT "Enter coords of second point, h2,k2,12:":H(2),ト(2),L(2)
250 INFUT "Enter coords of third point, hS,kS,i\Xi: ":H(\Xi),K゙(З),L(\Xi)
260 GOTO 410
270 INFUT "Enter Miller indices [hkl] of plane: ":HX,KX,LX
280 IF Y$="Y" THEN LFRINT "**********************************---":LFRINT " rhk
1] = "HX:KX:LX
290 FOF I=1 TO 3
BOO H(I)=0!:K゙(I)=0!:L{I)=0!:NEXT I
\Xi10 IF LX<>O THEN \Xi70
\Xi20 IF HX<>O THEN S50
SBO IF KX=0 THEN FRINT "ERRDR!! [hkl] all zero!!":GDTO 270 ELSE K(1)=1/KX:H(2)=1
:K゙(2)=1/k゙X:K゙(ふ)=1/KX:L(\Xi)=1
\Xi40 GOTO 410
S5 IF KX<`O THEN H(1)=1/HX:K(2)=1/KX:H(J)=1/HX:L(3)=1 ELSE H(1)=1/HX:H(2)=1/HX:
K゙(2)=1:H(\Xi)=1/HX:L(3)=1
※60 GOTO 410
370 IF HX=0 GOTD 400
Z80 IF KX=0 THEN H(1)=1/HX:H(2)=1/HX:K(2)=1:L(\Xi)=1/LX ELSE H(1)=1/HX:K(2)=1/KX:L
(3)=1/LX
390 GOTO 410
400 IF K゙X< O THEN H(1)=1:K゙(1)=1/KX:K(2)=1/K゙X:L{S)=1/LX ELSE L (1)=1/LX:K(2)=1:L(2
)=1/LX:H(\Xi)=1:L(\Xi)=1/LX
410 FOR I=1 TO S
420 REM LFFINT H(I),K(I),L(I)
4ड0 H(I)=H(I)*A:K(I)=K(I)*B*SIN(CA):L(I)=L(I)*C
440 AT=L(I)*COS (EA)
450 BT=L (I)*COS (AA)
460 CPS=AT*AT+ET*ET+2*AT*BT*CDS(CA)
470 L =SQR(L (I)*L(I)-CPS)
480 IF L(I)<0 THEN L (I)=-L ELSE L(I)=L
490 REM LPRINT H(I),K(I),L(I)
500 NEXT I
5 1 0 ~ R E M ~ * * * * * * * * * * c a l c u l a t e ~ v e c t o r s ~
520 FDR I=2 TO S
530 R(I,1)=H(I)-H(1):R(I,2)=K`(I)-K(1):R(I,3)=L(I)-L{1)
540 NEXT I
550 R(1,1)=R(3,1):R(1,2)=R(3,2):R(1,3)=R(3,3)
```



```
570 RP(1)=R(2,2)*R(1,3)-R(1,2)*R(2,3)
590 RP(2)=R(1,1)*R(2,3)-R(2,1)*R(1,3)
590 RP(3)=R(2,1)*R(1,2)-R(1,1)*R(2,2)
600 IF HX=0 OR IF KEX=0 OR IF LX=0 THEN 620
610 FOR I=1 TO S:RP(I)=RP(I)/2:NEXT I
620 AR=SQR(RF(1)*RP(1)+RP(2)*RP(2)+RP(3)*RF(3))
6JO REM *********print results
640 IF Z$<`"Y" THEN 680
```



```
660 IF X$="Y", THEN AR=.5*AR
670 GOTO 720
680 AR=.5*AR
690 IF HX=0 THEN AR=2*AR : GOTO 720
700 IF K゙X=0 THEN AR=2*AR : GOTO 720
710 IF LX=0 THEN AF=2*AR
720 FRINT
730 FRINT "Area of face bounded by points: "
740 FDF I=1 TO \Xi
750 PRINT H(I),F(I),L(I)
760 NEXT I
770 FRINT " is "AR" square Angstroms"
780 FRINT
70 FRINT "The vector perpendicular to the face is "
800 FOR I=1 TD S:F:F(I)=FF(I)/AF:NEXT I
810 FRINT " N= "RP{1)"i + "RF(2)"j + "RF(3)"F"
820 FRINT
830 IF Y&<`"Y", GOTO 900
840 LPFINT :LFFINT "Area of face bounded by points: "
850 FOR I=1 TO \Xi:LFRINT H(I),K(I),L(I):NEXT I
860 LFFINT " is "AR" square Angstroms."
870 LFRINT :LFRINT "The vector perpendicular to the face is "
880 LFRINT " N= "RP(1)"i + "RF(2)"j + "RP(\Xi)"k"
890 LFFINT
900 INFUT "Another superficiei calculation (Y/N): ";X$
910 IF X$="Y", THEN 210
920 END
```


Program II: MOMENTA MOMENTORUM

This program computes the moments of momentum for a collection of atoms about normals to selected crystallographic planes.
100 REM FROGRAM = MOMENTA MOMENTOFUM by F. G. Earber
110 FEM (c) Keysville, VA 23947, March 1984


```
130 ND=200
140 DIM H(ND),K゙(ND),L(ND),D(ND),M(ND),MU(ND),F1(ND),F2(ND),RE(ND)
150 DIM RF(ND), FN(ND),IN(ND),AW (ND),AF(ND), S$ (ND), A$ (ND)
160 PI=180/5.14159
170 FRINT "FROGRAM: Momenta Inertiae by F.G. Earber, (c)1984"
180 INFUT "Enter Y if you wish to print the resulte: ";Y'$
190 INPUT "Enter D if you wish disc input of structure: ":Y1$
200 IF Y1击="D", THEN GOSUE 1150
210 INFUT "Enter title";T古
220 INFUT "Enter unit cell lengths, a,b,&&:";A,B,C
230 INFUT "Enter unit cell angles; alpha,beta,&gamma:":AA,BE,CC
240 INFUT "Enter number of atoms:":N
250 INFUT "Enter number of types of atoms:";NT
260 FOR I=1 TO NT
270 PRINT "For atom type # "I:INFUT " Enter atomic symbol, atomic weight, and ato
mic radius";S$(I),AW(I),AR(I):NEXT I
280 CLS:FRINT:FRINT
290 FRINT "###################################################
3OO FRINT USING "" \
\Xi10 FRINT "##################################################"
\Xi20 PRINT "A= "A" B= "B" C= "C
3BO FRINT "alpha= "AA" beta= "BE" gamma= "CC
340 FRINT "Number of atoms= "N
350 FOR I=1 TO NT:FRINT "Atom # "I" is "ASक(I)" with wt ="AW(I)" and radius ="AR
(I):NEXT I
\Xi60 INFUT "Are these values correct (Y/N)?";X$
30 IF X&<>"Y", GOTD 210
380 IF Y&="Y", THEN GOSUB 940
390 AA=AA/FI:EA=EE/FI:CA=CC/FI
400 IF Y1F="D". THEN GOSUB 1400
410 FOR I=1 TO N
420 FRINT "Enter [hkl] for atom #"I;:INFUT HT,&゙T,LT
430 H(I)=HT*A:K(I)=KCT*E:L(I)=LT*C
440 FRINT "Enter type number for atom # "I::INFUT J
450 PRINT "Enter multiplier of atom #"I;:INFUT MU(I)
460 M(I)=AW(J):D(I)=AR(J):A$(I)=S$(J)
470 FRINT :FRINT
480 PRINT " *** atom #"I" is "A&(I)" ***"
490 FRINT "[hkl]= "HT,KT,LT
500 PRINT "mass= "M(I)" g/mole"
510 FRINT "multiplier= "MU(I)
520 PRINT "atomic radius= "D(I)" Angstroms"
5OO FRINT
540 INFUT "Are these values correct (Y/N)?";X$
550 IF X$<>"Y" GOTO 420
560 IF Yゅ="Y", THEN GOSUE 1050
5 7 0 ~ N E X T ~ I ~
50 INPUT "Enter Y if you wish to store data as file: ";Y2$
590 IF Y2$="Y", THEN GOSUB 1400
600 INPUT "Enter the {hkl} vector:":01,02,0S
G10 INPUT "Enter [hkl] for origin:";HT,KT,LT
620 H(O)=HT*A:K(O)=KT*B:L(O)=LT*C
630 INPUT "Enter [htil] for terminum:";HT2,אT2,LT2
640 H2=HT2*A:K゙2=FT2*H:L2=LT2*C
650 FRINT "For vector {hkl} = ":01.02.0S
660 PRINT "Axis is from [hkl]= "HT,k:T,LT
670 PRINT " to [hkl]= "HT2,kT2,LT2
680 INPUT "Are these coordinates correct (Y/N)?";X$
```

```
690 IF X車\"Y",GOTO 610
700 IF Yक="Y", THEN GOSUE 1010
7 1 0 ~ F E E M ~ * * * * * * * * * * * * * * * * * * * * * * * * ~ C a l c u l a t i o n ~
720 IT=0!:IF1=0:IF2=0:IFS=0
730 R1(O)=H2-H(O):R2(O)=F2-K(O):RE(O)=L2-L(O)
740 DR=SQR(F1(0)*R1(0)+R2(0)*R2(0)+RS(0)*RS(0)+2*F1(0)*R2(0)*COS(CA)+2*F1(0)*RS(
0)*\operatorname{COS (BA)+2*R2(0)*RS (0)*COS (AA))}
750 Fi'(O)=F1(O)/DR:R2(O)=R2(O)/DF:RE(O)=RE(O)/DR
760 FOR I=1 TO N
770 R1(I)=H(I)-H(O):F2(I)=K゙(I)-EC(O):RT(I)=L(I)-L(O)
780 FR(I)=R1(I)*R1(I)+R2(I)*R2(I)+RS(I)*RS(I)+2*R1(I)*F2(I)*COS(CA)+2*R2(I)*R3(I
)*COS (AA)+2*R1 (I)*RS(I)*COS(BA)
750 FN(I)=F1(I)*R1(O)+R2(I)*R2(0)+FS(I)*FS(O)+F2(I)*F1(O)*COS(CA)+RS(I)*R1(O)*CO
```



```
S(AA)
800 IN(I)=MU(I)*M(I)*{.4*D(I)*D(I)+RF(I)-RN(I)*RN(I))
810 IT=IT+IN{I)
820 F1=MU(I)*M(I)*R1(I)*R2(I):F2=MU(I)*M(I)*R2(I)*RS(I):FS=MU(I)*M(I)*FI(I)*RS(I
)
8S0 IP1=IP1+F1:IF2=IF2+F2:IFS=IFS+FS
840 FEM LFFINT I,FF(I),FN(I),F1,F2,FS
950 REM LFRINT F1(I),F2(I),FIS(I),DR
860 NEXT I
870 PRINT T$,"I= ";IT
880 PRINT "P(xy) = ";IF1; "F(yz) = ";IF2; "P(xz) = ";IFS
890 IF Y$="Y", THEN GOSUB 1110
900 INPUT "Do you wish another calculation of I (Y/N):";Z1$
910 IF Z1$="Y" THEN GOTO 600
920 GOTO 1460
90 FEMM ****************************** Frint Out Initial Input Data
940 LPRINT "##################################################
950 LPRINT USING " \ \";T考
960 LFRINT "#################################################"
970 LPRINT "A= "A" E= "B" C= "C
980 LFFINT "alpha= "AA" beta= "EE" gamma= "CC
990 FOR I=1 TO NT:LPRINT "Atom # "I" is "AS#(I)" with wt ="AW(I)" and radius ="A
R(I):NEXT I
1000 RETURN
1010 LFRINT :LFRINT " XXXXXXX MOMENT OF INERTIA ABOUT {HKIJ="Q1;Q2:QS" XXXX
XXX"
1020 LFRINT USING "Axis from [hkl]=+#.#### +#.#### +#.#### to [hkl]=+#.#### +#.#
### +#.####";HT,KT,LT,HT2,KT2,LT2
1030 LPFINT " is"
1040 RETURN
1050 LFRINT " ***** atom #"I" ****"
1060 LFFINT "[hKl]= "HT,KT,LT
1070 LFFINT "mass= "M(I)" g/male"
1080 LFRINT "multiplier= "MU(I)
1090 LFRINT "atomic radius= "D{I)" Angstroms"
1100 RETURN
1110 LPRINT ;: " "I = "IT:LPRINT "P(xy)=";IF1;"F(yz)=";IP2;"P(x:z)=";IPE
1120 REM LPRINT "I of atom #"I" = "IN(I)
1130 RETURN
1140 REM *********************** Disci Input of Data *****************************
1150 INFUT "Enter data file name: ";F多
1160 GPEN Fक FOR INPUT AS #1
1170 INFUT #1, T$:INFUT #1,A,B,C,AA,BA,CA,N,NT
1180 FOF I=1 TO N:INPUT #1,H(I),K゙(I),L(I),M(I),MU(I),D(I),A⿻(I):NEXT I
```


1200 REM GOSUE 2000

$2020 H(N+1)=H(1)+A / 2: K(N+1)=K(1): L(N+1)=L(1)+C / 2: H(N+2)=H(2)+A / 2: K(N+2)=k(2): L(N$
$+2)=\mathrm{L}(2)-\mathrm{C} / 2$
$2030 \mathrm{~N}=2 \mathrm{NN}$
$2040 H(N+1)=H(1): K(N+1)=K(1): L(N+1)=L(1)+C: H(N+2)=H(2)+A / 2: K(N+2)=K(2): L(N+2)=L($
2) $+\mathrm{C} / 2$
$2050 \mathrm{~N}=\mathrm{N}+2$
$2060 H(N+1)=H(1)+A: K(N+1)=K(1): L(N+1)=L(1)+C: H(N+2)=H(2)+A: K(N+2)=K(2): L(N+2)=L($
2): $H(N+3)=H(1)+A: K(N+J)=K(1): L(N+3)=L(1)$
$2070 \mathrm{~N}=\mathrm{N}+\mathrm{S}$
2080 FOR $I=10$ TO 18
$2090 H(I)=H(I-9) \quad: K(I)=K(I-9)+B / 2: L(I)=L(I-9)$
$2100 \mathrm{M}(\mathrm{I})=M(I-8): M U(I)=M U(I-B): D(I)=D(I-8): A+(I)=A 末(I-B)$
2110 NEXT I
$2120 \mathrm{~N}=\mathrm{N}+9$
2130 FOR $I=19$ TO 27
$2140 H(I)=H(I-18): K(I)=K(I-18)+B: L(I)=L(I-18): M(I)=M(I-18): M U(I)=M U(I-18): D(I)=D$

2150 NEXT I
$2160 \mathrm{~N}=\mathrm{N}+9$
2170 FOR $I=3$ TO 27 STEF 2
$2180 M(I)=M(1): M U(I)=M U(1): D(I)=D(1): A$ ($(I)=A ⿻=A(1)$
$2170 \mathrm{M}(I+1)=M(2): M U(I+1)=M U(2): D(I+1)=D(2): A(I+1)=A$ (2 (2)
2200 NEXT I
2210 GOTO 2330
$2220 \mathrm{REM} * S u b r o u t i n e ~ t o ~ s e l e c t ~ i o n s * * * * * * * * * * * * * * * * *$
$2230 H(1)=H(3): K(1)=K(3): L(1)=L(3): M(1)=M(3): M U(1)=M U(3): D(1)=D(\Xi): A(1)=A(3)$
$2240 H(2)=H(4): K(2)=K(4): L(2)=L(4): M(2)=M(4): M U(2)=M U(4): D(2)=D(3): A(2)=A(4)$
$2250 H(3)=H(10): K(3)=K(10): L(3)=L(10): M(\Xi)=M(10): M U(3)=M U(10): D(3)=D(10): A(S)=A$
\$(10)
$2260 H(4)=H(11): K(4)=K(11): L(4)=L(11): M(4)=M(11): M \cup(4)=M \cup(11): D(4)=D(11): A(4)=A$事（11）
$2270 H(5)=H(16): K(5)=K(16): L(5)=L(16): M(5)=M(16): M U(5)=M U(16): D(5)=D(16): A(5)=A$叓（16）
$2290 H(6)=H(17): K(6)=K(17): L(6)=L(17): M(6)=M(17): M U(6)=M U(17): D(6)=D(17): A a_{0}(6)=A$事（17）
$2290 H(7)=H(21): K(7)=K(21): L(7)=L(21): M(7)=M(21): M U(7)=M U(21): D(7)=D(21): A(7)=A$ \＄（21）
$2500 H(8)=H(24): K(8)=K(24): L(8)=L(24): M(8)=M(24): M \cup(8)=M \cup(24): D(8)=D(24): A(8)=A$ \＄（24）
$2 \Xi 10 H(9)=H(12): K(9)=K(12): L(9)=L(12): M(9)=M(12): M \cup(9)=M U(12): D(9)=D(12): A(9)=A$ क（12）
$2520 \mathrm{~N}=9$
2350 RETURN

REFERENCES

1. J. D. H. Donnay; and D. Harker: "A New Law of Crystal Morphology Extending the Law of Bravais," Am. Mineralologist 22 (1937) 446.
2. J. W. Gibbs: Collected Works (Longmans, Green and Company, New York) (1928). Footnote page 325.
3. G. Wulff: Z. Krist. 34 (1901) 449.
4. G. H. Gilmer; and P. Bennema: "Computer Simulation of Crystal Surface Structure and Growth Kinetics," J. Crystal Growth, 13/14 (1972) 148.
5. G. H. Gilmer: "Computer Simulation of Crystal Growth," J. Crystal Growth 42 (1977) 3.
6. P. P. von Veimarn: "The Precipitation Laws," Chem. Rev. 2 (1925) 217.
7. J. M. Bermond; and J. A. Venables: "A Model for the Growth Shape of Crystallites on Surfaces," J. Crystal Growth 64 (1983) 239.
8. I. N. Stranski; and R. Kaischev: "Equilibrium Forms of Homeopolar Crystals," Z. Krist. 78 (1931) 373.
9. I. N. Stranski; and R. Kaischev: "Crystal Growth and Formation of Nuclei," Physik. Z. 36 (1935) 393.
10. W. K. Burton; and N. Cabrera: "Crystal Growth and Surface Structure," Disc. Faraday Soc. 5 (1949) 33.
11. W. K. Burton; N. Cabrera; and F. C. Frank: "Growth of Crystals and the Equilibrium Structure of Their Surfaces," Phil. Trans. Roy. Soc. (London) 243A (1951) 299.
12. H. E. Buckley: Crystal Growth, John Wiley \& Sons, N.Y. (1951).
13. P. Hartman: "Equilibrium Forms of Some Ionic Crystals," Neues Jahrb. Mineral. Monatsh. (1959) 73.
14. G. A. Wolff; and J. G. Gualtieri: "PBC (Periodic Bond Chain) Vector, Critical Bond Energy Ratio, and Crystal Equilibrium Form." Am. Mineralogist 47 (1962) 562.
15. W. Kleber: "Structure Relations and Principal Bond Vectors," Tonind.-Ztg. Keram. Rundsch 86 (1962) 251.
16. H. Honigmann: "Equilibrium Forms and Growth Forms of Crystals," Bull. Soc. Franc. Mineral Crist. 86 (1963) 408.
17. H. Hilton: Mathematical Crystallography, Dover Publishers, N.Y., (1963), Chapter XI.
18. A. I. Kitaigorodsky: Molecular Crystals and Molecules, Academic Press, N.Y. (1973).
19. P. Hartman; and W. G. Perdok: "On the Relations Between Structure and Morphology of Crystals I." Acta. Cryst. 8 (1955) 49.
20. P. Hartman; and P. Bennema: "The Attachment Energy as a Habit Controlling Factor," J. Crystal Growth 49 (1980) 145.
21. D. Aquilano; M. Franchini-Angela; M. Rubbo; G. Mantovani; and G. Vaccani: "Growth Morphology of Polar Crystals - A Comparison Between Theory and Experiment in Sucrose, " J. Crystal Growth 61 (1983) 369.
22. Michael Saska; and Allan S. Myerson: "The Theoretical Shape of Sucrose Crystals from Energy Calculations," J. Crystal Growth 61 (1983) 546.
23. R. Hamar; and S. Hamar-Thibault: "Observations sur la Croissance du Compose CrB," J. Crystal Growth 63 (1983) 365.
24. R. J. Davey; J. W. Mullin; and M. J. L. Whiting: "Habit Modification of Succinic Acid Crystals Grown from Different Solvents," J. Crystal Growth 58 (1982) 304.
25. H. J. Human; J. P. van der Eerden; L. A. M. J. Jetten; and J. G. M. Odekerken: "On the Roughening Transition of Biphenyl: Transition of Faceted to Non-Faceted Growth of Biphenyl for Growth from Different Organic Solvents and the Melt," J. Crystal Growth 51 (1981) 589.
26. V. V. Podlinsky; and V. G. Drykin: "Surface Structure Change of a Crystal in Solution," J. Crystal Growth 62 (1983) 532.
27. C. S. Strom; and W. M. M. Heijnen: "Computerized PBC Analysis of Weddellite," J. Crystal Growth 51 (1981) 534.
28. J. J. Burton: "Configuration, Energy, and Heat Capacity of Small Spherical Clusters of Atoms," J. Chem. Phys. 52 (1970) 345.
29. J. J. Burton: "Densely Packed Small Clusters of Atoms," Nature 229 (1971) 335.
30. M. Hoare; and P. Pal: "Physical Cluster Mechanics. Statics and Energy Surfaces for Monatomic Systems." Advan. Phys. 20 (1971) 161.
31. M. R. Hoare; and P. Pal: Statics and Stability of Small Cluster Nuclei," Nature (London), Phys. Sci., 230 (1971) 5.
and
M. R. Hoare; and P. Pal: "Geometry and Stability of Spherical fcc. Microcrystallites," Nature (London), Phys. Sci., 236 (1972) 35.
32. M. Hoare; and P. Pal: "Statistics and Stability of Small Assemblies of Atoms," J. Crystal Growth 17 (1972) 77.
33. D. Bonchev; O. Mekenyan; and H. Fritsche: "An Approach to the Topological Modeling of Crystal Growth," J. Crystal Growth 49 (1980) 90.
34. C. Kittel: Intro. to Solid State Physics, Third Edition, John Wiley and Sons, Inc., N.Y. (1966).
35. A. Julg; and B. Deprick: "The Influence of Glycine, According to pH , Upon the Growth Habit of NaCl and KI, in Aqueous Solution," J. Crystal Growth 62 (1983) 587.
36. J. D. Birchall; and R. J. Davey: "The Crystallization of Sodium Chloride from Aqueous Solution in the Presence of Polysaccharides," J. Crystal Growth 54 (1981) 323.
37. J. S. Broadley; D. W. J. Cruickshank; J. D. Morrison; J. M. Robertson (FRS) ; and H. M. M. Shearer: "Three-Dimensional Refinement of the Structure of -Succininc Acid," Proc. Roy. Soc. (London) 251A (1959) 441.
38. G. M. Brown; and H. A. Levy: "Further Refinement of the Structure of Sucrose Based on Neutron-Diffraction Data," Acta. Cryst. B29 (1973) 790.
39. A. F. Wells: "Crystal Habit and Internal Structure. I, II, and III." Phil. Mag. 37 (series \#7) (1946) 184, 217, 605.
40. Grant R. Fowles: Analytical Mechanics. Holt, Rinehart and Winston, Inc. (1962).

Table 1
Summary of Calculations for Sodium Chloride

	$\underset{A}{\text { MODEL }}$		$\underset{B}{\text { MODEL }}$		$\begin{gathered} \text { MODEL } \\ C \end{gathered}$		$\begin{gathered} \text { MODEL } \\ C \end{gathered}$		EXPERIMENTALLYOBSERVED
hk1	${ }^{\text {J }}$ hk 1	「hk1	$J_{\text {hk }}$	$\Gamma_{\text {hk } 1}$	$\mathrm{J}_{\mathrm{hk}} 1$	$\Gamma_{\text {hk } 1}$	$\mathrm{J}_{\mathrm{hk} 1}$	「hkl	
100	661	0.33	682	0.86	1403	1.00	1523	0.78	
010	661	0.33	1145	0.51	2593	0.54	1523	0.78	\{100\}
001	219	1.00	682	0.86	1403	1.00	1681	0.71	
110	661	0.33	914	0.64	1998	0.70	1523	0.78	[SOMETIMES $\{111\}$ WITH
101	440	0.50	583	1.00	1403	1.00	1311	0.91	ADDITIVES PRESENT]
011	440	0.50	914	0.64	1998	0.70	1311	0.91	
111	514	0.43	771	0.76	1800	0.78	1187	1.00	
201	573	0.38	603	0.97	1403	1.00	1322	0.90	
210	661	0.33	775	0.75	1641	0.85	1523	0.78	
102	307	0.71	603	0.97	1403	1.00	1417	0.84	
211	587	0.37	693	0.84	1601	0.88	1258	0.94	
112	366	0.60	654	0.84	1601	0.88	1240	0.96	
301	617	0.36	623	0.94	1403	1.00	1364	0.87	
310	661	0.33	728	0.80	1522	0.92	1523	0.78	
311	621	0.35	670	0.87	1511	0.93	1326	0.90	
321	630	0.35	772	0.76	1743	0.80	1326	0.90	
PREDICTED PROMINENT FACE					\{NON				

Table 2
Summary of Calculations for -Succinic Acid

	$\underset{\text { MODEL }}{ }$	MODEL B	MODEL C	$\begin{gathered} \text { MODEL } \\ \text { D } \end{gathered}$	$\underset{E}{\text { MODEL }}$	MODEL F	PBC		
hkl	Jhk1 「hk1	Jhk 1 Thk 1	Jhk1 「hk1	Jhkl Thkl	Jhk 1 Thk 1	Jhk 1 Thk 1	Calcn ${ }^{24}$	Experimentally aqueous	isopropanol
110	10321.00	34580.07	$3512 \quad 0.44$	25860.54	50640.66	36620.81	(1)	(4) +	
010	14480.71	43330.06	$4701 \quad 0.33$	14081.00	$4660 \quad 0.72$	53140.56	(2)	(2) +	(2)+
001	15360.67	2421.00	15401.00	33590.42	33591.00	37020.80	(3)	(1) +++	(1) +++
0 2-1	10680.97	31490.08	$3270 \quad 0.47$	20840.68	42860.78	36520.81	(4)		
1 1-1	11080.93	14350.17	19630.78	30760.46	39290.85	29561.00	(5)	(3) +	
100	18920.55	$2494 \quad 0.10$	$3598 \quad 0.43$	37330.38	54390.62	54390.54	n.a.		
PREDICTED PROMINENT FACE	$\{110\}$	\{001\}	\{001\}	\{010\}	\{001\}	$\{11-1\}$	$\{110\}$	\{001\}	\{001\}

Table 3
Summary of Calculations for Sucrose

Table 4
Summary of Calculations on Chromium Boride

	MODEL.A		$\begin{gathered} \text { MODEL } \\ B \end{gathered}$		$\begin{aligned} & \text { MODEL } \\ & C \end{aligned}$		$\begin{gathered} \text { MODEL } \\ \mathrm{D} \end{gathered}$		MODELE		PBC ${ }^{23}$	Experimentally Observed
nk1	Jhk 1	「hkl	Jhk1	Thk 1	Jhk 1	Thk 1	Jhk 1	Thk 1	Jhk 1	Thk 1		
010	127	1.00	358	1.00	401	0.68	266	0.56	816	0.34	1.000 (1)	(1)++
110	223	0.57	452	0.79	371	0.73	411	0.36	460	0.60	1.446	
021	166	0.77	515	0.70	359	0.76	498	0.30	762	0.36	1.595	
111	255	0.50	577	0.62	272	1.00	750	0.20	599	0.46	1.372 (3)	(3) +
130	147	0.86	376	0.95	363	0.75	148	1.00	389	0.70	1.263 (2)	(2)++
041	139	0.91	412	0.87	370	0.74	334	0.44	697	0.39	1.421	
131	162	0.78	475	0.75	309	0.88	265	0.56	274	1.00	1.400	
$100 / 200$	319	0.40	546	0.66	498	0.55	1290	0.11	1882	0.15	1.395 (4)	
$001 / 002$	319	0.40	506	0.71	501	0.54	1429	0.10	2301	0.12	1.509	
$011 / 022$	223	0.57	592	0.60	374	0.73	847	0.17	1120	0.24	1.553	
101	319	0.40	526	0.68	363	0.75	1359	0.11	1818	0.15	n.a.	
PREDICTED PROMINENT FACE			\{01						,		\{010\}	$\{010\}$

Figure 1: Reaction Coordinate Dlogram for the Association Step

Figure 21 Trlal Structures Used for Sodlum Chloride

Flgure 31 Trial Structures Used for β-Suecinlc Acid

Model A

Model B

Mode) C

Madel D

Model

Figure 4: Trial Structures Used for Sucrose

Figure 51 Triol Structures Used for Chromlum Borlde

Flgure 61 flowchart for progran Computabo Superfleles, page 1

Figure 6: flowchert for progrom Computabo Superflcles, page 2

Figure 7: flowchart for progran Momenta Monentorun, page 1

National Aeronautics and Space Administration

Washington, D.C.
20546
Official Business
Penalty for Private Use, $\$ 300$

