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PREFACE

The Second Symposium on Nonlinear Constitutive Relations for High Tempera-
ture Applications, sponsored by the NASA Lewis Research Center, was held at
Cleveland, Ohio on June 15:17, 1984. Some one-hundred participants and attend-
ees representing NASA, other government agencies, universities, and industry
were in attendance. The purposes of the symposium were (1) to review the
state-of-the-art in nonlinear constitutive modeling of high-temperature mate-
rials, (2) to identify needs for future research and development in this area,
and (3) to document and disseminate the research progress and new technology
developed to date.

One of the specific goals of NASA is to foster techno]ogicé] development of
analytical/experimental methodologies for improved design of gas turbine engine
structures and components and space shuttle main engine structures. To support
these technologies, both NASA and the aerospace industry recognize that there
is considerable development work yet needed in the area of nonlinear constitu-
tive relations for high-temperature applications. This has become an increas-
ingly critical need with the recent advances in high-temperature materials
technology in response to new demands on material performance. NASA Lewis, in
cooperation with industry, universities, and other government agencies, 1is
supporting this technology development, some of which is reported in this sym-
posium publication. The Symposium then served not only to foster this techno-
Togical development, but also act as a common forum for all industries with a
commonality of interrelated activities and interests relating to nonlinear con-
stitutive model/experimental development for material characterization at
elevated temperature.

The Symposium was organized into the following six sessions:

I. Constitutive Modeling 1
II. Constitutive Modeling IT
III. Numerical Methods
- IV, .Matertal Testing ,
V. Structural Applications
VI. Panel Discussion

There were a total of twenty-one papers presented in the five technical
sessions. The papers and the authors are grouped by session in the Contents.

I wish to thank the session chairpersons, authors and speakers, and
panelists whose efforts contributed to the technical excellence and success of
the Symposium. I am also grateful to the Lewis staff for their help before
and during the Symposium. : :

R. L. Thompson
Symposium Chairman
NASA Lewis Research Center
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A SURVEY OF UNIFIED CONSTITUTIVE THEORIES®*

K.S. Chan and U.S. Lindholm
Southwest Research Institute

San Antonio, Texas 78284

S.R. Bodner
Technion - Israel Institute of Technology
Haifa, Israel

K.P. Walker
Engineering Scientific Software, Inc.
Smithfiled, Rhode Island 02906

A literature survey has been conducted to assess the state—of-the—art of
time~temperature dependent elastic—viscoplastic constitutive theories which
are based on the unified approach. This class of constitutive theories is
characterized by the use of kinetic equations and internal variables with
appropriate evolutionary equations for treating all aspects of inelastic de—
formation including plasticity, creep, and stress relaxation. The review
identifies more than ten such unified theories which are shown to satisfy the
uniqueness and stability oriteria imposed by Drucker’s postulate and Ponter’s
inequalities., These theories are compared on the basis of the types of flow
law, kinetic equation, evolutionary equation of the internal variables, and
treatment of tempersture dependence. The similarities and differences of
these theories are first outlined in terms of mathematical formulations and
then illustrated by comparisons of theoretical calculations with experimental
results which include monotonic stress—strain curves, cyclic hysteresis loops,
creep and stress relaxation rates, as well as thermomechanical loops. Numer—
ical methods used for integrating these stiff time—temperature dependent con-
stitutive equations are also briefly reviewed.

INTRODUCTION

Constitutive theories based on the classical concepts of plasticity and
creep generally decompose the inelastic strain rate into a time—-indepeandent
plastic strain rate and a time-dependent creep rate with independent constitu—
tive relations describing plastic and creep behavior. While this approach can
be rationalized on historical grounds and perhaps on computational conve-
nience, experimental evidence collected on structural alloys at elevated tem—
perature indicates inherent time—dependency and creop/plasticity interactions
[1]. This suggests that inelastic deformation might be primarily comtrolled
by & single overall mechanism and should be treated in a unified manner,

In recent years, a number of formulations of elastic-viscoplastic con-
stitutive equations have been presented in the engineering literature. Suckh
equations are sometimes referred to as "unified" since inelastic deforma-
tions are represented and treated by a single kinetic equation and a discrete

* This work was performed under NASA Contract No. NAS3-23925.
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set of internal variables. In this context, creep, stress relaxatiom, and
plastic flow are different manifestations of time—dependent inelastic deforma-
tions under particular loading conditions with consequsntly different response
characteristics.

There arec more than ten unified constitutive theories in the literature.
These constitutive equations have some common properties and some ossential
differences which have been reviewed rocently by Walker [2]. Since then,
there have been more advances in the development of the unified theories. The
purpose of this survey is to update Walker's p:evioui work by reviewing the
state—of-the—art and the numerical integration techmiques for these unified
theories. This survey also serves to identify areas for further model devel-
opments.

The unified theories which are reviewed in this survey include those of
Walker [2], Bodner and Partom [3,4], Miller [5], Krieg, Swearengen and Rhode
{61, Chaboche [7], Robinson [8], Hart and co-workers [9], Stouffer and Bodner
[10], Lee and Zaverl [11], Ghosh [12], and Kagawa and Asada’s modification of
Miller’s model [13].

GENERAL CHARACTERISTICS OF UNIFIED CONSTIITUTIVE EQUATIONS
FOR ELASTIC-VISCOPLASTIC MATERIALS

Constitutive equations for elastic-viscoplastic material could be formu-
lated either with or without the use of = yield criterion. A basic assumption
for this class of constitutive theories is that in the range where inelastic

strains are present, the total strain rate &j; can be divided into elastic aand
inelastic components which are both nonzero, 1i.e.

. - 2 © ]
843 &3 + iij _ (1)
This equation is applicable for the small strain case and a similar decompo-
sition is assumed to hold for the deformation rates in the case of large
strains. Those are equivalent to strain rates if the strains are small.

For the small strain case considered here, tho elastic strain rate is
given by the time derivative of Hooke’s Law. An important question related to
Equation (1) is an appropriate definition of éip. Ono possibility is to de-
fine éi as the total strain rate contribution %hat is bothk thermodynamically
and geometrically irreversible , i.e., non—elastic in all respects. An alter—
native definition of the incremental plastic strain is the residual strain
upon loading and unloading from a stress increment. This seems to be the de-
finition adopted by E. H, Lee in his treatment of large plastic strains, see
0.g. [14]. Since non—-elastic strains are also generated during unloading,
constitutive equations based on this definition would be different than in the
former case. Each approach seems possible, but the proper definition and use
of the iip term should be indicated and be consistent with the constitutive

eqnttions{



The expression "unified" applied to such theories is generally takea to
mean that all aspects of inelastic behavior such as plastic flow, creep, and
stress relaxation are included in the &;; function aand are particular response
characteristics for different loading histories. This broad defimition of
"snified" would admit theories with and without a yield criterion and alterna—
tive specifications of éiP. Separation of the nom—elastic strain rate into
geometrically reversible {anelastic) and non-reversible components could be 2
convenient procedure and does not detract from the "unified" concept.

Constitutive theories which are formulated without the use of a yield
criterion include that of Bodner and his associates [3,4], Walker [2], Miller
(5], and Krieg, Swearengen and Rhode [6]. Since these models do not contain a
completely elastic regime, the function that describes the inelastic strain
rate should have the property that the inelastic strain rate be very small for
low stress levels.

For theories with a yield criterion, 519 is identically zero until an
invariant function of the stress reaches a prescribed value; the function, by
definition, is independent of strain rate. For stresses at or exceeding the
yield value, Equation (1) applies and ii? and the stress o;; are function-
ally related. The fully elastic state, 1i.co. iif = 0, would apply only for
stross states less than the rate independent yield value, and loading and un-
loading paths above that are controlled by the loading conditions through the
constitutive equations. Theories of this type have been developed by Perzyna
[15] for the case of isotropic hardening and by Chaboche [7], Robinson (8],
and Lee and Zaverl [11] for the case of both isotropic and directional harden—
ing.

All the unified models are formulated on the basis of internal variables
which depend on the loading history. The essential features of these unified
theories are: (1) a flow law which functional form depends on the method of
treatment of directional (kinematic) hardening, (2) a kinetic equation which
is the temperature dependent functional relationship between the strain rate
and stress invariants and includes internal variables, and (3) a set of evolu~
tion equations for describing the growth of the internal variables. Hers, the
internal variables are used to represent the current resistance to inelastic
flow of the deformed solid. Two deforming solids with identical values of
their internal variables would have identical inelastic responses under the
same imposed stress state. Both the choice and the number of internal vari-
ables vary with the unified models.. Most of the umified models use two inter—
nal variables or one variable with two compoments: one to represent isotropic
hardening and another to represent directional (kinematic) hardening. In most
models, the isotropic hardening variable is represented by a scalar quantity,
either the drag stress (K) or the yield stress (Y), while directional harden—
ing is represented by a second order tenmsor nij or a scalar function of such a
tonsor.

Basic Flow Laws

Four basic forms of the inelastic flow law have been identified. Plas-
tic incompressibility is always assumed and these flow laws are:



1) &7 = A8, iy =0 (2a)
2 &7 = ATy (S, = 80 » #F =0 (2b)
(3) ii? = Ayjpg S i0g " ili,jkk =0 (2¢) .
@ &7 - 5%;— . &2 =0 (24)

where Sjj, oij, and Iij are the deviatoric, direct and effective stresses,
respectively. The tensor Q3; represents the '"equilibrium stress" which has
also been referred to as the 'back stress' and the '"'rest stress.” The para-
meter f is a yield function or a flow potential. It should be noted that the
first three laws can be considered or can be derived from Equation (2d)- if
they are associsted with sz flow potemtial,

Equation (2a) is the Prandtl-Reuss flow law associated with the von
Misss yield criterion. However, it can be considered as a basic material
equation in its own right independently of a yield conditions As such, this
equation is usually taken to be applicable for proportional loading conditioms
for which isotropic hardemning would be appropriats. The equation states that
the material response (i.e., the plastic strain rate) to stress is isotropic
even though A3 could be stress history dependent. Since stress is direc-
tional, Ay could have 2 directionsl character within the context of incremen—~
tal isotropy and theresby :ccount for induced directional hardening effects.

Equation (2b) is the flow law obtained by introducing the kinematic
hardening variable of Prager [16] into the classical plasticity formmlation to
account for directional hardening (the Bauschinger effect). In this context,
the term O3; would represent the new origin of a translatiang von Mises yield
sucrface in iavintoric stress space, and Equation (2b) would be the associated
flow rule. As before, Equation (2b) can be taken to be a basic material equa-
tion in a formulation without a yield criterion and the "equilibrium stress’
tensor Q;; is generally intended to serve the following functioms: (a) to
account for directional hardening (the multi-dimensional Bauschinger effect),
and for the non-coaxiality of &;37 and sij under noaproportional loading his-
tories (Figure 1); (b) to account for reversed plastic straining effects, eo.g.
reversed creep, relaxation through zero stress, when the effective stress I;
is negative; (c) for theories without a fully elastic range (i.e., a yield
criterion), to account for low plastic straining within a given range.

Bquation (2¢c) is the generalized anisotropic form of the Prandtl-Reuss
flow law which can be rewritten in a 6D stress and strain rate space to take
the form,



EP = T = 1,—6 3
a Aap Tp ; - (3)

where E; and Tg are related to the usual plastic strain rates and stresses in
a simple manner, see [10], and Agp is the 6x6 matrix of coefficients. If the
material is initially isotropic and the law for plastically induced direction—
a1l hardening does not lead to off diagonsl terms, thea A is initially and
remains diagonal. Under these conditions, Equation (2¢) is equivaleant to
Equation (2b) since 6 material constants determine the anisotropic flow behav-
ior. All the flow equations, Equations (2a,b,c), would be equivalent for the
case of proportional loading, including cyclic conditioms. The real differ—
ences in thoss equations would show up for nonproportional loading histories.

For constitutive theories with a flow poteatial, both the flow law and
the growth law of the directional (kinematic) hardening variable nij are de-
rivable from a single flow potential. The associated flow law of a2 basic form
of such a flow potential is [8]. '

n-1
. P . 1 2 -
‘ij ZuE' (aij nij) for inelastic loading (4a)
and ii? =0 for elastic loading/unloading (4b)

where F is the von Mises yield function, n and y are material parameters. The
conditions for inelastic loading and elastic unloading have been identified

in [8]. It can be easily seen that (4a) and (2b) are equivalent. In both
cases, the direction of the inelastic strain rate vector is coaxial with the
current offective stress vector (see Figure 1).

Kinetic Equations

The flow laws, Equations (2a) and (2b) can be squared to give respec—
tively,

1/2

= tp P
A [D2 /Izl (52)

1/2 (5b)

- [0,7/1,]
vhere D2 is the second invariant of the plastic strain rate, DoP = (1/2) 31?
, and J5 and J4 are the second invariants of the deviatoric stress and
%ective deviatoric stress, respectively,

12 = (1/2) sij sij (6a)
IZ = (1/2) (Sij - Qij)(sij - gij) (6b)



Fundamental to all "unified" viscoplastic formulations based on flow
laws of the forms listed in Equations (2) ‘is that inelastic deformations are
governed by a functional relation between D9P and J9 (or J3) that could in-
volve load history dependent variables. These variables are intended to re—
present properties of the inelastic state with respect to resistance to plas-
tic flow, e.g. hardening, and damage. Some functions that have been suggested
. are the following.

P .
() D,°= DX (7a)
P _(L\ =
(b) D2 Do exp [ (—i-) ] (™)
(c) nzp - D [sinh(x)"]“ | (7¢)
where X = 3:r2/1:2 , or :a.r;n:2

and n, m, and D, are constants. The inelastic strain rate components can then
be obtained as a function of the stress by the use (2a) or (2b) and ome of
Equations (7). Expression (7b) would seem to have some advantage over (7a)

or (7¢) in theories without a yield criterion in that the value of DpP is
almost zero for some range of J5 regardless of the value of n. Ia (7b),

Do is the limiting value of the inelastic strain rate in shear; (7a) and

(T) do not contain such a limit. These differences between the kinetic equa-—
tions are illustrated in a normalized plot of log (DzP/Do) vs X in Figure 2
for the case of n = 3 and m = 1.0,

In all the preceding equations (7a2,b,c) the exponent n influences the
slope of the D3, J7 relation and therefore has the major influence on straia
rate sensitivity. That parameter also affects the overall level of stress-—
strain curves although the level also depends on the hardening parametsr K.

Temperature (T) dependence of plastic flow is a first order phenomenon
comparable to strain rate semnsitivity and should appear directly in the ki-
netic equation. In the case of Equations (7a,b), this can be achieved by
taking the exponent n to be a function of T, e.g. n = ck/T (k is Boltzmann's
constant and ¢ a material constant) which leads to strong temperature depeand-
ence of the stress parameter X=3J5/K2 (or 3J75/K2). Numerical results for this
dependence are shown in Figure 3 for both the power law and expomential kinet-
ic equations at different non—dimensionalized strain rates.

The method of including temperature dependence in Equations 7a2,b is com—
parable to an activation energy formulation. Table I lists temperature-
dependent kinetic equations based on four different functiomal expressioms for
the activation energy. Some of the consequences of the various relations are
discussed ian [17].

Another procedure for including temperature dependence in the kinetic
equations is to multiply the stress function, the right hand side of equa-
tions (9) by a temperature function. The temperature factor can again be
motivated by thermal activation considerations and the Arrhenius expression
seoms to be the reasonable function to use (Table I). This is the approach
taken by Miller [5].



Evolutionary Equations for Internal Varisbles

The general framework of the evolutionary equations of internal vari-
ables is based on the now well-accepted Bailey-Orowan theory [18,19] which
theorizes inelastic deformation to occur under the actions of two simultan—-
eously competing mechanisms, a hardening process proceeding with deformation
and a recovery or softeming process proceeding with time. The evolution rate
of an internal varisble is then the difference between the hardening rate and
the recovery rate as givem by

I, = @) H - (X, D (8)
where X; is the evolution rate of the intermal variable X;, and by and rqy are
the hardening and the thermal recovery functioms, respectively. by and rj are

functions of Xj, temperature, T, and the hardening measure, Mjis either
éi? or Wp depending on the model.

(1.) Isotropic Hardening

The quantity K in Equation (7) is usunally interpreted as the iso-
tropic hardeaning intermal variable and is often referred to as the drag
stress. Evolutionary equations for the isotropic hardening parameter gemeral-
ly follow the hardening/recovery format shown in Equation (8). A comparisoa
of these hardening and recovery functions ia various unified theories is shown
in Table II. The rate of isotropic hardening is usunally given by a function
of the hardening variable K, which may saturate to a limiting value, shown as
Ky in Table II, multiplied by a measure of the hardening rate. Both the in—
elastic work rate and the effective inelastic strain rate have been proposed
&8s the scalar hardening measure. On the other hand, the rate of softening
or recovery is often taken to be a power function of K and a temperature—
dependent constant Ky which value represents the refersnce state for that par—
ticular temperature. This recovery model, sometimes credited to Friedel [20],
theorizes that recovery occurs only when the current internal state exceeds
the referencs state.

(2.) Directional or Kizsmatic Hardeaning

Probably the main difference in the various unified theories is
the treatment of directional or kinematic hardening. Differences exist not
only in the choice of the flow law but also in the evolutionary equations.
The general framework of these evolutionary equations follows the hardening/
recovery formulation represented in Equation (8) with indexes to indicate
the directions of hardening and recovery.

] ))’ti + 8(a,

-d4(9,,, N, - =.(0,,,T)V 9% | (9)
i i i i

=1, (Q
ij 2 ij i) i b 2 i i 3 J
where hy, d, and rj are the hardening, dynamic recovery , and static thermal
recovery functions, respectively. © represents hardening and/or recovery as—
sociated with the rate of temperature change. Mij;, Njj, Vjj snd Wy; are the
directional indexes of hy, d, rj, and 6, respectively. The main differences



among the various theories, as summarized in Table IIXI, are in the choices of
the directional index and the hardening and recovery functions.

As indicated in Table III, unified models based on the equilibrium
stress utilize the inelastic strain rate as the directional index for harden—
ing and contain a "dynamic recovery' term in the hardening function. The pro—
posed hardening rule is thus similar to the Prager rule [16] in conventional
plasticity which requires the translation of a yield surface to occur in the
direction of the plastic strain increment. On the other hand, the evolution—-
ary equation proposed in conjunction with Equation (2a) is based on the direct
stress as the index for directional hardening [3,4]. This formulation avoids
the cross—softening effect associated with inelastic strain rate as the index
and the theory is more compatible with Ziegler’s modification [21] of the
Prager hardening rule. The directional index for "dynamic recovery' is gener—
ally ia the opposite direction of the directional hardening variable nij. The
"dynamic recovery' term is treated in [3,4] as a saturation term in the direc-
tion of the direct stress but the index has recently beenm modified to be in
the direction of =~ Qj; also [22]. The unit vector which represents the direc-
tion cosines of the directional hardening variable is ususlly taken to be the
directional index for static thermal recovery. Recovery always occurs in the
opposite direction of the unit vector and tends to reduce the magnitude of the
directional (kinematic) hardening variable. Most unified theories utilize
Friedel's recovery model and take zero magnitude of Qj; as the reference
state. Table III shows that a temperature rate term is also included in the
theories of Walker and Chaboche. In principle, similar terms could be added
to the other theories.

The temperature dependence of the intermal variables is also important.
The experience with the unified models to date indicates that all the material
constants in the formulations would depend on temperature and must be evalu—
ated at a2 number of base temperatures.

Uniqueness and Stability Criteria

For stability, unified theories with internal variables must, according
to Ponter [23], obey the following inequality:

s D _ . .
daij dcij daXi 4Xi > 0 (10)

where doy;, diij, dXi, and 4Xi represent incremental changes in stress, in—
elastic_s%rain rate, the curreat value and the evolution rate of the intermal
variables. The inequality admits classical plastic flow, creep, and stress
relaxzation behavior. It also admits recovery phenomena involving negative
inelastic work provided that the corresponding changes in the internal vari-
ables are sufficiently large to make the inequality in Equation (10) remain
valid, The basic requirsment of Equation (10) is that the dissipation rate
must be nonnegative.



_ For a constant internal state, a small change in gij resuits in a cor—
responding change in 51? so that [23]

doyy iy} 30, Xy = 0 (11)

The inelastic work inequality is idemtical to Drucker’s postulate [24] ia
classical plasticity that for a stable material flow the plastic wozrk done
must be nonnegative. For proportional loading the kinetic equations represean—
ted in Equation (7a) to Equation (7¢) all yield convex "flow poteatials" to
.which the inelastic strain rate vectors are normal. The consequence is that
the inelastic work is always positive, and unified theories based on Equation
(7a) to (7c) obey the inelastic work inequality.

For uniqueness, it appears that the inelastic strain rate must be a
single—valued function of stress and internal variables. To satisfy the re-
quirement for stable flow, Equation (10) dictates that stress—strain curves at
constant strain rate must have positive slope but must decrease with increas-
ing strain., On the other hand, stress—strain curves at constant plastic
strain or plastic work must have positive slope, but the slope may either
increase or decrease with increasing straia rate [23].

Most, if not all, of the unified theories listed in Table II satisfy the
Ponter inequalities and met the uniqueness and stability requirements. The
stability requirement is, however, not essential for constitutive theory de~-
velopments. Unified theories admit unstable inelastic flow and are generally
modeled by including softening mechanisms such as thermal softening and com—
tinnum damage in the evolution and/or kinetic equations.

NUMERICAL METHODS FOR INTEGRATING
UNIFIED CONSTITUTIVE EQUATIONS

The unified constitutive oquations can be characterized as mathematical~-
ly "stiff." That is, in these equations, dependent variables are susceptible
to large changes from small increments of the independent variables or from
small time steps. This "stiff" behavior occurs usually with the onset of a
significant amount of inelastic strains in the loading cycle and is due to the
gonerally nonlinear nature of the functional forms that are employed in the
kinetic equations of these theories.

A systematic comparison of a variety of approaches for integrating
unified constitutive equations has been reported by Kumar, Morjaria, and
Mukherjee [25]. This study concluded that for the constitutive theory of
Hart, a relatively simple Euler integration method, together with a time
step control strategy, was optimal when compared with the more sophisticated
methods. The Walker constitutive theory has been intsgrated using the Euler
single step approach usually without auntomatic time step control, but rather
by determining an optimum step size for each problem. Efficiency obtained by
using this approach has been acceptable and has shown considerable improvement
over more sophisticated approaches such as higher order Runge—Kutta methods.



Tanaka and Miller receatly dsveloped a nomiterative, self-correcting
solution (NONSS) method for integrating stiff time—dependent constitutive
equations [26]. In this approach, implicit quantities are removed by Taylor
expansions of g, ¢, and X through the incorporation of the integratiom opera-
tor a. The method which reduces to the explicit Euler method when a = 0 and -
to the implicit Euler method when a > 0 is unconditionally stable for a » 1/2
and is noniterative. Accuracy is maintained through self-adaptive time con-
trol and by correcting previous errors at the curreant step.

A summary of these various numerical techniques and their applicatioms
to several unified theories as well as to Norton’s law for integrating a uni-
axial stress—strain curve to a total strain of 1-2% is shown in Table IV. As
illustrated in Table IV, the explicit Euler is stable when the size of the
strain increment is kept below 10~4, The size of the strain incremeat can be
increased by using an implicit method sunch as the NONSS or a-method with a = 1
(implicit Euler). By restricting the comparison to the explicit methods omly,
it appears that there is no substantial difference between the integrability
of Walker and Miller theories nor between these unified theories and the
classical Norton law. The size of the strain increment is, however, somewhat
sensitive to the values of model constants which describe material strain
rate sensitivity.

PREDICTIVE AND SIMULATIVE CAPABILITIES OF UNIFIED
CONSTITUTIVE THEORIES

Four of the unified models which have been successfully applied for sim-
ulating and/or predicting monmotomic, cyclic, creep, and stress relaxation be-
havior are those of Robinson [8], Walker [2], Bodner—Partom ([3,4], and Niller
[5]. Robinson’s model is based on a yield condition and utilizes loading and
unloading criteria, while the latter three do not. The kinetic equations com~-
monly used in unified theories without a yield surface or flow potential are
based on the power—law, exponeantial, and hyperbolic sine functions; these
kinetic equations are represented in Walker, Bodner—Partom and MNiller theo—
ries, respectively. These four theories will be used to illustrate the simu~
lative and predictive capabilities of the unified theories.

(1) Monotonic Stress—Strain Behavior

All unified theories are capable of reproducing the momotonic stress—
strain curve. Figure 4 shows an experimental uniaxial tensile stress—strain
curve of Hastelloy-X deformed at s strain rate of 1.3 x 104 seo~l at 922 K
and model simulation using Bodner—Partom theory. The computed curve includes
contributions from both work hardening and thermal recovery.

(2) Cyclic Stress—Strain (Hysteresis) Behavior

Bauschinger Effect is represented in most unified theories by a kine-
matic or directional hardening intermal variable. Cyclic hardening, however,
can be represented by increases im the isotropic htrdenin; variable, the
directional hardening variable, or both., These differeat types of cyclic
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hardening behavior are illustrated in Figure 5 for Bodner~Partom theory which
does not use an equilibrium stress. The use of different evolutionary equa-
tions for the equilibrium stress in different regions of stress space allows
Robinson’s model to reproduce rounded hysteresis loops. Examples of cyclic
saturated hysteresis loops calculated using Robinséon’s model are compared with
experimental results of 2-1/2Cr-1Mo steel in Figure 6 [27].

(3) Creep Responses

Most of the mnified models can predict primary and secondary creep re—
sponses of material subjected to constant load., Steady state creep rates are
predicted by these unified models to occur when the evolutionary rates of the
isotropic and/or directional hardening variable vanish as the hardening terms
are balanced by the thermal recovery. Examples of calculated steady state
creep rats under constant stress and comparison with experimental data are
shown in Figure 7 for Bodner—Partom’s model. According to the unified theo—
ries, the steady state creep rate is a function of stress and temperature
only; it should not depend on the loading histories. This is demonstrated in
both experimental data and predictions by Miller’s model in Figure 8 [28].

(4) Stress Relaxation Response

The behavior of unified constitutive models under stress relazation is
analogous to the creep behavior. Under a constant strain conditiom, the re—
laxation rate would, again, depend on the current values of the intermal vari-
ables and on the growth laws which describe their changes with time and in—
elastic deformation. Stress relaxation calculations based on Walker theory is
compared with experimental data of Hastelloy-X [2] in Figure 9.

(5) Thermomechanical Response

The behavior of unified constitutive theories under thermomechanical
cycling depends critically on the change of material constants with tempera-
ture. In particular, the shape of the predicted thermomechanical loop is
sensitive to the growth of the kinematic hardening variable (the equilibrium
stress) with temperature. Walker’s model prediction of thermomechanical loop
of Hastelloy=X is shown in Figunre 10.

(6) Multiaxial Behavior

All the unified theories untilize single-valued kinetic equations formu-
lated in terms of either 3J3/K2 or 3J3/K2. For a constant value of the inter—
nal variable K and under proportional paths, these kinetic equations predict a
locus of constant inelastic strain rate invariant in stress space; the shape
of the predicted "yield surface' or "flow potential' is identical to von Mises
yield function. For unified models formulated based on the equilibriom
stross, the size of the "yield surface" is proportional to K, while the center
of the "yield surface" is at 0;; and translates according to the evolution
" rate of nij'
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Recent studies [22,29], indicate that materials exhibit considerably
more cyclic hardening when tested under nonproportional paths of combined ten~
sion and torsion than under proportional paths of tension or torsion only. As
s result, most if not all,of the constitutive models need to be modified to
take into account the hardening behavior due to out—of-phase loading.

SUMMARY AND CONCLUSICNS

1. A review of more than ten time—temperature dependent elastic-—
viscoplastic constitutive theories indicates that these theories
differ in the choice of flow law, kinetic equation, and evolu~
tionary equation of the intermal variables.

2. The unified approach treats ail aspects of inelastic deformation
including plasticity, creep, and stress relaxation using the same
set of flow law, kinetic equation, and internal variables.

3. The unified constitutive theories satisfy the uniqueness and
stability oriteria imposed by Drucker’s postulate for rate ia-
dependent stable plastic flow and Ponter’s inequalities for con-
stitutive theories based on internal variables.

4. The unified theories can be formulated either with or without the
use of a yield criterion. Three basic flow laws are identified in
theories without a yield criterion. For theories with a yield
eriterion, the associated flow law is derived from the yield
function or the flow potential.

5. Three different formulations of the kinetic equations are identified,
and they include the exponential, power law, and hyperbolic sine
functions. The expomential formulation gives a limiting inelastic
strain rate and appears to give better results for high straian rate
applications.

6. A1l three forms of kinetic equations are functions of 3J5/K2 (or
312/12) and result in "yield surfaces" and equi-creep rate .sur—
faces which are described by the Jy~based von Mises criterion.

7. The number of intermal variables varies among the unified theories.
Most unified theories use two internal variables, ome to repre-—
sent isotropic hardening and ome to present kinematic or direc-—
tional hardening. The measure of hardening is either the inelas—-
lastic strain rate or the inelastic work rate.

8. Directional (kinematic) hardening can be modeled with or without the
use of an equilibrium strxess. The directional index of kinematic
hardening can be based onr either the inelastic strain rate or the
dizrect stress.

12



9.

10.

11.

12.

fully

Material constants in the unified models are necessarily temperature—
dependent and required to be evaluated at the temperatures of inter—
est. There are ‘indications that a temperature rate torm is also re—~
quired in the unified theories.

All of the unified theories which are reviewed do not automatically
predict additional cyclic hardening under nonproportional loading
paths. Additional terms are needed in the unified theories to in
clude such hardening behavior. ‘

The equilibrium—stress—based nnified theories can describe reverse
creep and/or reverse stress relaxation behavior without further
modifications. Unified models which are not based on the equilibriom
stress would require modification by adding anr anelastic temm in order
to take into account these types of behavior.
The unified constitutive equations are stiff but can be integrated using
either explicit or implicit methods.
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TABLE I

FIVE FORMS OF TEMPERATURE-DEPENDENT KINETIC EQUATIONS WITH
THE CORRESPONDING ACTIVATION ENERGY FUNCTION

Activation Energy Temperature-Dependent. Kinetic Equations
' C/kT
AH = czn<§§i> og =D iJ-?-
2 L
: : Hn = Vg(Ja
s H - P . I
AH = Hy Vg(Jz) D2 : Doexp[ o 1
2 ' 2
_ H*K P i .
MR, ' Dy = Dgexn|= 7 <342>
2 C/kT 2 C/kT
- K P s K
AH = kT[E'J—'] DZ DOEXP - <.3J_2>
2
n
3d,\™
AH = Q 0 =0 exp[- —Q-][sinh( 2) ]
. 2 = 0P| &7 Z

where C, Dg, H*, Hg, Q, m, and n are constants; V is the activation
volume; and k is the Boltzmann's constant.

15



TABLE II

THE SPECIFIC FORMS OF ISOTROPIC HARDENING AND STATIC THERMAL RECOVERY
FUNCTIONS USED IN THE SELECTED UNIFIED CONSTITUTIVE THEORIES

K= hy(K)M; = rp(T.K)

) - :. : - 2 [ ] p .- p
(Bodner-Partom's Theory)

Static Thermal

Model Hifdening Function, h](Kf Recovery Function, '1(T:K)
Bodner-Partom Cy(Ky = K) | CZ(K--KO)p
Walker C;(Ky = K) -
Krieg et al o CZ(K--KO)p
Robinson C1' : -
Chaboche

Lee and Zaverl

Hart
Ghosh

Miller

¢ (K] -K)//T; -

C1 ' ' -
- . p
c,k™9 Co(K = Ky)
¢, [K, - C,(sinh™ c,|£]) %™ ¢, [sinh C, kM7
1ER = gt31mn L3lE 2 3

" where C1,'Cé, C3, C4, Cs, m, P, Q, Ko’ and K1 aré material constants; K;
is the saturated value of K; K? is governed by an evolutionary equation
which is function of € and Jg.
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TABLE III

THE SPECIFIC FUNCTIONS OF ANISOTROPIC HARDENING, DYNAMIC RECOVERY, STATIC THERMAL
RECOVERY, AND THE TEMPERATURE RATE TERM IN SELECTED UNIFIED CONSTITUTIVE THEORIES
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TABLE IV

COMPARISONS OF THE INTEGRATABILITY OF VARIOUS CONSTITUTIVE MODELS

Comparison is based on the size of the average strain increment per step for
integrating a uniaxial tensile stress-strain curve to a total strain of 1-2%

Automatic Time or

Constitutive Strain Increment
Integration Method Strain Increment | Stability Reference
Hodel Per Step Contro)

Walker Explicit Euler 10°5 to 10~4 No Stable [uWalker [2!;

Cassent{ [30]
NONSS {a-Hethod)
- -4
Bodner-Partom a=.l 1 x lo_‘ sable |
a=.5 1 x10 No Stable Investigation
a=] 1 x 1073 Stable

Explicit Euler 4 x 10-4 No Unstable |Lce et al [31]
Hiller Tayler Series Hodified Euler 4 x 104 No Stable Lee et al

NONSS (a-Method, a=1) 3 x 10-3* Yes Stable Tanaka [26]
Explicit Euler 2 x 10°5* Yes Stable  |kumar et al [25)
lort Predictor-Corrector 3 x 10-5" Yes Stable Kumar et al

iigh Order Predictor-Corrector Ix 10-5* Yes Stable Kumar et al

Two-Step Adam 2 x 10-5* Yes - Stable Kumar et al
Explicit Euler 1 x 1073 No nstable |[tee et al [31]

Norlon 5x 10°4 No Stable Lee et al

Taylor Serles Modified Euler 1 x 10-3 Ko Stable Lee et al

* Average strain increment per step = total strain/number of time steps.
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VISCOPLASTICITY BASED ON OVERSTRESS WITH A DIFFERENTIAL

GROWTH LAW FOR THE EQUILIBRIUM STRESS
E. Krempl, J.J. McMahonl, D. Yao
Department of Mechanical Engineering
Aeronautical Engineering & Mechanics
Rensselaer Polytechnic Institute
Troy, New York 12181

Two coupled, nonlinear differential equations are proposed for the
modeling of the elastic and rate (time)-dependent inelastic behavior
of structural metals in the absence of recovery and aging. The structure
of the model is close to the unified theories but contains essential
differences. The properties of the model are delineated by analytical
means and numerical experiments,

It is shown that the model reproduces almost elastic regions upon
initial loading and in the unloading regions of the hysteresis loop.
Under loading, unloading and reloading in strain control the model
simulated the experimentally observed sharp transition from nearly
elastic to inelastic behavior. These properties are essential for
modeling mean stress effects in tension-tension strain cycling. When
a formulation akin to existing unified theories is adopted the almost
elastic regions reduce to points and the transition upon reloading is
very gradual.

For different formulations the behavior under sudden in(de)creases
of the strain rate by two orders of magnitude is simulated by numerical
experiments and differences are noted.

The model presently represents cyclically neutral behavior and
contains three constants and two positive, decreasing functions. It
is described how these constants and functions can be determined from
tests involving monotonic loading with strain rate changes and
relaxation periods. '

1 Now at NASA, Houston, Texas.
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INTRODUCTION

Within the last decade the modeling of inelastic deformation through
unified constitutive equations has made considerable progress [1-6].
With the exception of [5], yield surfaces are not used in these
approaches and creep and time independent plasticity are not considered
separately. It is shown in [6] that these constitutive equations have
similar mathematical structure but that they differ with regard to the
specific choices of material functions.

The models make the inelastic strain rate a function of the effec-
tive stress defined as stress minus some quantity referred to as kine-
matic stress, rest stress or back stress. In examining the mathe-
matical properties of a first-order nonlinear differential comstitutive
equation it was shown [7] that making the inelastic strain rate solely
dependent on the overstress gives qualitative solution properties of
the differential equations found in corresponding experiments. The
overstress is the difference between the stress and the equilibrium
stress and is equivalent to the effective stress mentioned above.

This approach has been verified for momotonic loading of
Type 304 SS [8] and of a Ti alloy [9]. The purpose of the present
paper is to present a further development of the theory of visco-
plasticity based on overstress for cyclic loading. It will be shown
that this development is similar to the unified theories but contains
essential modifications which are necessary for reproducing regions of
nearly elastic behavior and realistic reloading behavior. These prop-
erties are basic for the modeling of mean stress effects in zero to
maximum strain strain controlled cycling.

THE MAIN PROPOSED MODEL

Differential Formulation

For the uniaxial state of stress with ¢ and ¢ denoting the engin-
eering stress and infinitesimal strain, respectively, the model is
given by the two coupled nonlinear differemntial equatioms

sageby 0 on Wc[’c;'-gg_] (1)

g=y0 1 - BELL einy )
In the above E is the elastic modulus and square brackets following a
symbol denote "function of." The positive, bounded, decreasing func-
tion k is called the viscosity function, it has the dimension of time
and controls the rate dependence. In the growth law for the equili-
brium stress g there are three positive bounded functions, {, f and b,
the argument of which will be determined in the sequel. For this
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reason their arguments are not specified presently. A superposed dot
denotes differentiation with respect to time and the absolute value
of a quantity is denoted by placing it between vertical bars,

At the present this constitutive equation does not have any prdvi-'
sions for modeling recovery and/or aging. It is therefore only
applicable in regions where these two phenomena are not pronounced.

By using the chain rule (1) and (2) can be rewritten as

‘(_1_(_7_-' -———-»—8-—0‘ .
ac " F klo-glé 3

- 14
dg.y.gf| .l

d .
de T de sign & . (&)

The basic equations (1) - (4) will now be reformulated so as to
identify the as yet unspecified functions with physical properties and
to obtain mathematical properties of this system of nonlinear differ-
ential equations,

Integral Formulation

Following the procedures of [7], (1) and (2) can be transformed
to the integral relatioms

\ t t
owam oy g - | £ [ @ep(em - [B)ar
t:o to T
and

t t t .

(&, ] ) ¢
g-f=(g - £)exp - J' ;“ d*r+f(wé-f)(exp- f J—%glds)d'r
%o % T (6)

respectively, A subscript zero indicates the value of the subscripted
quantity at the initial time t= co.

Since the integrand of each first term on the right-hand side of
(5) and (6) is positive its value will tend to zero for large times,
provided that in (6) }éi“} will be different from zero as time increases.

The second terms tend to a limiting value for infinite time [7]

so that
{o-g]} = {E - g‘f} ék[[cr- s}] &)

(g- "t'}z{"J B ‘g‘f} {'é:n|

where braces denote asymptotic values, By differentiation of (5) and
(6) and taking the limit for t=—« [7]

and

} e (8)
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{5} = {8} (9)

and .
{g} = (£} (10)

are, respectively, obtained.

It is evident that (1) and (2) require 0, g and f to grow ulti-
mately at the same rate, proyided the functions have the properties
stated initially and that |&é'®| does not become zero for large times.
Also from (7) and (8) it is required that & be bounded and constant
for large times.

Behavior Under Instantaneous Changes in Stress or Strain Rate

The behavior of (1) under an instantaneous change in stress or
strain rate has been determined in [10-12].

A superposed +(-) designates the value of a quantity immediately
after (before) the jump. Then applying (3) and (4) before and after
the jump yields (&¢I is continuous under a jump)

+ - .
dO' - .+ = (-d-c_ - )o-
(.._de g)e L - E) (11)
and
25.:«-2&”5:-{-*(1 & for strain control (12a)
e e ;;"' -:;+ or strain contr
agt _dg” & 5
(- S - S - A #(1 -a L) for stress control (12b)
de de .+ .+
c g
do*[de :
vhere o = —— . It is seen that the slope of g is related to that
do /de

of o but the slope of ¢ is not influenced by g at all, As a conse-
quence the properties of do/de as determined in [10-12] remain

unaltered.

If it is now assumed that the asymptotic properties (7) - (10)
and do~/de =~ E_  <<Ewith E; 2 0 the tangent modulus® in the inelastic
range hold, then the slopes of ¢ and g can be calculated for increase,
decrease, reversal, reversal with increase and reversal with decrease
of the stress or strain rate. Under the above assumptions (12)

simplifies to

1 This designates the slope at the limit of the region of interest.
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dg” N

- ¥+ -é-; (Et -¥ for strain control (13a)
and
ag" -2 dc+[de
Lnp+I(E -9 for stress control (13b)
de 6# t Et

It can be observed that no changes in the slope of g are realized
when the asymptotic value of § is equal to Et'

Values obtained from (11) and (13a), (13b) are given in Table 1
where it is assumed that rate changes involve at least one order of
magnitude.

Creep and Relaxation Behavior

During relaxation €=0 and from (1) and (2)

%

AR + 8 -
| &= tlo=g] . (14)
and -
- g; £ léinl (15)

respectively. It is seen that both § <0 and § <0, if o-g > 0 and
g-£>0. From (5) and (6) .it can be deduced that these conditions
are met at any point during a prior temsile test provided e >0 and

E--3>0andv-d—f->o. (If£ ¢ <O the sign of o-g and g- £ reverses

and & and § are positive.) Therefore ¢ and g always decrease in magni-
tude but not uniformly. Indeed from (14) and (15)
g bE

" 5-f (16)

Unless (g~ £f)/b < E the quantity on the right-hand side exceeds one
and & > §, so that o relaxes faster than g. :

Stress relaxation stops at o= g but since § is zero at both o=g
and at g- £ it is not clear whether equilibrium is reached at g=f£, or
at g> £ vhen o= g, If the right-hand side of (16) is greater than one
it is expected that g=0 at g> £.

In creep (1) and (2) specialize to (c is the constant stress in

the creep test)
o,-8

5z ———
Ek[co - gl

(17

and
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g=48 - E2L e, (18)

respectively. It is seen by comparing (18) and (2) that the growth of
g in creep is slightly modified compared to constant strain rate loading

since in creep ¢= éin. Differentiation of (17) yields

Fae 2 (k- (o, - &)k") (19)
K

where k' = é%éfl < 0 by initial stipulation. Secondary creep will be
obtained when $=0 and this is accomplished when £= j—f €=0, i.e.,

when the tangent of f is ultimately horizontal, see (10). Primary
creep results if § > 0. In this case creep terminates at Jy = 8- 1f

0o > & for all values of g creep will never terminate.

REQUIREMENTS ON A REALISTIC MODEL
The following requirements are put on the model:

1) There is an initial nearly linear elastic region starting
from zero to some finite stress. In this region there is not only
do/de=E but there is also no creep and relaxation.

2) After unloading there is again an elastic region with the same
properties as 1) which starts below the stress at which reversal begins
and can end at zero stress but usually ends at a stress magnitude larger
than zero.

3) When a creep test is performed at zero stress after prior in-
elastic deformation the strain magnitude will either stay constant or
will decrease. However, equilibrium will be reached very close to the
inelastic strain at which the creep test started. In no way should
the strain magnitude increase nor should zero strain be reached at
equilibrium if the strain magnitude decreases. (Aftereffect, recovery
test.)

4) After the initial linear elastic region inelastic deformation
sets in characterized by a tangent modulus much less than the elastic
modulus. The material exhibits normal rate sensitivity (an increase
in rate increases the stress level), creep and relaxation. (The region
of creep and relaxation may already begin upon loading before do/de
decreases appreciably.)

5) Primary and secondary creep may be experienced together with
possible "anomolous" creep behavior. (Creep rate may not necessarily
-increase with stress increase, at the same stress level creep rate is
"higher on loading than on unloading, see [6,8,13,14].)
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6) When relaxation behavior is considered it is not uniform every-
where on the hysteresis loop. It is mpst pronounced where the tangent
moaulus is “ow., It is minimal when the tangent modulus is close to the
elastic modulus below the stress at which unloading started and above
Zero stress. At zero stress relaxation, if it occurs, is small and such
that the stress magnitude increases (14,15]; see also 2).

7) After unloading to zero stress and subsequent reloéding in
strain control the transition to inelastic deformation is very sharp.
A small hysteresis loop may develop in the quasielastic region.

8) In cyclic loading cyclic hardening, softening or cyclic neutral
behavior should be reproduced.

9) The behaviors listed in 3) - 8) should not be peculiar to a
certain stress or strain value or region. Rather they are inelastic
properties found in the nonelastic regioms.

SELECTION OF FUNCTIONS ¢, £ AND b

In the following the simplest choice for these functions will be
made such that the requirements listed above will be met as far as
possible. The choices have been arrived at after numerous numerical
experiments [16,17] which included other possibilities than those

allowed by (1) and (2).

In view of (9) and (10)
£= Ete . (20)

This selection permits the final slope of the stress-strain diagram to
‘be selected by the usual choice E_ 2 0. (The model permits the use of

a negative Et‘ This will be explored in the future.)

The choice
v=¢lo-gl >0 (21)
with
§/<0, y[0]=E <E

and §[-x] = §[x] helps to satisfy conditions 1) - 3), 6), 7) and 9). (It
is not possible to have § depend on o- g and to have §[0] =E. In this
case (1) and (2) produce only linear elastic behavior. For this reason
E=0.99 E is usually chosen.)

This choice makes g rate dependent, see (8). In this case k and g
would both be responsible for rate dependence and inverse rate-sensitivity
could be modeled (the stress decreases upon an increase in stress (strain)
rate). However, for the present purposes it was decided to make the
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asymptotic value of g- £ and therefore of g independent of rate by
selecting

b (22)

Y : S
'Ha-sl-l*:t

where A > 0 is the asymptotic value of {g- £}. With this choice g will

be rate dependent after the initial elastic region and before the
asymptotic solution is reached. However, the initial and final proper-

ties of g are independent of loading rates.

Using (22), (1) and (2) reduce to

. g Q=

€=t Elo-g] (23)
(8-E.¢)(¥lo- gl - E)
&= 4lo-gle - —F— £ et (24)

In this version the model has two free functions k and § and three
positive constants with dimensions of stress E, E, and A which permit

fitting to experimental data of a given material, The functioms k
(dimension time) and ¥ (dimension stress) are restricted to be positive
and to decrease with increasing argument. Appropriate mathematical
forms must be found and their choice will influence rate dependence (k)
and the shape of the stress-strain diagram especially the transition
from elastic behavior to inelastic behavior (§). A procedure for curve
fitting is given in the Appendix.

With this choice of functions the model represents symmetry with
regard to the origin and a generalized Masing hypothesis. To illustrate
this consider a test starting from the origin loaded with constant & in
compression., Another test is first loaded to some positive value of
stress and strain, so that g -g, > 0 and 8 - fo > 0, before loading with
the same ¢ 'in compression as the first test. From (5) and (6) we see
that ultimately both tests produce the same g- f and o-g. Since £=E ¢
the same g and therefore the same ¢ will be finally obtained, see also
(7) and (8).

Because of these properties the model does not reproduce cyclic
hardening or softening. These properties require that one or more
constants be made dependent on an accumulating measure of history such
as the inelastic strain path length. Another possibility is to postu-
late an extra growth law for A which controls the stress level and/or
to make E. depend om, say, the inelastic strain-path length. These

additions are under development.
Whether or not these ultimate values are obtained at strain levels

of interest depends on how fast the first terms on the right-hand side
of (5) and (6) become negligible. Experience with numerical experiments
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has shown that these asymptotic values can be obtained with reasonable
accuracy at strains of one percent.

Aside from these general properties the details must be evaluated
through numerical experiments, i.e., the automatic integration of (23)
and (24) subject to various stress or strain histories. This will be
done presently by selecting the constants and functions. Numerical
integration was performed using the IMSL program DGEAR on an IBM 3033
or 3081D computer.

DISCUSSION AND NUMERICAL EXPERIMENTS
Relation to Other Models
The present model falls in the general category of the unified

models which do not separately consider the actions of creep and
plasticity. According to [6] the unified models can be written as

£m a0l tn (25)

2= 20, Fro1=0; Fl-x]=-Fixl (26)
Q= f_Léin- fzﬂléinl - £,10] (27)
f(s,faéin- szléinl - £.K (28)

where £, - £, are either positive constants or positive functiomns of onme,
two or three of the variables g, Q and K.

Comparison of (23) through (28) with (1) and (2) reveals the
following: : : :

i) The fumctions f3 and f6 are absent

ii) The variable K is not represented
iii) ¥ assumes the role of f, but it is multiplied by ¢
dn 1
instead of & .

The reasons for these choices are:

i) Since the model is intended for regions where recovery of
hardening (annealing) are considerel to be insignificant the recovery

terms f3 and f6 are omitted,

ii) The isotropic drag stress term is not included since it implies
that rate sensitivity changes significantly with deformation behavior.
Inversion of (26) yields 1.1

o-Q=KF (¢ . (29)
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It demonstrates that the overstress (effective stress) o-Q is propor-
tional to K. Comparing two specimens at the same inelastic strain
rate, but different histories leading to different values of K would
also lead to different effective stresses (overstresses) and therefore
different rate sensitivities.

Elevated temperature experiments aimed at determining whether
hardening is due to growth in Q or to a growth in K or both are not
known to the authors. Indeed a recent review does not address this

question [18]. However, in [30] a change in K was inferred from a change
in the stress drop with cycling during constant strain hold-time tests
on 316 stainless steel at 600°C. Experiments at room temperature on the
strongly hardening annealed Type 304 .SS [19,20] showed that essentially
all hardening was due to an increase in (). TFor cyclically neutral Ti-
alloy no changes in Q and K due to prior deformation were found [21].

Judging from a review of elevated temperature data [22,23] one
might infer hardening primarily due to changes in QQ but this is not clear.

Because of these uncertainties it was decided to stay with the
cyclically neutral model, see (23), (24). Moreover, even the room -
temperature experiments have shown results [20,21] which demonstrate
that strong cyclic hardening cannot be adequately modeled with the
present approaches, see also [24].

iii) The use of & instead of éin to multiply the initial term in
(24) will be disturbing to materials scientists who will argue that g
is a state variable which should grow only when inelastic deformation
occurs. Therefore the approach presented in (24) is not "physical."
From (25), (26) and (27), and the chain rule

do
de E

and (30)
an

_30

de

are obtained, respectively, at the origin (c=0; Q=0). On the other
hand from (23) and (24)

do
de = E
and (31)
dg _
de viol ,

so that the slope of g at the origin can be controlled by §. By a
proper choice of §[0] nearly linear elastic regions can be reproduced.

The difference between the two approaches is demonstrated in
Figures 1 and 2., 1In both figures the evolution of ¢ and g under a
strain controlled loading, unloading and reloading experiment are
plotted. The material functions used are listed in Table 2 (they -
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are not intended to represent a specific alloy and the difference

between Figure 1 and Figure 2 is only that.&in is vsed to multiply ¢
in (2) or (24) in the former whereas € is employed in the latter.

Regarding the evolution of ¢ both figures show the same initial
slope. From then on the o curve in Figure 1 is more gradual than in
Figure 2. Upon reloading a sizeable hysteresis loop develops and the
transition is gradual in Figure 1 whereas almost no hysteresis and a
very sharp transition is observed in Figure 2. This sharp transition
corresponds to that observed in strain controlled experiments [25].

Figure 1 also demonstrates the zero slope of the g (back stress)
curve at the origin. Since the inelastic strain rate depends on (c- g)
and since in strain control the same time is represented by the same
strain it can be seen that only the origin and two other points in
Figure 1 where ¢ and g intersect have zero inelastic strain rate.
Elasticity is reduced to three isolated points in Figure 1. 1In all
other regions creep and relaxation can be found. This fact is of course
not noticeable if the figure does not contain the evolution of g.

In contrast, in Figure 2 there are regions where ¢ and g essentially
overlap. In these regions nearly linear elastic behavior without
- noticeable creep and relaxation is reproduced.

This behavior is closer to reality than the one depicted in
Figure 1 and partly for this reason we have chosen to use & instead of

éin in the growth law for g.

Aside from the existence of elastic regions the use of ¢ instead

of ¢ makes quite a difference in the evolution of mean stress with
cycles in a strain controlled test with positive mean strain. Figures 3
and 4 again depict results of numerical experiments under such loading.
The only difference in the two graphs is the use ¢in 4p Figure 3 and of
¢ in Figure 4.

Qualitatively the results on Figure 4 are more realistic than those
in Figure 3, see [12]. Because of this behavior the formulation with ¢

is preferred.

Figure 5 shows the results of numerical simulations such as depicted
in Figures 3 and 4 for two strain ranges and two strain rates. The decay
of mean stress is plotted vs cycles. It is evident that at the slow
strain rate the decay is less rapid for the ¢ than for the &M formula-
tion. However, when a fast strain rate (10"2 5'1) is used the difference
is less pronounced and the & formulation predicts the smaller mean stress
of the two,. ‘

The cycles depicted in Figures 3 and &4 occur in turbine disks and
buckets. For their life prediction the remaining mean stress must be
known from analysis. Figure 5 clearly demonstrates that the two formula-
tions predict considerably different mean stresses.
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The Material Functions of the Theory

In the absence of recovery and of cyclic hardening the present
model has three constants and two material functions that must be
identified. The method of identification which requires considerable
expertise and uses the asymptotic solution properties (7) - (10) is
described in the Appendix.

In contrast to other approaches [1-6] the specific forms of the
functions are not given rather general properties are stated, see (21).
Within these properties specific functions must be found to suit the
specific application. It was demonstrated in [8,26] how k affects rate
sensitivity and a selection of specific k-functions was given in [8].

The function § affects the knee of the stress strain diagram and
the behavior upon rate changes, see Table 1. For the purposes of demon=-
strating its influence two forms of ¥ are given in Table 2. One leads
to an almost elastic viscoplastic behavior, see Figure 6, the other to
a gradual transition from elastic to inelastic deformation, Figure 7.

Corresponding hysteresis loops are showvm in Figures 8 and 9. It
is seen that Masing behavior is represented in either case and that
cyclic hardening is absent. The regions of nearly elastic behavior are
clearly identified as those where o and g coincide.

Note that the constants of the functions given in Table 2 are
selected to give the same E_ and the same stress level, only the transi-
tion behavior is different.

Once the material functions have been set the behavior of the model
is completely determined. As an example, the behavior at different
strain rates and under strain rate changes shown in Figures 6 and 7 is

cited.

Both figures show an effect of loading rate on g in the transition
region which disappears after some strain has accumulated. The influ-
ence of rate on g is smaller but seems.to disappear slower in Figure 6

than in Figure 7.

The transition from elastic to viscoplastic behavior for o is
sharp in Figure 6 but gradual in Figure 7. As the strain rate increases
the sharpness of transition increases.

At point A in Figures 6 and 7 the strain rate is increased (reduced)
by two orders of magnitude. Whereas little overshoot (undershoot) is
observed in Figure 6 it is considerable for both the g and g curves in
Figure 7., After some transient period the original curves are traced
over again. Again the transition period is longer in Figure 6 than in

Figure'7.
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The difference in behavior is solely attributable to the change
in the function ¥. The question arises whether these overshoots
could lead to instabilities. A separate stability analysis [27] shows
that the critical points which are the asymptotic values of (23), (24)
are stable. Even if there are overshoots (undershoots), they will be
transient in nature, see also (5), (6).

Although overshoots (undershoots) are experienced in testing,
see Figure 9 of [19], and [28], and are similar to those shown in
Figure 7 the size of these transients is somewhat large.

If § in (24) is multiplied by éin a simple analysis corresponding
to (12) and (13) shows that

o+ - - -
dg _dg ¢ _ . &
de de é+ Et é-i- (32)

and

%

dg’ _dg & _dd (33)

&
o
[, ]
Q;IQ
[, ]
Q;IQ

for strain and stress control, respectively. It is clear that (32)
and (33) lead to less variationms of dg*/de than experienced with the
¥¢ formulation, see Table 1. This is demonstrated in Figure 10 where
the conditions are identical to those used in Figure 7, except for the
multiplication of § by & B, Very little overshoot is observed in this
case.,

The second term in (2) or (24) is multiplied by |éin and has so

far not been varied. If this term is replaced by |&| the reloading
behavior is similar to that shown in Figure 1. (See also [16],

Figures 5.21 and 5.22.) It can be seen from (4) that %% =~ § as long

as g—: = E, Since under this condition o-g =~ 0 and since §[0] ~E

the slope of g remains very close to E as long as %% = E and the
behavior results in the sharp transition upon reloading shown in

Figure 2. If Iéinl is replaced by |&| im (2), (4) shows that the
second term on the right-hand side is not negligible from the begin-
ning and g% decreases faster than in the previous case. (See [16]
for a further discussion of the subject.)

A comparison of the hysteresis loops in Figures 8, 9 and 11 shows
clearly the linear elastic regions for the {&-formulation which are
absent in Figure 11. (Elastic regions are those where o=g.) It is
not possible to model regions of no creep and no relaxation in Figure 11
but Figures 8 and 9 display such regions.
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CONCLUSIONS

Mathematical methods permit the establishment of some properties
of the proposed constitutive equation, but numerical experiments are
very necessary to investigate the detailed properties.

The proposed system which uses total strain rate in the growth
law for the equilibrium stress (or back stress or kinematic stress)
is able to reproduce regions of almost linear elastic behavior. If
inelastic strain rate is used instead, these regions were shown to be
absent.

Loading, unloading and reloading under strain control are repro-
duced in a realistic manner using the present approach. A much too
gradual transition is exhibited when inelastic strain rate is employed
instead.

These properties have an influence on the decay of mean stress
under tension-tension strain controlled cycling. It appears that the
present approach represents a realistic decay of mean stress. This
quantity is important for fatigue life prediction of turbine compomnents.

All comparisons were made by changing one parameter at a time.
Although it is strongly suggested that presently available state
variable theories share the qualitative properties of the present
model with using the inelastic strain rate instead of the total strain
rate a proof is outstanding. Such a proof requires numerical integra-
tion of the respective theories under the loading histories used in
this paper.
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APPENDIX

Determination of Material Functions

The model is given by (23) and (24) and contains three material
constants (E, Et’ A)* and two mterial functions (k, ¥). Both functioms

must be continuous positive and decreasing functions. They are other-
wise not specified. In applications specific forms must be chosen.

The elastic modulus E and the tangent modulus Et are easily

identified as the slopes of the stress-strain diagram at the origin
and at the maximum strain of interest, respectively.

In determining k, § and A the asymptotic solutions (7) - (10) are
needed and used. Points of g and the viscosity function k are deter-
mined as shown in [8] or [26]. The strain rate change tests proposed
in [8] are preferred. The relaxation tests [26] are also useful pro-
vided the solution properties of (14) and (15) are accounted for (in
[26] g=gle] only). Candidate functions for k are also given in [8,26]
but new ones may be easily proposed. In this step extrapolation,
trial and error with judgement are required.

Once a point of g is known, the asymptotic value of {g- £f}=A can
be determined from the corresponding value of o and £=E e

With §[0] = g% [0] = E, %f' [cmax]=Et and at least one point of g

known, g can be approximated by the functions provided in [29] or by
other representations (i.e., Ramberg Osgood relation). A similar
procedure is used to approximate the stress-strain diagram. These
two functions are now used as inputs to

g-E_¢
4 . - g et |y _Lldo
de *[C’ 8: B,C’D] b[o._g] 1 E de (Aol)

which is obtained from (24) and where b is given by (22). The argu-
ments B, C, D of § are the free constants in the assumed representa-

tion of

C
¥=B + Fx/D). (A.2)

where f(%) is an increasing function. Examples of such functions are

given in Table 2. Since \#[0]'=E=B+C/f[0] only two constants need

L .
E= §[0] is selected to be slightly less than E.
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be determined in the subsequent nonlinear least square analysis® which
employs (A.1l), (A.2) and the fitted anmalytical expressions for ¢ and g
(since the derivatives are needed in (A.l), analytical expressions
are preferred). This analysis then yields the constants for (A.2).

With all the constants determined the model can now be integrated
numerically and should reproduce the experimental results used to
determine the' constants. Due to the nonlinearity of the problem some
iterations are probably necessary. These iterations may employ dif-
ferent forms of § and k consistent with the general requirements.

* The IMSL subroutine ZXSSQ is an example of possible algorithm
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TABLE 1

SLOPES AFTER A JUMP IN STRESS OR STRAIN RATE

Change Condit ionl) do'de dg+/ de
Strain Stress Strain Stress
Control Control Control Control
E ES+ ¢
Increase 0<8§X1 E 1T GE/Et ¥ 1+ GE/Et
Decrease §>1 -8E E /S 6(Et - Et:
Reversal §=-1 2E -Et 2% - Et Et
E E§+
Reversal -1<<§<0 E ¥ E
increase 1+ aE/Et: 1+8 /Et
Reversal § << -1 ~8E Et/6 6(Et' ¥) Et
decrease
2 §= é-/&+ or 6'-/'+.
TABLE 2

MATERIAL CONSTANIS AND FUNCTIONS USED

t

A = 120 MPa

E = Modulus of elasticity = 120,000 MPa
E_ = Asymptotic tangent modulus = 1200 MPa

k(x] =2.296%x 10"

4

. =]
exp(21.275 exp - m) s

¥, [x] = 48,000 + 70,800 exp(-0.12 |x[) MPa
Used in all figures except in Figures 6 and 8

¥,[x] =12,000+ 106,800 cosh(-0.2 |x|) MPa
Used in Figures 6 and 8

T All x used here are measured in units of MPa.
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THERMOMECHANICAL DEFORMATION IN THE PRESENCE

OF METALLURGICAL CHANGES™®

D.N. Robinson
University of Akron
Akron, Ohio 44325

Cyclic hardening of some common structural alloys within
their temperature range of interest is believed to be influ-
enced by the vhenomenon of dynamic strain aging.! Strain aging
occurs in solid solutions where solufe atoms (e.g., carbon,
nitrogen, etc.) are particularly free to diffuse through the
parent lattice. It is energetically preferable for these
solute atoms to occupy sites in the neighborhood of mobile
dislocations where their presence immobilizes the dislocations
or at least makes their movement difficult, thus causing
strengthening.

Isothermal cycling at temperatures where such metallur-
gical changes occur might therefor:be expected to show abnor-
mal hardening, i.e., higher hardening rates and greater
saturation strengths than at temperatures both lower and higher.
Macroscopic evidence of strain aging in three common alloys (i.e.,
Hastelloy X and types 304 and 316 stainless steel) is shown in
Figures 1 through 3. In each case the hardening rate and the
stress range at "saturation" are maximal at an intermediate tem-
verature in the range. This hardening peak is interpreted as a
manifestation of dynamic strain aging. At lower temperatures the
mobility of solute atoms is far less and strain aging cannot occur;
at higher temperatures normal recovery precesses, e.g., climb of
edge dislocations, take over.

In the aging process described dislocations can, under some
circumstances, break away from their Cottrell solute atmospheres
becoming mobile again. Although temporarily freed, dislocations
can again be immobilized as solute atoms gradually diffuse back to
them. As the thermally activated process of diffusion is involved

#This work was performed under NASA Grant NAG-3-379.
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and solute atoms are migrating to dislocations which themselves are
moting under the applied stress, it is expected that the ensuing
inelastic deformation (cyclic hardening in particular) has a com-
vlex dependence on thermomechanical history.

Fhenomenological evidence of themomechanical path dependence
under cyclic conditions is seen in the results of the simple
nonisothermal tests reported in Figures 1 and 2 (dotted curves).
In these tests cycling is initiated at one temperature and after
some cycling the temperature is changed and cycling resumed.

Figure 1 shows the results of two nonisothermal tests on
Hastelloy X cycled over a strain range at constant strain rate.

In one, the specimen is cycled at 800F for five cycles; the tem-
verature is them changed to 1000F and cycling is continued to
virtual saturation, at about one hundred cycles. In the second,
this history is repeated up to thirty cycles where the specimen
is then brought back to 800F and cycling continued. Results of a
similar test on tyve 304 stainless steel are shown in Figure 2
(dotted line).

The features of these test results that reflect thermomechan-
ical history dependence are: 1) The change in strength (stress
range) with temperature at a fixed number of cycles is always neg-
ati-e, i.e., 2n increase in temperature always produces a decrease
in strength and vice versa, contrary to the implication of the
isothemal data; 2) The current strength, in particular the "satura-
tion" strength, devends on the temperature-strain history. Evie-
dently, the information contained in the isothermal data is not
sufficient for a complete nonisothermal description of the cyeclic
deformation in the temperature range of interest. In fact, the
data suggests that, with accompanying metallurgical changes, the
materials retain a full memory of their themomechanic¢al history
to cyclic saturation.

In the present work a discussion is given of noniscthermal
testing that can be used as a basis of a nonisothermal represen-
tation. Related tests were discussed in Ref. 2 with regard to
metallurgical changes that occur in other high temperature
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structural alloys.

In spite of the sparseness of nonisothermal data, a visco-

plastic constitutive model capable of qualitatively representing
the behavioral features observed in Figures 1 through 3 has

been formulated. This model is used here to begin to assess the
differences in ultimate life prediction in some typical noniso-
thermal structural problems when the constitutive model does or
does not account for metallurgically induced thermomechanical
history devendence.
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MICROMECHANICS OF HIGH TZMPERATURE
DEFORMATION AND FATILURE
S. Nemat Nasser and J.R. Weertman

Northwestern University
Evanston, Illinois 60201

The aim of the current research sponsored by NASA-Lewis Research Center at
Northwestern University has been to examine the micromechanics of the constitutive
behavior of elasto-plastic materials at high temperatures. This research involves
theoretical and experimental effort.

The experimental work has focused on the development of microscopic defects
in superalloys (Waspaloy), especially the formation of voids at grain boundary
carbides, and slip-induced surface cracks within grains upon cyclic loading at high
temperatures, The influence of these defects on the life-expectancy of the
material is being examined. |

The theoretical work consists of two parts: (1) Analytical descriptionm of the
mechanisms that lead to defects observed experimentally; and (2) development of
macroscopic elasto-plastic nonlinear constitutive relations on the basis of micro-

me-ianical modeling.
1. PROGRESS TO DATE

A list of articles completed under the current grant is given in Section 2,

Progress in experimental and theoretical efforts is briefly discussed in

Subsections 1.1 and 1.2,

1.1 Experimental Effort
A study is under way of the effect of prior deformation, carried out at room

temperature, .on the subsequent high temperature fatigue behavior of Waspaloy.
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At room temperature Waspaloy deforms by coarse, planar slip whereas by 650°C
slip has become fine and homogeneous. Pineau and coworkers, Refs. [1,2], have
shown that the planar low temperature behavior can be extended to higher temper-
atures if the material is deformed at room temperature prior to high temperature
fatigue.

In the series of experiments now in progress the effect of monotonic
prestrain and of prefatiguing at room temperature on samples fatigued at
650-750°C is being investigated. Samples of Waspaloy were pulled at room
temperature to a strain of about 47 or were fatigued with a plastic strain
amplitude of 0.37% or 0.67% at a frequency of 0.05 Hz. The specimens then were
fatigued at 0.05 Hz at 650°C with a stress amplitude of 810 MPa or at 750°C
with an amplitude of 770 MPa. All high temperature fatiguing was carried out
in a vacuum of about 10.6 torr. Several samples were subjected to high temper-
ature fatiguing which had undergome no prior deformation, in order to observe
the effect of prior deformation on high temperature fatigue behavior.

Both monotonic straining and fatiguing produce coarse slip at room tem-
perature, While some slip lines appear straight, many detour around the larger
Y’ particles. Shearing of v’ particles is not universal during room temperature
deformation. (The distribution of sizes of the ¥y’ partidles is bimodal. The
larger are about 200 nm in diameter.) An appreciable amount of microcracking
was seen along coarse slip lines in the fatigued samples (Fig. 1) but no grain
boundary cracking. A small number of grain boundary microcracks were found in
the pulled material but no slip line cracks (Fig. 2). Waspaloy which was pre-
strained either in tension or fatigue and then fatigued at 650° or 750° also
showed coarse slip bands, an appreciable number of which had turmed into cracks.
Prefatiguing seems to favor microcracking along the slip lines, while prior de-

formation by pulling produces more grain boundary voids and cracked boundaries
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plica of Waspaloy fatigued at
room temperature for 100 cycles (0.1 Nf) at a plastic strain amplitude
of 0.6% at a frequency of 0.05 Hz. Several microcracks along coarse
slip lines are seen on either side of the twin boundary.

Fig. 2: Shadowed 2-stage replica of Waspaloy pulled to a 47 strain at room
temperature. Note coarse slip lines, one of which ends in a micro-
crack at the grain boundary.

57



(Figs. 3 and 4). The slip generally is finer in specimens fatigued at high
temperature which had not undergone prior deformation (Fig. 5). Slip line
and grain boundary cracking appeér only after 500 cycles in these specimens,
whereas such features appear by 200 cycles in the prestrained samples.
1.2 Theoretical Effort

A complete formulation of the overall macroscopic elasto-plastic response
of polycrystalline solids at finite strains and rotations has been made; Ref.
{3]. A number of illustrative examples have been worked out. A number of
interesting new results have been obtained. In particular, the influence of
residual stresses (backstress) at the micro-level on the overall mechanical
response has been thoroughly examined. 1In addition, based on a micromechanical
modeling, the macroscopic Bauschinger effect and kinematic hardening are
exemplified,

In Refs. [4,5] dynamic crack growth in elasto-plastic materials is given
a complete asymptotic solution. These results shed new light on this difficult
problem area and bring out a number of technically important questiomns per-
taining to criteria for ductile fracture.

Other articles listed in Section 3 respresent various other micro-

mechanical aspects of the research which has been completed.
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Replica of a slip line crack which has jumped the grain
boundary and continued on another slip system. Specimen
of Waspaloy prefatigued at room temperature for 200 cycles
(0.1 Ng) at a plastic strain amplitude of 0.3%, then
fatlgued for 160 cycles at 650°C with a stress amplitude

of 810 MPa. All fatlgulgg done at a frequency of 0.05 Hz,
and in a vacuum of ~ 1077 torr.
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CONSTITUTIVE MODELING OF SUPERALLOY SINGLE CRYSTALS
AND DIRECTIONALLY SOLIDIFIED MATERIALS

Kevin P. Walker
Engineering Science Software, Inc.
Smithfield, Rhode Island 02906

Eric H. Jordan
University of Connecticut
Storrs, Connecticut 06268

A unified viscoplastic constitutive relation based on crystallographic
slip theory is developed for the deformation analysis of nickel-base face-
centered cubic superalloy single crystals at elevated temperature. The
single crystal theory is then embedded in a self-consistent method to de-
rive a constitutive relation for a directionally solidified material comprised
of a polycrystalline aggregate of columnar cylindrical grains. One of the
crystallographic axes of the cylindrical crystals points in the columnar
direction whilst the remaining crystallographic axes are oriented at ran-
dom in the basal plane perpendicular to the columnar direction. These
constitutive formulations are currently being coded in FORTRAN for use
in nonlinear finite element and boundary element programs. An experi-
mental program to deteiinine the biaxial tension-torsion behavior of PWA
1480 single crystal tubular specimens at 1600°F is also underway.

INTRODUCTION

This paper represents a first quarterly progress report on a program
to develop anisotropic comstitutive equations for use in modeling the mul-
tiaxial viscoplastic stress-strain response of single crystal and directionally
solidified gas turbine alloys at elevated temperature. Two approaches are
being pursued. The first approach consists of modeling the anisotropic
response from a macroscopic continuum point of view, whilst the second
approach consists of taking a micromechanics viewpoint using crystal plas-
ticity concepts. Tubular specimens of the single crystal superalloy PWA
1480 are currently being machined. Tension-torsion experiments on tubu-
lar specimens of PWA 1480 will be conducted at 1600°F to provide a data
base for exercising the theoretical formulations. The anisotropic visco-
plastic theories will be incorporated into a nonlinear finite element code
since the non-uniform stress distribution in the tubular specimens will
require the solution of a boundary value problem for data reduction pur-
poses.

b5



SINGLE CRYSTAL ANALYSIS

An analysis of single crystal superalloys undergoing steady state
creep deformation was presented by Paslay, Wells and Leverant (1] in
1970 using a theoretical formulation based on crystallographic slip theory
of face-centered cubic materials. In 1971 the theory was applied by
Paslay, Wells, Leverant and Burck [2] to describe the creep behavior of
single crystal nickel-base superalloy tubes under biaxial tension. Steady
state creep formulations suitable for the analysis of single crystals were
used by Brown [3] in 1970 and by Hutchinson [4] in 1976 to predict the
behavior of polycrystalline materials whose aggregate consists of randomly
oriented single crystal grains. Recently, Weng [5] has developed a single
crystal creep formulation which accounts for transient (primary) as -eli
as steady state (secondary) creep. However, in order to describe the
combined plastic and creep behavior of polycrystalline materials, Weng
combines the rate-independent and rate-dependent components of crystal
behavior in such a way that each component is governed by a separate
constitutive relation. The averaging of the single crystal creep relations
to obtain the overall macroscopic creep response of the polycrystalline
aggregate is easily accomplished by using Kroner's self-consistent method
[6f. In a general analysis the constitutive relations for the overall mac-
roscopic plastic response of the polycrystalline aggregate must be obtained
using Hill's self-consistent method {7 Kroner's method for calculating
the macroscopic creep properties of a polycrystalline aggregate of single
crystals is explicit in nature; but Hill's method for calculating the macro-
scopic plastic properties is implicit in nature and requires lengthy itera-
tive computations.

In the decade of the seventies the creep and plastic r nses of
materials were combined into unified viscoplastic formulations [8]). These
formulations differ from steady state creep theories by introducing history
dependent state variables to account for primary creep and plasticity.
Most of these unified theories exhibit an elastic response under instan-
taneous deformation. This instantaneous elastic response occurs
because the inelastic strain rate is assumed to depend only on stress,
state variables and temperature and not on the rates of these variables.
These unified theories may, therefore, be integrated in time by means
of an explicit Euler forward difference method. Macroscopic properties
of a polycrystalline aggregate, comprised of single crystal grains which
are assumed to deform according to a unified viscoplastic slip process,
can therefore be obtained by means of Kroner's explicit self-consistent
method.

In the unit cell of the face-centered cubic crystal shown in Figure 1
we denote by m;a unit vector in the i™ slip direction (say of type {1107 ),
whilst g, is a unit vector in the normal direction to the slip ‘plane (of
type {111} ) of which w{ constitutes a slip direction. The four octahe-
dral {111} planes and the twelve corresponding {110) slip directions
(three on each plane) are shown in Figure 1.

From the geometry of the unit cubic cell in Figure 1 the unit
vectors are given by

mo=(i-XINT 5 me=CGivd2 5 ma=(i- )T, me= (-3
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Re=(rd/Vz , e (JrRNZ 5 mi=CividNZ , me=(-irk)AZ ,
."}1’(1:,*5)/5 ) !.‘,‘lo=(_._i_‘\’5)lﬁ ) .",\u=(£-,«i)/ﬁ, ,{')nz=(£’b)/\f-:

with . .
=tz M=(ieirk)/3 ) pe=ns=gex=(i+)-k)/M3,

L4

fr=nee Nyx(i-i-K)/V3 , nostu=pa=({-i+k)/V3,

~

where .b Js k are unit vectors along the x,y,2z crystallographic axes.

Figure 2 shows a single crystal whose global axes are denoted by
L

] [ ]
X, Y,z and whose crystallographic axes are denoted by x,y,z. If Q
denotes the orthogonal tensor which rotates the crystallographxc (unstar-
red) axes into the global (starred) axes, vxz., x? = Qjx , then the
stress tensor ¢ and the strain rate tensor ¢ in the crystaflographlc axes
may be obtained from the stress tensor g®and the strain rate tensor £*
in the global system from the usual transformation relations,

(1)

The assumption is now made that any of the unified viscoplastic
theories discussed in Reference [8], when specxahzed to the case of shear
deformation, is a valid constitutive relation in each of the twelve crystal-
lographic slip directions. In the r*slip direction the resolved|shear stress,
ftr, o is obtained from the relation

v

K" = Erogogf‘ ‘fo" | gk I’Z)" ',lz . (2)

It is further assumed, in a manner analogous to the unified isotropic vis-
coplastic models, that the applicable relation governing the inelastic shear
strain rate in the r®slip direction is

om K (W00 )| Ko ™ e (R 9 [0y |
+ o (T o) | Wn 0T P g (R0 0], )| M- 6| P
- '
+ qui(ﬂ:‘z-w:z>‘ﬂ:z“°;zp ' 2 “u(t:z" “):z)\“:z" “ft‘n\r } » (3)

where K, and m (with p and q = m,n,z) denote the drag stress and
equxlxbnum (rest or back) stress in the e™ slip dxrectxon. The expression
for Tg. is defined in equation (2). Terms such as =, denote, by an-
alogy, expressions of the type

"

Noy= Me.C-Zr s (4)

where Zr denotes a unit vector perpendicular to the unit vectors m,. and
Re . The vector z¢ is in the slip plane containing the vector me and
the vectors Mme , Oe , z~ form an orthogonal triad for the r™ slip sys-
tem. In equation (3) the tensor ® pq represents the effect of the non-
Schmid factors [9] upon the inelastic strain rate in the ¢™ slip dire:rion
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For example, the term containing ., represents the effect of the resolved
stress, normal to the slip plane containing the r® slip direction, on the
inelastic strain rate in the v™ slip direction. Such terms can represent
the effect of a pressure dependent inelastic strain rate. The dominant
term in equatxon (3) is the Schmid type term containing the expression
‘R’.... ; estimates of the magnitude of the non-Schmid type terms con-
Eauimg the tensor ®pq, have been given by Asaro and Rice in Reference
10}, , :

To complete the constitutive formulation it is necessary to specify
the growth relations for the equilibrium and drag stress state variables.
The equilibrium stress in the r™ slip system may be assumed to evolve
according to the evolution equation

m- I

é';,eg,',@?'/ oL, IV 0hy - Sy lwral 0 5 | (5)

where 93\ gm 9,.. and m are temperature dependent material constants.
A simplifying assumption is to take

. » © e ~
&3» e » I a'."-'-".. L2 for pig=mn2, (6)
Vede M foee T
where the Cumulative 1nelast1c strain is defined by
SN 0

Equation (6) states that the ratio of the saturated equilibrium (back)
stress, i.e. the equilibrium stress for continued inelastic straining (Re=vee)
under fast straining conditions ( Y,-» so ), to the resolved shear stress in
the same direction, is equal for all the non-Schmid systems. Moreover,
the ratio is equal to the ratio of the saturated ethbnum stress to_ the
resolved shear stress for the Schmid-type components, Wha and 5. .
Under continued inelastic strammg the equilibrium stress saturates and
wi=» 0. Under fast straining conditions ( ¥.-» ¢o ) equation (5) shows
that the saturated equxlxbnum stress is given by the relation

a,‘-,"'.‘. ©Op, = —-‘5- J | (8)
Y30 ?P,
since the thermal recovery term containing the material constant 9,4
can be neglected for Y -» 00 . The material ccnstants g:‘ must therefore
satisfy the relation
1 |
$m 9-'\ (9)

3% T, (Ry>e) Roe)

Assuming the constants g,., and g...‘ and the limiting saturated value of
the resolved shear stress <Xma are known for the Schmid-type terms,
equation (9) determines the ratio of 9 to 9% for the non-Schmid
terms. If it is further assumed that the mmaquﬁardemng rate for the
non-Schmid equilibrium stresses are all equal to the Schmid equilibrium
stress hardening rate, then q&:q,‘& for {=1,2 and pqEmn,z .

68



The drag stress may be assumed to grow according to the ewolution
equation

u L]
Ke = g. A%l (10)
‘ \
in which the hardening moduli are g‘inn by
1970
hee= [4+ 09084 & LR (11)

The hardening moduli h, defined in equation (10) account for the latent
hardening effects observed in single crystal materials, and equation (11)
is similar in form to that proposed by Hutchinson [11], Asaro [12] and
Peirce, Asaro and Needleman [13]. Numerous forms for the hardening
moduli hek have been proposed in the literature and a review of harden-
ing moduli may be found by consulting Havner's papers (cf. Reference
[14]). The drag stress evolution equation does not contain thermal recov-
ery terms, but these terms can easily be included in the formulation

The shear slip strain rates may now be resolved into the crystal-
lographic system and summed for each slip system to obtain the inelastic
strain rate tensor with respect to the crystallographic axes in the form

‘ L)
= 4% (memer man) (12)
L

Finally, the stress rate tensor with respect to the crystallographic axes
is determined from the relation

g=D"(é-¢) (13)

where 2; is the anisotropic elasticity tensor for the face-centered cubic
crystal referred to the crystallographic axes.

The variables can now be updated in the Euler forward difference
form:

2gz+i~At s £=£+£A‘t, wrnswaq»&s;,At,
LoYorblbt, g=G.08 , =0 4.8 s (14)

where At is the current time increment. The process may then be re-
peated by integrating equations (1), (2), (3), (4), (5), (10), (11) for
each time increment.

The preceding discussion has focussed on slip which occurs on the
{111} octahedral planes in the {110) type directions of face-centered
cubic nickel-base superalloys. Paslay, Wells, Leverant and Burck [1,2]
also found that slip occurs under creep conditions on the {111} planes
in the {112) type directions. Cube slip on the crystallographic faces was
also found to occur. For each different slip system the foregcing theory
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is altered only by virtue of having different slip and normal vectors defin-
ing the triad m, n and 2. In general, the total inelastic strain rate may
be written as the sum,

N
£= LAl (15)
“
where ¢, is due to {111} {110) type slip, ¢; is due to {111} Q12)
type slip, 4is due to cube slip, etc. Such a combination was stated to
be required to model primary creep behavior in Reference [1] by Paslay,
Wells and Leverant. It is possible that {111} {112) type primary creep
may evolve into {111} {110) type secondary creep as described by Lever-
ant, Kear and Oblak in Reference [15]. In this instance it may be nec-
essary to modify the theory so that the A{ ewlve with deformation, in-
elastic strain rate and temperature according to evolution growth equa-
tions similar to that employed for the equilibrium and drag stress state
variables. This mixing of different slip systems to model the anisotropy
of nickel-base superalloys was also stated by Ezz, Pope and Paidar [16]
to be necessary in order to model tension-compression flow stress asym-
metry observed in nickel-base superalloys.

DIRECTIONALLY SOLIDIFIED ANALYSIS

A model for directionally solidified alloys can be constructed by
making use of a suitable self-consistent method to average the results of
the single crystal viscoplastic constitutive theory. The directionally solidi-
fied material consists of aligned columnar single crystal grains which are
oriented at random in the basal plane perpendicular to the cylindrical
growth direction. This random orientation of the grains produces a mat-
erial with transversely isotropic properties.

The directionally solidified material comprised of an aggregate of
single crystal columnar grains may therefore be modeled in the following
manner. We first choose a particular single crystal columnar grain and
replace the aggregate of single crystal grains surrounding the chosen
grain by a transversely isotropic material. The properties of this sur-
rounding transversely isotropic material are found by averaging the prop-
erties of the chosen single crystal grain about its cylindrical growth axis.
It is then possible to relate the stress and strain increments in the single
crystal grain to those in the surrounding transversely isotropic matrix
by means of the method proposed by Eshelby [17] in 1957.

Viscoplastic formulations which exhibit an instantaneous elastic
response can be integrated by means of an Euler forward difference
method. In physical terms this integration process consists of letting
the material creep at constant stress at the level & appropriate to the
beginning of the increment for a time interval 8t . After the creep
increment is completed the material is subjected to an instantaneous
strain increment &g - Ac , where Ag is the total strain increment during
the time increment At and Ag is the completed creep strain increment.
The instantaneous application of the strain increment A¢ - Az induces an
elastic stress increment given by Hooke's law in the form Ag = D:(4¢-Ac)
where D is the elasticity tensor for the material. R
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Let 2° and Qm denote the fourth rank cubic and transversely iso-
tropic elasticity tensors for the single crystal and the surrounding matrix,
respectively. In the cylindrical single crystal grain the inelastic strain
increment is denoted by 8c and the corresponding quantity in the matrix
is denoted by <AcY. The quantity {A¢) is obtained from 8¢ by averag-
ing Ac over all angular orientations (viz. from 0 to 2r ) in the basal
plane perpendicular to the cylindrical growth axis. In the single crystal
grain the constitutive relation has the form

e
., = . - 4ac
Aoy = Dy (Aﬁu s u): (16)

whilst in the directionally solidified matrix the constitutive form s
m
Ay = Dy ((MuO—(ACu))- (17)

Given a known strain increment {8€w) in the directionally solidified
matrix, the object is to determine the corresponding inelastic strain
increment Ac,  in the single crystal cylinder and then average this
quantity by means of the relation

b 3
{Acyd = 3= S° Ac,(8) 46 , (18)

where O is the angle between the crystallographic axes x,y in the speci-
men and the global axes x*,y* in the matrix, with the z,2* axes aligned
in the cylindrical crystal's growth direction. The stress increment in the
directionally solidified matrix is then determined by equation (17).

The first step consists of determining the state of stress and strain
in the cylindrical crystal grain when the matrix and crystal undergo creep
for a time increment At . A preliminary step in this analysis consists
of replacing the single crystal grain by a fictitious material which has
elastic and inelastic properties which differ from those of the single
crystal but in which the elastic properties are the same as that of the
transversely isotropic matrix with elasticity tensor P™. Eshelby's cutting,
straining and welding operations [17] are now applied to the fictitious
crystal grain

The fictitious cylindrical grain is now cut out of the matrix and the
instantaneous shapes of the grain and resulting cylindrical hole in the
matrix are maintained by appropriate equal and opposite surface tract-
ions applied to the respective cylindrical surfaces of the grain and hole.
The stress in the matrix is denoted by <£) and that in the fictitious
grain by &£ , where g is the stress state in the actual single crystal
grain. From Eshelby's results, if the strain history in the matrix is
homogeneous, the resulting stress in the actual and fictitious cylindrical
grains will be constant throughout the cylindrical wolume. This will be
demonstrated subsequently. The fictitious cylindrical grain and the sur-
rounding matrix are now assumed to undergo creep responses for a time
increment At at their respective stress levels of g and {(€) . In the grain
the resulting creep strain increment is denoted by A'éf and the corres-
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ponding creep strain increment in the matrix is {A¢) . If incremental
surface tractions are instantaneously applied to the cylindrical surface
of the fictitious gram so that it is elastically strained by an amount
-A£ , it will regain the original size and shape which it had upon re-
moval from the matrix prior to the creep response. If it is subsequently
elastically strained by an amount {Ac)> through the application of a
further set of incremental tractions applied instantaneously to the cylin-
drical surface of the grain, it will fit back into the matrix from which
it was removed. The fictitious grain and matrix now fit compatibly
together, and the strain increment experienced by the grain is-84 where

Apy = bey - Cbey) - (19)

However, a layer of surface traction exists on the cylindrical surface
boundary between the grain and the matrix. This layer of surface trac-
tion is given in magmtude by the relation

Bt = ;A6 = n; DRy ((aca) - bey ) = ~0; Dl BBl 5

and can be removed by the application of an equal and opposite layer of
surface body force of magnitude

Afi = n; .,kl Bpu . (20)

The displacement increment Au.; induced in the fictitious grain due to
the application of surface tractions Af_ over its cylindrical surface is

given by _
c . G (e &f !
where G‘ (x-x') is the elastic Green's function for the transversely

isotropic matnx “and the fictitious grain.  Application of Gauss' diver-
gence theorem to the surface integral produces the result

Au.cp . Sgs“i. ikl BPel Gl’pj (z-2') As(y)

= Dija bgu §ff, "_C‘_ﬂ.‘_g’_i_’)-w(:')_
= -Dje s % I, nle-£) ). (22)

The resulting strain increment Ae‘ in the fictitious grain due to this

annihilation of the incremental surface traction built up during the creep
response of the fictitious grain and the matrix is

( ')ié_ul__ (Aup)

Beiy = ?1p =/ Siplm B 5 (23)

where the Eshelby tensor ©  is defined by the relation

S -1 e, s}

The strain increment induced in the fictitious grain ir order to make
it fit compatibly in the matrix is given by =88y whilst the additional
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strain induced in the grain by removing the unwanted surface traction
increment At_ is given by Af,. . At the end of the creep increment the
total strain increment induced in the fictitious grain is given byAz BB »
or from equation (23), by S.Jkl Apwi - AP‘) . The stress mcrement in
the grain is therefore

Ad' = D.jk\ (Sklm“ Iklun)APnn ’ v (25)

where I is the fourth rank identity tensor. Note that the strain incre-
ment responsible for changing the size of the cylindrical gram from the
size it had when it was placed back into the matrix is Au = Sijkl B3,
since the change in size is due to the annihilation of the surface traction
increment At; by the equal and opposite traction increment A, .

Now consider the actual situation where the cylindrical grain has
its own anisotropic elastic constant tensor with cubic symmetry, D .
We remove the cylinder from the matrix, as before, and let the cylin-
drical grain undergo a creep strain increment A¢ in time At and the
matrix undergo a creep strain increment {4¢c> . If we now apply surface
traction increments instantaneously to the cylindrical boundary so that
the cylinder is elastically strained by an amount (Ag) - Ac , it will
fit back into the matrix from which it was removed. Moreover, since the
matrix creep strain increment {3g)> is the same as that in the problem
with the fictitious cylinder, the cylindrical grain will have the same size
and shape as the fictitious cylinder had when it was put back imo the
matrix The strain increment responsible for changing the size of the
cylindrical grain from the size it had when it was placed back into the
matrix to the size in its final configuration is Skimn 8Bmn . Hence, if
the actual cylindrical grain is strained by the increment Skima A[Jm
+ {Ac > - Ay , it will have the‘ same final size as the prewviously
considered fictitious cylmdncal gra.m with transversely isotropic elastic
properties. The stress increment in the actual cylinder due to the strain
increment Sklmn BB+ <LBcuy - Bcu is

AQ“J = Dicjkl {SHM AP‘“‘ + <Acg|>"kk| } . (26)

If the stress increments in equations (25) and (26) are equal, the actual
cylindrical grain which has the elasticity tensor D~ appropriate to cubic
symmetry and which undergoes an increment of transformation strain AR ,
may be replaced with the fictitious cylindrical grain with elasticity tensor
P™  equal to that of the matrix without upsetting continuity of dis-
placements and tractions across the cylinder-matrix interface. Equating
(25) and (26) shows that

3 " ™ i
Aptj = [(D;ju—D-‘F)Sum + Dii"‘] Dc,,nn ibcm—<hn>} . (27)

If this. transformation strain increment occurs in a cylinder with elasticity
tensor P™ , the stress increment in the cylinder is equal to that which
actually occurs in the single crystal cylinder with elasticity tensor D€
undergoing a transformation strain increment A% —(AC>. Substitution of
the expression for AR into equation (25) [or (26)] gives the stress incre-
ment in the cylindrical single crystal grain at the end of the creep re-
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sponse in the form

Ac; = D.?ul (Skima~ Tigmn ) [( Dcmn"‘):nn) Sprs + Dnes
X Digy {8cp— <3} - (28)

According to the Euler foward difference integration method the
crystal grain and matrix are now to be instantaneously loaded with the
elastic strain increment {Ag)—-{8c)> . To this end we first consider
the single crystal to be replaced by a fictitious cylinder having the same
transversely isotropic properties as the surrounding matrix. If the fic-
titious cylinder undergoes a stress increment free uniform strain incre-
ment Ag” , the final strain increment inside the cylinder is (  Sijk| -
Tipel ) B&q, . A uniform strain increment {4g) — <Ac)> may now {)e ap-
plied to the martrix and ficti;ious cylinder to produce the final strain
increment of ( Sijl=Tyel ) beer + <8&ij)> = {Aciy. The resulting
stress increment in the fictitious cylinder is

dey= D:‘;kl {(Sun“ Tygma ) BEL, + (A8 “(AC\D} . (29)

Only the strain increment $? Aﬁ?*(ﬁ.€>‘<bﬁ> is responsible for
changing the size of the cylindrical volume, since the strain increment -A‘g
is used to force the cylindrical wolume back to its original size after
removal from the matrix. If the actual cylindrical grain with elasticity
tensor D€ is now subjected to the strain increment £:4g +<{3g) - {Ag) it
will aquire the same shape and size as the fictitious cylinder which has
elastic properties identical to the matrix. The stress increment in the
actual single crystal is then given by

Aﬁ'aj = D?\jki { Skima AE:-\ + <A5u>“<Ackl>} . (30)

The actual and fictitious cylinders now have the same final shape and size
and if the stress increments in equations (29) and (30) are equal, the
actual crystal cylinder can replace the transversely isotropic cylinder and
still preserve continuity of displacements and tractions across the cylin-
der-matrix interface. Equating (29) and (30) gives

AE:; = - [(Dcayt'bau) Skimn *+ Dijun ].'(D;P.,— D',Lﬂ)_{(htﬁ) -(Acn)} . (31)

Substitution of this result into equation (29) [or (30)] produces the stress
increment in the cylinder due to the instantaneous application of the
strain increment {Ag) — {Ac) in the matrix in the form

Aoi; = D:-;u ((“m) - (Ac-u|>)

- - " -
- D;ju (S!\M’ IHM) [(DC-\H" mﬂ)sﬂ's + DMPS] (31)
% (D= D) { {28, 0 ={Ae, )} -

At the end of the creep response during the time interval At the
stress inctement in the single crystal cylindrical grain is given by equation
(28). When the matrix is further elastically strained by the instantaneous
application of the strain increment <{Bg) - {4¢) the additional stress

-1
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increment in the single crystal grain is given by equation (31). Accor-
dingly, the total stress increment in the single crystal due to the appli-
cation of the strain increment {Ag) in the time interval At is given
by the Euler forward difference method as the sum of the stress incre-
ments in equations (28) and (31), viz

" c - m -
Ag‘.‘j = <AU'“> + D‘\jkl CSHM"I\(\M)K( Dnnm- DMP‘,)SH"‘ + D"""’]

X % Dis*u (Actu- <A°tu>) "(D:stu" D:stu) ((A‘-tﬁ -(A"t.&) g » (32)

where the first term in equation (31) is the definition of the matrix
stress increment given in equation (17): ‘

Provided the stress level € is known in the single crystal at the
beginning of the increment, the single crystal analysis in the preceding
section furnishes the value of the inelastic strain increment A¢ . Aver-
aging Agc over the basal plane for crystals of different orientation by
means of equation (18) then furnishes the value of {Ad¢) . Assuming
that the strain increment in the matrix is given, equation (17) furnishes
the required stress increment in the matrix. The stress increment in the
single crystal constrained by the transversely isotropic matrix is given
by equation (32). All pertinent quantities can now be updated according
to the Euler forward difference procedure and the process repeated for
the next time increment. A procedure for evaluating the Eshelby tensor
S is given in the appendix.

WORK IN PROGRESS

The single crystal analysis has been coded into a FORTRAN sub-
routine and is currently undergoing numerical test experiments. Coding
of the directionally solidified analysis is due to commence shortly. Single
crystal tubular specimens of PWA 1480 are being machined and will
be tested at 1600°F under biaxial tension-torsion loading conditions.
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APPENDIX

The Eshelby tensor $ is defined by the relation

Sipim =4 Djm { 52, 1 G - davie o 25 i Gite-s Dave)}s (1)

where @; ,(; - r’ ) is the elastic Green's functxon for the transversely
isotropic matrix material. Although the Green's function for transver-
sely isotropic materials is known [18], it is more convenient to work with
the Fourier representation of the Green's function. The Fourier trans-
form of (G ij(L-x’) is known [19,20] and it can be shown, by taking
the Fourier transform of the defining equation, viz.

- 2
Djkm 2_62.(:—':"—'2 + Sij 5(5-:') =0, (2)

ug'bx,.
and inverting the result, that

Gyj(z-)= ¢ . (3)

In this equation the real part of the Founer integral corresponds to the
Green's function, and the Christoffel tensor M is defined by

HS M‘J (8) fisle-s)

|}
Mi(E) = & Dy & @
with
§= K/VKix;, = K/ (5)

being a unit wave vector in the direction of the Fourier wave vector § .

Introduction of this result into one of the integral terms in the defini-
tion of $ gives, on reversing the order of the volume and wave vector

mtegratxons, 2
S .
Ligij= == g SS G.J(g-;')d\((:l)

(RS (6)
- fod, (s B e 5,

The volume mtegratxon extends over the cylindrical volume of the fictit-
ious cylindrical grain and can be written as

Wor i(K,x, + Ky Xyt K323)
I= Jff e ) = e . 2
Let x= ga»é X, gs‘,.\e Then in cylindrical coordinates
- .x,x, L(K g 058+ Kygsind) (8)
1 S‘ g S dx, ¢d¢d6 ,

8=0 ¢*° 13-
where a is the cylindrical radius. Since

(- =2
{ RS dx, = 218(K,), 9)

-0
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where §( K, ) is the Dirac delta function, the integral takes the form

1= 21\8(“3)8 S t(K.guse'l'\(zquAB)e gdé (10)

0 =0

Let gzc‘/@-l, dg.: &‘/m Then

® oy . cos K, o 6} dq d8
L= 20306) | § et LRI Rt sal
00 ;o m Koy

If we now set K,//Khixy = c0s 8’ , then K,[Jk%k? =gig’ , so that

+ 28
2% 8Ks) * S eaq,cos(e-e')
Kiex?

q 41/49 . (12)
q*0 620

Since the integration extends over a whole circumference, it is imma-
terial where the origin of © is placed. The integral may therefore be

written as Y133

an
- “e
I= 2¢ 8(X3) d Lqees
Kie Ky ‘S,D k ‘L’S.: 48
- 283(4) (o
or o ) 42
yro
1= 2000 R 3 (o) > (13)

where J, and J, denote the usual Bessel functions.

Equation (6) can now be written as

(14)
-‘5‘-.. -t¥.r
Now _._.-——-z-K K ~% so that
DXL e
[T RN (XRTNA
Lk{ij L m AKX, dKX,d¥K3 M“(!)Kk\(g =t ’13 B )_SEQ-QJK‘ 45 J, [qm)
v-p K,"ﬂ(;a»l(; (15)

If k=3 or g=3, the Dirac delta functlonS( K;) gives zero values for
the integral. Hence, the non-zero values of the Eshelby tensor S are
given by k=1,2 and g=1,2, This arises because there are no compon-
ents of the body force layer of surface tractions in the Xa direction
at the cylmdncal interface between the gram and the matrix. Invoking

the properties of the Dirac delta function gives
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-e(Kyx, Kﬂ&)

L kgt 2=t JK\dKqu (rn;zag O)ck
k¢ ES m

J; (a\‘l("'ﬂ(,‘) . (16)

Now put

= s;ﬂe 9

[T

so that the Fourier wave vector components K\ and K, correspond to the
x, and X; axes, respectxvely. Then in cylindrical coordinates,

Ligij =-— j S KdK 8 M,(t)ckcg "K'_s. 7,(aX)

or an K=o

LK‘«) =--.S M'] (!)Ch;{ d6 Sde K J‘(QK) ax. . (17)

Since S is real, the’ real part of the precedmg integral is
J -; « cos (Kr) T (ak ) dX ..
But, (cf. Gradstyn and R-i:hik, p. 730, Eq. 6.671, No. 2)
| T« [acsi{sn' (A I/NES for 02rsa.

If ssin'(rfa), then T= acosBNak et = axe/[ﬁ/d- @58 /cesB = | .
Thus x |
-
Lkgij = -El-’-‘ S Mcj (S)gkc‘ 46,
o

independent of position r in the cylinder as expected from Eshelby s
result. In this integral we have §=c0s8 !;-&G,C;-Os (%) '(Q-D...C.. )=!
and k and g are restricted to the values c? 2. The Eshelby
tensor may now be written as

Sipm © Dk“‘"‘fl (S“u(‘v;z)c Sdd + S %‘Q.Q)QQ&Q}- (19)

For a transversely isotropic material the Chistoffel tensor m has the
component form
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aEirilar)l  dewwdt, O )
H-'j (§|,§2> = é(Cn*\’Cn.)tSz c“r:‘fé(C“’Cu. ;T- o) + (20)
o c Cur
-

The Eshelby tensor can now be evaluated by inverting the matrix in equa-
tion (20) and integrating according to equation (19). Explicit results
may be deduced, according to the calculations in Mura's book [21], for

the resulting integrals.  Checking of these integrals is currently in
progress. :
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ON THE USE OF INTERNAL STATE VARIABLES IN
THERMOVISCOPLASTIC CONSTITUTIVE EQUATIONS

D.H. Allen and J.M. Beek
Aerospace Engineering Department
Texas A&M University
College Station, Texas 77843

The use of internal state variables in modeling of inelastic solids is
gaining widespread usage in current research. Therefore, it is useful to con-
struct a well-defined framework for internal state variable models which is
based in continuum mechanics. The objective of this paper is to review and
clarify the general theory of internal state variables and to apply it to in-
elastic metals currently in use in high temperature environments. In this
process, certain constraints and clarifications will be made regarding intermal
state variables.

It will be shown that the Helmholtz free energy can be utilized to con-
struct constitutive equations which are appropriate for metallic superalloys.
Furthermore, internal state variables will be shown to represent locally av-
eraged measures of dislocation arrangement, dislocation density, and inter-
granular gracture. Finally, the internal state variable model will be demon-
strated to be a suitable framework for comparison of several currently pro-
posed models for metals and can therefore be used to exhibit history depen-
dence, nonlinearity, and rate as well as temperature sensitivity.

INTRODUCTION

The prediction of inelastic behavior of structural materials at elevated
temperature is a problem of great importance which has accordingly been given
a great deal of interest by the research community in recent years. These
materials exhibit substantial complexity in their thermomechanical constitu-
tion. In fact, so complex is their material response that it could be argued
that without useful apriori iInformation, experimental characterization is fu-
tile. The purpose of this paper is to show how the thermodynamics with in-
ternal state variables can be utilized to emplace certain constraints on the
allowable form of thermomechanical constitutive equations, thus providing some
limited insight regarding experimental requirements.

Historically, there have been two distinct approaches to the modelling
of inelastic materials: 1) the functional theory [l1], in which all dependent
variables are assumed to depend on the entire history of independent variables;
and 2) the internal state variable (ISV) approach [2], wherein history depen-~
dence is postulated to appear implicitly in a set of internal state variables,
Lubliner [3] has shown that in most circumstances ISV models can be considered
to be special cases of functional models. For experimental as well as ana-
lytic reasons numerous recently proposed models for the classes of materials
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discussed herein have been proposed in ISV form. Therefore, in this paper
the ISV method will be reviewed as well as clarified and it will be shown that
this general framework is useful in modeling metals at elevated temperature.

The paper begins with a review of ISV theory, and this is supplemented
with a section describing the procedure for constructing macroscopically av-
eraged internal state variables. These concepts are then applied to metals
at elevated temperatures. Finally, applications to boundary value problem
solving techniques are discussed.

REVIEW OF THE INTERNAL STATE VARIABLE (ISV) APPROACH

The concept of internal state variables, sometimes called hidden vari-
ables, was apparently first utilized in thermodynamics by Onsager (4,5] and
numerous applications are recorded since the second world war [2,6-14]. Al-
though not originally described for application to solids, the approach which
will be discussed herein is due to Coleman and Gurtin (2].

In the theory of internal state variables applied to solids the follow-
ing state variables are required in order to fully characterize the state of
the body at all points x, and at all times t:*

3
1) ‘Che displacement field u, = ui(xk,t) 3 (L)
2) the stress tensor oij = cij(xk,t) 3 (2)
3) the body force per unit mass fi = fi(xk,:) 3 (3)
4) the internal energy per unit mass u = u(xk,t) 3 (4)
5) the heat supply per unit mass r = r(xk,c) 3 (5)
6) the entropy per unit mass s = S(xk,t) 3 (6)
7) the absolute temperature T = T(xk,t) HD
8) the heat flux vector q; = qi(xk,t) 3 (8)
and
9) a‘i‘j = gt . k=12, .. .0 5 (9)

where a?- are a set of n internal state variables which are necessary to
account %or inelastic material behavior. Although they are listed here as
second order tensors, they may be tensors of other rank as well [15].

* For convenience, only infinitesimal deformations will be considered here,
although the general theory applies to finite deformations as well.
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The method of Coleman and Noll [16] may be used to obtain the spatial
and time distribution of the body force f; and heat supply r from the conser-
vation of linear momentum and energy, respectively, assuming the displace-
ments u; and the temperature T are specified independent variables. Subse-
quently, it is-hypothesized that constitutive equations of state may be con-
structed for the state variables described in (1) through (8) in terms of
u, and T and thelr spatial derivatives: '

i
RO Ty (€ (Rya 8D TCrysE), gm(xk.t). (xk,t)) 3 (10)
u(x,,t) = u(e (x,,t), T(xk’t),.gm(xk’t)’ amn(xk,t)) i (LD
s(x,,t) = s(e_(x,,8), T(x,,t), g (%,,8), ab_(x ,e)) i (12) and
qy (xst) = gy (e (08D T(xy,8), gplx,,t), b (x,,6)) ; (13)

where gy is the spacial temperature gradient Top and

aij = !:(ui’j + uj,i) ' (14)
The form of equations (ll) through (13) implies chat all constitu-

tive equations are evaluated in the specified state (x¢x,t). For this rea-

son 033, u, S, and q; are termed observable state variables since they

can be determined from equations of state even though there is implicit

history dependence via the internal state variables amn’ which are defined

to be of the form:

°k
35

Q‘I.’fj(emn’ T, gy -atf‘m) ' 3 (13)

where time and spacial dependenee have been dropped for notatiomal con-
venience. If equations (15) are at all times integrable in time, then
the following form is equivalent to (15):

t
j(x t) = f Ql;j(xm,t')ec' ; (16)

-0

where t is the time of interest and t' is a dummy variable of integra;
tion. Therefore, it is apparent that a%- are not directly observable
at any time and must therefore be considered to be hidden or internal.

Although the above framework has been shown to be applicable to rate
dependent crystalline solids ([17,18], it is often misconstrued that the ab-
sence of explicit strain-rate dependence renders the model inappropriate
for use in viscoplasticity theories. It is alternatively hypothesized that

Oys = 04y (ans Sgne To 8o i) (17)
is an appropriate form of thermomechanical constitutive equations (10). Al=-
though metals at elevated temperature certainly exhibit strain-rate depen-
dence, there are several reasons why equations (l7) are less desirable than
equations (10). First, equations (17) are not actually equations of state
since the inclusion of strain rate implies knowledge is required at some time
other than the current time t. Secondly, as demonstrated in discussions of
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materials similar to (17) but without internal state variables [19], very
little useful information will come from thermodynamic constraints. Finally,
explicit strain rate dependence is actually redundant for the materials dis-
cussed herein, as will be shown later. Therefore, although this is certainly
a semantical issue, equations (10) through (13) and (15) are utilized as the
constitutive model in the balance of this paper.

It should also be pointed out that internal state variable growth laws
(15) could contain explicit strain-rate dependence:

. k . L

aij = Qij(amn’ bsmn’ T, 3m: amn) » (18)
as In the example of a rate independent elastic-plastic material, in which
equations of the above form are linear in strain rate:

L _ Lk 2 e
aij = iqu(emn, T, -0 amn)epq . (19)

<

Such a form, although not excluded by the principle of equipresence [20],

is only necessary in the circumstance wherein specific rate independence is
required, as can be demonstrated by direct substitution of (19) into (16).
Furthermore, although the thermodynamic constraints will vary scmewhat when
(19) are utilized [21,22], the results will be quite similar to those described
below.

On the basis of the Coleman-Mizel procedure [23] it can be shown that
satisfaction of the first and second laws of thermodynmamics for the class of
materials detailed above will lead to the following conclusions:

= - k _—

hZu T; h(smn, T, &) ; (20)

where h is the specific Helmholtz free energy;

sh

O = P 53— ; (21)
kL €k
3h
s =-37 ; (22)
and
Uy = ~ky; 85 + 0(gy) . (23)

Equations (21) should not be interpreted as defining as hyperelastic material
since the Helmholtz free energy, described by (20), is dependent on the in-
ternal state and therefore path dependent.

Although not directly related to our problem, it is useful to note that
the path dependence of the Helmholtz free energy precludes the usefulness
of equations (21) in Rice's J-integral for fracture mechanics [24]. However,
in the case wherein the loading path is radial:

- = —.'Q'=Q‘—._:
€., = k,.E ; aij kije ; €= Y eijsij » (24)
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where kij and kiJ are constant coefficients, then it is well known that equa-
tions (1%) are directly integrable so that the free energy can be described

by

Pq<smn>> =h(e, (25)

Thus, for the case of proportional loading only, the constitutive equa-
tions are derivable directly from a potential function and the J-integral
method 1s applicable.

i
= h(emn, T, apq) = h(smn, T, a

THE LOCAL AVERAGING PROCESS

Constitutive equations (10) through (13) and (l5) are theoretically
pointwise in nature; that is, they are applicable to fixed infinitesimal
material points. However, practically speaking, there is no way to construct
experiments on material points since at the microscopic level the continuum
assumption becomes invalid. Rather, it is considered acceptable to construct
constitutive equations by subjecting local specimens to surface deformations
(or tractions) which lead to spacially homogeneous stresses and strains so
that some local average of the pointwise observable state variables can be
determined directly from the effects on the boundaries of the specimens.,

As shown in Fig. 1, the scale of the smallest dimension of a local speci-
men is generally constructed so as to be at least an order of magnitude larger
than the scale of the largest material inhomogeneity. This sizing helps pre-
serve the continuum assumption while at the same time averaging out the effects.
of point defects such as crystal lattice dislocations. Conversely, the scale
of the largest dimension of a typical specimen should be as small as possible
compared to the scale of the global boundary value problem of interest. This
constraint is necessary in order to pre-
serve the notion that constitutive equa-

tions are indeed pointwise in nature, but

it is pragmatic in that it is a simple N\ global
matter of economy. ' tdomain of
: . . Interest
The local rather than pointwise con- | e
stitutive equations that result from ex- ANY .
perimentation are assumed to be of the <. —
same form as pointwise equations (10) 1 \
through (13) and (15). For example, in Y B
the uniaxial test described in Fig. 1 X3 caFr a1
it is customary to define ‘,-
Xy . :- local
- 1 physical | , - SPQCime“I
B i L]
1 . .
= .
- 1 Tl
€, ¢ endx1 , (27)
L Figure 1
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and
T = T(al, a,, a3) , (28)

where L is the local specimen gage length, A is the cross-sectional area in
the x,-x3 plane, and (al, ar, a ) is dome arbitrary point on the surface of
the specimen. Utilizing these quantitles, it is then hypothesized that

L. - = = =%
311(811’ T, 0 ) =0 y Ty, &) > (29)

where

72=1fz
x =7 - dx, dx2 dx3 » (30)
\)

and all quantities with bars represent the locally measured state variables.

Although equations (29) represent an often used way of relating point-
wise equations to experimental results, the local averaging process is never-
theless fraught with shortcomings since definitions (26) through (28) all re-
resent nonunique relations between pointwise state variables 0ij, €ij, T, a1y
and their locally defined counterparts 0y .s» T, and a There are in
fact an infinite number of distributions &mn(xl’ Xo, X3 ) wgich will result
in identical values of Corn However, assuming that the scale of inhomogen-
eities is small and that the distribution of Qpn 1s random the spec1men will
be statistically homogeneous and the relation between a%n and amn will be
reasonably one to one.

For example, suppose that during some monotonically jncreasing local
strain history €;; a particular internal state variable aj; such as a single
dislocation arrangement is governed on a pointwise basis by the almost dis-
continuous behavior shown in Fig. 2. Suppose further that the time t at
which the internal state begins to change <
is determined by the pointwise stress 14
state. Then the number of dislocation
rearrangements occurring in the local
specimen as a function of time might be
distributed as shown in Fig. 3. If the
local specimen is large compared to the
scale of the dislocation, and there are
numerous dislocation rearrangements, as
is usually the case in testing of metals, 1
then the peak of the curve shown in Fig. Jlﬁl
3 will be several orders of magnitude
greater than unity. It follows from
equations (30) that the locally averaged
value of the internal state variable
represented in Fig. 2 will be as quali-
tatively shown in Fig. 4.

Figure 2
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APPLICATION TO METAL CONSTITUTION

In order to describe the class of metals discussed herein, the free en-
ergy maybe expanded in terms of the elastic strain tensor aEl and the temper-
ature T in a second order Taylor series expansion as follows:

E . _ I _ T
Eij = €45 7 &y sij » (31)

Where e}- is the themal strain tensor and e%- is the inelastic strain tensor,
considered to be an internal state variable [i7,18,22,25], and

E E Cv
i

PijkGa " w T -7 (32)

R) . s

where the subscript R refers to quantities in the reference state, Dijkl is
2

the linear elastic modulus tensor, and C, = —T(%Tg is the specific heat at

constant elastic strain. Substitution of equation (32) into (21) will result

in

el T

k1 = PkimnCon = Can = San) . (33)

ag
The above equations, together with internal state variable growth laws (15),
will be shown to be a suitable framework for comparison of all of the models
to be discussed herein.

Internal State Variables in Mertals

It is now generally agreed in the literature that in single crystals there
are two locally averages internal state variables: the back stress (ali )

representing dislocation arrangement; and the drag stress (az) representing
dislocation density; where the bars have been dropped for convenience and the
superscript has been converted to a subscript in order to avoid the confusion
which would arise if a state variable were raised to some power. For obvious
reasons the back stress is a second.order tensor, whereas the drag stress is
a scalar. In specimens composed of multiple crystals it is generally agreed
that a third internal state variable loosely termed damage (a3._) is neces-

sary in order to account for intergranular mechanisms such as E%ain boundary
sliding and microvoid growth and coalescence that may occur at high tempera-
ture and/or large strain. Although damage is obviously a directionally re-
lated quantity and therefore tensorial in nature, it is difficult to distin-
guish phenomenologically between damage and drag stress since both are pri-
marily stiffness reducing mechanisms.

Within the thermodynamic framework described earlier it is also possible

to define the inelastic strain tensor to be an internal state variable. How-
ever, this interpretation is not generally utilized within the materials
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literature. It is hypothesized that the no. of dislocation
rate of growth of the internal state vari- rearrangements in
ables does not depend on the inelastic a local

strain tensor so that specimen :

*k

k .
aij = Qij(smn’T‘gm’almn’“z’o‘3 Y . (34)

mn

Due to the form of equations (34) it is /

said that since the inelastic strain ten- /

sor does not appear oun the right hand /

gide it is not an internal state vari- S \\\\g_
able. However, within the framework de- ~ - e
fined herein, it is still possible to dt
construct an internal state variable :

growth law of the form Figure 3

I _ I -
= Q (e ’Ta xe] e e ] ) ’ (33)
1§ Cmn’t28p2%1 09203

aij =
)
which is precisely in agreement with def-
inicions (15).

In order to qualitatively verify the
supposition that the inelastic strain ten-
sor can be regarded to be an ISV, consider
the example of a uniaxial bar subjected to
applied displacements such that the end /
tractions will be evenly distributed. It //
is customary to deduce the inelastic strain —+ —
in an experiment of this type by utilizing dt
the output from a load cell to detemmine
the stress and then making use of equations
(33) to determine the elastic strain. This result and the total strain mea-
sured by an extensometer are then substituted into equations (31) to deter-
mine the inelastic strain. Nevertheless, this does not imply that the inelas-
tic strain tensor in an observable state variable. This result can be arrived
at only in constitutive experiments such as uniaxial bar tests in which the
stress and strain tensors are spacially homogeneous. In heterogeneous boun-
dary value problems, only two state variables may be input (temperature and
either stress or strain), and for this case equations (31) and (33) must be
supplemented with an ISV growth law of the form of equations (35) in order
to determine the inelastic strain tensor. Therefore, in the context of the
current thermodynamic framework the inelastic strain tensor may be interpreted
to be an ISV.

!
H
i

!

Figure 4

A Framework for Current Metals Models

In order to establish that current models can be constructed from equa-
tions (33), consider the standard solid shown in Fig. 5. The governing dif-
ferential equation for this analog is

%. Eco .
g+z—0=E_¢c+ [L+=—1]c¢ » (36)
E, Y E,

90



where by convention the stress is denoted

G and the strain is €. Equation (36) may

be written in the following equivalent

form VISR NI RNEN NS SN ENA

hed 6’ EM [O'—Eme ] £
E
' M
$

£ 3 ———— b — ————— 37
(B 45T * Ty TE e G7) L
In accordance with the instantaneous lin-
ear elastic behavior of metals, it is as- <(:
9
I
]

sumed that ©

[
1
!
!
[}
L n
!

|

EM+Eao Z E = Young's modulus = constant, (38)

so that it is clear that equation (37) can
be integrated in time to give the following
stress formulation

c(tl) 1 o
e(tl) ’,‘-75-— + € (tl) | (39)

-y
O

where sI is the inelastic strain, defined

by

£ Figure 5

1
I Ey [o-E_g]
g (Cl) = f ol T dt (40)

-0

Equation (39) may be solved for the stress and substituted into equation (40)
so that it is clear that equation (40) is in accordance with ISV growth laws
(16). Further, it can be seen from the standard solid analog in Fig. 5 that
since O-E_£ represents the stress in the Maxwell element, el is not observ-
able, so that €l satisfies the two conditions required for it to be an internal
state variable.

Equation (39) may be written equivalently in the following strain for-
mula:ion:

o(c)) = Ele(t)) - eI(cl)] , (41)

which is an equation of state compatible with constitutive equations (10) as
well as equations (33). Since no other internal state variables are present
in this equation, and also, no additional internal state variables are present
in growth law (40) it is apparent that the standard solid analog with constant
coefficients EM, Thye and E_ is a single internal state variable model.

It has been noted by several researchers that the standard solid is an
appropriate analog for thermoviscoplastic metals if the springs and dashpot
are nonlinearized [26,27]. In order to demonstrate this feature, consider a
multiaxial extension of equation (36):
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¢ +K =G e +M € , (42)
Pq pqmn mn pgqmn mn pqmn ~mn

where by convention the small strain tensor €;; is used in conjunction with

the work conjugate stress tensor Jji. In order to model metals K qmn » Gp mn
and M qun are required to be nonlinear in some as yet undetermined way. %n
addition, in accordance with constraint equation (38), it is required that

-1 " 7 7 ) o o

Xijmn Yokl = DKL » (43)

where Djjk1 is the linear elastic modulus tensor. Equations (42) may be re-
written in a strain formulation equation of state form as follows:

= _ .1 p
95 = Dijk1 (&1 ~ Sl » (84)
where %il is the inelastic strain tensor, defined by
1
el = f Wl oo -6 e jde . 45)
ij ijpq ““pq pqmn mn
-0
Substituting equations (43) and (44) into equations (45) will result in
1
I = "1 - I - -1 /
sij J[ {Kijmn[smn Emn] Miqu qumnemn} de , (46)

so that equations (46) are in accordance with growth laws (16). The number

of internal state variables contained in the model will depend on the degree
of nonlinearity proposed in the nonlinear tensors qumn' qumn’ and‘Mp o’

and this will be discussed in the following section. However, before continu-
ing, it should be pointed out that the constitutive equations developed in
this section assume that the elastic and inelastic strain tensors may be lin-
early decoupled. It has been shown that this assumption is invalid for finite
deformation [28]). However, even under finite deformation conditions the in-
elastic strain is decoupled from the elastic strain in such a way that the
inelastic strain tensor may be considered to be an internal state variable.

Current Models for Metals
The framework for metals models discussed in the previous section can
be used to describe numerous models currently under development [26,27,29-58].

For example, the microphysically based isothermal model proposed by Krieg,
et al., [30] is of the form described by equations (33):

I .
95 = Dijr1 G ~ &p) » (47)

where



[(O;d i a]"kl) (c{‘l i a}'kl)r m <c'ij ) aiij)

c 2 [(cn'bq ! )<°1'>q ! )]15

pPq Pq

and €, and m are material constants, and ¢} is the deviatoric stress tensor
and aiij is the deviatoric component of the back stress tensor. Since equa-

tions (48) contain the stress tensor, substituting equations (33) into (48)
will result in equations consistent eith growth laws (15). In addition, Krieg,
et al., give the back stress and drag stress to be, respectively,

al

D= Lo £ - (49)
1ij a “ij a Cai ai 55
Pq Pq
and
. - cI oI 11
a, AR (eij eij) -1 » (30)

where A, and Ap are hardening constants, and ry and rp are recovery functions
of temperature and internal state variables. It can be seen that since ISV
growth laws (49) and (50) are consistent with equations (15), the model pro-
posed by Krieg, et al., contains three internal state variables: the inelastic
strain tensor, the back stress tensor, and the drag stress tensor.

Furthermore, classical plasticity theories can be described by the gen-
eral form

cij = Dijmn (emn - emn) » (31)
where

.I . aF .

€y = Ay | | . (52)

i]

A is a scalar valued function of state, and F is a scalar valued state func-
tion for inelastic behaviour often taken to be the yield function. If F is
described by the von Mises yield criterion [53], given by

F(o -q ) = 4(o

13 " a, ) (Uij -a )=k > (33)

ij ij

where a; is a tensor describing the yield surface center in stress space and

i

k is a constant representing the yield surface size, then equations (52) can
be written as
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. =.A(

gy = Aoy = ) . (54)

i3

resulting in a kinematic hardening model with constant yield surface size.
Substitution of equations (51) into the above will yield a result consistent
with rate independent ISV growth laws (19).

Furthermore, if the yield surface translation is derived from the Ziegler
modification [60] of the Prager work hardening rule [61], it may be described

by

&, =ulo,, -a, ) , (55)
1ij ij 1ij

where U is a scalar valued function of state. By use of equations (51), equa-
tions (55) can also be shown to be consistent with equations (19). Therefore,
a classical plasticity-based kinematic hardening model contains two intermal
state variables: the inmelastic strain tensor and the yield surface transla-
tion tensor representing the back stress.

In order to further illustrate the applicability of equations (33), (35)
and (15) to current models for metals, ten of these models have been cast in
uniaxial form in Table 1, wherein it is shown that although the framework for
each model is identical (Valanis' model is in simplified form), the ISV growth
laws vary widely both in number and form.

CONCLUSION

The main content of this paper has been to review and clarify the continuum
and thermodynamics based internal state variable model for application to ther-
moviscoplastic metals. In this process the following points have been made:

1) the definition of an intermal state variable utilized in this model
has been clarified;

2) internal state variables in metals represent local averages of dis-
location arrangement, dislocation density, and intergranular damage,

3) in the context of the ISV definition given here, inelastic strain may
also be interpreted as an internal state variable;

4) the path dependent Helmholtz free energy may be expanded in a second
order expansion in elastic strain and temperature in order to obtain a stress-
strain equation of state;

5) rate dependence enters the constitutive equations implicitly via the
inelastic strain, as demonstrated by the nonlinear standard solid analog; and

6) a three-dimensional generalization of the standard solid may be used

as a means of comparison of the general form of several currently proposed
models.
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Further ramifications of the ISV model discussed are also of importance,

although not detailed herein. For example, this model may be utilized to con-
struct a coupled heat conduction equation which may be utilized to predict
heat generation in thermoviscoplastic metals [62]. Furthermore, the concept
of internal state variables may be utilized to construct models for the mech-
anical constitution of composites. with damage [63,15,65,66].
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PHYSICAL CONCEPTS IN THE DEVELOPMENT
OF CONSTITUTIVE EQUATIONS

Brice N. Cassenti
United Technologies Research Center
East Hartford, Connecticut 06108

The currently proposed viscoplastic material models include in their
formulation observed material response but do not generally incorporate
principles from thermodynamics, statistical mechanics, and quantum mechanics.
In the existing literature, numerous hypotheses have been made for material
response based on first principles. Many of these hypotheses have been tested
experimentally. Not only must the currently proposed viscoplastic theories be
checked against these hypotheses but the experimental basis of these
hypotheses must also be checked. The physics of thermodynamics, stitistical
mechanics and quantum mechanics, including the effects of defects, will be
reviewed for their application to the development of constitutive laws.

INTRODUCTION

The currently proposed viscoplastic material models include in their
formulation observed material response but do not generally incorporate prin-
ciples from thermodynamics, statistical mechanics, and quantum mechanics. In
the existing literature, numerous hypotheses have been made for material
response based on first principles. Many of these hypotheses have been tested
experimentally. Not only must the currently proposed viscoplastic theories be
checked against these hypotheses but the experimental basis of these hypothe-
ses must also be checked.

As an example of hypotheses commonly accepted but not usually tested,
consider the assumption that inelastic deformations in isotropic materials are
volume preserving. This is primarily based on the intuitive belief that under
large strains the volume must be preserved and on experiments that show the
hydrostatic yield stress is much larger than the shear yield stress. Even
though many tensile tests on round specimens are performed little attempt is
made to check for a change in volume,

The response of engineering materials is generally described in terms of
the macroscopic behavior of large numbers of atoms. Such descriptions are
semi-empirical in nature and usually neglect the information available from
more fundamental theories, such as thermodynamics, statistical mechanics and
quantum mechanics. Actually the macroscopic response of materials depends
intimately on the quantum mechanical interaction of electromns in neighboring
atoms. To illustrate this dependence, the distribution of the outer (valence)
electrons of an atom determines the binding energy of the atoms in a solid.
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The distribution and motion of these electrons can be calculated using quantum
mechanics principles. The response of atoms bound by their outer electrons
can be "averaged" using statistical mechanics principles including the effects
of defects. The statistical mechanics analysis will result in the thermo-
dynamic mechanical response of the material.

Thermodynamic principles can be examined to determine constraints on the
mechanical response of materials. Allen in Ref. 1l presents a clear and
concise thermodynamic formulation. From thermodynamics, constraints on the
isothermal and adiabatic elastic moduli variation with temperature and strain
can be determined based solely on the definitions of the moduli. The second
law of thermodynamics has been used to determine the constraints that should
exist between state variables. Statistical mechanics can be applied to the
determination of material response. This theory has not been extensively
applied to solid materials but has been used to determine some relationships.

Quantum mechanics principles also have not generally been applied to the
determination of material properties because of the difficulty in analyzing
the interaction between electrons in many electron atoms. Recently a new
quantum mechanics analysis method, the pseudopotential method, has been
developed which examines only the outer valence electrons. The pseudopoten-—
tial method has been applied not only to electromic proprties but also to
mechanical and thermal properties.

The effects of defects on the response of materials can be described
using topological and statistical concepts. For example, atomic vibration
models near defects dictate that at moderate~to-high strain rates the yield
stress should vary linearly with the logarithm of the strain rate. The yield .
stresses and slip directions in a crystal lattice can be estimateigggggd/oﬁ/’///
atomic configurations, forces, and the effects of defects. Defec themselves
can be characterized based on topological considerations of atomic configura-
tions. The topological specifications of many defects and defect types can be

described statistically and the macroscopic response of the materials
specified.

In the discussion that follows, the thermodynamics of materials will be
discussed first including illustrations on the constraints it places on
material behavior. The derivation of thermodynamic principles from
statistical mechanics is then reviewed. The statistical mechanics results,
though, are dependent on the energy levels derived from quantum mechanics
principles. The analysis of the response of solid materials directly from
quantum mechanics principles is illustrated in the next section. The
following section discusses the effects of imperfections and the last section
summarizes the conclusions.
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THERMODYNAMIC CONSIDERATIONS

Reversible Process Large Strains

Thermodynamic restrictions for systems undergoing reversible processes
(e.g., an elastic response) can be quite severe and the restrictions are not
readily apparent. For a system of volume, V, the first law of thermodynamics
requires the increase in internal energy, U, to be equal to the heat added, b
plus the work done on the system, W

b= &0 (1)
The work done on the system is
W= ‘{ 9;3vi 34V (2)
where v. 1/2(U J ;) is the symmetric part of the velocity gradient, and

oij is tge Cauchy ot current stress, For a reversible process, the rate of

change of entropy is
¢ =0 (3)
T

where T is the temperature.

Consider a uniform closed system; a system with a small volume would be
nearly uniform. Refer all quantities to the original configuration. Then

= g..v..V = £~ 5..VE..
W OlJvlJV o SIJV'!!.‘1J (4)

where sij is the Kirchoff stress,

éij is the Lagrangian strain rate,
p is the current density, and

p. is the initial density.
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Consider the internal energy, u, and entropy, s, per unit mass of the system
where '

M= oV (5)

is the total mass, then Eqs. (1) and (3) become

£ (6)

a=T8 + -

1313
po

for a reversible process u and s are functions of the end points of the system
and not dependent on the path taken. Using the temperature, and the strain as
the state variables

u = u(T,E), s=s(T,E) (7)
or
. du $ ,3u 3 . 1 :
u = =2 + .. ® Tg ¢+ = S.. E.. (8)
i ij *i
3T 3 ij J po J J
iedeglde g, (9)
oT asij
From Eq. (8)
Su_ :-.1_sij (10)
asij s=const Po

This is not convenient if temperature is used as a state variable since
entropy will be a function of temperature and strain. Instead defining the
Hemholtz free energy as

a*u-Ts = a(T,E) : (11)
then
. 1 . 9a » da b
a=-st+2-s E =221, E;. (12)
po 1) 1) oT SEij 1
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or

3a . 2a 1
aT 3Eij Po J
From the mixed partials of Eq. (13)
1 3S;: s
—_— L1 . =0 (14)
po T aEij
and
,Efii = EEKL (15)
Consider a linear elastic material

where Dijkl’ @, and T, are constants. Then from Eq. (15)

Dijkr ® Pr1ij amn

The symmetry of the stress (if there are no body moments) and strain tensors
yields

Dijk1 ™ Pjik1 (18)
and

Disk1 = Pijik (19)

These results imply that there can be at most 21 elastic constants for a
generally anisotropic material. In addition, if the material is assumed to
have a specific heat at constant volume (strain), C,, that is not a function
of strain or temperature, then

c =-1~Q-T-§9-=const : (20)
vV Mt 3T
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All of the thermodynamic functions can now be found for a linear elastic
material

=1 T
s _p— DijklEijklukl + Cvln(T—) (21)
o] R
1 Ty
200 Po
a=u_ +C, (1 - 1n(E)]+ LD, 1E::Eq - L~ D;:1E ia (T-T,) (23)
o v Tp 20, 1jkl1®1j%kl o 1jkl™ij"kl o
o

where u, and Tp are arbitrary constants.

0

The thermodynamics of reversible processes places restrictions on the
manner in which the elastic constants can be defined for nonisothermal
loadings. Researchers have sometimes introduced the elastic constants as
instantaneous constants, see Ref. 2, where

From Eq. (13)

= 33 __ =
Si; * % 3515 Po a,Eij (25)
and
Iaaxg.. aa:E. .
$.. =»p 2l 1 o« L1 (26)
1] o "ot aEkl kl}
Comparing Eqs. (26) and (24)
da,g 1 da,g D;:
- . jkl
_1) = . D]'.jklakl’ 1l = (27)
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But the mixed partials are equal, therefore

3a, 1 3D;. a_) 1 3D
Eij - ijmn mn ~ ijkl
oT aEkl Do aEkl Do aT
or
aDijkL . a(Dijmn“mn) =0 (28)
T 3Ek1

Equation (28) implies variations in the elastic moduli with temperature as
defined in Eq. (24), will produce variations with strain of the sum D

) _ : ijmn%mn-
For an isotropic material .

Dijk1 = 2W85p851 + A6;56 (29)
and Eq. (28) becomes
2 %; 8ikd51 * ;%_ sijakl.ilfééffiﬁll 835 = 0 (30)
If i #j in Eq. (30)
ol (31)
T

Hence, the shear modulus cannot vary with temperature! Contracting on i,j in
Eq. (30)

3[awe3n ] o

(32)
agkl_

2 s 2 2
—_ + 2 — +
3T kl 3T kl



If k #1

3[a(2us30)] 0

(33)

the product a(2u+3)) is not a function of shear strain. Contracting Eq. (32)
again

33K, 3aK) _ 4 (34)

where K = 1/3 (2u+3)) is the bulk modulus.
The restrictions in Eqs. (31), (33) and (34) are mathematically quite
severe for elastic (or reversible) processes. Equations equivalent to

Eq. (28) are cited in Ref. 3 but the conditions of Eq. (24), are not stated
leaving the result confused. If instead of Eq. (24) the stress is given by

Sij = Disi1(ThE) [Eq = o (TLENT-T)) + 8%, (35)

Then sij = Sij(T,E) and Eq. (27) are automatically satisfied.

Irreversible Process Small Strains
For irreversible processes thermodynamics is not as clearly defined. Two
additional assumptions are made (Ref. 4): (1) the entropy is a function of

state, this will hold for sufficiently slow processes, and (2) the second law
is extended to the local level. Then for some wolume V

D D
2 dV = - ‘n;dA + — p 4V (36)
Dt fv be IA bing Dt Ieg

where &i = entropy flow vector,
& = internal entropy source, and

n; = is the normal to the surface element dA.
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Transforming the surface integral to a volume integral and using the
conservation of mass

DS 08
— B e, . P ———
P oo™ hi,it e (37)

where the second law now requires

D8
— 2 0 (38)
Dt
The heat being added to the volume V is
DQ D Dq
S: Iv [ hi,i + oijvij]dv f [o] S: dav | (39)

where q is the heat added per unit mass in the volume dV

v?j is the symmetric part of the velocity gradient which is converted

to heat (the dissipative part). The total velocity gradient is

[
vij = vij + v?j (40)

and vgj represents the part of the velocity gradient that is converted to
recoverable internal energy, the conservative part. The internal energy is
then governed by

= g..v%. (41)

The change in entropy can be found by proceeding along a reversible path, or

Ds 1 Dq hi,i Gijvgj

—-—— = - + (42)
Dt T Dt pT oT
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Equivalently

Ds (hi . h{r,i . aijv?j (43)
p —mvy W = | — -
e T ;0 T T
Comparing this with Eq. (37)
h
$i = .1 (44)
T
and
: D
DS  hiT,;  9i5vi;
Dt T T -
For small strains take
D - - = &
Vij = Cij Vij " €ij (46)

where eij is the inelastic strain, and

éij is the total strain.

For uniform temperature distributions and small strains, Eq. (45) becomes

od
Cs

o lj

ij 2 0 | (47)

Equation (47) is related to Drucker's postulate but in Ref. 5 there is no
mention to isothermal conditions. Equation (47) can be extended to states
with an initial stress and infinitesimal stress changes, Raf. 3. Note that
the condition in Eq. (47) holds only for systems with uniform temperature
distributions. Other assumptions in addition to the second law of thermo-
dynamics must be made for Eq. (47) to apply more genmerally. For example, if
linear phenomenological laws are assumed and Gibb's condition for a reversible
process is applied, then the internal entropy production must be a positive
definite function of the state variables., Consider the functional theory,
described in Ref. 6, where :
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.. = (2 - f..
i3 (2 513 1J) (48)
whefe.si~ = °ij -1/3 °kk6ij on the deviatoric stress, and Qij is the
equilibrium stress.
Equation (46) requires
2 oo B » o o ¢ .
" 515513 Ny 2 SLJQLJ (49)
For uniaxial loading, Eq. (49) becomes
02 > o (50)

which means if the equilibrium stress and the stress have the same sign then
the stress must be larger in absolute value than the equilibrium stress.
Experimental evidence shows that Eq. (49) is violated. The reason for the
disagreement arises from the fact that all of the inelastic strain is not
dissipated initially, which is assumed in Eq. (39). 1Initially some of the
inelastic strain can raise the recoverable internal energy of the material.
This rise in recoverable internal energy can be pictured as an atomic
arrangement that is at a higher state, as shown in Fig. 1. This higher energy
state can be relatively stable, represented by the higher of the two relative
minimums. Thermal diffusion of the atoms to a lower state will gradually
dissipate some or all of the inelastic strain energy as heat. The quantity,
1, can now be viewed as representing structural changes in the atomic
arrangement of a material. '

1f Eq. (39) is replaced by
DO [ [h. . + (o:s =2 0..)vD.]av | -
o fv [-hs,; + (o5; %Qlj)vled ﬁ39 )
Then Eq. (49) will be converted to

This is always satisfied since A is positive.
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STATISTICAL MECHANICS CONSIDERATIONS

From statistical mechanics, which characterize the overall response of
large numbers of atoms, many of the postulates and results of thermodynamics
can be found. For example, the Onsager reciprocal relation, Ref. 7, for
materials with linear phenomenological laws, can be derived from statistical
mechanics considerations. Statistical mechanics is based on the assumption
that "all microstates of a system that have the same energy are assumed to be
equally likely" Ref. 8. By considering two large systems of atoms, A and B,
in equilibrium, the probability that the total system, A and B, is at energy
E,+Ep is

Ppep(Ep*Eg) = P,(E,)PR(ER) (51)

This follows from the fact that the energy of atoms in system A (or B) where
system A and B are each in contact with a thermal reservoir will be

independent of the energy of the atoms in system B (or A). From Eq. (51) it
can be shown that the probability that a system is at energy, Ey is given by

"BEk

P(E,) = -;- e (52)

where Z = 2 e k
k

is the partition function, and (53)

B8 is a parameter to be determined.

To determine this parameter, consider the internal energy which is now defined
as the average energy of the system, then

-8E,

U=E=) EPEI=L ] E e (54)
k Z x

From Eq. (53)

U---a-%nﬂ (55)
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For a perfect monitonic gas, Ref. 8, the partition function is

z = VN (-2—")3}‘/2 (56)
Bm

where N is the number of atoms of mass, m, in volume V. From Eq. (55)

u =3l (57)
28
but the internal energy is also
v -‘f NKT (58)

where k is Boltzmann's constant. Therefore comparing Eqs. (57) and (58)

B =i | (59)

The result in Eq. (59) is general and applies to all systems.

One thermodynamic function, the internal energy, is now determined from
the statistical response of the individual atoms. A second function needs to
be determined to specify the system. To accomplish this, consider

d(1nz) = 31nZ 4g + 3lnZ de; ; (60)

Substituting for the first partial derivative using Eq. (55) and using

UdB = d(BU) - BdU (61)
d(1nz + BU) = gdu + 210Z ge. . (62)
o€: . 3

1]
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From the first law of thermodynamics (i.e., the conservation of energy) for
reversible reactions,

dU = TdS + oideeij (63)

Substituting Eq. (62) with (63)

d(1nz + 8U) = L ds + [Bvo,. + 2l0Z)4¢, . (64)
k 1J 35 1]

Equation (64) must hold for arbitrary changes in strain and entropy therefore

dS = kd(1nZ + 8U) (65)
and
qij--}_.a_]ﬂ.._.u.ﬂ.ﬂl (66)
v Beij v Beij

Statistical mechanics has been applied to the response of solids, (e.g.,
Refs. 9 and 10). For example, consider a solid to be a collection of N atoms
each of which can vibrate in three orthogonal directions. Then if the atoms
are assumed to be linear harmonic oscillations, quantum mechanics can be used
to determine the possible energy levels in Eqs. (52) and (53). These energy
levels are from Ref. 10 or the Appendix.

ni-o’l,z’ocoga (67)
i=1,2,3,...,3N

1 k;
where v; = ;— —L  is the natural frequency of atom i. The total energy
T VYm;

i
for a state is

3N
E'}. Ei.
i=]
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and the partition function is

. -8E . . =B(E{+E,+...+Eqy)
2= ) e = ) I ... )1 e 1772 3N (68)
states n1=0 n2~0 n3N-0

Substituting Eq. (67) into Eq. (68) and summing over each Nj

N -Bhv;/2
z= ) S (69)
i=] l-e 1
or
3N
. ghv . ~Bhv.
lnz = | {- -;Zl - 1n(l-e vl)} (70)

i=1

From Eq. (55)

———%3577-— (71)

i=1

and, at high temperatures B approaches zero (8 = 1/kT)

3N 3N
hv: 1 hv.
U= §J (—X+=)=3NT+ ] — (72)
i=] 2 8 i=]
the specific heat at constant volume is then
c, = X = 3nk (73)
aT

which is the classical thermodynamic result and from experimental data is
accurate at high temperatures. For a complete discussion of this result, see
Refs. 9 or 10.
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The above result does not include the stress strain response. To
accomplish this, consider the atoms to be stretched to a new position a
distance x, from their relative equilibrium positions by an external applied
force. The energy levels will now increase approximately by

2

1
; kix,

or

=l 1 2
Ei ) hVi + ) kixo + nihvi (74)

is the approximate energy of atom i.

Using k; = Aﬂzmiviz and x, = 2ac where 2a is the distance between atomic

centers and € is the strain. Equation (68) can now be rewritten as

E; = é-hvi + 8ﬂ2§2mivizez + n;hv; (75)

Assuming the frequencies of each atom in each direction are the same, the
Einstein approximation, the partition function becomes

1nZ = 3N [- g hv - 8n2a2msv2e - 1n(1-e"5BV)] (76)

and the stress is from Eq. (66)

2,2 2
o = 48NT aTmvie o 4872pa2y2¢ (77

v

where p = nm/V is the density, then the elastic modulus
E = 48wzpa2v2 (78)

It should be possible to test Eq. (78) against available data.
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QUANTUM MECHANICAL APPLICATIONS TO THE RESPONSE OF MATERIALS

In considering the statistical mechanics aspects of material response,
quantum mechanics provided the means for determining the energy states of a
system. Only the potential energy between neighboring atoms was considered,
but actually this potential energy is determined by the chemical bonding
between adjacent atoms, which in turn is determined by the outer electronms.
Summarizing the mechanical properties of a solid are ultimately tied to the
binding energy present in the outer electrons. In the analyses discussed in
the section on statistical mechanics, the contribution to the energy of the
system from the electrons was neglected; an assumption that generally produces
accurate results, as quantum mechanics principles are considerably more impor-
tant for low mass particles such as electrons than for higher mass particles
like atomic nuclei.

Nevertheless the pseudopotential method for describing these outer
electrons is being developed,Refs. (12, 13),and shows promise for describing
elementary mechanical properties. The pseudopotential method is based on
assuming a potential which is approximately correct in the regions where the
outer electrons are likely to be. For example, in Ref. (13), the potential
energy, V, is assumed to be

v(r) = 2 (79)

where

r 1is the distance from an atomic nucleus

e 1s the charge on an electron, and

R, is a semi-empirical constant.

The approximation in Eq. (79) is referred to as the empty core model, and
is relatively accurate compared with numerical solutions. The approximation
is based on the assumption that when a valence electron enters the region of
an atom's core electrons that it moves as if there is little change in poten-
tial energy.

In Ref. (l4), several somewhat more complex approximations to the
potential are compared for their accuracy in predicting the bulk moduli of
solids and liquids at temperatures from absolute zero to over 1000 deg F. For
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example, one theory predicts a bulk modulus for aluminum at room temperature
that is within twenty percent of the experimental value and these results are
predicted using initially rough analytical calculations. Certainly the
pseudopotential method deserves careful examination.

Quantum mechanics has, since the early stages of its development, been
applied to the prediction of the interatomic potentials for diatomic hydrogen.
Using these results, it has been possible to determine higher order terms in
the energy eigenvalues, Ref. (15), as

1 £i2y2 1
E =(n+-2-)‘hv-(a;)(n+-)2 (80)

The first term is the same as Eq. (67) used in the discussion on statistical
mechanics, the second term is a correction. The constant D is the dissocia-
tion energy for the molecule, and the maximum energy level cannot exceed the
dissociation energy, or

SDCE, +l (81)

The second term in Eq. (80) is quite small and has only a small effect on the
partition function, Eq. (68). A correction for the angular momentum can also
be included in Eq. (80) but again the effect on the partition function is
small. Better approximations to the energy levels lead to extremely accurate
results for the thermodynamic properties, for example, see Ref. 10.

EFFECTS OF IMPERFECTIONS

In principle it is possible to derive the properties of solids by
considering the energy levels of the atoms (and electrons). The discussion on
statistical mechanics has been applied to essentially perfect crystals.
Imperfections, or defects, have a profound effect on the response of solid
materials. These imperfections will generally lower the oscillation frequen-
cies of the atoms to such an extent that they will control the inelastic
deformation of the material,

For example, in Ref. (3), it is shown from a consideration of activation
energies and dislocation geometry that

a(e) = £[T(1-a 1n &)] (82)

(')0|(')o
o]
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where

éo and a are constants determined by the dislocation geometries
T 1is the absolute temperature

€ 1is the strain rate

¢ 1is the stress, and

f 1is an arbitrary function

The quantity

T = T(l-a ln &) (83)

m

ﬂulno

o

is referred to as the velocity modified temperature, and has been shown to
have some experimental validity.

An important concept employed in the derivation of Eq. (82) is Burgers
vector. The Burgers vector is found by comparing a path about a line imper-
fection (e.g., a screw dislocation) and a closed path in a perfect crystal.
The path about the imperfection follows the same atomic path as the path in
the perfect crystal. The path about the imperfection then will not close.
The vector required to close this path is the Burgers vector.

In a similar manner, it should be possible to represent plane and point
imperfections in addition to line imperfections by similar integratiomns. For
example, the line imperfection is described by performing a one dimensional
integration. A point imperfection can be described by performing an integra-
tion on a surface that surrounds the point and a surface imperfection can be
described by taking a difference between two points on each side of the
surface. In other words: (1) a zero dimensional (point) imperfection is
described by performing a two dimensional (surface) integration, (2) a one
dimensional (line) imperfection is described by performing one dimensional
integration and (3) a two dimensional imperfection is described by a zero
dimensional integration. The sum of the dimension of the imperfection and the
dimension of integration required to describe it is always the same number,
or

n+m=2 (84)

where

n is the dimension of the imperfection
m is the dimension of the integration
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Topological descriptions like those resulting in Eq. (84) have been applied to
material description (e.g. see Refs. 16-17).

Defects can be classified quantatively by performing the proper integra-
tion. Not all defects will be identical and there will be some probabilistic
distribution in the quantities used to classify the distributions. These
‘probability distributions will ultimately determine the inelastic response of
the material.

CONCLUSIONS

The effects of a defect on the stress-strain law can, in principle, be
found by using quantum mechanics to determine the energies from the potential
energy of the neighboring atoms. The energies in turn, determine the results
from a statistical mechanics analysis. Furthermore, the results of the
statistical mechanics analysis determine the thermodynamic response of the
material.

Although such a procedure is possible in principle, it is not practical
because the results would be overly complex for engineering applications.
However, such an approach should produce important results which place
constraints on the form of any newly proposed constitutive relations.
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A COMPARISON OF TWO CONTEMPORARY
CREEP-FATIGUE LIFE PREDICTION METHODS

by

Michael A. McGaw
NASA Lewis Research Center
Cleveland, Ohio 44135

A comparison of two contemporary approaches to creep-fatigue life prediction,
the Continuous Damage Mechanics as developed at ONERA, and Strain Range
Partitioning, is presented. The general framework of each of these
approaches, both being crack-initiation 1ife prediction tools, are examined.
The basis for, and implications of each predictive method are discussed,
relative to the material class(es) for which each was developed, as well as to
their general applicability. Evident is a need for critical experiments
capable of discriminating among the models; to this end, the question of
choice of experiment and material is addressed.

(Paper not available at time of printing.)

125



Page intentionally left blank



A NUMERICAL ALGORITHM FOR ENDOCHRONIC PLASTICITY

AND COMPARISON WITH EXPERIMENT

K.C. Valanis and Jinghong Fan
University of Cincinnati
Cincinnati, Ohio 45221

A numerical algorithm based on the finite element
method of analysis of the boundary value problem in a
continuum is presented, in the case where the plastic
response of the material is given in the context of en-
dochronic plasticity. The relevant constitutive equation
is expressed in incremental form and plastic effects are
accounted for by the method of an induced pseudo-force
in the matrix equations.

The results of the analysis are compared with observed
values in the case of a plate with two symmetric notches
and loaded longitudinally in its own plane. The agreement

between theory and experiment is excellent.

INTRODUCTION
The greatest difficulty encountered in the application
of the classical theory of plasticity is the lack of
knowledge of the configuration of the subsequent yield
»surface for the particular material at hand, and the
experimental difficulties encountered in finding it in the

fully three dimensional case. More importantly, however,

121



it has been observed by many experimenters thaﬁ the shape
of the subsequent yield surface and its position in stress
space depends very strongly on the definition of the yield'
point, particularly in situations following prior deform-
ation [1=-3].

The essential premise of the classical plasticity
theory is the assumption of an a priori existence of a
yield surface. This implies a finite elastic domain.

From the mathematical standpoint, a finite domain is
necessary because of the requirement that the increment
in plastic strain be normal to the yield surface. Thus,
the direction of the plastic strain increment is dictated

by the yield surface configuration.

If plastic effects were to begin immediately upon
loading, perforce, the demain of the yield surface would
collapse to a point, thus making the direction of the
plastic strain increment indeterminate since all directions
are normal to a point. Thus, the classical plasticity
theory cannot deal with materials that yield immediately
upon loading. There are other difficulties associated with
experimental attempts to describe and analyze a two-or
three-dimensional response of a material (4]. For instance,
investigationé in the hardening rule are much discussed in
the current literature, but definitive functional forms out-
side the Prager-Ziegler rule are very few, and lack firm
experimental verification. This rule specifically can have

only limited application, and is inappropriate for
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complicated loading histories. Moreover, it gives rise to

large discrepancies between calculated and experimental data

in loading=-unloading processes [l]. Other numerical
difficulties arise from the fact that the loading increments
cannot be assigned arbitrarily a priori. When the current
loading increment makes the stress state of a particular element
traverse the yield surface it is necessary to come back to

the preyious loading state and adjust the magnitude of the

new increment of loading to ensure that the new stress state

is located just on the yield surface. Certainly, this process

increases the time of computation.

In 1971, Valanis proposed an alternative theory of
viscoplasticity called "endochronic theory" (5,6], which
is based on irreversible thermodynamics and the concept of
intrinsic time. The theory provides a unified point of view
to describe the elastic-plastic behavior of materials since
it places no requirement for a yield.surface and a "loading
function" to distinguish between loading and unioading.

In a series of recent works, Valanis, Wu and others
(7-10] demonstrated that the endochronic theory could apply
more precisely to situations involving unloading and cyclic
behavior of metals, as well as wave propagation in the plastic
region.

However, in all of the works, involving.more than one
dimension, where the loading was quasi-static, the stress

fields were homogeneous.
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In the present paper a numerical algorithm is first
implemented in a computer program, which can be used to
analyze the material response in monotonic and cyclic loading
in the case of plane stress or plane strain. The calculated
results are then compared with the data obtained from a
specially designed experiment on a notched plate cyclically
loaded in its own plane. The validity of the endochronic
analysis, using this numerical algorithm, is thereby

demonstrated.
AN INCREMENTAL FORM OF THE ENDOCHRONIC ELASTOPLASTIC

CONSTITUTIVE EQUATION IN TERMS OF {do} and {de¢}

The following are the formulae concerning the endoch-
ronic constitutive equations for plastically incompressible

isotropic materials and small deformation ([7]

2 seP
s = [ plz-z2') Fr dz' (2.1)
o)
dz = ||aeP|| (2.1a)
dz = E%T - (2.1b)

where p(z) and £(Z) are two material functions namely the kernel

function and hardening function respectively.

ckk = 3Kekk (2.2)
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P _ -1 .
de de P ds | (2.3)

-~

By definition

de (2.4a)

aasij

do

1
ij ij 3
1l
3 (2.4b)

S..
aa ij

In this paper the form of p(2) given by equation (2.5)

was used in equation (2.1)

® -arz
p(z) = ] c_e | (2.5)

r
r=1

with the conditions that Br-and Rr are positive for all

r and

Zcr=~, I = <= (2.6a,b)

This form of p(z) is continuous and differentiable in (0,=)
and therefore the incremental form of equation (2.1) specified
below can be used in conjunction with a finite element code.
Specifically in the case where the infinitely large value
of p(0) is approximated by a suitably large value, as is done
in this paper, one may differentiate equation (2.1) with
respect to z to obtain the following differential form of

the endochronic constitutive equation:

ds = 0(0)deP + h(z)dz (2.7)
where
2 PN 3ep
h(z) = [ p(z-2') 3+ dz' (2.8)

o
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and

5 = 20
p(2) 3z (2.8a)

The elastoplastic constitutive equations (2.3) and (2.7),

can then be combined and expressed in the differential form

= o l |
dsij Zu{deij + m hij(Z)dZ} (2.9)
where
i=0(0) {1+ °‘°’} 1 (2.9a)

Alternately, for computational purposes the incremental

form given by equation (2.10) may be used, i.e.,

= 0 1
Aslj 2u {Aeij + TJTO—T hlj(Z) Az} (2.10)

Substituting (2.4a,b) into (2.9) and using (2.2) one obtains
the operational incremental form of the elastoplastic con-

stitutive equation in matrix notation as follows:

{do} = (D} {(de} + {de} (2.11)
where [ -
cl c2 0
{D} = 402 Cl 0 (2.12)
0 0 u
\ up/
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and ‘ ) \
dex
{aa_} = a0 _  »

i

In plane stress

_ 12Ky + 4u°

3R + 4u

6Ku = 4u2

3K + 4y

2u (3k=2yu)
cu(3k=2u)
3k + 4u

dex = {Zuhx(z) - Dlhz(z)} dz/p(0)

dey = {Zuhy(z) - Dlhz(z)} dz/p (0)

dexy = 2uhxy(z)dz/p(0)

In plane strain

3K + 4u
¢y ® 3

= 3K = 2y
€2 3
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(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)



di__ = 2u hy(2)dz/0(0) (2.22)

pX
dey = 2u hy(z)dz/o(O) (2.23)
dey = 2y hxy(z)dz/o(o) (2.24)

We note that {D} is an adequate approximation to the elastic
matrix {E}. It is evident from equation (2.9a) that when
p(0) = », {D} becomes the elastic matrix {(E}. Take plane

stress as an example on the simple tension curve (Fig. 1) draw

( ]
2 2v 0
. E
Lin (D} = (E} = grpoyp=ord 2y 2 0 ((2.29)
p(0) e 0o 0 (1=-v)

We use axial tension to show the geometric meaning of equatibn
(2.11). From a point A on simple tension curve (Fig. 1) draw
a straight line AB, the slope of which is Young's modulus

E and its horizontal projection is de. For simple tension

{D} {de} = Eade (2.29)

BD = Ede

so BD can be considered as the first term of right hand in
(2.11). Since CD is equal to dg, the geometric meaning of
de is represented by the segment BC the value of which is

negative for simple tension.
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A FINITE ELEMENT CODE FOR THE ENDOCHRONIC THEORY OF PLASTICITY

Using (2.11) and the principle of virtual work (11], one
may formulate an initial stress finite element computational

algorithm of the endochronic theory. 1In fact, we have

féf{c}T{se}dv = {pg,} () (3.1)

and {pex} and {gl} are respectively the vectors of nodal external
forces and displacements of the element. Substituting (2.11l) into

(3.1) one finds that
{k} {aq} = {Apex} + {App} (3.2)

where {K} is the stiffness matrix of the element and is the same
as the stiffness matrix 6f an element in the usual elastic analysis
but the constants C;, C, are obtained from equations (2.14 - 2.16)
or (2.20 - 2.21).

The guantity {APP} is the incremental plastic pseudo-force
vector for a typical triangular element used in the analysis and

has the form

2 s
(Appx). ; (aiAH + B.AHR )
i = 1,2’3 (3.3)

| £
AP =~ = (B,0H__ + a,
( py)i 5 (B;4 oy alApry)
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Where the components of {Aﬁp} are given in equations (2.17 -19)
or (2.22-24) by changing operator "d" to "A". @; and 8, are

related to the differences of nodal coordinates, i.e.;

@y =3 ®14k83k  + By = - 3 ®;k8%5x (& = 1,2,3)

, (3.4)
where ijk = yj-yk ’ ijk = xj-xk and eijk is.the permutation
symbol.

From equations (3.2) and (3.3) one obtains the total
stiffness matrix {k}, total plastic pseudo force matrix

Z{APP} and the linear simultaneous equations for the structure.

THE CALCULATION OF h(z)

Equations (2.17) through (2.19) show that h(z) plays
a central role in the calculation of {AHP} and plastic pseudo-
force {APP}. To calculatekh(z) numerically, we divide the

domain of integration (0,z) in equation (2.8) into n subregions

whereupon
z z,
L. aeP i 3eP
h(zg) = { plz =2") s3r dz'e.ec. + plz =2') z=¢ dz'.....
° Z2i-1
z .
m -~ 3ep
cee + [ p(zm-z') 32T dz' (4.1)
Zn-1

where zi-l, z; are the intial and end values, respectively,

of the intrinsic time scale of ith interval, which corresponds
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to the ith incremental loading process, and Zn is the current

value of the intrinsic time scale.

The mean value theorem, and the smoothness of eP allows

the approximation

24 - 2i
° P 3P| - ~ '
- de x S ! '
f plzy=2') v dz' ol i. plz ~z')dz
Zi.1 i ®i-1

(4.2)
provided that there is no strain reversal in the interval
considered. In the present work we approximate the series
on the right hand side of equation (2.5) by three terms, i.e.,

3 -a.z
p(z) = } C.e (4.3)

r=1
Substituting equation (4.3) into equation (4.1) and

using equation (4.2) we obtain the result

3 n P
de -a_(z =2. .) a_(z;_2z._.)
h(zy) = ) Cr 3%- e T M 1L [l-e T = i-171]
r=1 i=l =24
(4.4)

This form of E is unsuitable for numerical compulation.
The term ar(zm-zi-l) may in the course of calculation become
very large of ther order of S x 104. Consequently, the
value of the function exp{-a (z -z, ,)} becomes a very
small number leading to serious truncation errors. To avoid
this difficulty we proceed as follows. By mathematical

induction the following formula can be shown:
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3 3 3eP
Q Azi

h(z;) = [ h(z,_;)e Tt Teole
r=l r=1

where h(0) = 0 and 4z; = z2,-2, ;.
This is an important result to the effect that the
history dependence of the material response (through g(zi)) at

the intrinsic time z; will be determined by h(z;_,) and the

3eP

new incremental step (through 3%‘ and zi). This formula
2=z,
i

. is also of value in the computer program, because (a) one need
only store the information at z;_; to obtain results at z;, and
(b) when using (4.5) instead of equation (4.4), the value

of the term exp(arAzi) is no longer small thus avoiding
truncation errors present in the previous formulation -

(equation 4.4).

THE ITERATIVE PROCESS

For every increment of loading or unloading an initial
value Az° is assigned to the increment of intrinsic time.
The linear simultaneous equations are then solved and the
displacement increments are obtained, from which the total
deviatoric strain de is calculated. Also As and Agp are
calculated using equations (2.10) and (2.3) respectively.
3% and
92 an
h are obtained. Also, from equations (2.17)-(2.19) or (2.22)-

Upon use of egquations (2.la), (2.1b) and (4.5) Az,
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(2.24) Apr, AR AH and finally (APp) are obtained.

pY’ "TPXY |
Substituting {APP} into the simultaneous equations (4.2) we
then obtain a new solution for the displacement increments
‘as well as the other variables, including Az. The iteration
process is continued until the difference in two consecutive
values of Az, corresponding to two consecutive iterations, is
less than some defined tolerance. Results are stored for
the next step. The new loading process is then repeated.

In this initial stress method of classical plasticity
one [1l2] usually stops the iteration process if the difference
in the magnitudes of the plastic pseudo-force vector corresponding
to two consecutive iterations is sufficiently small. We use
the scale 4z as a criterion of convergence instead of the pseudo-

force vector, not only because of its simplicity but because

of its crucial role in endochronic plasticity.

CONVERGENCE AND TOLERANCE

The rate of convergence is very important because it
relates to consumption of computer time, truncation error
and other related considerations. The key of accelerating the
convergence rate is how to choose the initial A4z in order to
begin the iteration process of a new incremental loading
(unloading) step. An accelerator K, was used to determine
the starting value of the increment of intrinsic time Azg by
the relation

Azg a KiAzI_l "(6.1)
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where the subscript I denotes the current incremental loading
step and I-1 denotes the preceding step. The superscript o
denotes the initial value, L denotes the last value and Ki

is called the accelerator for the I'th increment. Eguation

(6.1) is not suitable for reversal points, at which Azg is

taken equal to zero, because at the onset of unloading the
response is elastic. The value of the accelerator was determined
by the ratio of the final value of Az in the two previous

steps, i.e.,

Az
KT = —2=1 (6.2)
a L
I=-2

with the exception of the first few (three) increments

I
a

its utility and average value of 1.24 was used and the number

the value of K. was substantially constant. To illustrate
of iterations needed for convergence was compared in cases
where Ki = 1 and Ki = Q, See Fig. 2 where n pertains to

YP i3 the plastic strain near the

the fifteenth increment and ¢
tip of the notch. Curve 1 (Ka = 0) shosws that the convergent
process is very slow. The reason is that at the first iteration
Azg = 0 since Ka = 0 and therefore {AP}P = 0, i.e., the loading
process so initiated is elastic and is far away from the real
case. Curve Z(Ka = 1) shows the convergent rate is much better
than in curve 1, because it takes the final value of Az in the
previous incremental loading step as the initial value of Az

in the current step. However, in this procedure the plastic

pseudo~load is underestimated. A wvalue of Ka greater than
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unity does increase the rate of convergence as shown in curve
3 (Ka = 1.24) ., Figure 3 shows the effect of accelerator

factor Ka on the average iteration number Na per incremental

ve
loading step.

By definition the relative error ERR is defined as

Azn-Azn_l

Azn

ERR = (4.41)

-where n is the number of iteration steps. Tolerance
is defined as the maximum acceptable value of ERR.,
Figures 4 and 5 show the effect of tolerance on the

accuracy and rate of convergence. In the example shown

the smaller the tolerance the higher the accuracy (Fig. 4),
but the number of iterations increases (Fig. S). One however
must guard against an excessively small tolerance, which may
lie outside the inherent accuracy of the numerical computation
and computer capability, leading to accumulation of truncation

errors. In the present work the tolerance was 1%.
COMPARISON BETWEEN EXPERIMENTAL DATA AND CALCULATED RESULTS

To verify the validity of the endochronic analysis, using
the present numerical algorithm, the distribution of strain of
a notched specimen (made of OFHC copper) cyclicly loaded in
its own plane was calculated and measured. One gquarter of
the specimen is shown in Fig. 6. The material functions p(z)

and £(g) were determined by means of an experiment on a round
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specimen of precisely the same material as the notched specimen,
in terms of purity, grain size and treatment. The method of
determination of these functions will not be given here but
may be found in Ref. 13. Suffice it to say that they are of

the following form: 3

p(z) = 7 ae T (GPA)
r=1

‘where Ay, 2,3 = (592, 220, 46) and % 2,3 = (27.5, 11.5, 7.67)
x 10° and
£(z) = 1 + 0.53z9-72

The calculations were conducted on an electronic computer
(AMDARL 470 V/7A, close to IBM 370) in the computer center of
the University of Cincinnati. There are 413 elements and 230
nodes in one quarter of the specimen (Fig. 6). The side of
the smallest element is 0.25 mm. By "varying band storage" the
amount of storage for the total stiffness matrix is 17698.
The incremental loading for each step is 4% of the maximum
load. The average number of iterations for each incremental
loading waS'ébout 10, varying from 3 to 20. The computer time
for each iteration was about 3.36 sec., most of which is used
to solve the 460 simultaneous equations. The experiments were
conducted in Metcut Research Associates Corporation. The
strain distribution was measured using strain gauges, the
smallest nominal length of which was 0.2 mm. Since the locations
of the elements and the strain gauges did not coincide exactly,

we compared the calculated results with experimental data in

terms of plotted curves. Comparisons were made over a wide
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range of magnitude of applied maximum stress, location and type
of histories.

Measured and Calculated Strain Distributions ¢, Along the Notch

Y
Center Line oo' are Shown, for Applied Stress Amplitude 3.7 x 107PA

(i) at first tensile peak A. Fig. 7
(ii) at first unloading point C. Fig. 8
(iii) at first compressive loading peak B. Fig. 9

Letter designations as shown in those Figures.

Measured and Calculated Strain Distributions ey Along the

Vertical Line ob are Shown for Applied Stress Amplitude 2.3 x 107PA

(1) - at first tensile peak E. Fig. 10
(ii) at first compressive peak L. Fig. 11
(iii) at second loading peak H. Fig. 12
Letter designations as shown in above figures.
| Despite the complexity of the boundary value problem and
the inherent experimental difficulties the agreement bétween
axperimental and célculatéd results is excellent both from

the aspect of tendency and magnitude.
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THERMOMECHANICALLY INDUCED PRE AND POSTBUCKLING
OF GENERAL STRUCTURE

Joseph Padovan
The University of Akron
Akron, Ohio 44325

This paper develops an algorithmic solution strateqgy which enables
handling the positive/indefinite stiffness characteristics associated with
the pre and postbuckling of structures subject to complex thermomechanical
loading fields. The flexibility of the procedure is such that it can be
applied to both finite difference and element type simulations. Due to
the generality of the algorithmic approach developed, both kinematic and
thermal/mechanical type material nonlinearity including inelastic effects
can be treated. This includes the possibility of handling completely
general thermomechanical boundary conditions. To demonstrate the scheme,
the results of several benchmark problems is presented.

INTRODUCTION

Literally a multitude of studies have been reported on the isothermal
simulation of problems wherein kinematic and/or material nonlinearity is
excited. In recent years, most typically such work involved the use of the
powerful finite element (FE) scheme [1]. In contrast, much less work is
available for nonisothermal versions of such problems. This is an outgrowth
of several main factors namely:

i)  Unlike mechanical type loads which are generally applied at-specific
points around a given structure, transient thermally induced loads
occur at every body point causing complex distributed loading and un-
loading fields which typically induce difficulties in simulating proper
inelastic type behavior; '

ii)  Since thermal loads are internally induced, for nonlinear situations,
it is typically quite difficult to adequately forecast the level of
incrementation necessary for nonlinear equation solvers to yield con-
verged solutions without involving an expensive time consuming trial
and error procedure;

iii) . For problems with highly nonlinear kinematic behavior, little is under-
stood of the process of thermomechanical interaction; and Tlastly,

iv)  Thermomechanically induced pre and postbuckling behavior exhibits in-
definite stiffness characteristics [2]; such behavior precludes the
use of the classical form of the incremental Newton Raphson (INR)
scheme which is restricted to nroblems with a given definiteness [2,3].

Since numerous thermomechanical problems fall into the foregoing cate-
gories, this paper will consider the development of a solution strategy which

153



bypasses the difficulties denoted by items i) - iv) noted earlier. Specific-
ally, a constrained type strategy [4-7] will be developed for use with either
the finite element [1{ or difference methodologies. The generality of the
procedure is such that both pre and postbuckling behavior can be handled
along with arbitrary kinematic and material nonlinearity. In this context,
probiems exhibiting indefinite stiffness characteristics can be handled.

GOVERNING EQUATIONS: MECHANICAL

Assuming the possibility of large deformations, the equations of motion
complementing the thermal formulation are given by the expression

“i azui
33; (S, k(6 33, 1) * 955 = 05 3% (2.1)

where goi designates the body force vector, &ii is the Kronecker delta, Sjj

the second Piola Kirchhoff stress tensor, uj the deflection vector and aj the
Lagrangian coordinates. For the current purposes, the Lagrangian stra1n
measure Lij is employed in conjunction with Sjj namely

u ou. au au

L+ an * aa 3 : (2.2)

3 i LIRS

In terms of the Sjj and Ljj measures, the thermoelastic-plastic be-

havior is handled in terms of t%e usual yield surface flow rule assumption.
The creep effects will be treated in terms of strain hardening concepts
wherein variations in creep rate depend on the existing strain rate. From a
computational point of view, the overall thermoelastic-plastic-creep behavior’
is solved via incremental type flow rules. Under the condition of large de-
formation moderate strain behavior and the usual flow rule assumption, the
following incremental type constitutive relation is adopted, that is [8]

AS = [D ](AL c - AL ) (2.3)

where [Dap] is the elastic-plastic material stiffness and AL, ALc and ALT
are 1ncrements in Lagrangian creep and thermal strain. For the current work,
ALc is expressed in terms of mechanical equations of state. In particular,
it takes the form

L

1
1572 (3

where Sd is the deviatoric stress and
o€
v (2.5)
d
dc

such that o4 and tc are respectively the equivalent stress and creep strain

rates. Lastly, the increment in thermal strain appearing in (2.3) is de-
fined by

AET = gAI (2.6)
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where a is the thermal expansion coefficient matrix and AT is the temper-
ature increment. Note, based on the thermal fields generated earlier, it
follows that the various coefficients are temperature dependent.

In the context of (2.3) it follows that depending on the load step,
the current stress state is given by the expression

S = IAS (2.7)

where the matrix S takes the form

S“=(S ,$ ,$ ,S .85 ,S ) (2.8)
~ ~11° ~22 -33 =~12 =~23 -3l

Noting the linear structure of AS, we see that the incremental scheme
enables the following segregation of contributing components namely

§ N §ep * §epc * §epT (2.9)
where

§ep N 8A§ep (2.10)

§epc ) £A§epc - (2.11)

SepT = I83ep7 (2.12)
such that

A§ep = [Dep] AE (2.13)

8Sepc = - [DepJ sLe (2.14)

A?epT = - [Dep] AET (2.15)

As will be seen later, such a partitioning of the stress state will enable
the establishment of an improved control of successive iterates during the
incrementation process.

FE FORMULATION/SOLUTION ALGORITHM: MECHANICAL

Following the thermal formulation, we shall employ a displacement
type procedure to develop the requisite mechanical FE expressions. In this
context, the deflection field is approximated by

U= [NyJY (3.1)

where

Ej’ = (UIQ uzs u3) (3.2)
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such that [N, ] is the displacement type shape function while Y is ?he qoda]
deflection véctor. For consistencies sake, the same order poTynomial is used
for both the thermal and mechanical phases. Based on (3.1) and_the virtual
work principle, the following FE expression can be developed [1]

.e *
- - 303
yTF + 7 (818 &V = o (3.3)
0
where
*
(8, = [B,] + [8,](6] (3.4)
[Mul = 6 pO [NU]‘[NU] dv (3-5)
0
Fext = Froda1 * 6 [NU]‘ 9ext 9V (3.6)
0
such that
Jext = (9,5 9,5 9,) (3.7)
Note Fnodal represents the externally applied nodal loads.

Since dynamic postbuckling problems will be the subject of another
paper, for the current purposes, we shall consider quasi-static thermo-
mechanical problems. In this context, (3.3) reduces to the form

! [Ba]‘ Sdv=F
v

- -ext (3.8)
)

To simplify the development of the requisite solution algorithm, the
partitioned form of § will.be used to recast (3.8) into a more tractable
form. Before doing so, we note that due to their analytical form, the
creep and thermal partitions of S can be lTumped with Fext to yield a
pseudo applied force field namely

*
o ot T 1 BB1 (Sepe * Sepr) @ (3-9)
: 0o

Hence (3.8) reduces to the form

*
-y U- Zep

o

Since Sepc and SepT are time dependent terms, the solution to (3.10)
requires the introduction of a time stepping algorithm to generate the
requisite solution. This is achieved by expanding (3.10) in truncated
Taylor series. To start, Y(t+at) is expanded to yield

!(t+At) = !(t) + A! (3.11)
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Substituting (3.11) into (3.10) and truncating higher order terms yields
the expression

* %*
/(8,2 s,_dv| =r[B,°S..dv ]| +[K,]| aY (3.12
vo U- Zep tat Vo Uu- Zep ¢ u L - )

where

[k | = ¢ ([E1TS106] + (81 D0, 108D) | v (3.13)
o t

such that [S(t)] is the prestress matrix at time t. Based on the defi-
nition of pseudo force, Eq. (3.9), it follows that

F Fovp | F B ]S .+S. )| d (3.14)
= - ‘ - v .
- teat X teat v, U7 ¢ "=epC  ZepT® ()¢

Now in terms of (3.10), (3.12) and (3.14), we obtain the following
time stepping Newton Raphson type algorithm, that is

Foup | =7 [By1° | (S, c*S.0) | dv=
.ext L vo U t -epC  ZepT trat
*
5 [BU]‘ §ep L dv + [KU] L A! (3.15)
0
Based on the use of such a relation, successive time steps lead to the
following thermomechanical history namely
t  T(t) S(t) L(t)
0 T(0) s(0) L(0)
at  T(at) S(at) L(at) cee
28t T(2at) S(2at)  L(2at)
3at  T(3at) s(3at) L(3at)
4at  T(4at) S(4at) L(dat)

iat  T(iat) S(iat) L(iat)

As noted earlier, the NR base of (3.15) suffers from several short-
comings. The more important of these are:

1. Cannot handle turning points (buck]ing);

2. No direct control on successive iterations; and,

3. Difficult to ascertain zones of convergence as solution proceeds.

Such drawbacks will be circumvented through the use of constraints in
the manner of Padovan and Arechaga [6]. Specifically the load increments
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associated with successive time steps will be constrained. Such a process
leads to nonuniform time stepping. From the nature of (3.15) it follows
that constraints must be imposed on increments in the pseudo load F. For
the current purposes the hyper-elliptic constraint surface (HECS) of

Padovan, Tovichakchaikul and Arechaga [7] will be employed to control succes-

sive iterations of a given time step. Such a process is illustrated in
Fig. 1. The development of the requisite constraint algorithm for the given
problem requires several main steps, namely:

i) Establish form of INR extrapolation for a given iteration;
ii) Establish shape and size of HECS;
iii) Determine intersection of HECS and INR extrapolation;

iv) Establish iterative/time stepping aspects of solution algorithm; and,

v) Establish information required for next time step.

To start the development, it follows from Fig. 1 that the hyperline
defining the INR extrapolation takes the form

[KUB]('!-‘ZB) = (f'fB) (3.16)
On solving for y we obtain
= -1 '
Y= yg * Kyl (F-fp) - (3.17)
such that
8=~ Fa (3.18)
Y8 = g = 'a (3.19)

The HECS appearing in Fig. 1 is given by the following normed poly-
nomial expression

[TF112 + wual1y112 = [1£c112 (3.20)
such that

fe=Fc-Fa

The parameter up appearing in (3.21) regulates the aspect‘ratio (abscissa/
ordinate) of the HECS.

(3.21)

The intersection of the HECS and INR extrapolation occurs at point I
as defined in Fig. 1. Specifically the coordinates of position I are
given by :

(3.22)
(3.23)

yr = Y1 - Yp
I
fr =2 (Fc - Fp)

such that AI is a single parameter constraint on the allowable load step
size and hence the interval in time utilized. Based on (3.22) and (3.23),
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it follows that (3.17) and (3.20) yield the expressions
- -1 _ -1,.1
Y =Yg * [Kygl (fr-fg) = v + [kygl™ (3 f¢ - fp) (3.24)

llflllz + uA|I¥II|2 = llfcllz (3.25)
In terms of (3.24), (3.25) takes the form
I =1
[T Fl12 + ugllyg + [kypd™ A1 = £)112 = |1£,] 12 (3.26)

I

Expanding (3.26) and collecting like terms in A" yields the following

polynomial identity namely

Iyo I -

(%) a * 2\ ayp * o T 0 (3.27)

where
-1
a1 = llfcllz + “A’ltKUB] fcllz (3.28)
*a1 = 4alp) [Kyplfp (3.29)
-] ;

a1 = llyg - Ckygd “fgl12 - [1fcl12 (3.30)
Solving (3.27) for AI, we obtain

.1 + 2 . |

At = [-azI T \/(azl) alIaal} (3.31)

QII

Based on (3.22), (3.24) and (3.31), YI the nodal deflection associated with
the Ith intersection of the INR extrapolation and the HECS takes the form

- ¥ -1 1 2 . -
SVt g+ IKgYT (= (e B o) - appagy) o - fgd (3:32)

Y
- %1

I

To establish the requisite time stepping aspects of the solution algo-
rithm, the following variables must be redefined in terms of incrementation
namely Ya, Y8, ¥1-VvB» FA» Fg» Fc and [Kyg]l. Letting 2 denote the time step
number and i the iteration count, it follows that positions A, B and I in
Fig. 1 designate the location of the Oth, ith and (i+1)th iterations. 1In
this context, it follows that

- vO
o= Yo (3.33)
. i .
= y! = y0 i
Yo=Y = Vo ¥ kEIA!zH (3.34)
yp - ¥g = avIe (3.35)
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The time associated with point A is the summation of the 2 preceed1ng con-

strained time steps.

step
by'

such

step.

is afat, it follows that the time at the end of the zth
R
t) = I Aat
k=1

Hence, since the interval utilized over a given load

step is given

(3.36)

that AZ is the finally converged value of the constraint for the kth

Employing the foregoing nomenclature, it follows that

- . 0
Fa ~ 6 [B (Yz+1)] Sep (Ypi) v

-~

0
= * i . i
o = £ 8 (1347)1Sgp (You) a0
0
i

Fo= fort Iy f[B(Y )1 (s] 45 )|
.C .ext AL ~epC  TepT'ix

t +AtM Ve t ot

(3.37)

(3.38)

dv  (3.39)

L+l

The various stress components appearing .in (3.37) - (3.39) take the form

such

(v ) = z aS, (Y )
-2+1 k=1 3

S 1) = S (Y 1) + AS (Y

ep z+ z+1)

']
(t ) = & as (1:A + 2 At )
C k=‘ -epc k" k

-ep
§;pc(t; +at) = S, c(t)) + A§;pc(t;+At)
§epT(t;) } kEI ASepT(tk lﬂkAt )
§;pT(ti+At) B §epT(t:)4'A§;pT(t2+At)
that the various increments are given by
85ep(V3a) = [Ogy(Y4)28L(Y] )
AL(Y1+1) - EB;(!1+1)](31+1 - Yon)

A v _ b v
8Sepc by * Aat) = = [D,(Y ) ]aLe(ty 12 at)
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(3.41)
- (3.42)
(3.43)
(3.44)

(3.45)

(3.46)
(3.47)

(3.48)



BSept(thq * Aeat) = - [Dgy (Y ) Ia(T()) (T()+r7at) - T(£)))  (3.49)

88} pc(t;mt) = - [0, (Y v el (th,at) (3.50)

ept(t +at, 1) = - [0, (Y2+])]a(T(t ))(T(t)+at) - T(£)))  (3.51)

To check the convergence of the foregoing algorithm, several tests are
employed. These include:

i) Definiteness check:
‘cnzl)2 R R 0 (3.52)
i) Pseudo force norm check:

||E(t2+x1+]At) F(t +x wA0]

2+1
X, i+1 € (3.53)
ii1) Displacement norm check:
i+1
1Y, o1 = Yol
2+l T ~o+]
||Y1;T]} < ey (3.54)
2+1
jv) Constraint check:
A1‘+} _ i
2+ +1
'AiT—- < e)‘ (3.55)
2+1

The preceeding tests are applied at different phases of the iteration
process. Test i) is used to resize the HECS by self-adaptively readjusting
up the aspect ratio so as to guarantee an intersection with the INR ex-
trapolation and thus ensure a convergent solution [6]. Test ii) is employed
to monitor the monotonicity of successive load excursions. Lastly tests
ii1) and iv) are used to quantify when adequate convergence has been achieved.

Once convergence is obtained for a given time step, the overall solu-
tion a]gorithm must be prepared for the next interval. This requires that
the various field variables are properly updated. Specifically this in-
cludes such terms as Y, Sep, SepC» SepT and t. In this context, if we let
[9+1 desi nate the number of 1terat1ons required to yield convergence of
the (2+1)th time step, then Y at the outset of the (g+2)t th is given by the
expression I

0 =
Yz+2 Yz+] * kfl AYz+1 (3.56)
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Note as the iteration process converges, the constraints X1+] represent a
sequence which approaches the limit (c]uster) point xz+1 namely

i .
. *z+1""’ Az+] . (3.57)

M1 At Mareee
In this context, the time at the start of the (2+1)th step is given by

A _ $A v '

Now, based on (3.56) and (3.58), it follows that the Various stress
partitions take the form

0 A
toe1tat
- A £X
epT l §epT(tz+1) * AsepT( z+1+At) (3.61)
t2+] At
such that the various increments are defined by the expressions:
454 (Y2+2) [D (Yz+2)]AL(tz+1) (3.62)
)
N z+1
Sepc(ter1) = 2. Asepc(tk 1+ get) (3.64)
N 2+1 A v
Sepr{te1) = o 8Sgp7(tha1 ¥ 28t (3.65)
0 A _
8Sancltey * 8t) = - [D, (Yz+2)]ALC(t +1° Ot) (3.66)
A - A
0 (tgay * 88) = = [0, (Y0 o) Ja(T(t), (T (), + at) - T(t)))

(3.67)

Note for the present purposes, to enhance the speed of calculation
of the stiffness inverse, the BFGS [3,7] scheme is employed. This
approach was chosen over the straight updating scheme which is particu-
larly expensive when several {iterations are involved. Such situations
typically occur in the vicinity of buckling points.

As was noted earlier, if the INR type scheme is employed to solve
the thermomechanical problem, uniform time stepping in the thermal phase
of calculations also leads to equal time intervals for the mechanical
stage. In contrast, the use of constraints in the INR methodology yields
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unequal time stepping requirements for the mechanical phase. Namely,
the following type thermomechanical history is obtained, that is

t T(t) S(t)

0 T(0) S(0)

J\]VAt T(x‘{At) s(A7at)
ALV ALY ALV
t]-bxzat T(t]'FAZAt) §(t]-+k2At)

v
2+1

v

A,V A A
to A At T(tz-+x At) §(tz-+kz+1At)

where here the sequence 0, 21, Vat,...tﬁ + Ag+]At is typically nonuniform.
Because of this, the temperature data required to generate the thermal
strains and material properties are interpolated from the uniformly gener-
ated data.

BENCHMARKING

In the preceeding sections, a specialized HECS constrained BFGS up-
dated INR time stepping strategy has been developed. The methodology
enables the static solution of pre and postbuckling thermomechanical prob-
lems. In order to thoroughly -evaluate the procedure, several highly non-
linear benchmark problems were undertaken. The main thrust of this work
was to ascertain the capability of the constraint methodology to deal
with thermomechanical problems involving:

a) Large deformation kinematics including the possibility of pre
and postbuckling behavior;

b) Thermoelastic-plastic-creep material behavior;

c) Temperature dependent thermomechanical material properties;
as well as,

d) Time dependent thermomechanical loads with varying combinations/
interactions between the thermal and mechanical components.

This was achieved by programming the solution scheme into ADINA [9]
and its complementing thermal code ADINAT [10]. Such an approach enabled
benchmarking over a wide variety of geometric configurations, material types
and boundary conditions. For the present purposes, the demonstrational
benchmarking consists of calculating the pre and postbuckling response of
an arch to various types of thermomechanical loading fields.

For demonstration purposes, Fig. 2 illustrates the geometry of the
centrally loaded arch used for the benchmarking. The creep law employed
is given by the gxpression

€. = Ao g 1t 2 |
As seen from Fig. 2, eight noded plane stress isoparametric elements are
used to generate the FE simulation.
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To demonstrate the numerical efficiency and stability of the improved
constrained MINR time stepping scheme, the thermocelastic-plastic-creep pre-
postbuckling problem depicted in Fig. 3 is considered. As can be seen from
this figure, the problem is driven into the postbuckling range of behavior
by the time dependent growth of creep. Overall, the creep generated re-
shaping initiates a redistribution in the internal loads hence causing a
change in load carrying capacity. Due to the nature of redistribution,
plasticity is initiated in the later stages of postbuckling. Noting Fig. 3,
teritical marks the time at which the pre to postbuckling transition occurs.
This time zone is marked-by changes in the definiteness of the structural
stiffness. Table 1 illustrates the numerical efficiency/stability of the
BFGS updated constrained scheme in capturing such behavior. In the case of
At = .8 hours, Table 1, the improved algorithm yielded 210% reduction in
computer time over the constrained MINR scheme. Note the classical un-
constrained INR scheme completely fails in such zones of behavior for any
choice of at. As the time step is increased further, unless some inter-
mediate updating is employed, even the constrained MINR approach fails.

This is in contrast to the BFGS updated scheme which shows significantly
enhanced convergence, efficiency and stability characteristics.

As a more severe test of the scheme, we shall consider the case of
cyclical creep loading problems wherein buckling occurs after several cycles.
Figure 4 illustrates the load deflection behavior of the arch under a
cyclically applied external load. As can be seen, as the load is cycled
the accumulated creep over the various cycles progressively reduces the

buckling 1imit of the arch. In essence, after several cycles the arch
behaves as a structure with shape imperfections. Such reductions in
load carrying capacity are illustrated in Fig. 5. Specifically, this
figure depicts successive families of load-deflection curves which ji-
lustrate the decrease of buckling strength with time. Note, due to the
efficiency and stability of the improved constrained MINR time stepping
scheme, problems involving variable/cyclic loading environments can be
handled moré effectively.

The last example considered consists of the thermally induced buck-
ling of the bimetallic arch depicted in Fig. 6. Noting Fig. 7, as the
arches temperature is raised, a critical value is reached wherein exces-
sive deflections occur with no essential raise in T. Such behavior con-
stitutes the thermal equivalent of buckling. This follows from the fact
that the structural stiffness is indefinite during the event.

SUMMARY

As noted earlier, the main thrust of this work has been to develop an
improved solution procedure for elastic-plastic creep pre-postbuckling
problems. Also of major importance is the maintenance of maximum aigo-
rithmic compatibility with currently available general purpose codes such
as ADINA, ANSYS, MARC, NASTRAN, etc. As can be seen from the proceeding
benchmarking, the improved constrained scheme developed herein significantly
enhances the numerical operating characteristics of MINR type algorithms.

It should be further noted that due to the manner of formulation, the over-
all procedure can be encoded into most general purpose codes with little
rearchitecturing of the programming.
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NUMERICAL CONSIDERATIONS IN THE- DEVELOPMENT

AND IMPLEMENTATION OF CONSTITUTIVE MODELS

W.E. Haisler and P.K. Imbrie
Aerospace Engineering Department
Texas A&M University
College Station, Texas 77843

Several unified constitutive models were tested in uniaxial form by
specifying input strain histories and comparing output stress histories.
The purpose of the tests was to evaluate several time integration methods
with regard to accuracy, stability, and computational economy. The sen-
sitivity of the models to slight changes in input constants was also in-
vestigated. Results are presented for IN100 at 1350°F and Hastelloy-X at
1800°F.

INTRODUCTION

The characterization of the constitutive behaviour of metals has its
roots in the early work of Tresca, Levy, vonMises, Hencky, Prandtl, Reuss,
Prager, and Ziegler (Refs. 1-8). These early models are incremental in
nature, assume that plasticity and creep can be separated, and they incor-
porate a yield function, flow rule, and hardening rule to define the plastic
strain increment. These original incremental theories have been expanded
and modified by many researchers so that they provide adequate, and often
very goad predictions of rate-independent plastic flow (see for example
Refs. 9-~10). However, they are sometimes criticized as having no formal
micromechanical basis upon which to make the assumption of an uncoupling
of the inelastic strain into rate-independent (plastic) and rate-dependent
(creep) strain components. Nevertheless, the classical incremental theories
are widely used.

During the last ten years, a number of unified constiutive models have
been proposed which retain the inelastic strain as a unified quantity with-
out aritifical separation into plasticity and creep components. These in-
clude the models developed by Bodner (Refs. 11-13), Stouffer (Refs. 14-15),
Krieg (Ref. 16), Miller (Ref. 17), Walker (Refs. 18-19), Valanis (Refs. 20-
21), Krempl (Ref. 22), Cernocky (Ref. 23-24), Hart (Ref. 25), Chaboche (Ref."
26), Robinson (Ref. 27), Kocks (Ref. 28), and Cescotto and Leckie (Ref. 29).
The applicability of these viscoplastic constitutive theories (mostly to
high temperature applications) has been investigated by several researchers.
Walker (Ref. 19) compared the predictive capability of several models (Walker,
Miller and Krieg) for Hastelloy-X at 1800°F. More recently, Milly and Allen
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(Ref. 30) provided a qualitative as well as quantitative comparison of the
models developed by Bodner, Krieg, Walker and Krempl for IN100O. Both Refs.
19 and 30 conclude that these models generally provide adequate results
for elevated isothermal conditions, they provide poor and overly-square
results at low temperature, the material constants are often difficult to
obtain experimentally, the resulting rate equations are '"stiff" and sensi-
‘tive to numerical integration, and the models do not provide any satisfac-
tory transient temperature capability. Beek, Allen,.and Milly (Ref. 31)
have shown that all the unified viscoplastic models mentioned above can be
cast.in a functionally similar form (in terms of internal state variables).

None of the published literature provides a thorough evaluation of cur-
rent viscoplastic constitutive models with comparison to experimental re-
sponse for complex input histories. Such an evaluation is difficult at pre-
sent for many reasons, namely: 1) Material constants for most models are
usually available only for a single material and often for a single temper-
ature; 2) The experimental procedures given by model developers for deter-
mining material constants from experimental data are often sketchy at best;
3) Material constants for some models are often obtained by trial-and-error
and are not based on experiments; and 4) There is a lack of good experimental
data against which the models can beé evaluated (that is, test data which is
significantly different from that used to generate the material constants).

The purpose of the present paper is to report some preliminary evalu-
ations of several of the unified viscoplastic models (Bodner, Krieg, Miller,
and Walker). These four models are evaluated with regard to 1) their sen-
sitivity to numerical integration and 2) their sensitivity to slight changes
in input material constants.

CONSTITUTIVE MODELS CONSIDERED

The constitutive theories which have been studied to date include Bodner's
(Refs. 11-15), Krieg's (Ref. 16), Miller's (Ref. 17), and Walker's (Refs.
18-19). These particular models were selected for this initial study be-
cause material constants for Hastelloy-X were available for three of the
models. Other models are currently being considered as material constants
become available. Each model is listed below in uniaxial form using a con-
sistent notation as presented by Beek, Allen and Milly (Ref., 31). In Ref.

31, it is shown that all of the current viscoplasti:z =icdels considered maor
be written in uniaxial form as

g = E(e - o - e:T) (1)

where g is stress,. E is Young's modulus, € is strain, a; is the inelastic
strain (internal state variable), and ET is the thermal strain. Each vis-
coplastic theory postulates a particular growth law for the internal state
variable(s) and the inelastic strain is obtained by time integration of
the growth law for % i.e.
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t

= * ' ]
oy f al(t )dt | (2)
-0
where
. day .
0L1 =F = al(E, T, a2’ 0.3, ¢« s ¢ am) (3)

In equations (2) and (3), t is time, T is temperature, ) is the back stress
(related to the dislocation arrangement and produces kinematic hardening

or the Bauschinger effect), and a3 is the drag stress (which represents

the dislocation density and produces isotropic hardening).

Bodner's Theory

The growth law for the inelastic strain in Bodner's model may be writ-
ten in uniaxial form as

-

-2n
. 2 n+l ag
& = Ao, e [- (32) (a—B) ] sgn.(9) @)
where
r
&, = m(Z, -~ o)W - AZ (ﬁ——ﬁ) (5)
3 1 3'p 1 Z1
wp =00q (6)

The quantities E, Dy ny, my, Zq, A, Z, and r are material constants. As
noted before, the variable G, is “similar to the drag stress used in
many models (a measure of isotropic hardening or dislocation density).

It is noted that the model contains no parameter representing the back
stress and cannot account for the Bauschinger effect in kinematic harden-
ing materials. The material constants are tabulated for IN100 at 1350°F
(732°C) in Table 1 (taken from Ref. 14).
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Krieg's Theory

The inelastic strain growth law for the model developed by Krieg and
coworkers may be written in terms of state variables representing back
stress and drag stress:

C

. o = a,l) 2

&, = ¢ —a sga(o - o) 7)

& =C,& -C, a® [exp(Cc a2 ) - 1] sgn (o) (8)
2 3% 4 g L&XPltg 4y g 2

n

(9)

Colagl - Cyeaq - 0‘30)

The model contains ten constants (Cl’ C2 o e ey C7, E, a3o; and n).

These have heen evaluated by Walker (Ref. 19) for Hastelloy-X at 1800°F
(982°C) and are tabulated in Table 2. It should be noted that equations
(7), (8) and (9) form a coupled set of ordinary differential equations.

Miller's Theory

The growth laws for Miller's model may be written in uniaxial form as

1.5
. lo - azl
o, = BA' |sinh sgn(gs - a,) (10)
1 Qg 2
. _ . _ ' . n
a, = Hja, - HBO' [sinh (4 [a2|)] sgn(a,) (11)

2 3 3\[?
- c— - ' 3
5 + lazl ; ay H2C2 B6 31nh<A2a3)] (

Re
I

5 = Hy lag| {c

Miller's theory contains nine constants which are tabulated for Hastelloy-
X at 1800°F (982°C) in Table 3 (see Ref. 19).

172



Walker's Theory

Walker's nonlinear viscoplastic theory can be cast in the following
uniaxial form

[c-azl "

Re
i

o sgn(o - az) (13)

R
i = oy ) 13 (g )
G T (ay TRy = ey m oy =) {lall 3R [“33*'“4R)2“ TR 1]

+o, |o, -, 1‘“‘1} (14)
[0}

3= 9 18] - ng loglag - nyg (g - o‘30)q (15)

where R is the cumulative inelastic strain

tda

1
R = f at'| de! (16)
0
The general model requires sixteen constants (E, n, m, q, 0], N9, . .« .

LI and a3(t-0) In determining the constants for Hastelloy-X at 1800 F
o

(982°C), Walker made several simplifying assumptions [including o3 = cons-

tant = a3(t=0)] which reduces the number of parameters to those shown in Table 4
(see Ref. 19). Further, the constants reported in Ref. 19 were developed from tests
using strain rates in the range 10 ° to 10 ° sec ! and strain ranges of %0.67%.

NUMERICAL TIME INTEGRATION STUDY

The integration of the constitutive relationship given by equations
(1), (2) and (3) forms an integral and extremely important part in any nu-—
merical solution of a nonlinear field problem. It has been observed by
many researchers that the coupled system of ordinary differential equations
defining the state variables may be locally "stiff" and thus are sensitive
to the time ster size and numerical algorithm. The accurate integration
of these stiff equations can be accomplished by various means: use of small
time steps, higher-order or multi-point integration schemes, subincrementation
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procedures (Refs. 33-35), '"smart" algorithms which attempt to select appro-
priate time steps in order to achieve accuracy and stability (Refs. 36,37),
algorittms tailored for individual comstitutive theories (Refs. 32,37), or
combinations of these approaches. In general, the computation time required
for the accurate solution of materially nonlinear problems is directly re-
lated to the numerical integration scheme used.

Regarding the constitutive models reviewed herein, Walker (Ref. 32)
uses a stable, iterative implicit scheme which takes advantage of the func-
tional form of the integrand in the development of the reccurence relation.
Miller originally used Gear's method (Ref. 36) to integrate the stiff equa-
tions in his theory but later concluded in Ref. 37 that an implicit back-
ward difference method was more economical and preferable to either Gear's
method or the explicit Euler forward integration method. The.type of num-
erical integration scheme used by Bodner and Krieg is not known.

The selection of an appropriate time integration scheme to be used in
a computer code is very important but is often based on the answers to such
questions as: "What is available in the present code?", "What will work
most of the time?", "What can we use that most users will understand?",
"What is the cheapest and easiest to use?", and the like. The usual re-
sponse given is '"it depends on the problem being solved!"

In general, equation (3) may be integrated between time t and t + At
by writing

t+At t+At

f da, =/ &1 dt (17)
t t

or

t+At
Aal = al(t + At) - 0‘1 () = f o dt (18)
t

where a; is defined by the particular comstitutive theory being used. The
present investigation considers four integration schemes: explicit Euler
forward integration, implicit trapezoidal method, trapezoidal predictor-
corrector (iterative) method, and Runge-Kutta 4th order method. The approx-
imations for each of these methods is given in Table 5.

Each of the integration schemes in Table 5 were used to obtain stress-
time and stress-strain responses for the four constitutive models considered
herein when subjected to the uniaxial, alternating square-wave strain-rate
history shown in Fig. 1. Figure 1 shows the 35 second response obtained
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by Krieg's theory for Hastelloy-X at 1800°F using a time step of 0.1 sec-
onds. For this time step, the Euler and trapezoidal predictor-corrector
methods provide essentially the same results and are virtually identical

to that obtained for all methods using a time step of 0.005 seconds. The
4th order Runge-Kutta method generally overestimates the peak response while
the trapezoidal method underestimates the response, Figure 2 presents re-
sults for three integration methods such that the total computation time
for a 35 second response solution is approximately the same. For equiva-
lent computation times, the Euler method provides the most accurate results
although smaller time steps are required. Similar results are observed for
Miller's model. '

Figures 3 and 4 illustrate that various constitutive models may behave
appreciably different using the same integration method (in this case the
Euler method). 1In Fig. 3, Miller's theory (for Hastelloy-X at 1800°F) gives
considerable oscillatory response for a time step of 0.005 seconds while
Walker's theory shown in Fig. 4 gives a much smoother response for the same
time step. Comparing Figs. 3 and 4, it is seen that a smaller time step
is required (with Euler integration) in Miller's theory than in Walker's
theory. '

Figure 5 presents results for IN10O at 1350°F using Bodner's model.
Time steps were chosen for each integration scheme to obtain solutions which
required approximately equal computation times. These results, when com-
pared to solutions with much smaller time steps, indicate that the Euler
method provides the most accurate results. Again, the time step used is
smaller than that for the other methods but the computation time is the
same (for integrating the constitutive equatioms).

SENSITIVITY STUDY FOR MATERIAL CONSTANTS

In the previous section, results were presented which showed how the
numerical integration method used to integrate the constitutive equations
could affect the accuracy and computation times of predicted results for
stress-time and stress-strain responses. In this section, we consider
another important parameter in the application of any constitutive theory.
Namely, "how does the accuracy to which material constants are determined
from experimental test data affect the predicted response?"

Figures 6 and 7 present results for Walker's model (Hastelloy-X at
1800°F subjected to an alternating square-wave strain-rate history as shown)
wherein specified input material constants have been adjusted by 5%. Fig-
ure 6 shows the effect of a =57 change (error) in the stress exponent n
(the most sensitive parameter). Figure 7 shows that a +5% error in all test
data required to compute material constants results in significant predicted
respouse errors, up to 30% over-prediction in the stress at a time of 35
seconds (during the relaxation period).

Figures 8 and 9 present similar results for Krieg's model (Hastelloy-X
at 1800°F) and Bodner's model (IN100 at 1350°F), respectively. Both results

indicate that the most sensitive parameter is the stress exponent ''n'" and
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that a 5% error in specifying n may produce significant errors in the pre-
dicted response. Miller's model appears to be much less sensitive to er-
rors in input material parameters.

Figure 10 provides a comparison of the Miller, Krieg, and Walker models
for the Hastelloy-X test at 1800°F (using constants obtained by Walker for
all models). The Euler method was used with a time step of 0.0005 seconds
which provides a solution with no significant truncation error. The results
obtained here show approximately 10-15% differences in peak stress ampli-
tudes between the three constitutive models. Since no experimental results
are available at this time, no conclusions can be drawn as to which model
more accurately represents observed test data. However, the results do
point out that significant differences (greater than 15%) can be obtained
for stress peaks and stress relation values through the use of different
constitutive models. '

CONCLUSIONS AND FUTURE WORK

The results of this study are not complete since only a portion of the
available constitutive models and numerical integration schemes have been
considered. However, some tentative conclusions can be reached. First,
it appears clear from the present investigation, and the work of others,
that simple integration schemes (like the Euler forward defference method)
are often preferable to more complex schemes from the standpoint of accur-
acy, computation time, and ease of implementation. Although not reported
herein, our work in progress indicates that Euler's method used with a simple
subincrementation strategy provides the most accurate and economical solu-
tion for most constitutive models.

The sensitivity study on material constants indicates that most visco-
plastic constitutive models are significantly sensitive to one or more mat-
erial constants derived from laboratory tests. It has been shown that a
5% "error" in laboratory measurements may lead to errors of 25%, or greater,
in predicted stress responses. Although most model developers have fine-
tuned their models and input material constants for specific material/temp-
erature/strain-rate combinations, it is not clear that end-users will be
able to do so when called upon to develop material constants for a new sit-
uation. The problem can be negated to some extent by defining more explicit
testing procedures for obtaining material constants and by guidelines de-
fining which constants are most sensitive to experimental error.

Our current and future work concerns the application of several inte-
gration schemes to the other constitutive theories, investigation of sub-
incremental strategies, and consideration of "smart" integration methods
which detect local "stiffness" and adjust time steps but without signifi-
cant computational expense. The material parameter sensitivity study will
be continued by considering other constitutive theories, and more impor-
tantly, by comparison with laboratory tests which involve complex thermo-
mechanical loadings including transient temperature inputs.
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Table 1. Material Constants Used in Bodner's Model
for IN100 at 1350°F (732°C)

Bodners notation Beek and Allen's notation Numerical Value

E E 21.3x10% psi

n n 0.7

Z, z 1.105x10° psi
1 L

m ] 2.57xlOi psi t

D, D, 10* sec™t

A A 1.9x10" 3% sec™?

r r 2.66

z¥ 2; 0.6x10° psi

c (t=0) OLl(t=O) 0.0

2,4 a3(t=0) 0.915x10°% psi
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Table 2,

Material Constants Used in Krieg's Model

for Hastelloy-X at 1800°F (982°C)

Walker's notation
for Krieg's constants

Beek and Allen's notation

Numerical Value

aso

n

a1 (£=0)
az (t=0)
a3(t=0)

6.21x10 ° psi ® sec !
4.027x10 ' gsi-z

100 psi seci/n

4.365 ps:I.l_n secl/n-2
13.2x10° psi

59,292 psi seclln
4.49

0.0

0.0

59,292 psi

Table 3.

Material Constants Used in Miller's Model

for Hastelloy-X at 1800°F (982°C)

Miller's notation

Beek and Allen's notation

Numerical Value

2.363

2.616x10 ° sec !
1x10°% psi -
1.4053x10" 3 psi *
100 psi sec?/?
5,000 psi
4.355x10 %2 psi 3
13.2x10°% psi
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Table 4. Material Constants Used in Walker's Model
for Hastelloy-X at 1800°F (982°C)

Walker's notation Beek and Allen's notation Numerical Value
Q2 ‘ 02 ~1,200 psi
1 ni 0 psi (not used)
nz n2 1x10° psi
Ng * 312.5 _ -m _
n; ny 2.73x107 % psil™ sec”?
n n 4.49
m m 1.16
E . E 13.2x10° psi
c(t=0) oy (t=0) 0.0
Q(t=0) a2 (t=0) 0.0
K(t=0) a3 (t=0) 59,292 psi
Ng,Ng,N10,q 0 (not used)
3 nsR
X = —— ——
R (n3 + n4R) 2n l+n6R +1
t+ALe
Table 5. Numerical Integration Approximation for Aal = tf % de
Method Approximation
Euler Forward Difference Aq1= At &1(t)
Trapezoidal Rule Ao, = é-E[&. () + & (e+At) ]
=7 1
Trapezoidal Predictor-Corrector - Same as trapezoldal except iterate
-1 »
Runge-Kutta 4th Order Aal = g(K1 + 2K2 + ZK3 + K4)
Kl = At &l(t,al(t))
Kz = At al(t+At/2,al(t)+K1/2)
K3 = At al(t+Ac/2,a1(t)+K2/2)
K4 = At al(t+At,al(c)+K3)
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ON NUMERICAL INTEGRATION AND COMPUTER IMPLEMENTATION OF
VISCOPLASTIC MODELS
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Due to the stringent design requirement for aerospace or nuclear
structural components, considerable research interests have been gener-
ated on the development of constitutive models for representing the
inelastic behavior of metals at elevated temperatures. In particular,

a class of unified theories (or viscoplastic constitutive models) have
been proposed [1-10] to simulate material responses such as cyclic
plasticity, rate sensitivity, creep deformations, strain hardening or
softening, etc. This approach differs from the conventional creep and
plasticity theory in that both the creep and plastic deformations are
treated as unified time-dependent quantities. Although most of visco-
plastic models give better material behavior representation, the associ-
ated constitutive differential equations have stiff regimes which present
numerical difficulties in time-dependent analysis. In this connection,
appropriate solution algorithm must be developed for viscoplastic
analysis via finite element method.

In the past, inelastic finite element structural analyses were per-
formed largely based on the classical concept of creep and plasticity
[11-14]. Recently, some attempts have been made to incorporate a speci-
fic type of viscoplastic theories-into finite element codes [15-20] for
structural analysis. In this paper, three integration schemes are
implemented into a nonlinear finite element program [21] to study their
numerical efficiency pertaining to finite element analysis. Moreover,
four viscoplastic models, namely, those due to Walker, Miller, Krieg-
Swearingen-Rohde, and Robinson, were implemented into a finite element
program for nonlinear analysis. A general implementation procedure is
outlined in the paper.
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VISCOPLASTIC THEORIES

The basic assumption embodied in viscoplastic theories is the
unified treatment of inelastic strain; i.e. no distinction is given to
creep and plastic deformations. In addition, both elastic and inelastic
strains are considered to be present at all stages of loading and un-
loading processes. The unique feature of such treatment, as compared to
classical theories, is that the yield condition is not explicitly in-
volved, Consequently, the computational algorithm for compléx loading
history can be much simplified. In the context of small deformation,
viscoplastic models may be written in the following general form

o= 0% - (26el + & (A + 36)yT) (1)
el = flo a K T) (6 - a) (2)
~I~l ] ~ ~
L] .2
a = hge = ry (3)
A
k =hgle | - rg (4)
where ( ) = Time devative; T = Temperature;
e = Total strain vector; o = Stress vector;
a = Back stress vector; K = Drag stress;
DE -
» = Elasticity matrix; A,G = Lame contant;
el = Inelastic strain vector;
Y = Linear thermal expansion coefficient;
f = Inelastic strain rate function;

188



hashg = Hardening functions for back and drag stresses, respectively;
rqsTx = Recovery functions for back and drag stresses, respectively.

Eqs. (1-4) represent a complete set of viscoplastic constitutive
equations wherein the following assumptions are invoked in the extention
from uniaxial case to the three-dimensional case, namely, i) isotropic
material, ii) incompressible inelastic strain, and iii) linear bulk be-
havior. Eq. (1) defines stress rate to be proportional to elastic strain
rate while Eq. (2) states the functiona] dependence of inelastic strain
rate on applied stress, temperature, and state variables. Furthermore,
Eqs. (3-4), so-called evolutional equations, are generally constructed in
hardening/recovery form such that the net effect of two antagonistic
mechanisms uniquely determines the growth rate of state variables « and
ke

Although the mathematical expressions of viscoplastic models pro-
posed by various researchers differ in their detailed descriptions, they
do however portray several common- phenomena: i) Initial linear elastic
behavior wherein the inelastic effect is negligible and then nonlinear
response afterwards, ii) strain-rate sensitivity, iii) time-dependent
creep and relaxation, iv) cyclic hardening or softening, v) creep recov-
ery, vi) creep plasticity interactions, and vii) Bauschinger's effect.

NUMERICAL INTEGRATION SCHEMES

For finite element applications, it is useful to choose an appro-
priate integration scheme for handling the nonlinear viscoplastic
equations concerned. Krieg (22) pointed out the existance of numerical
stiff regions in viscoplastic formulation together with a discussion of
potential difficulties. The stiffness of the equations originates from
the nonlinear relationship assumed in Eq. (1) and the hardening/recovery
form in evolutional equations. Formal definition of the stiffness of a
set of differential equations can be found in Ref.(23) where the measure
of "stiffness" is given in terms of the Spectra of eigenvalues obtained
from the Jacobian matrix of associated equation system,

Numerical approaches intended for integrating stiff differential
equations have been developed by a number of researchers. Among them
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Gear's method is the most famous one. Although Gear's package has been
used quite effectively in solving one-dimensional constitutive equations,
(1) it is not suitable for large scale finite element analysis simply
because its solution procedure is of a multistep nature., When employed
in finite element analysis, this method usually requires a large amount
of storage in order to follow the deformation history of the material.
For this reason, one-step method is much preferable.

For the purpose of discussion, the constitutive equations are re-
written as follows

~~.

y = fly t) (5)

where y represents stress, inelastic strain and state variables while f
denotes nonlinear functions. One-step method for solving inelastic rate
problems in the field of finite element has been investigated by several
researchers (24-26). In a broad sense, it can be written in terms of
one-parameter (8) family of implicit algorithm (the - method) as follows.

Yn+l = ¥n + otp [ (1-8) fn + 8 fray ] (6)
where Aty = tp4] - tp is the n-th time step size and & is an integration
parameter which has the range of (0,1). In Eq. (6) it is assumed that a
numerical solution at the beginning of time step n is known, the solution
at the end of the step is to be sought,

The simplest integration scheme is the explicit forward Euler scheme
corresponding to 8 = 0, It is an explicit scheme since the solution at
time tp41 is completely determined from conditions existing at time tp.
Therefore, in the forward Euler method, the solution at time tp41 is
approximated by

Yn+l = ¥n + Atpfy (7)
When this method is employed in solving stiff equations, very small step
size must be used in order to obtain stable and accurate solutions.

On the other hand, the case 6 = 1/2 results in the so-called impli-
cit trapezoidal scheme which is also widely known as Crank-Nicholson rule
in the context of linear differential equations. Then
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At

¥n+l = 4n * T (En + £n41) (8)

Note that fn41 = f(yp+l, tn+#1) is unknown. Nonlinear implicit equation
is best solved by the Newton-Raphson iteration. To this end, Eq. (8) is
rewritten in the form

i i i
Fnel = Yn+l = ¥n - atp(fpe1 + fn )/2 =0 (9)

~ ~ ~

The right superscript "i" denotes iteration number. Since yn and fp are
known, Newton-Raphson iteration gives

i
e Y En+l (10)
el T el T T S a0

En+1/ Nna1

Rearranging Eq. (10) yields

i i
Bty Eetlan (11)
—_ = —
a-Y-n+1 2 a;Yn+1
Defining
i+l (i+1) i
Ay =Y -y (12)
~n+l ~n+l ~n+]

and performing differentiation, one obtains

i
at of
_n ™ s j At i (13)
(L - 2 i ]Axn+1 "Xy "Xt o2 Gt i )
Yn+1
1
where the initial value of y may be obtained by an explicit scheme.

n+l

Eq. (13) stands for a linear system of equations for implicit trape-
zoidal method. The system is readily solved by Gaussian elimination and
backward substitution. If this method is employed in an analysis, the
immediate question is: how one can determine whether the solution has
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converged or not? In fact, several convergence criteria could be used
for this purpose. One convenient way is to check the iterative value of
y such that

i
e = ||—A§-£—)|| <Tol (14)

Euclidean norm
A tolerance ratio

where [T 11

Tol
Presently, the ébove criterion is employed to determine the convergence
of a solution.

Comparing Eqs. (7) & (13), it is apparent that the implicit trape-
zoidal method requires not only much more functional evaluations but also
solving a system of linear equations. As an alternative, the implicitness
of fh+1 in Eq. (8) may be removed by using Talor series expansion, namely,

~

fael = fn + Jdndyn+l (15)
where )
Jn = af/9yp (16)
Thus, Eq. (13) becomes
[1 - Jpat/2]ay, = At f, , (17)

o~ =~ ~

The above equation is referred as the explicit trapezoidal scheme since
the solution is completely determined from the initial conditions.

At this point, it is instructive to make some qualitative comparisons
among the aforementioned numerical schemes. Comparing explicit trapezoi-
dal scheme with forward Euler scheme reveals that they differ only in the
expression Juat/2, i.e. the product of Jacobian matrix and half of step
size. The addition of such matrix necessitates the solution be obtained
by solving a system of simultaneous equations. Like implicit trapezoidal
scheme, it also requires the evaluations of Jacobian matrix. Apparently,
by including the extra term, the numerical behavior of the constitutive
equations have become stabilized. In this context, J,at/2 essentially
plays the role of a correcting factor. On the other hand, since no itera-
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tion is involved in the explicit trapezoidal scheme, it can be viewed as a
starter of implicit trapezoidal scheme.

We consider another extreme case, i.e. 6 = 1, which is called imoli-
cit Euler scheme,

Yn+#l = ¥n + Atpfpel (18)
Hughes et al (24) demonstrated that for viscoplastic finite element anal: -
sis one-parameter family of implicit algorithm is unconditionally stable
when 6 > 1/2 while only conditionally stable otherwise. In recent years,
various rumerical schemes have been applied to viscoplastic problems
(15-20,24-26)., Some of the authors have discarded the explicit Euler
method due to its numerical instability. However, the validity of this
conclusion needs to be further explored. In Ref., (27), present investi-
gators evaluated three numerical techniques for integrating the visco-
plastic constitutive'equations for a uniaxial state of stress. The
schemes evaluated were: i) forward Euler method, ii) explicit trapezoidal
method, and iii) implicit trapezoidal method with Newton-Raphson itera-
tion method. Although implicit trapezoidal method with iteration appears
to be more stable and accurate than the other methods even when the step
size is considerable large, its suitability for finite element analysis
must be re-assessed.

In principle, inelastic analysis using finite element method con-
sists of a sequence of incremental process. Two most widely used
approaches are the initial strain and tangent stiffness methods. In con-
sideration of the formulation presented in Eqs. (1-4), one finds that the
initial strain method is the most natural way to handle viscoplastic
models. The reason behind this will be elaborated below.

In Eq. (1), we invoke an assumption that the strain increment is
decomposed into elastic and inelastic components. Then, the inelastic
part, which is governed entirely by Eqs. (1-4) at constitutive level, is
converted into an equivalent load in the finite element formulation,
Thus, we have

KEau = (apo) + (apc) (19)
where ,
KE = Elastic structural stiffness matrix, which may vary with
the temperature
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Au = Incremental nodal displacement vector
Apg = Incremental vector of applied load
Ape = Incremental vector due to inelastic and thermal strains.

In addition to the incremental procedure used for solving the global
stiffness equations, a subincrementing technique is employed to calculate
the constitutive material matrix. That is, let At be the time increment
for solving the global stiffness equations. Then At is sub-divided into
smaller increments with a constant step size, At = At/m. Moreover, the
number of subincrements can be determined by an automatic stepping pro-
cedure for which an error measure is compared with a specified tolerance.
Further discussion of this is given in [27].

COMPUTER IMPLEMENTATION

With the constitutive relations and numerical integration schemes
outlined in the previous sections, the next step is to implement these
relationships into a typical (general purpose) finite element program for
intended analysis. For this purpose, the related computer subroutines
are written in the form of an independent material module so that it can
be easily interfaced with a finite element code.

The calculation steps for a viscoplastic model can be summarized as
follows: _

Step 1. Preset the strains, stresses, back stresses, inelastic strains,
nodal temperatures, etc. transferred from the main program.

Step 2. For non-isothermal condition, interpolate temperature at Gauss
points from nodal temperatures.

Step 3. Compute strain rate and temperature rate, and select step size
of subincrements.

Step 4. Interpolate temperature dependent material constants based on
the average temperature at the mid-point of a time step.

Step 5. Solve for the state variables from the constitutive equations
using a subincrementing method with a selected integration
technique.

Step 6. Check for solution tonvergence and determine whether cut-back of
step size is necessary.
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Step 7. Update the stresses, strains, inelastic strains and other state
variables, then return to the main program.

EXAMPLE

To demonstrate the utility of the finite element procedures, Robin-
son's unified theory was applied to the analysis of a pressurized thick-
walled cylinder which is restrained in its axial direction. Finite
element mesh, its dimension and boundary condition are shown in Fig.l.
The loading history consists of a 0.0028 hour ramp up to an internal
pressure of 3.65 ksi followed by a hold period at that temperature for
200 hours. Explicit trapezoidal method was employed for this example.

Figs. 2 to 3 show the predicted redistribution of hoop and axial
stress at several selected time following rapid pressurization, wherein
zero time denotes the end of the loading ramp. As can be seen, while the
internal pressure is held constant, these stresses undergo variation
exhibiting rapid redistribution followed by a steady-steady response.
The tendency of approaching to a saturated state is apparent.

Figs. 4 and 5 show the creep displacement at the outside wall of
thick-walled cylinder using both Euler and explicit trapezoidal scheme
with different time step sizes as well as number of subincrements. Solid
line indicates the base-line solution using the explicit trapezoidal
scheme. From the numerical experiments, it was found that the forward
Euler integration scheme with an automatic stepping and error control is
far more efficient in computation as compared to the explicit and impli-
cit trapezoidal schemes.
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TWO SIMPLIFIED PROCEDURES FOR PREDICTING CYCLIC
MATERIAL RESPONSE FROM A STRAIN HISTORY

Albert Kaufman
NASA Lewis Research Center
Cleveland, Ohio 44135

Vito Moreno
_ Pratt & Whitney Aircraft
East Hartford, Connecticut 06108

Simplified inelastic analysis procedures were developed at NASA Lewis and
Pratt & Whitney Aircraft for predicting the stress-strain response at the
critical location of a thermomechanically cycled structure. These procedures
are intended primarily for use as economical structural analysis tools in the
early design stages of aircraft engine hot section components where nonlinear
finite-element analyses would be prohibitively expensive. Both simplified
methods use as inpu® the total strain history calculated from a linear elastic
analysis. The elastic results are modifi2d to approximate the characteristics
of the inelastic cycle by incremental solution techniques. A von Hises yield
criterion is used to determine the onset of active plasticity. The fundamental
assumption of these methods is that the inelastic strain is local and
constrained from redistribution by the surrounding elastic material.

In the procedure developed by PUA, a power law creep expression is combined
with the elastic response to define the stress change over an increment of
time. A Taylor series expansion is used to calculate the stress at the end of
an increment from the stress at the beginning and the appropriate derivatives.

In the NASA Lewis procedure, a computer program (ANSYMP) was developed to
predict the stress history at the critical location using the total
strain-temperature history as input. Haterial cyclic stress-strain and creep
properties and appropriate constitutive models are coded into user subroutines
in the program. Plastic strains are computed iteratively for each increment of
loading. Creep effects can be calculated on the basis of stress relaxation at
constant strain, creep at constant stress or a combination of stress relaxation
and creep accumulation.

The two simplified procedures were exercised on a combustor liner louver 1lip
cycle and two thermomechanical fatigue test cycles. Both methods were able to
capture the overall shapes of the hysteresis loops and to predict the stress
levels to a degree of accuracy sufficient for most life prediction models.
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INTRODUCTION

Requirements for better performance and fuel economy in aircraft gas turbine
engines have adversely affected the durability of the hot section components.
Structures such as combustor liners, turbine blades and vanes, and support
structures experience severe gas temperature environments and operating
conditions which often result in significant cyclic plastic and creep strains.
Structural analysis under these conditions becomes a formidable undertaking.
Improvements in the durability of hot section structures depend on accurate
definition of the cyclic stress-strain response at the critical fatigue
location.

Finite-element computer programs have been used with increasing frequency
for the structural analysis of gas turbine engine components. In lower
temperature components, design stress levels are maintained below the material
yield strength. Linear finite-element analysis is sufficient for this type of
component and the elastic solutions can be obtained rapidly and economically
over the range of loading conditions constituting the flight cycle. However,
for structures in the hot part of the engine, local stresses can exceed the
material yield strength and can induce time-dependent creep deformation.
RAccurate prediction of the local inelastic stress-strain response under these
conditions requires nonlinear structural analysis.

An example of a nonlinear structural analysis of a hot section component is
described in Reference 1 for a half-scale louver-type combustor liner. This
liner specimen was constructed in an identical configuration with current
combustor liners in service and was tested in an induction heated experimental
rig. The three-dimensional finite element model of a segment of the half-scale
combustor liner (Figure 1) was subjected to the thermal loading cycle shown in
Figure 2 (a). Both linear elastic and nonlinear stress-strain solutions for
the critical fatigue location at the end of the louver 1lip are shown in Figures
2 (b) and (¢) with letter designations corresponding to the time points shown
in Figure 2(a). The linear thermoelastic analysis was conducted at a number of
specific points throughout the thermal loading cycle. The results show
compressive stresses beyond the material yield strength and a closed cyclic
reponse. An incremental nonlinear analysis predicts a more realistic
stress-strain response that includes cyclic plasticity and strain ratchetting.
These analyses were performed using the HARC nonlinear finite-element code
(Ref. 2). This and similar general purpose nonlinear codes use uncoupled
classical time-independent plasticity and time-dependent creep models and
sophisticated computational algorithms. Hith these features, a nonlinear finite
element analysis represents a labor intensive, time-consuming and costly effort
which is generally incompatible with the iterative nature of the design
process.

This paper presents two simplified procedures for more economically
estimating the local hysteretic response produced by cyclic thermal loading by
using as input the total strain history calculated from an elastic analysis.
The two procedures were exercised on two thermomechanical fatigue test cycles
and a "faithfu! cycle” simulation of the strain-temperature history at the
combustor liner louver lip. Both methods were able to capture the overall
shapes of the hysteresis loops and to predict the stress levels to a degree of
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accuracy sufficient for most life prediction models. Development of these
simplified analyses should reduce the need for nonlinear finite-element

analysis in the early design stages for hot section components.

SYMBOLS

A,n = temperature-dependent constants in creep power law, equation (8)
E = modulus of elasticity
Ep = strain hardening slope of stress-strain curve
K,m = temperature-dependent constants in stress-strain equation
t = time
T = temperature
W = work hardening slope at maximum plastic strain
Qe = strain increment
do = yield stress shift due to load reversal
bt = time increment
e = strain
a = strain rate

equation (1)
o = stress
g = backstress_,
g = E¢ -Edlgl o
o = ~nEAlol”™ ™ o& X
‘¥ = -n(n-1)EAloi " *cd*-nEAc” o
v = Poisson’s ratio
subscripts:
c = creep
e = elastic
i = beginning of increment
i+1 = end of increment
max = maximum value at start of unloading
P = plastic
t = total
y = yield

ANALYTICAL PROCEDURE

Hithin the gas turbine engine, certain hot section components experience a
degree of inelastic or nonlinear stress-strain response. These components
(combustor liners, turbine vanes, cases and other support structures) are
subjected to cyclic thermomechanical loading where the predominant stress is
produced by temperature differentials within the structure. In general, the
resulting inelastic response is localized to the area of maximum temperature
gradient while the remainder of the structure remains elastic. The stiffer
elastic material acts as a constraining body and controls the cyclic strain
range experienced by the inelastic region. A comparison of predicted results
from nonlinear and linear elastic finite-element analyses in References 1,3 and
4 have shown that the cyclic total strain range and total strain history at the
location of maximum inelastic response can be estimated from the linear
thermoelastic analyses. Therefore, these simplified procedures assume, that the
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local mechanical strain and temperature histories at a location in the
struct.ire are knowm from previous linear analysis. Basic material (Hastelloy X)
properties, including yield stresses and creep parameters developed for these
analyses, are shown in Table I.

Simplified Procedure 1

This procedure for predicting local stress-strain response was developed at
Pratt & Hhitney RAircraft under contract to NASA Lewis Research Center and is
fully documented in Reference 5. Development of the procedure assumes that the
strain-temperature histories produced by a loading cycle are known from
previous analysis. Bn incremental description of the histories together with
the procedure described below is used to calculate the resulting stress
history. Each increment in strain is assumed to be composed of either
time-independent plasticity or time-dependent elastic and creep response.

De =he, | (1a)
or De =)e, +Ae_ (1b)

Since the solution strategy is based on the prediction of stress increments,
equations (1) are rewritten as

do =)o, (2a)
or Lo =)c, +2)o;6 (2b)

Durinz a loading cycle, the onset of plastic action is determined by the
conventional yield surface concept taken from the classical time-independent
plasticity model. The yield surface is assumed to be temperature dependent and
isotropic with no strain hardening (fixed size and equal in tension and
compression). Justification for this definition of the yield surface is based
on two observations: (1) that at higher temperatures, Hastelloy X displays
little cycle hardening and (2) that the variable temperature experienced in a
thermomechanical cycle, which is the primary application of this procedure,
reduces the amount of cyclic hardening developed at the lower temperatures.

The stress increment associated with time~-independent plastic action is then
calculated as

o:,, =0, =b0,=0y,;,, “Oysi for o;=cy,; and T, 2T, (3

el (R B

or Dot -0;=Ag; =(E,;,, +E,, JDe/2 for o;=0,,, and T, 4T, (4)
For all other loadfng conditions the strain, or stress, is assumed to be

time dependent elastic and creep response.
De, =De¢, +De, (5)
However, rather than consider a separate uncoupled creep model, an

integrated or viscoplastic approach is used. This approach was pursued based on
the observation that the cyclic material response is not purely elastic in
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either the loadinz or unloading parts of the response curves. Instead the
transient response represents a simultaneous elastic and creep action.
Development of the model :is as follows:

€, =eo e, (6)

where ée=673 (7)

with Young’s modulus, E, assumed to be temperature dependent but constant over
any increment of loading. For the creep rate term, use is made of the short
time monotonic creep model developed in Reference 1. This expression is

ez (@74) 7 | (8)

Thus, equation can be written as |
e, =o/E+Ao” (9)
or o=Ee, ~EAc" (10)

An incremental solution of this nonlinear equation was developed using a
Taylor series expansion.

Givt =0, +0: Bt+o, Bt* 72140, At® /31+... (11)

For cyclic analysis the stresses used in equation (11) are effective values
modified by a backstress, i.e:?

O‘* =g,
(12)

In a physical sense, the backstress is an internal stress generated by
plastic deformation that changes the reference point for measurement of global
stress. The function used to estimate the value of the baclistress in these
calculations is:

=05, -0 fOr 6,420, | (13)
or Q. =0y for a,,> 20y (14)

This is equivalent to considering a series of temperature-dependent circular
yield surfaces pinned at the maximum tensile stress in the cycle and the back
stresses as the centers of the yield circles. The limiting condition occurs
when the diameter of the yield circle equals the maximum stress; a swmaller
(hotter) yield circle would predict reverse plasticity at the same sign of
stress as the maximum stress which would be positive in this case. This is
generally considered not possible and therefore the bacl stress is limited to
the value of the yield stress for these temperatures.
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Simplified Procedure 2

This fully automated procedure was developed at NASA Lewis Research Center
for calculatinz the stress-strain history at the critical fatigue location of a
structure subjected to cyclic thermomechanical loadinz. It has been
implemented in a computer program (ANSYMP) which is documented in Reference 6.
The procedure has been exercised on a wide variety of problems including
multiaxial loading, nonisothermal conditions, different materials and
constitutive models, and dwell times at various points in the cycles.
Comparisons of the results of the simplified analyses for these problems with
HARC inelastic solutions are reported in Reference 6. The basic assumption is
that the total strain ranges calculated from linear elastic and nonlinezar
analyses are approximately equal. Another assumption of the method is that the
effective stress-equivalent total strain hysteresis loops constructed from an
elastic-plastic analysis will be parallel to the elastic hysteresis loop. The
validity of these assumptions is demonstrated in References 1,3 and 4.

The procedure was set up to calulate the material cyclic response using the
total strain obtained from an elastic analysis or strain measurements.
Classical plasticity methods are used to characterize the yield surface by a
yield condition to describe yieldinz under multiaxial stress states and by a
hardening model to establish the location of the yield surface during cycling.
This procedure was set up to accommodate itself to any yield criterion or
hardening model. The only requirements are that the elastic input data, whether
calculated or measured, be in a form consistent with the yield criterion and
that the appropriate material properties be used in conjunction with the
hardening model.

Host nonlinear computer programs use the von lises yield criterion and
incremental plasticity theory. Implicit in the von Mises yield criterion is
the conversion of the total strain from a uniaxial stress-strain curve to
modified equivalent total strain. The modified elastic equivalent total strain
corresponds to the uniaxial total elastic strain multiplied by 2(1+v)/3. This
relationship must be taken into account for multiaxial problems in applying
strain results from elastic finite-element programs or strain measurements as
.input for the simplified procedure.

In this study, all of the analyses were performed with the Hastelloy
stress-strain properties and combined isotropic-kinematic hardening model used
for the MARC nonlinear analyses in Reference 1. Creep computations were
conducted with the same monotonic creep properties developed in Reference 1.
Creep characteristics of the material were incorporated into the program with
the creep model expressed by equation (8) and the constants given in Table I.

The yield stress shift (Roy) due to load reversal under kinematic hardening is

hc;=2(dy-w(ep,m,,)) (15)
where Oy represents the current, not the initial, yield stress.

The procedure permits any of three creep options to be selected; (1) stress
relaxation at constant strain, (2) cumulative creep at constant stress, and (3)
a combination of (1) and (2). Option 1 was used for the simplified analyses
conducted for this study since the problems involved strain controlled tests.
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The elastic input data are subdivided into a sufficient number of increments
to define the stress-strain cycle. To simulate the effects of time-dependent
plasticity, dwell times for creepn analysis were specified for all increments.
The input data for the analyses were supplied by Pratt & Whitney Aircraft. The
increments are analyzed sequentially to obtain the cumulative plastic and creep
strains and to track the yield surface. An iterative procedure is used to
calculate the yield stresses for increments undergoinz plastic straininz.
First, an estimated plastic strain is assumed for calculating an initial yield
stress from the stress-strain properties and the simulated hardening model.
Second, a new plastic strain is calculated as

€ =€, =€, -0, /E | (16)

The yield stress is then recalculated using the new plastic strain. This
iterative procedure is repeated until the new and previous plastic strains
agree within a tolerance of 1 percent.

A FORTRAN IV computer program (ANSYMP) was created to automatically
implement the simplified analytical procedure. The program consists of the
main executive routine, ANSYMP, and four subroutines, ELAS, YIELD, CREEP, and
SHIFT. The incremental elastic data and temperatures are read into subroutine
ELAS. Haterial stress-strain properties as a function of temperature and a
simulated hardeninz model are incorporated in subroutine YIELD and the creep
characteristics are incorporated in subroutine CREEP. Subroutine SHIFT is
required to update the temperature effects on the yield stress shift. SHIFT
also serves the function of deciding the future direction of the yield surface
under nonisothermal conditions by determining the relation of future to past
thermal loading

The BNSYMP program is available from the Computer Software Hanagement
Information Center (COSHIC), University of Georgia, Athens, Ga. 30602 under LEW
14011. A flow chart of the program and sample input and output data are
presented in Reference 6.

The calculational scheme initially follows the effective stress-equivalent
strain input data from subroutine ELAS until the occurrence of initial
yielding. The stress-strain solution then proceeds along the yield surface as
determined from the stress-strain properties in subroutine YIELD. At each
increment during yielding the stress shift (difference between new yield stress
and stress predicted from elastic analysis) from the original input data is
calculated. Elastic load reversal is signaled when the input stress is less
than the yield stress from the previous increment. During elastic unloading,
the stresses are translated from the original elastic analysis solution by the
amount of the calculated stress shift. Reverse yielding occurs when the stress
reaches the reverse yield surface as determined from the hardening model
incorporated in subroutine YIELD. Again, the solution follows the yield surface
until another load reversal is indicated when the stress based on the shifted
elastic soiution is less than the yield stress. The elastic response during
load reversal is obtained by translating the original elastic solution
according to the new stress shift calculated during revarsed yielding. The
stress-strain response for subsequent cycles is computed by repeating this
procedure of identifying load reversals, tracliing reverse yield surfaces and
translating the original elastic solution during elastic loading and unloading.
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Creep computations are performed for increments involving dwell times using the
creep characteristics incorporated in subroutine CREEP. Depending on the nature
of the problem, the creep effects are determined on the basis of one of the
three options provided in the subroutine.

PREDICTION OF THERMOMECHANICAL CYCLES

Two types of thermomechanical cycles were considered in thes evaluation of
the models; (1) a simple continuous thermomechanical cycle having the
mechanical strain and temperature in phase (sinusoidal strain and temperature
variation) resulting in a linear strain-temperature history and (2) and "a
faithful cycle” that was representative of actual structural component response
to thermal loading. Details of the faithful cycle are described in Reference 1
for the analysis of a gas turbine engine combustor liner. The thermomechanical
tests were conducted on uniaxial tubular specimens which are also described in
Reference 1. The hollow geometry, in combination with low frequency induction
heating and internal air cooling, permitted testing with the prescribed
mechanical strain and temperature histories. An axial extensometer attached to
the internal ridges was used for strain control.

Linear Strain-Temperature Cycles

Two temperature histories were selected for the evaluation, 760°C to 982°C
(1400°F to 1800°F) and 649°C to 982°C (1200°F to 1800°F). Each tempzrature
cycle and a single mechanical strain cycle (approximately -0.001 to -0.0045
m/m) were imposed on a tubular test specimen with the resulting stress and
strain response recorded from startup to stabilization. A description of the
cycle parameters and loading sequence for the cycles is presented in Figure 3.
Each test started at a constant 982°C (point A). The specimen was then
compressed to a mechanical strain of -0.0045 (point B). A sinusoidal variation
in temperature from 982°C to a minimum value of either 760°C or 6439°C was then
generated on the specimen in phase with a sinusoidal variation in mechanical
strain from about -0,0045 to -0.0100. The period for both the temperature and
strain histories was 1 minute. Cross plotting of these quantities resulted in
the linear paths B-C and B-D in Figure 3. Predictions of the stress-strain
responses for the 760°C to 982°C and 649°C to 982°C test cycles with the two
simplified procedures are presented in Figures 4 and 5. Both methods
essentially capture the overall shape, inelastic strain range and approximate
stress levels of the experimental response curves. This would be considered as
sufficient information for use as input to a life prediction model for a
preliminary estimate of the base cyclic durability. :

There is a tendency for the simplified analyses to overpredict the peal:
compressive stresses. This is especially true for the analytical cycles from
- the NASA procedure as shown in Figures 4 (b) and 5 (b). These discrepancies may
be attributable to the use of monotonic stress-strain data for cyclic
stress-strain problems.

Prediction of Faithful Cycle Response

Final evaluation of the models considered the combustor liner faithful cycle
defined in Reference 1. The predicted strain-temperature response at the end of
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the louver lip differs from the previously defined conditions in that the
strain and temperature are not continually in phase and the heatup and cooldown
parts of the cycle are not identical. The nominal temperature-time history for
this cycle is that shown for the louver lip in Figure 2 (a) and the approximate
strain-time history imposed on the specimen was that obtained for the sixth
cycle of the HMARC nonlinear solution. Application of these loading spectrums
on the thermomechanical specimen produced a stress-strain response considered
to be representative of the local louver response. Prediction of the combustor
liner "faithful cycle"” response by the two simplified procedures is shown in
Figure 6. BAgain the analytical results agreed reasonably well with the
experimental data. '

SUMHARY OF RESULTS

Two simplified analytical procedures are presented for predicting the local
inelastic stress-strain response of a structure subjected to cyclic
thermomechanical loading using as input the total strain history calculated
from a linear elastic analysis. The first of these procedures was daveloped at
Pratt & Hhitney RAircraft under contract to NASA. The second procedure, which
was developed at the NASA Lewis Research Center, is fully automated in a
computer program (ANSY!P). These procedures were evaluated on their ability to.
predict the cyclic structural responses for three thermomechanically loaded
test specimens. Both methods were able to simulate the overall shapes of the
stress—~strain hysteresis loops and to calculate the stress-strain histories to
a degree of accuracy sufficient for most life prediction methods. The analyses
were based on use of monotonic stress-strain material properties. It is likely
that better agreement with experimental results would have been obtained if
cyclic stress-strain data had been available. These simplified procedures
provide economical structural analysis tools which can be applied in the
preliminary design of hot section components of gas turbine engines where
nonlinear finite-element programs would be prohibitively expensive and
time-consuming to use.
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.TABLE 1. - TEMPERATURE DEPENDENT PARAMETERS FOR SIMPLIFIED
RESPONSE PROCEDURES

Temperature Young's Modulus, Yield Stress, Creep Parameters*

°C, (°F) MPa (ksi) MPa (ksi) A n
421 170 03 34 e -
(800) (24.6 03) (45.6)

538 170 03 K} I St ———
(1000) (24.6 03) (45.6)

649 161 03 303 00 —e————- -—
(1200) (23.3 03) (44.90)

760 152 03 252 592.54 4.15
(1400) (22.05 03) (38.0) (85.94)

815 146 03 207 277.44 4.175
(1500) (21.15 03) (30.0) (40.24)

871 137 03 103 188.05 5.25
(1600) (19.8 03) (15.0) (27.27)

927 130 03 16 176.95 3.35
(1700) (18.85 03) (11.0) (25.66)

982 123 03 48 91.53 3.15
(1800) (17.9 03) (7.0) (13.28)

*Equation (8).
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MULTIAXIAL FATIGUE LOW CYCLE FATIGUE TESTING
S.Y. Zamrik o
Engineering Science and Mechanics Department

The Penngylvania State University
University Park, Pennsylvania 16802

Multiaxial testing methods are reviewed. Advantages and disadvantages
of each type test is discussed. Significant multiaxial data available in
the literature is analyzed. The yield theories are compared for multi-

axial fatigue analysis.

INTRODUCTION

Multiaxial Fatigue Analysis is Becoming an essential element in
estimating the life of structural components. For example, at elevated
temperature, most structural components experience a multiaxial stress
condition either due to geometrical configuration, or to temperature
variation or to both.

Generally, multiaxial fatigue analysis is based on some type of cor-
relation that can be related to uniaxial data. The main reason for such
an approach 1s the lack of sufficient multiaxial fatigue data and to the
difficulty in producing such data.

In the early work of Manson-Coffin (1) it was recognized that, in
low cycle fatigue, plastic strain and not stress can be well measured and
related to life. Based on this observation, the static yield theories
became the favorite approach to analyzing multiaxial fatigue. The most

widely used criteria are the maximum shear strain (Tresca's) theory and
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the maximum distortion energy theory (Von-Mises). These two static yield
theories are identical for uniaxial and equi-biaxial stress states but
differ at other biaxial conditions as shown in Figure (1).

The limited data that has been generated has not provided any
definite conclusion to tlie applicability of either theory, particularly
at high temperature environment, where creep is encountered. Also, these
theories do not account for the influence of anisotropy or for the rotation
of principal axes in the case of non-synchronous loading systems,

Multiaxial data at room or high temperature is greatly influenced by
test conditions and in the manner in which the test is conducted. Numerous
methods have been suggested for multia#ial fatigue testing, but a very

limited number have been carried out successfully.

METHOD OF MULTIAXIAL FATIGUE TESTING

The cpmplexity of multiaxial fatigue testing led researchers to
simplify the test requirements due to the fact that fatigue failure is
generally originated at a point on the surface of a structure. For example,
in the case of pressure vessels the state of stress is considered to be
biaxial and since the surface of the structure is free from discontinuities
or surface tractions, several types of tests were devised to produce this
biaxial state of stress. Among the favorites are:

cylindrical specimens subjected to internal pressure, open-and

a
closed-end cylinders

b - rotating disks

¢ - plate-type specimens such as bulging plate, wide cantilever
plate, cruciform plate and rhombic plate

d - torsional tests of cylindrical specimens
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CYLINDRICAL-TYPE SPECIMENS

In the case of testing cylindrical-type specimens under internal
pressure, the state of biaxial stress is 2:1. This biaxial stress ratio
falls in the first quadrant of the yield envelope and it is possible to
altér this ratio by in;roducing a bending or axial stréss. To develop a
state of stress in the 2nd and 4th qﬁadrant of the yield envelope, compres~
sive external load or torsional loads have to be added to produce a nega-
tive stress. It has been‘shown‘that the addition of such loads could
easily produce a buckling situation or a stress gradient that cannot be
controlled. Investigators such as Morrison, Crossland, and Parry (2)
used only pressurized tubes and they controlled the biaxiality ratio by
the radius to thickness ratio. Their data is not comparable nor comnsistent
with present controlled fatigue testing techniques. Their objective was
to relate the endurance limit of the material to the biaxial state of
stress. Esztergar (3) indicated in his literature survey on fatigue under
biaxial stress cycling that the data produced was qualitative since crack
initiation could not be detected and the large amount of autofrettage
affected the crack propagation through the wall thickness; thus, the
datawas greatly influenéed by these two obstacles. In the case of a part-
through crack presence, the circumferential stress is increased locally,
which results in a reduced hoop restraint that causes a tendency for
bulging.

McKenzie et. al. (4) compared uniaxial and biaxial (shear) data from
tests on thin-walled cylinders. They correlated‘their results on the
basis of hysteresis loop energy per cycle. A distinct difference in
fatigue life becomes apparent i1f the comparison is based on the octahedral

plastic shear strain as shown in Figure (2).
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Biaxiality ratio can also be altered if torsional loading is added;
however, a new problem arises in the generated data. Axial strain is
accumulated in reversed torsion. Specimens develop aiial compressive
stresses which result in higher cycle,lifg. This effect was shown
independently by Yokobori et. al. (5) and by Zamrik (6) using torsional
test data of Halford and Morrow. Additional data for cylindrical specimen

tests can be obtained from references (7).

FLAT-PLATE SPECIMENS
There are three types of tests that can be conducted utilizing the
flat plate specimens, namely:
(1) the cantilever plate
(2) the Rhombic plate
(3) the circular or elliptical plate (oval plates)
In the first typé, the biaxial stress ratio was produced by con-

sidering the ratio of transverse stress 0. to longitudinal stress G

T L°
By successfully decreasing the width w, the biaxiality ratio decreases.
This approach was “aken by Weiss et. al. (8) and their results are
shown in Figures (3) and (4). Figure (4) shows a comparison between
push-pull type uniaxial tests and plate bending tests. They also dem-
onstrated that the decrease in fatigue endurance is associated with the
increase in biaxiality ratios. This decrease can be correlated with
the proportional loss in the static fracture ductility, ¢y as shown in
Figure (5).

Wide-beam-type specimens of pressure vessel steel materials were

tested at Lehigh University (9). The stress ratios of 1l:1 results are

shown in Figure (6) on the basis of effective Von-Mises strain. They
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showed a slight reduction in the fatigue endurance of the lower-strength
alloy and perhaps a greater effect on the high strength alloy (T-1). The
déta was reported on the basis of crack initiation.

Another type of plate specimen was developed by Zamrik et. al (10).
The plate speciﬁen known as the "rhombic" specimen showed a stress state
in the second and fourth quadrants of the yield envelopes. The state of
stress was produced by anticlastic bending as shown in Figure (7). Test
data of three stress ratios from 0.1 to 1.0 were plotted on the basis of
octahedral shear strain range and maximum strain range. The octahedral
shear strain range shown in Figure (8) fitted the data well for all
stress ratios. In the case of torsional data, the stress ratios exhibited
a higher fatigue strength when compared to uniaxial fatigue data. The
reason for this observation can be attributed to the degree of axial
restraint imposed on the torsion specimen.

The rhombic plastic specimen is very attractive for biaxial testing
since it affords simplicity in the loading system and provides a wide
range of biaxial stress ratios.

Another type of plate specimen tested by Zamrik eﬁ. al (11) is the
circular aﬁd elliptical specimen. For this type, shown in Figure (9a),
pressure was applied to the specimen but the results showed a dependence
on two variables: isotropy and Poisson's ratio as shown in Figure (9b).
The method of analysis used in interpreting the flat plate specimen is

described in appendix (A).

OUT-OF-PHASE STRAIN EFFECT
In some cases, particularly in temperature environment, the biaxial

strain may become out-of-phase, e.g., non-synchronous loading as shown in
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Figure (10); therefore, by applying the correlation used in analyzing the
room temperature data,a large error may be produced in predicting the life
of the material. A significant cause, in this case, is the distribution
of the principal strain magnitudes and their directions, whereby a rotation
of the principal strain axes takés place. The surface element of the
material takes a new orientation and the maximum and minimum principal
strains occur at different times as shbwn in Figure (11). The limited

data available for phase angles of Q0 to 90‘ was analyzed by Zamrik (12)

on the basis of maximum total strain:

2 2
Ep '\/['el + e, +e32]

A correlation, similar to that of Manson-Coffin relation, was obtained

with the constants (a - 0.3, ¢c = ef WIITE) as shown iﬁ Figure (12). The

reasonable fit of the data for the entire range indicates that the damage
mechanism in multiaxial fatigue may be similar to the uniaxial case even

though the stress (strain) axis was rotated. This interpretation may be

considered conclusive if and only when actual non-synchronous data at

\
high temperature becomes available.

ENGINEERING CORRELATIONS

a - Maximum Shear Stress Theory (Tresca)

The theory predicts yield condition when the shear stress
on any plane reaches the uniaxial yield stress. Therefore,
the following condition exists for maximum and minimum

principal stresses:

1 -1
T=3 (01 - 03) 5 oy
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The equivalent stress and strain are defined as:

o= cl - 03 = 2T

™)

=k (el - 53)

b - Distortion Energy Theory (Von-Mises)

N

2
Yo '% (e - _‘:2).2 + (e - gy + (gq - 51)2]

For low cycle fatigue condition, one assumes a

constant volume and Poisson's ratio of 1/,:

+¢e,.+e,=0

€1 T €2 T &
For a biaxial case, a strain range ratio can be

introduced in the form of:

zv‘ 3

and Ay = (Cb + ¢+ 1)

The effective strain range, Aee, which 1s another form of the

octahedral shear strain range, has a form:
1
@+ 0+ 1% ae

- 2
Ae = —
e \ﬁ;

- 1
or Aee \/—E- A‘Yo

1

on the basis of tests shown in Figure (8), a relation
between unaxial and biaxial data can be derived in the

following procedure:

(AYO) = ‘VZ Ae
uni
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utilizing Manson's relation:

z
AeN C1

Y24 ¢
Nz z

then (AYO)
N

uni

where C= \[;- C1

if failure under multiaxial strain cycling can be defined

to occur when:

(&) = (&y )
° multi . ° uni

then multiaxial strain cycling can be related to the number of
cycles to failure Nf in a relation such as:

(Ay ) N.“=¢C
° mulci £

CONCLUDING REMARKS

Multiaxial fatigue testing is a complex techniquéwhere the utmost care
must be considered in analyzing the data. Variables such as anisotropy,
Poisson's ratio, strain accumulation, crack initiation in cylindrical
specimens, ..., must be monitored and accounted fér. These variables
have minimum influence on uniaxial fatigue data.

The static yield theories should be used conservatively since they
are not designed for fatigue analysis, particularly in the presence of

high temperature environment.
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Fig. 7. A rhombic plate subjected to anticlastic bending
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Maximum Principal Strain Range vs. Cycles to Failure

for 7075-1651 Aluminum Alloy in Bending (11).
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SOME ADVANCES IN EXPERIMENTATION SUPPORTING DEVELOPMENT OF
VISCOPLASTIC CONSTITUTIVE MODELS*

J.R. E114s and D.N. Robinsont
University of Akron
Akron, Ohio 44325

The primary aim of this paper is to describe the design and development
of a biaxial extensometer capable of measuring axial, torsion, and diametral
strains to near-microstrain resolution at elevated temperatures. An
instrument with this capability-was needed to provide experimental support to
the development of viscoplastic constitutive models. The operation of the
instrument is described first in general terms. Attention is then
concentrated on the method of torsional strain measurement. This emphasis is
in keeping with the second aim of the paper which is to highlight the
advantages gained when torsional loading is used to investigate inelastic
material response at elevated temperatures.

The development of the biaxial extensometer was conducted in two stages.
The first involved a series of bench calibration experiments performed at room
temperature. These experiments investigated characteristics such as linearity
and crosstalk over the maximum measurement ranges practicable with the
instrument. The second stage of development involved a series of in-place
calibration experiments conducted at room and elevated temperatures. The aim
of these experiments was to investigate features such as signal stability and
signal noise levels under actual test conditions. A review of the torsional
calibration data indicated that all performance requirements regarding
resolution, range, stability and crosstalk had been met by the subject
instrument over the temperature range of interest, 20 to 650 °C.

On completing the instrument development work, the scope of the in-place
calibration experiments was expanded to investigate the feasibility of
generating stress relaxation data under torsional loading. This approach was
found to be practicable and a number of exploratory tests were conducted. The
data generated in these experiments were found to be in reasonable agreement
with predictions made using the Robinson viscoplastic constitutive model.
Also, the experimental data were used successfully to quantify the kinematic
state variable in this model. The results of this study showed that the
stress relaxation test conducted under torsional loading can be used to
advantage in supporting the development of viscoplastic constitutive models.

*Research sponsored by the Office of Breeder Technology Projects, U.S.
Department of Energy under Contract W-7405-ENG-26 with the Union Carbide
Corporation and by NASA Lewis Research Center under Grant NAG 3-379.

tResident Research Associates, NASA Lewis Research Center.
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INTRODUCTION

One activity within the High Temperature Structural Design Pro-
gram at the Oak Ridge National Laboratory (ORNL) is the development of
constitutive equations for structural alloys intended for Advanced
Reactor Systems. These equations wWere first developed using concepts
borrowed from classical plasticity and classical creep (Ref. 1). Exper-
iments conducted in support of this work included investigations of
yield and hardening behavior under biaxial loading (Refs. 2 through 5).
The type of loading used for this work was tension-torsion and the
type of specimen was the thin-walled tube. It was possible, at tem-
peratures in the range 20°C to 232°C, to use foil strain gage rosettes
to measure the axial and torsional components of strain. The near-
microstrain resolution of these gages allowed small-offset (10 ue)
yield behavior to be investigated without causing significant changes
to the material's state.

More recently, a viscoplastic constitutive model was developed at
ORNL which makes use of two internal state variables (Refs. 6 and 7). "It
was planned to conduct biaxial experiments at temperatures in the range
20°C to 538°C to verify the multiaxial form of this model and also to
quantify the internal state variables. The lack of suitable high-
temperature strain gages meant that the strain measurement technique
used in the earlier experiments could not be used for this work. Since
the specimen geometry and the type of loading were relatively simple, it
appeared that this would be a suitable application for a biaxial exten-
someter. However, a detailed review of the literature revealed that
existing instruments were not suited to high-precision, probing type
experiments at elevated temperatures. This led to an effort being
started at ORNL to design and develop such an instrument.

The design requirements for the instrument were based in part on
the performance of foil strain gages at room temperature. It was
required that thz extensometer have near-microstrain resolution while
allowing measurement of axial strains and shear strains (engineering)
as high as *20,000 ue. An additional requirement was that the instru-
ment should be capable of measuring diametral strains up to 10,000 ne,
This was because it was planned to add internal pressure to the types
of loading available for these experiments. It was required that this
performance should be maintained up to 650° C.

The t:pe of diametral extensometer developed by Slot et al for high
temperature, low cycle fatigue testing was used as a starting point for
the subject *nstrument. Two such diametral extensometers, termed sensors
in the foliowing, were used in conjuction with a system of levers to make
the biaxial measurements. As might be expected, a lengthy period of de-
velopment was needed to achieve the required level of performance.

The approach adopted was to first evaluate the instrument on the
bench using a biaxial calibration fixture. Such experiments allowed the
instrument's characteristics to be investigated at room temperature under
closely controlled conditions. A series of in-place calibration experi-
ments was then conducted with the extensometer positioned on strain gaged
specimens. Initially, these experiments were conducted at room tempera-
ture so that direct comparisons could be drawn between the two strain mea-
surement systems. Subsequently, the emphasis was shifted to investigating
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performance at elevated temperatures. Characteristics of interest here
were linearity, resolution, crosstalk, mechanical hysteresis, signal noise
levels and signal stability. .

Finally, exploratory tests were conducted to evaluate the instrument's
performance in controlling experiments at elevated temperatures. One
such series of tests was aimed at establishing whether the extensometer
had sufficient resolution and stability to ailow stress relaxation behav-
ior to be investigated under purely torsional loading. This was of parti-
cular interest since interpretation of earlier stress relaxation data for
2-1/4 Cr-1 Mo steel, determined under uniaxial loading, had been compli-
cated by coupling between specimen heating and specimen loading. It was
anticipated that such coupling, discussed in detail later in the paper,
would not be a factor in tests involving torsional loading. ,

This paper is written in.three parts. The first describes the

design and development of the ORNL biaxial extensometer, with particu-
lar emphasis being given to the method of torsional strain measurement.
The second part describes a series of stress relaxation tests performed
on 2-1/4 Cr-1 Mo steel under cyclic torsional loading: Finally, com-"
parisons are drawn between the results of these experiments and theo-
retical predictions made using the Robinson viscoplastic model.

DESIGN AND DEVELOPMENT OF A HIGH-PRECISION BIAXIAL EXTENSOMETER

In designing high temperature extensometers, a number of advant-
ages result if the body of the device is maintained at or near room
temperature during elevated temperature tests. This situation can be
achieved by using localized specimen heating, ceramic sensing probes,
heat shields, and some form of cooling. Adopting these measures,
room temperature transducers can be located on the body of the instru-
ment and used in effect for high temperature strain measurement.

Another desirable feature of extensometers is that mechanisms can
be incorporated to magnify specimen displacements before they are
sensed by the transducers. Such magnification can be an important fac-
tor in achieving good resolution in tests involving small strains. One
design which successfully incorporates these features in a relatively
straightforward manner is the diametral extensometer developed for high
temperatire, low cycle fatigue testing (Ref. 8). With this simplicity
and the need for diametral strain measurements in mind, it was decided
to use this instrument as a starting point for the subject biaxial
extensometer.

BASIC APPROACH

The basic approach is illustrated schematically in Fig.(1l). Two
sensors of the type shown in Fig (la) are positioned on the specimen.
These sensors incorporate ceramic probes which grip the specimen by
means of friction. The assumption is that once installed, the point of
contact of each probe remains fixed on the specimen. The probes serve,
therefore, to transmit specimen displacements and rotations to the body
of the instrument. A further assumption is that a suspension system
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can be designed which constrains the sensors to planes parallel to the
X-Y plane of Fig (1b). Two such planes are the DEFG and the HIJK
pltanes shown in this figure.

The method of strain measurement is as follows. Under axial
loading, the vertical distance between the sensors, BB in Fig (1b),
changes and is tused as a basis for axial strain measurement. This is
achieved by positioning proximity transducers on the top sensor and a
target on the bottom sensor. Regarding diametral strain measurement,
loading in the radial sense resulting from internal pressure causes the
specimen diameter to change. These changes are transmitted via the
hinge to the mounting arms. Relative movement between the mounting
arms, AA in Fig (la), is used for diametral strain measurement. This
is accomplished hy positioning the core of a linear variable differential
transformer (LVDT) on one mounting arm and the coil on the other. Under
torsional loading, the sensors rotate different amounts about the Z axis
within their respective reference planes. This difference in angular ro-
tation, b in Fig (1b), is used for torsional strain measurement. The
various mechanisms and transducers used in making torsional measurements
will be discussed in detail later in the paper.

Regarding the mechanical details, the instrument consists of three
subassemblies; the sensors; the lever-arms; and the support structure.
One of the extensometers two sensors is shown in Fig (2). The more
important components of this subassembly are the ceramic probes, the
elastic hinge, the mounting arms, and the preload spring. The function
of the spring is to force the probes against the specimen to provide the
frictional force necessary to prevent slippage. The strain gages mounted
on the probes are monitored during this process to control the amount of
preloading, The transducer mounting block is used to grip the coil of
the LVDT used for diametral strain measurement. The core of this
transducer is shown positioned on the null adjustment screw. Also
shown in Fig (2) are the heat shields and water cooling arrangement
used to prevent heat buildup in the instrument. Elimination of this
effect was viewed as being desirable in isothermal tests and essential
in the case of non-isothermal tests.

One of the instrument's four lever-arm assemblies is shown in Fig.
(3). The primary function of these assemblies is, in conjunction with
the sensors, to transmit specimen rotation to four rotary variable differ-
ential transformers (RVDTs) positioned on the support structure. These
mechanisms can be thought of as consisting of two levers, BC and CD, which
are free to rotate about the vertical axes designated B, C, and D, Such
rotation is allowed by flexural pivots which act as bearings (Bef. 9).
One end of the lever-arm is bolted to the sensor and the other to the
support structure. This arrangement allows the sensors freedom to rotate
and displace within planes perpendicular to the three axes. The larger of
the two levers, BC, includes a parallel linkage which allows the sensors
to displace vertically. At the same time, the parallel linkages ensure
that the sensors are constrained to planes which are parallel to the
original reference plane. Use is again made of flexural pivots in these
linkages as they allow rotation with no associated friction. v

The primary function of the instrument's support structure, Fig(4)
is to provide a means of mounting the device on the test system or on a
calibration fixture. This subassembly consists of a cross-arm which
when suitably supported, facilitates positioning of the instrument prior
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to testing or calibration. Two vertical posts are attached to the cross-
arm and provide mounting locations for the lever-arm assemblies and the
RVDTs. One further function of the support structure is to provide a
means of supporting the sensors at their centers of gravity on soft verti-
cal springs. This is accomplished using two support brackets which bolt
directly to the cross-arm. In addition to housing the spring holders, the
support brackets provide convenient mounting locations for the instrument's
electrical connectors. This approach has the advantage of isolating
the instrument from long lengths of cable.

The complete instrument is shown positioned on a calibration
fixture in-Fig (5). This figure serves to show the complexity of the
assembled instrument. The method of suspending the sensors on springs
is shown in this figure along with the method of mounting the electri-
cal connectors. :

DETAILS OF TORSIONAL STRAIN MEASUREMENT

The method of torsional strain measurement is shown in more detail
in Figs (6) and (7). In the first of these figures, the sensors are
considered to be two levers, AB and AE, which have a fixed angle be-
tween them and which are constrained to follow the rotation of the spec-
imen. The lever-arms are idealized into three bearing/two lever systems
which are supported at points D and G. This mechanism was analyzed to
determine the relationship between specimen rotation, 6, and the corres-
ponding lever-arm rotations at the support points, a and a'. The results
of this analysis are shown in Fig (7). Here, it can be seen that the
relationships between specimen rotation and individual lever-arm rotation
are highly nonlinear. However, the curve relating specimen rotation, 6,
with the sum of the rotations at the support points, a + a', can be seen
to be near-linear. Thus, by positioning RVDTs at the support points, D
and G, and summing their outputs electronically, near-linear relation-
ships are obtained between specimen rotation and summed transducer out-
put. By summing in turn the outputs from the two sensors, a combined
output }s)obtained which is proportional to torsional strain as defined
in Fig (7). '

One problem peculiar to biaxial and multiaxial extensometers is that
interaction or crosstalk can occur between the various forms of strain-
ing. The mechanism by which specimen displacements in the axial sense
can affect torsional strain measurements is shown in Fig. (8). Such dis-
placements cause the parallel linkages incorporated in arms BC and EF to
assume some angular position, &, relative to the original reference
plane. These rotations cause the projected lengths of arms BC and EF to
shorten in this plane. This shortening in turn causes lever CD to rotate
-a from its original position and lever FG to rotate +a from its original
position. These rotations are sensed by the RVDTs positioned at loca-
tions D and G. However, since the outputs from these RVDTs are summed
before being used for measurement purposes, it might be expected that the
effect would be self-cancelling. In practice, this situation would only
be realised if the lever-arms were manufactured and assembled so as to be
identical. With this in mind, the four lever-arms were assembled with
extreme care using a special purpose jig. Also, the support structure
was designed to provide the linear and angular adjustments necessary dur-
ing final assembly to achieve the self-cancelling condition.
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EVALUATION OF THE BIAXIAL EXTENSOMETER'S PERFORMANCE IN MEASURING
TORSIONAL STRAIN

The instrument's performance in measuring torsional strain was
evaluated in two stages. The first involved a series of bench calibra-
tion experiments conducted at room temperature, A biaxial calibration
fixture was designed and developed at ORNL specifically for this work.
The aim of these experiments was to investigate linearity and crosstalk
over the maximum measurement ranges practicable with instrument.

The second stage of the evaluation involved a series of in-place
calibation experiments conducted on thin-walled tubular specimens in-
strumented with foil strain gage rosettes. The aim here was to inves-
tigate mechanical hysteresis, linearity and crosstalk over small strain
ranges, say *100ue. This was accomplished by loading the specimen
within its elastic range and drawing direct comparisons between strain
measurements made using the extensometer with those made using the
strain gages. This was the preferred evaluation technique in the case
of small strains as it avoided placing unrealistic demands on the per-
formance of the calibration fixture.

BENCH CALIBRATION EXPERIMENTS

The fixture used for the bench calibration experiments is shown
in Fig.(9). The more important components of this fixture are the
micrometer heads used for diametral and axial calibrations and the ro-
tary table used for torsional calibrations. The fixturing shown attached
to the diametral micrometer head is designed for diametral calibration
work. That shown positioned on the rotary table in Fig. (5) allows
axial and torsional calibration. In addition to routine calibration
work, the fixture was used to establish ranges of linearity and also to
investigate crosstalk between the various types of straining.

The approach adopted in determining torsional calibration data is
shown in Fig (5). The extensometer's probes were positioned on the
simulated specimen which in turn was positioned on the rotary table of
the calibration fixture. The voltage outputs from the RVDTS associated
with the top and bottom sensors were monitored after being summed in
filter/amplifier modules. The procedure followed in these experiments
was to rotate the simulated specimen through known angles and to note
the corresponding RVDT output. The angular calibration data generated
in this manner for the range *60 arc-min. are shown in Fig (10). As
indicated on this figure, the extensometer was removed from the cali-
bration fixture and then reinstalled at total of six times in generating
the data shown. This procedure was followed to determine the repeatabil-
ity of the calibration data.

The multiaxial calibration fixture was also used to investigate
crosstalk between axial and torsional straining. The approach adopted
here was to set known angular rotations and then to note the change in
RVDT output as axial displacements in the range *1.27 mm were superim-
posed using the calibration fixture's axial micrometer head. This range
of displacements corresponds fo an axial strain range of 50,000 upe,
assuming a 25.4 mm specimen gage length. Data generated for angular set-
tings in the range 0 to +60 arc-min. are shown in Fig (11). These data
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are typical for angular settings in the range 0 t0 -60 arc-min. and also
0 to *150 arc-min..

IN-PLACE CALIBRATION EXPERIMENTS

The second stage of the evaluation was performed with the extenso-
meter positioned on strain gaged specimens which in turn were installed
in a tension-torsion test system. This allowed direct comparisons to be
drawn between strain gage output and extensometer output as the specimens
were subjected to biaxial loading within the material's elastic range.
These experiments showed that torsional measurements made using both
systems exhibited minimum hysteresis and were well behaved on passing
through zero. As indicated in Fig. (12a), the hysteresis exhibited by
the extensometer was about 6ue when the specimen was loaded over a tor-
sional stress range of 32 mpa.

Crosstalk was further investigated by subjecting the specimen to
axial loading and monitoring any resulting change in torsional strain
output. These experiments confirmed the earlier results in that cross-
talk was found to be small. It can be seen in Fig.(12b) that torsional
strain output changed by about *6ue when the specimen was loaded
axially over the range +120mpa.

Finally, attention was directed at investigating the extensometer's
performance at elevated temperatures. As already noted, a number of
features had been incorporated into the design to ensure that the body
of the device was at or near room temperature during elevated tempera-
ture tests. The effectiveness of these measures made it unlikely that
the instrument's strain transfer characteristics at elevated tempera-
tures would be significantly different from those at room temperature.
Therefore, this stage of the evaluation was limited to investigating a
number of electronic characteristics such as signal noise levels and
signal stability.

After establishing base-line data at room temperature, signal
noise levels were recorded under isothermal conditions at 232, 454,

538, and 650°C. It should be noted that specimen heating was by means

of a 5kW radio frequency (RF) induction heater and that the heater in-
corporated a closed-loop temperature control system. This form of
heating was found to cause drastic increases in signal noise levels.
Thus, it was necessary to filter the signals from the extensometer to
avoid problems with test system control. A variety of active and pas-
sive filtering systems were tried with mixed results. The best compro-
mise was found to be obtained using passive filters with time constants
of about 0.5 seconds. Typical strain signals recorded over 200 second
time intervals after installing such filters are shown in Fig. (13). Be-
havior over this time interval was of particular interest as it approxi-
mates the time required for individual loading probes in multiaxial defor-
mation experiments. Recordings of this type were also made over 24 hour
periods to establish the influence of laboratory environment on signal
stability.
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EXPERIMENTS INVESTIGATING STRESS RELAXATION BEHAVIOR UNDER CYCLIC
TORSIONAL LOADING

On completing the instrument development work, the scope of the in-
place calibration experiments was expanded to investigate the feasibil-~
ity of the generating stress relaxation data under torsional loading.

By way of background, an attempt had been made to use stress relaxation
data determined under uniaxial loading to quantify the kinematic state
variable in the Robinson viscoplastic model (Refs. 10 and 11). However,
interpretation of the data generated in these experiments was complicated
by the extreme sensitivity of uniaxial strain measurements to thermal
effects. In contrast, torsional strain measurements, as a result of
being based on specimen rotations, are relatively unaffected by tempera-
ture changes and associated thermal expansion. For this reason, it was
anticipated that less than ideal temperature control would not be a
}imzying factor in stress relaxation tests conducted under torsional
oading.

TEST EQUIPMENT

Details of the test equipment are given in Table (1). In summary,
the tests were performed on an MTS closed loop, electrohydraulic test
system with provision for tension-torsion loading. The MTS system is
controlled by a Digital Equipment Corporation PDP 8e computer and an
Electronic Associates Inc. TR-10 Analog Computer. The type of specimen
used is shown in Fig. (14). After fabrication, the specimen was solu-
tion annealed and postweld heat treated. Details of these heat treat-
ments are given in Table (2) along with other information regarding the
the particular heat of material tested.

Prior to installation in the test system, the specimen was instru-
mented with four rectangular strain gage rosettes and seven chromel/
alumel thermocouples. The strain gages were used to minimize bending
during specimen installation and also to check out the performance of
the biaxial extensometer at room temperature. Specimen heating was by
means of a 5kW RF induction heater. The geometry of the heater load coil
was designed to give a temperature profile within £5°C of the nominal
test temperature over a 25 mm gage length. The outputs from six of the
chromel/alumel thermocouples were used to achieve this condition while
the seventh was used for temperature control. The test setup described
above is shown in Fig.15. Not shown in this figure is the water cooled
heat shield which is positioned between the specimen and the biaxial
extensometer during tests. This heat shield, in conjunction with those
mounted on the sensors, prevents heating of the instrument by radiation.

PRELIMINARY EXPERIMENTS

At the start of this investigation, well established procedures
were followed to ensure that the loading system and the various measure-
ment systems were functioning properly. This preliminary work was aimed
at ensuring the following: :
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. The specimen was installed in the test system such that bending
strains were within 5% of the average strain.

. The foil strain gage measurement system was functioning properly.

. The biaxial extensometer was installed and functioning properly.

. The temperature profile over a 25mm gage length was within £5°C of
the nominal test temperature.

The various procedures adopted to. achieve these conditions are summarized

in Table (3) along with the results obtained in the present experiment.

As indicated in this table, the required conditions were met with one

exception. This was that the best temperature profile that could be

obtained was 538+20°C.

1
2
3
4

EXPERIMENTAL PROCEDURES

The experimental procedures used to investigate stress relaxation
behavior under cyclic torsional loading were based in part on those
used earlier in uniaxial experiments (Ref. 10). First, the specimen was
cycled over a tensorial shear strain range of 0.56% using a ramp waveform
and a nominal strain rate of 600uc/min. The required fully cyclically
hardened condition was achieved after about ten cycles.

Stress relaxation experiments were then conducted from five starting
locations on the stabalized hysteresis loops (Fig. 16). Details of the
target values of stress and strain used for computer control are given
in Table (4). Also shown in this table are the sequences of loading
followed before and after individual stress relaxation experiments.

The aim of these loadings was to return the material to the reference
condition before starting the next experiment. Five stages of loading
were required in stress relaxation tests conducted from the peak of the
hysteresis loop while six stages of loading were required in tests
conducted from other locations (Fig. 17).

TEST RESULTS

A typical stress-strain hysteresis loop for material in a fully
cyclically hardened condition is shown in Fig. (18). Such loops were
recorded directly using analog outputs from the test system's load cell
and from the biaxial extensometer. One difficulty indicated in this
figure is that strain rate was not controlled at the specified value,
600ue/min., with any degree of precision during the various stages of
loading. Post-test analysis of the results showed that strain rates
during elastic straining were as high as 900ue/min. while those during
inelastic straining were as low as 300ue/min.

The results of the stress relaxation tests are shown in Fig. (19).
One feature of the raw data is that a *lmpa amplitude cycle is super-
imposed on the overall stress relaxation response. It was established
that this cycling resulted from less than ideal control of torsional
strain during the 0.167hr hold-periods. More specifically, the problem
was caused by a deadband incorporated in the computer software to allow
for noise on the signal being controlled. The cycling apparent in Fig.
(19) clearly indicates that the size of the deadband selected, *5ue,
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was too wide for precise stress relaxation testing. However, as the
trends in the raw data were well defined, it was possible to construct
average curves without much difficulty (Fig. 20). These curves subse-
quently were used to establish relationships between initial stress rate
and starting stress on the hycfe.°s1s loop. The results of this analy-
sis are shown in Fig. (21).

THEORETICAL CONSIDERATIONS: COMPARISON .OF EXPERIMENT AND THEORY

As the results of the exploratory tests were reasonable consistent,
it was possible to proceed to the final stage of the investigation.
This involved use of the ORNL viscoplastic constititutive model to pre-
dict material response under conditions approximating those of the ex-
periments. Because of the lack of multiaxial test data for 2-1/4 Cr-
1Mo steel at elevated temperatures, the constants in this model were
determined through uniaxial testing only. Thus, it was of considerable
interest to determine how closely the model would predict behavior under
other forms of loading, in this case simple shear.

THE VISCOPLASTIC CONSTITUTIVE EQUATIONS

An jisothermal statement of the ORNL viscoplastic constitutive model
is as follows:

L..
gn \{ : F >0 and SIJ ij 2 0
2ue, . = J 92
) FsO (1)
0 ' or
F > 0 and Sijtij €0
35
H o RG'“'B — : G>G_ andS..a..>0
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a ‘ (2)
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Here, €jj denotes the components of inelastic strain rate, K and
state variables and u#, n, m, 8, R and H are material constants.
the constants for 2-1/4 Cr-1Mo steel at 538°C are as follows:

u = 3.6 x 107
n=4.0

8 = 0,75

m = 3.87

R = 8.97 x 10-8
H=9,92 x 103
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These values are consistent with the units of Ksi for stress, in/in for
strain and time in hours. The scalar state variable, K, is taken to be con-
stant for material in a fully cyclically hardened condition. The value of

K used in the following analysis, 0.82, resulted from isothermal, uniaxial
testing as did the other values listed above.

As indicated in equations (6) through (9), the stress dependence in this
model enters through the second principal invariants of the applied stress
and the internal stress. This infers that the material is initially isotro-
pic and that it behaves independently of the third principal invariants. The
validity of the latter assumption is examined later in the paper in light of
the experimental results.

REDUCTION TO PURE SHEAR: COMPARISON OF PREDICTED AND EXPERIMENTAL RESULTS

In the case of simple shear, the equations (1) through (9) reduce to
the following:

-8 4
1.39 x 10 F sgnft-s) ; F > 0 and t(x-s) >0

e = (10)
12 £<0
0 ; or
F>0 and t(t-s) <0

7320 ¢ p - 3.17x 10'7|s|6‘23sgn(s) ; s>s, and 1530
. [s 1% L (11)
3 =
732? 5 512 - 3.17 x 10'7|50|6’23sgn(s) ; sSsy or 15<0
™
2
L e lr=s) (12)
in which 067
s = 0.01 (13)
0

Here, €53 is the tensorial component of inelastic shear strain rate, 1 is
the app11ed shear stress, and s is the shear component of the state vari-
able aj ;.

J
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The above equations were used to predict saturated stress-strain
hysteresis loops under conditions approximating those of the experiments
(Fig. 18). To avoid undue complication, the prediction shown in this
figure was made assuming a single strain rate, 900ue/min., applied for
the entire cycle. These equations were also used to predict stress
relaxation behavior from various starting points on the hysteresis loops
(Fig. 20). It should be noted that the model has no provision for pre-
dicting the "reversed" stress relaxation observed from points 3, 4, and
5. The horizontal lines constructed through these points are shown to
emphasize the reversal of the experimental data.

DISCUSSION

In discussing the results of theis investigation, consideration is
given first to the performance of the biaxial extensometer. Of particu-
lar interest here are the characteristics important in high precision,
probing type experiments. These include linearity, crosstalk, mechani-
cal hysteresis, resolution and stability. This is followed by some
general discussion on problems associated with traditional methods for
investigating time dependent material behavior at elevated temperatures.
Possible advantages resulting from the use of torsional loading are out-
lined and the results of some preliminary experiments are discussed in
light of predictions made using the viscoplastic constitutive model.
Finally, methods are discussed for quantifying the internal state vari-
able and the constants in this model.

PERFORMANCE OF THE BIAXIAL EXTENSOMETER

One basic requirement for any strain measurement system is that
its output should be linear over the full range of interest. As indica-
ted in Fig. (7), the kinematic analysis performed during the preliminary
design stage showed that this goal theoretically was attainable with
the present design. This result subsequently was confirmed in bench cal-
ibration experiments conducted over angular ranges of *60 and *150 arc-
min.. The data generated for the smaller range are shown for purpose of
illustration in Fig. (10). The importance of this result is that the
relationship between specimen strain and voltage output from the
instrument is known with certainty even though conditions at the start of
tests may not be well defined. This situation can arise, for example,
as a result of less than ideal instrument installation or thermal expan-
sion of the specimen. Provided the instrument's calibration is linear,
voltages resulting from these effects can simply be nulled out prior to
testing without compromising the accuracy of subsequent measurements.

Another important result shown in Fig. (10) is that the calibration
data are repeatable for successive installations. This lent confidence
to the assumption that calibrations performed on the bench would still
apply when the instrument was installed on a specimen, Further confi-
dence in this approach was obtained when strains measured using the bi-
axial extensometer were compared to those measured using foil strain
gages. The results obtained using the two strain measurement systems
were usually within 2% of each other.
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As already noted, one problem peculiar to biaxial and multiaxial ex-
periments is that interaction or crosstalk can occur between the various
forms of loading and straining. This problem is particularly limiting
in experiments involving small changes of inelastic strain or inelastic
strain rate. The meaning of such experiments is lost if, for example,
loading in the axial sense produces apparent torsional strains and vice
versa. Also, crosstalk of this type clearly precludes any meaningful
investigation of normality. This problem was approached in two ways
during the design and development of the subject extensometer. First,
crosstalk was recognized as being a problem from the outset and measures
were taken to minimize its effect during the design stage. Second, in
tests requiring extreme precision, techniques were developed to computer
correct for crosstalk effects.

The effectiveness of the self-correcting feature designed into the
instrument can be judged by the data shown in Fig. (11). Here, it can
be seen that axial strains over the range *50,000 ue caused tensorial
shear strain measurements to change by less than 30 pe. A similar result
is shown in Fig. (12b). 1In this case, loading a specimen over a *125 MPa
axial stress range caused measurements of shear strain to change by less
than #6 ue, The linear relationship shown in this figure subsequently
was used to computer correct for crosstalk effects in yield surface deter-
minations conducted on 2-1/4 CR-1Mo steel at 20°C (Ref. 12). 1In these
experiments, axial and torsional stresses and strains are sampled at 1 se-
cond intervals. Thus, for a.known axial stress, the corresponding value
of apparent torsional strain was computed using the expression Aejp =
0.05 071 and used to correct the measured value. A similar approach was
used in these biaxial experiments to correct the measured values of axial
strain. In this case, the analytical representation of crosstalk was
beqy = 0.29 o712, where Aej] and 012 have units of microstrain and MPa.
Such corrections were found to be a prerequisite for the successful
definition of small offset (25 ue) yield surfaces using the biaxial ex-
tensometer .

A further requirement in high-precision, probing type experiments is
that the strain measurement system should not exhibit significant mechan-
ical hysteresis. This is because differences in response between loading
and unloading can provide a useful measure of change of material state.
Clearly, any mechanical hysteresis in the instrumentation will complicate
interpretations of this type. The need to minimize hysteresis influenced
the design of the biaxial extensometer in two ways. First, flexural
pivots were used in the lever-arms to act as bearings. These pivots, by
utilizing sets of flat cross flexures, allow rotation between components
without any associated rolling friction or backlash. Second, careful
consideration was given to the method of mounting the instrument on spec-
imens. The aim here was to avoid techniques which might lead to diffi-
culties when the direction of loading is reversed or when loading passes
through zero. The approach adopted was to use pairs of ceramic probes
which grip the specimen by means of friction at three locations (Fig.2).
The surfaces in contact with the specimen are flat resulting in line
contact over 2.5mm lengths at each of the three locations. As indicated
previously, preload springs are used to provide the frictional force
necessary to prevent slippage.

The data shown in Fig. (12a) illustrate the effectiveness of these
measures. These data were obtained by cycling a specimen over a 32 MPa
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torsional stress range and recording the corresponding strain outputs from -
foil strain gages and the multiaxial extensometer. It was found that the
extensometer exhibited only slightly more hysteresis than the strain gages
.- the width of the hysteresis loop at zero load being about 6ue. Also, the
output from the extensometer was found-to be well behaved when the direc-
tion of loading was reversed and when loading passed through zero.

High resolution is another important requirement for strain measure-
ment systems supporting development of viscoplastic constitutive models.
This characteristic plays a key role in experiments investigating behav-
jor under multiaxial stress states. In these experiments, attempts are
made to investigate inelastic response while maintaining the material in
an unchanged state. This conflicting requirement can be.approximated in
probing type experiments in which very small changes in inelastic strain
or inelastic strain rate are used as measures of inelastic response.
Clearly, strain measurement systems used for this work must be. capable of
detecting these small changes which in practice requires near-microstrain
resolution,

One feature of extensometers is that mechanical gain can be used to
obtain high resolution. The kinematic analysis performed during the pre-
Timinary design stage showed that suitably designed lever-arm assemblies
can provide significant mechanical magnification of specimen rotations.

It was established that most magnification could be obtained by maximizing
the length of lever BC and minimizing the length of lever CD (Fig. 3).
Further gain was obtained by summing the rotations of the two lever-arm
assemblies associated with a particular sensor. With the geometry used in
‘the present experiments, one degree of specimen rotation produces a summed
output of about 4 degrees at the attachment locations of the RVDTs. This
meant that only modest amounts of electronic gain, x 100, were needed to
calibrate the instrumentation such that 3,000 we = 10 volts. Using

this arrangement, the ability to detect voltage changes of the order of
of 3mV would theoretically give the required microstrain resolution.

In practice, however, the resolution of strain measurment systems are
usually limited by electrical noise. This is particularly the case in
elevated temperature tests where the heating system and the temperature
control system can add to the problem. As previously noted, passive fil-
ters were used to minimize this difficulty. It can be seen in Fig.(13)
that even after filtering, noise levels at 650°C are a factor of at least
five greater than those at room temperature. Based on these results, it
appeared that the aim of developing an instrument with near-microstrain
resolution had been achieved in the case of tests conducted at room tem-
perature. In the case of elevated temperature tests, the resolution was
about 5 ue,

Regarding signal stability, considerable effort was needed to achieve
the results shown in Fig.(13). First, it was found necessary to control
the laboratory air temperature to within #1°C. Further, in experiments
requiring extreme precision, it was necessary to isolate the specimen,
extensometer, and load frame from laboratory air currents. This was a-
chieved by constructing an enclosure around the load frame and the ancil-
lary equipment. Under these conditions, the strain signals from the ex-
tensometer exhibited negligible drift once thermal equilibrium had been
established. It should be noted that the time periods investigated were
relatively short, 24 hours and less. Such periods were consistent with
early experiments which were short-term and exploratory in nature.
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INVESTIGATION OF TIME DEPENDENT MATERIAL RESPONSE AT ELEVATED
TEMPERATURES

Having developed instrumentation allowing precise biaxial strain
measurement, the next problem addressed was how best to use this capa-
bility for investigating time dependent behavior at elevated tempera-
tures. The two experimental approaches traditionally used for this pur-
pose are the monotonic creep test and the stress relaxation test. Based
on experience gained in previous uniaxial test programs, the preferred
test method for the present experiments was the stress relaxation test
and the preferred type of loading was pure torsion. Some background
regarding these choices is given in the following.

One characteristic of creep data determined on test machines using
dead weight loading is that the data usually exhibit considerable
scatter (Ref. 13). Possible reasons for the variability include less
than adequate control of conditions during initial loading and the test
method's extreme sensitivity to errors in load and temperature. Also,
difficulties arise as a result of the simple forms of extensometry used
in the majority of these experiments. Poor dynamic response can result
in unreliable strain measurements during the early stages of tests and
less than adequate stability can result in errors in long term tests.
Thus, although tests leading to steady state creep rates might appear
advantageous from the modeling viewpoint, the associated experimental
difficulties raise serious questions regarding the value of this test
method in supporting constitutive equation development. '

In contrast, the accuracy of stress relaxation data generated using
closed-1oop, electrohydraulic test systems appears less susceptable to
experimental difficulties. Since these experiments are conducted under
strain control, the magnitudes of both strain and strain rate are known
with certainty during initial loading. Further, since total strain is
simply held constant during the critical stage of the experiment, less
demanding requirements are placed on the strain measurement system. One
important advantage here is that the dynamic characteristics of load
cell are limiting in detecting high inelastic strain rates rather than
those of the extensometer. This is an advantage since load cells can
detect dynamic events as rapid as 100in/in/sec. Also, since stress re-
laxation experiments are relatively short-term, unrealistic demands are
not placed on the stability of the instrumentation. Another advantage
of conducting these experiments on closed-l1oop, electrohydraulic test
systems is that the material can be cycled over a known strain range be-
tween stress relaxation experiments and returned to a known reference
condition, This approach allows a number of experiments to be conducted
on a single specimen (Ref. 10).

Unfortunately, unless conducted with extreme care (Ref. 14), the.
stress relaxation test is not entirely free from experimental difficul-
ties. One such difficulty is that the test method is extremely sensi-
tive to temperature fluctuations when conducted under uniaxial loading.
To illustrate, in tests conducted on 2-1/4CR-Mo steel at 538°C, a *5°C
or %1% variation in specimen temperature causes stress to change by
about *10MPa. As can be seen in Fig. (19), stress variations of this
magnitude will completely mask stress relaxatinn response in this mater-
ial. It follows that both specimen temperature and laboratory tempera-
ture have to be controlled within very close limits if the production
of misleading data is to be avoided.
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A related difficulty arises in experiments in which radio frequency
induction heaters are used to test ferritic steels. In these experi-
ments, coupling can occur between specimen loading and specimen heating
as a result of the magnetomechanical effect (Ref. 15). By way of ex-
planation, the heat dissipated in inductively heated ferritic steels is
a function of the material's ferromagnetic permeability. Also, it has
been demonstrated that the permeability of these materials is a function
of mechanical straining. Since specimen temperature typically is con-
trolled by means of a single thermocouple located at a point on the
specimen surface, straining an inductively heated specimen causes tem-
perature to change at other locations in the specimen. The net result -
is that the temperature in the specimen gage length is not in a stabil-
ized condition prior to conducting the stress relaxation test. As indi-
cated above, the resulting temperature changes, occurring, say over a
25mm gage length, can invalidate the results of subsequent stress relax-
ation experiments.

One solution to these d1ff1cu1t1es is to use an alternative form of
loading. As noted earlier, torsional strain measurements are based on
specimen rotations which theoretically are unaffected by temperature
changes and associated thermal expansion of the specimen. This can be
seen by inspection of the expression for torsional strain shown in
Fig. (7). Also, the design of the biaxial extensometer is such that
torsional measurements are insensitive to changes in laboratory tempera-
ture. This is because the symmetry of the instrument causes thermal
effects to be self cancelling. In summary, therefore, it appeared that
many of the difficulties experienced in previous uniaxial test programs
would not be a factor in stress relaxation tests conducted under purely
torsional Toading. The exploratory tests described in the following
were conducted to examine the feasibility of this approach.

The success of these experiments can be judged by the data shown in
Figs. (18) through (21). Considering first the data shown in Fig. (18),
no difficulty was experienced with the biaxial extensometer in cycling
the specimen over a shear strain range of 0.56%. As in earlier experi-
ments conducted at room temperature, no problems were experienced when
the direction of loading was reversed or when loading passed through
zero. Also, the extensometer exhibited no tendency to "walk" on the
specimen with repeated cycling. The one difficulty which did occur
during this stage of the experiment was that the nominal value of strain
rate, 600ue/min., was not maintained constant within reasonable limits.
This resulted from a problem with the computer control and was not rela-
ted to the instrumentation being used.

The data shown in Figs. (19) and (20) demonstrated that the biaxial
extensometer had sufficient stability and resolution to allow stress re-
laxation behavior to be investigated under purely torsional loading.
Perhaps the most striking feature of the data shown in these figures is
that the sense of the relaxation process reverses at a stress value of
about 45 MPa. To illustrate, in the experiments conducted from starting
stresses of 87 and 69 MPa, stress dropped by 21 and 9 MPa during the 600
second hold-periods. In contrast, stress increased during the hold-
period in the other three experiments. For example, in the experiment
conducted from a starting stress of 0 MPa, stress increased by about
7 MPa, This result confirms trends observed in earlier programs conduc-
ted on 2-1/4CR-Mo steel under uniaxial loading (Ref.10). As will be
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discussed later, use will be made of this characteristic of the data to
quantify the kinematic state variable in the viscoplastic constitutive
model under consideration.

One apparent disadvantage of the experimental approach described
above is that the magnitude of the stress changes occurring during the
relaxation process are relatively small. If, however, consideration is
given to the rate of change of stress, then the relaxation data shown in
Figs. (19) and (20) can be shown to vary over several orders of magni-
tude. This is illustrated in Fig. (21) for the case of the initial
stress relaxation rate. Whereas the stress changes occurring during
relaxation fall within a *20MPa range, the initial stress rates for the
same data can be seen to cover a *1000 MPa/h range on average. It is
reemphasized that these rates were measured using the test system's load
cell. Bearing in mind the reliability of load cells, it was possible to
place a high degree of confidence on the accuracy of these data.

Regarding the temperature insensitivity of the torsional strain
measurements, no direct evidence has been presented thus far supporting
this claim. Such evidence was obtained on completing the series of '
stress relaxation tests when the specimen was cooled from 538°C to room
temperature. It was established that torsional strain output changed by
less than 40ue during this process. In comparison, the thermal contrac-
tion associated with this cooling would have resulted in apparent axial
strains of the order of 8000ue., Based on these values, use of torsional
loading reduced temperature sensitivity by at least two orders of magni-
tude,

In related activity, the magnetomechanical effect was shown not to
be a factor in these experiments. In a series of exploratory tests
conducted at 538°C, the specimen was loaded within its elastic range to
a torsional stress of 45 MPa and held constant at this value for about
600 seconds. Both torsional stress and torsional strain were monitored
during this period to investigate the stability of the signals. It was
found that both signals remained constant within the limits of accuracy
of the measurement system during the hold-period. Thus, if any thermal
readjustments were occurring in the specimen as a result of the loading,
the torsional strain measurement was totally unaffected by them. As
stated earlier, this insensitivity to thermal effects is viewed as being
an important advantage of torsional loading since it eliminates a major
source of uncertainty. '

COMPARISON OF PREDICTIONS WITH EXPERIMENTAL RESULTS AND DETERMINATION
OF THE INTERNAL STATE VARIABLE

As noted earlier, it was of considerable interest to compare the
data generated in the cyclic relaxation experiments to predictions made
using the viscoplastic constitutive model. This was because this model
was developed before the present results were available and also because
the formulation of the model was based entirely on uniaxial test data.
Thus, the results of the present experiments provided a totally inde-
pendent check of the predictive capability of the model for a more
fundamental form of loading, pure shear.
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First, equations (10) through (13) were used to predict the stabal-
ized hysteresis loop for conditions approximating those of the experi-
ments. As indicated .in Fig. (18), the theoretical and experimental
results were found to be in reasonable agreement considering that the
experimental values of temperature and strain rate varied from the
nominal test values. Although falling short of a proof of the adequacy
of the "Jo" asssumptlon made in the theory, this comparison does provide
some measure of its validity under the present conditions.

Equations (10) through (13) were also used to predict stress relax-
ation response from two -of the starting locations on the stabilized hys-
teresis loop. These locations correspond to stress values of 87 MPa and
69 MPa. As indicated in Fig. (20), the predicted and the experimental
data agree reasonably well. Qne feature of these data is that the vis-
coplastic model somewhat underpredicts the relaxation occurring in 600
seconds. It was not possible to make pred1ct1ons of the curves from the
other three starting locations as there is no prov1s1on in the model for
predicting reversed stress relaxation.

One basic requirement for viscoplastic constitutive models incor-
porating internal state variables is that it should be possible to
determine the current value of the state variable through simple phenom-
enological testing. The type of experiment described earlier, the
stress-dip-test, can be used for this purpose. The particular value of
starting stress, o012 = t* at which the initial stress relaxation rate is
zero can be obtained from equation (12) as follows:

2
. (1* - s) -
F = 06T - 1=0 (14)
giving in SI units
t* - s = 5,6 MPa (15)

An experimental value of t* was determined from Fig. (21) to be 45 MPa,
By substituting this value into equation (15) and solving for s, the
value of the internal state variable was found to be 39.4 MPa. This
value applies along the unloading side of the hysteresis loop, i.e., for
the points 1 through 6 in Fig., (16),for material in a fully cyclically
hardened condition at a temperature of 538°C.

It is of interest to note that the data generated in the stress-
dip-test can also be used to determine the constants in the flow law.
As indicated above, the internal state variable, s, is constant along
the unloaded portion of the hysteresis loop. It follows that both oy
and s are known at the start of each of the relaxation experiments.
Further, the inelastic strain rates can be obtained for the start of the
experiments using the expression, .

. |
y - (16)

where 012 is measured directly and G is the shear modulus.
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In the case where the material constants are unknown, the flow law is

‘e12=A[%%§7)3 -1]n (17)

The unknown constants, A and n, can be determined since t, s and €12
are known for a number of points. Optimized values of the constants.
can be determined by conducting a series of these experiments.

written,

CONCLUSIONS

The following conclusions were drawn regarding the performance of
the instrumentation, the practicality of the experimental approach
proposed in this study, and the predictive capability of the Robinson
viscoplastic constitutive model.

1. The ORNL biaxial extensometer gave excellent results when used to
measure torsional strains at room and elevated temperatures. The
instrument's output was linear over the strain range of interest,
Aeyp = 0.56%, and exhibited minimum crosstalk and hysteresis.

2. The torsional strain output of the biaxial extensometer was found to
be insensitive to temperature changes in the specimen. This indica-
ted that torsional loading can be used to advantage in generating
stress relaxation data.

3. Theoretical predictions made using the Robinson viscoplastic con-
stitutive model were in reasonable agreement with the experimental
results obtained in this study.

4. The experiments conducted under torsional loading confirmed that
kinematic state variables can be quantified by investigating stress
relaxation behavior at various locations around stabalized stress-
strain hysteresis loops. : :
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Table (1) DETAILS OF TEST EQUIPMENT

Loading System MTS Tension-Torsion Test System with +200kN
axial capacity and *2000N - m torsional capacity.

Computer Digital Equipment Corporation PDP 8e Computer in
Control conjunction with an Electronics Associates Inc.
TR-10 Analog Computer.

Software ORNL enhanced version of FOCAL,

Specimen Thin walled tubular design, the parallel section
Type being 64mm long and the inside and outside dia-

meters being 23.5mm and 26.04mm, respectively.

Specimen 5kW radio frequency induction heater with closed.
Heating loop temperature control.

Details of the work coil are as follows: 84mm
overall length; 48mm ID; 32mm spacing between the
4 turn windings; and manufactured from 5mm 0D
copper tubing.

Specimen 4 foil rectangular strain gage rosettes in full
Instrumentation bridge circuit for torsional measurement and half-
' bridge circuit for axial measurements. The two
bridge circuits were set up using shunt calibration
procedures so that 3000ue = 10 V.,

7 intrinsic chromel/alumel thermocouples located
over the 25mm gage length.
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Table (2) DETAILS OF THE MATERIAL TESTING

Materials Vacuum arc remelted 2,25Cr-1Mo Steel,
Details Cameron Iron Works Heat 56448,
50 mm-o.d. Bar Form
Heat Solution anneal
Treatment Heat to 9278, hold for 60 min; cool at rate not
exceeding 1°C/min. to 316°C; and air cool to room
Details temperature.
Postweld heat treatment
Heat to 727°C, hold for 40 hr.; cool to 427°C at
1°C/min; and air cool to room temperature.
Note: These heat treatments were performed under
vacuum on fininsh-machined specimens.
Microstructural Equiaxed with grain size in the range 5-6 ASTM units
Characteristics Microhardness values in the range 110-125 (DPH)

Microstructure consists of ferrite with globular
M23Ce carbides and v carbide.
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Table (3)

RESULTS OF THE PRELIMINARY EXPERIMENTS

Experimental
Stage

Method Adopted

1, Specimen
Installation

Special purpose fixturing was used
to get the specimen parallel and
concentric with the acutator rod

Bending was minimized by successive-
ly shimming the load train, loading
the specimen in compression, and
measuring the resulting strain dis-
tribution.

2. Checkout of
the strain gage
measurement
system.

Measurements of torsional stress and
strain were made while the specimen
was loaded within its elastic range.
A value of shear modulus was then
determined and compared to a hand-
book valuel®

3. Checkout of
the biaxialex-
tensometer at

room tempera-

ture

Measurements of torsional stress and
torsional strain were made while the
specimen was loaded within its elas-
tic range. A value of shear modulus
was then determined and compared to
the value obtained using foil strain
gages.

4. Tuning the
heating system

Adjustments were made to the load
coil of the induction heater until
the required profile was obtained
over the 25mm gage length. The
outputs from six chromel/alumel
termocouples were used to achieve
this condition.

Results
Target Value
Value Obtained
0.05 mm 0.05 mm
TIRa TIR
within +3% of
5% of average
average
G=11672 G=11667
x 10%si| x 10°psi
G=11,67 G=11,79
x 100psi| x 106psi
538+5°C 538+20°C

a. Total indicator reading
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TABLE (4) LOADING SEQUENCES USED TO INVESTIGATE STRESS RELAXATION

BEHAVIOR UNDER CYCLIC TORSIONAL LOADING

LOADING TARGET
EXPERIMENT LOADING TENSORIAL : HOLD-PERIOD
NUMBER SEQUENCE SHEAR TORSIONAL (h)
STRAIN STRESS
(ue) (MP4)

1 2800 0

2 -2800 0
1 and 2 3 2800 0.167

4 - 500 0

5 0 0

1 2800 0

2 -2800 0

3 3 2800 0
4 0 0.167

5 - 500 0

6 0 0

1 2800 0

2 -2800 0

4 3 2800 0
4 41.37 4 0.167

5 - 500 0

6 ' 0 0

1 2800 0

2 -2800 0

5 3 2800 0
4 20.69 0.167

5 - 500 0

6 0 0

1 2800 0

2 -2800 0

6 3 2800 0
4 68.95 0.167

5 - 500 0

6 0 0
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(a) Sensor positioned on specimen.
(b) Use of two sensors for multiaxial measurements.

Figure 1. - Basic approach.
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Figure 2. - Sensor assembly.
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Figure 4. - Support structure. Figure 5. - Biaxial extensometer positioned
on calibration fixture.
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SIGN CONVENTION
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a AND o' POSITIVE FOR CLOCKWISE
ROTATIONS ABOUT D AND G

Figure 6. - Method of transmitting specimen rotation to fixed points on the
support structure.
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Figure 7. - Results of a kinematic analysis of the lever-arm assemblies.
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Figure 8. - Method of accommodating axial displacement.
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= SCATTER BAND FOR EXPERIMENTS INVOLVING
REMOVAL AND REINSTALLATION OF THE EXTENSOMETER
SIX TIMES ON THE CALIBRATION FIXTURE
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Figure 10. - Torsional calibration data for top and bottom sensors. (For a
25 mm-o.d. specimen and a 25 mm gage Tlength, a relative rotation of 60 arc
min between top and bottom sensors is equivalent to a tensorial shear strain
of +4472 yue.)
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Figure 11. - Change in tensorial shear strain resulting from superimposition
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Figure 12. - Results of in-place torsional calibration experiments performed

at 20 °C. (The nominal calibration for all strain measurement systems was
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Figure 13. - Stability of torsional strain signals at 20 and 250 °C.

(A passive filtering system with a 0.5 second time constant was used in
obtaining the signals shown.)
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A COMPARISON OF SMOOTH SPECIMEN
AND ANALYTICAL SIMULATION TECHNIQUES

FOR NOTCHED MEMBERS AT ELEVATED TEMPERATURES

John F. Martin
Department of Metallurgy, Mechanics, and Materials Sc1ence

Michigan State University
East Lansing, Michigan 48824-1226

Experimental strain measurements have been made at the highly strained
regions on notched plate specimens that were made of Hastelloy X. Tests were
performed at temperatures up to 1,600°F. Variable load patterns were chosen
so as to produce plastic and creep strains. Were appropriate, notch root
stresses were experimentally estimated by subjecting a smooth specimen to the
measured notch root strains. The results of three analysis techniques are
presented and compared to the experimental data. The most accurate results
were obtained from an analysis procedure that used a smooth specimen and the
Neuber relation to simulate the notch root stress-strain response., When a
generalized constitutive relation was used with the Neuber relation, good
results were also obtained, however, these results were not as accurate as
those obtained when the smooth specimen was used directly. Finally, a general
finite element program, ANYSIS, was used which resulted in acceptable
solutions, but, these were the least accurate predictions.

INTRODUCTION

A variety of methods are available for the analysis of structures and
components that are subjected to variable loads that result in inelastic
strains., These analysis techniques usually can accommodate fnelastic strains
produced by both time-dependent creep and time-independent plastic strain.
The finite element method is peihaps the most popular technique for these
problems. However, other methods exist that show potential for much more
economical analyses.

Regardless of the analysis procedure employed, an accurate set of
constitutive relationships are required. If the uniaxial stress-strain
response of the material is not adequately described, an analysis of any notch
geomtry will not be successful. Also, with all the possible variables
associated with elevated temperature cyclic behavior, it is necessary to
experimentally verify any analysis technique on simple notched laboratory
specimens before attempting to analyze a complicated component such as a gas
turbine engine.

Experimental data on smooth specimens and center notched plates have been

generated. Smooth specimen data were generated at 70°, 1,200° and 1,600°F,
Notched specimen data include temperatures of 70°, 1, 200° and 1,550° F A1l of
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these data were generated for the purpose of establishing experimental
evaluation criteria for constitutive models of time-dependent cyclic
plasticity.

For comparison purposes, three analysis techniques were compared to some
of these data. References 1-3 describe the analysis techniques and
experimental procedures in detail. This paper presents a short summary of the
three techniques and several examples of experimental versus analysis '
predictions.

MATERIAL, SPECIMENS AND EXPERIMENTAL TECHNIQUE

A1l tests were performed on specimens machined from Hastelloy X, a
nickel-based superalloy used in components requiring oxidation resistance.
Smooth specimens used for room temperature testing were machined with straight
gage sections; specimens tested at elevated temperatures contained hour glass
shaped gaged sections. For these high temperatures tests, diametral strain
and axial stress were converted to axial strain. Elevated temperatures were

produced with an induction furnace.

Notch specimen data that are presented in this paper were produced on
thin plates with a.notch located at the center of the plate. This notch was a
circular hole with a theoretical stress concentration factor of 2.37 based on
net section nominal stress. Notch root strains were determined with an
interferometric technique that is described in Ref. 1 and 4. With this
technique, normal strains were measured over very short gage lengths. The
physical part of the gage consisted of indentations on the flat surface of the
specimen. These indentations were pyramidal in shape with inclined sides
tilted 45° to a normal of the surface. The indentations used for this
experiment were placed 100 microns apart and were 25 microns square. They
were placed 50 microns from the edge of the notch.

A He-Ne laser was used to simultaneously illuminate both indentations.
Due to the coherent and monochromatic nature of this 1ight, two interference
fringe patterns resulted that were 90° relative to each other and 45° relative
to the laser light. Movement of the indentations resulted in proportional
movement of the fringe patterns. Averaging the movement of both fringe
patterns eliminated rigid body motion. By monitoring the motion of these
fringe patterns, strain could be determined. The fringe patterns were
electronically sensed and the analog signal of relative light intensity was
relayed to a minicomputer system. Final output of this system was an analog
equivalent of strain that ranged from 0 to 10 volts.

SMOOTH SPECIMEN SIMULATION

The most direct approach to determine uniaxial constitutive behavior, is
to directly control a smooth specimen so as to produce the required stress-
strain combination that is dictated by a mechanics analysis of the notch
geometry, The Neuber relation is the result of such an analysis that has been
extensively used for room temperature fatigue 1ife predictions. For cyclic
loading this relation is written as:

(o) (Ae) = (K;)Z(AS)(Ae) (1)
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where: Ao and Ac are the notch root stress and strain ranges, respectively; AS
and de are the remote stress and strain ranges, respectively; and K¢“ is the
experimentally determined elastic stress concentration factor (the/indicates
an experimental value as opposed to a calculated value, K¢).

Equation (1) by itself is indeterminate. Knowing the remote stress or
strain range leaves three unknowns. For this study it was assumed that smooth
specimens could be used to supply the needed stress-strain (constitutive
behavior) at both remote and local regions. Notched specimens were subjected
to controlled loading rates and peaks. Remote strains were measured with the
ISG. Smooth specimens were subjected to the same strain patterns that were
recorded from the ISG (the same strain rate was also maintained). The remote
stress and strain versus time plots were multiplied by (kt)2 so that
(K¢)2(8S) (2e), which is the right side of Eqn. (1) can be determined as a
function of time. A smooth specimen was then controlled so that the
product of stress and strain, (Ac)(Ac), would follow the pattern predicted by
the Neuber relation, Eqn. 1. Figures 1 and 2 show the stress-strain behavior
as predicted by the Neuber relation versus the experimentally determined notch
root stress-strain simulation. Notch root stresses were simulated by '
subjecting a smooth specimen to the same strains as measured with the ISG.

Room temperature results are shown in Fig. 1. Four load levels were used
for this part of the program.

Level # Load (KN)
. 1 14,0

2 *14.5

3 $15.5

4 *16.0

A11 these data were generated with the material in the stable condition. As
can be seen, the agreement is excellent. Similar elevated temperatue data at
1,200°F are shown in Fig. 2. Two load levels are shown.

Level # Load (KN)
1 *10.5
2 *11.3

A 100 sec. hold time in both tension and compression was used for the elevated
temperature tests, At both load levels the direct ISG-stress simulation data
did not show stress relaxation from the hold periods, whereas the Neuber
prediction showed a pronounced effect. The actual difference in the general
trend of the stress-strain response would result in significant errors in the
peak values, which are often used for damage analyses.
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MODEL OF UNIAXIAL BEHAVIOR

The -direct use of smooth specimens for determining constitutive behavior
is not practical for most design applications. An accurate mathematical model
of a materials behavior that can be used with mechanics analyses would be
beneficial. In an attempt to satisfy this need, a new constitutive modeling
technique was developed that is capable of predicting typical unfaxial
materials behavior at room and elevated temperatures. Simulation of the
time-independent phenomena of cyclic hardening or softening, cyclic relaxation
of mean stress and history dependent memory, and the time-dependent behavior
of creep and stress relaxation was accomplished. This constitutive model is
based on a generalized analysis of any configuration of classical rheological
model elements and special purpose elements that were developed specifically
for this constitutive modeling technique.

The modeling technique provides for the use of classical elements such as
elastic springs, viscous dampers and frictional sliders. Special elements to
simulate cyclic hardening and relaxation of mean stress were also added. Al
these elements could be readily arranged in any manner to predict the
stress-strain response of materials under complex loading. The theory
supporting this technique is based on the ability to formulate matrix
representations of the model parameters so as to provide a set of equations
~that may be solved numerically to determine the model response. For the
analysis of notched members, a numerical technique was created to expand the
Neuber relation with the constitutive model to include time-dependent
phenomena, This technique was used to form a specific constitutive model that
was constructed from the material properties of Hastelloy X.

For comparison purposes this model was used to predict the response of a
uniaxial specimen that was subjected to a complicated strain history at
1,600°F, Figure 3 shows this comparison. The maximum discrepancy between the
two responses is about 5 ksi or 9% of the total stress range experienced. The
major differences occur during the times of stress relaxation.

This constitutive model was combined with the Neuber relation to predict
the notch root strain response of a circular notched specimen tested at
1,200°F. This specimen was subjected to completely reversed constant rate,
cyclic loads with hold times at both the tension and compression peaks.
Comparisons of the experimental and model prediction for this test is shown in
Fig. 4. The results of the comparison are rdlatively good. The general form
of the response was very close to the measured output. The model strain
values were within 18% of the experimental values at all times.

FINITE ELEMENT ANALYSIS

The previous two analysis techniques employed the Neuber relation to
relate remote and Tocal behavior. Although these analysis techniques are
relatively economical, their ability to deal with complicated geometries,
without any experimental data on the stress concentrations, is limited. The
most popular and versatile method of stress analysis i{s the finite element
method. This method was used in a straight forward manner to calculate the
notch root strains for two notch geometries.
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The finite element analysis of the experimental data that were generated
in this study used a large scale general purpose program, ANSYS., This program
was utilized on a Prime 750 computer system that is linked to Tektronix
interactive graphics terminals.

For this study, 2-D models were created for elliptical and circular
notched specimens. Because of symmetry, the models were reduced to quarter
sections. These models consisted of approximately 100 elements.

ANSYS uses the initial stress method for plasticity effects, Yielding is
governed by the von Mises yield criterion and multiaxial effects are based on
Prandti-Reuss flow equations. Plactic solutions are restricted to isotropic
behavior, Bilinear kinematic hardening was found to best fit the available
experimental data.

A11 materials behavior that were required for this program were obtained
from uniaxial data. Only cyclic stable behavior was simulated under
isothermal conditions. For the creep portion of the program, only secondary
creep was accounted for even though ANSYS does allow for primary creep.

For notched members made of Hastelloy X, good correlation was obtained
between the analysis and experimental data at room temperature., Figure 5
shows the notch root strains on an elliptical center notched plate as
predicted by ANASYS and as measured by the ISG. This plate was subjected to a
completely reversed, symmetric load pattern. This agreement is extremely good
considering that the stress-strain behavior is simulated by only two straight
1ine segments.

Figure 6 shows experimental data and predictions for a circular notch,
This test was performed at 1,200°F, The load pattern was symmetric with hold
times in both tension and compression., Correlation of experimental ISG
results and analytical predictions are very poor compared to the room
temperature results. At least a portion of this {naccuracy can be attributed
to not including primary creep in the program.

CONCLUSIONS

The results presented in this paper represent only a small fraction of
the experimental data that are available and of the analyses that were
performed. In general, all three analysis techniques produced reasonably
accurate predictions for both smooth specimen stress-strain behavior and notch
root response for center notched plates made of Hastelloy X. The easiest
experimental data to simulate were those generated at both temperature
extremes, 70° and 1,600°F, where creep either dominated the strain response
or had relatively 1ittle effect.

271



REFERENCES

l. Lucas, L.J, “"Experimental Verification of the Neuber Relation at Room and

Elevated Temperature," NASA CR-167967, NASA Lewis Research Center, June
1982, '

2. Spletzer, B.L., "A Constitutive Modeling Technique Based on A Generalized
Rheological Model to Predict the Responses of Materials," Ph.D. Thesis,
Michigan State University, 1984,

3. Melis, M.E., "Finite Element Analysis of Notched Specimens with
Experimental Verification at Room and Elevated Temperatures,” M.S.
Thesis, Michigan State University, 1983.

4, Sharpe, W.N., Jr., "Interferometric Surface Strain Measurement,"

International Journal of Nondestructive Testing, Vol. 3, 1981, pp.
59-76,

ACKNOWLEDGEMENTS

Support for this research was from the National Aeronautics and Space
Administration, Lewis Research Center under Grant NAG 3-51.

‘.:X[fisi-lfr | R EE O B B ;;;'i'l: H FEHE1 PE] EEEH! SESET SRS W DS FENN G PO SEE) EEFM e EVY Pk 5L O N ISt Ik 351 B35 | EERH LGRH | ALV R BEH (| R :{
. lu iy i|ii!; NEUBER PREDICTIOR ————— il STRESS SIMULATION .........v.e.s R A 1
GOOHPa; ! IESTTIT FOOON IO0t [1E%] FETHH E323] LIEA] Ot OOl Mg pvovepeneen) I B

R i SRR Hiti E K 5 ;izj p;n;Ji"g !{ |
*%T:"'}’iiii

) . : I ‘L
" (U RUURN JEN S FI] FOY FRRNDY o 1Y
. 1 M N .
4 i IO PR I :
» N BH
A o NSRRI ISTI B o
e
f e !
. N . H
H
h

AT T

ol IR Y

. Load Level 4
Sty peeegunetheil

| Load Level 1 . £ .1. .1 10ad Level 2 é A

G FF T [0 c e

3] Load Level 3 J;:
: H 331 B TS TS H
clospesygzppee b Rl vl e e

ey Ty

fa&l!é}ji

Figure 1. - Neuber prediction and stress simulation of stab11ized local behavior.

..l. vie
nin

——tmi LR T
: I e

278



I :
R I

LOAD LEVEL 1 L]
B

P

. “x * N * . H
— U U LU N FRNVEIUUNE N SN SR
iV . ™ - o H .

NEUBER PREDICTION

STRESS SIMULATION ~weecwcews -

e frevefencofmrmego s frrerfo ab - 3 L4 T T T LI R P .
M D Ay MRS e SRR 2R [ I IR PSS
- R g PR0RY DaGA SN PN l : RIS
000 et cheevfo . i ... NEEEE:
- ——t . —
38 PRUTY PRDOH b . [ SR . H
PRI DI R RS . .. - .

i
i
}—-—. . - .y g - R _.i.». BN
: R PO
.

S ROV RODES DINDS I 4 I A - g : P t :
TS P . N . M . 3 . H N . .
A e .- e meade e
[P I PP S -l H P M N H
' A
L. . - PRGN Ay NN N et "
N R RN . R S : I R . v

Figure 2. - Neuber prediction and stress simulation at 1200 °F.
279



20
A
]
!
\
\
z
? ]
!
30— ! {
] Mo
1 0 et amae Experiment
T T T T T T T T v T [Ty T vy v r [rrrrprrry
0 100 200 300 400 500 600 100

TIME, seconds

Figure 3. - Comparison of model and experimental response for 1600 °F test.

.01

STRAIN
(-]

Modst

— - = —=Experiment
-0 LINRLICHAL SN B I S Dt AN N DN A D RN RN N B B R R SN B BN B
(] 100 200 300 400 60

TIME, seconds
Figure 4. - Comparison of model and experimental notch root response for 1200 °F test.

280



STRAIN (%)

-—-=ANSYS
——EXPERIMENTAL

e ' P I - \
0 10 30 . 50 70
' TIME (SECONDS)
Figure 5. - E1liptical notch strain versus time at room temperature.
0.6
0.4
— 0.2
®
= 0.0
<
E.
v 0.2
-0.4 -~=ANSY3
— EXPERIMENTAL
-0.6 -

|1 L 1 1 ) )

10 1'80‘ _130 230 ‘ 250 350 370 470
TIME ISECONDS)

Figure 6. - Strain versus time of circular notched specimen at 1200 °F.

281



Page intentionally left blank



FINITE ELEMENT MODELING OF CRACKED BODIES
USING THE BODNER-PARTOM FLOW LAW

T. Nicholas and M. Bohun
Air Forée Wright Aeronautical Laboratories
Wright Patterson Air Force Base, Ohio 45433

The Bodner-Partom flow law which models viscoplastic material
behavior has been used to represent two nickel-base superalloys,
Gatorized IN100 and Inconel 718 at elevated temperature. Proce-
dures for the determination of the material parameters are present-
ed along with a discussion of the physical significance of each
parameter. The material model is then used in finite element
computations to evaluate the response of cracked bodies to
monotonic, sustained, or cyclic loading. Geometries investigated
include the center cracked panel, the compact tension specimen, and
the single cracked ring under tension. A Hybrid Experimental
Numerical (HEN) procedure has been used to deduce crack growth
rates from experimental displacement measurements which are input
into finite element computations. The results of several studies
conducted over the last several years are summarized.

INTRODUCTION

Sustained load crack growth data are often difficult to obtain
at elevated temperatures for several reasons. Optical measurements
of surface crack length produce large amounts of scatter when the
oxidized surface reduces the visibility at high temperatures.
Localized inelastic deformation in the vicinity of the crack tip
makes the exact determination of surface crack length ambiguous and
usually leads to variability in observations from one observer to
another., Tunneling, where the interior of the specimen grows at a
faster rate than on the surface, leads to erroneous crack length
data when surface measurements are used. Very low crack growth
rates, leading to small amounts of crack extension, can compound
the difficuities associated with- determining crack growth rates.
For long-term tests, around the clock and weekend observations are
required which are often impractical. As alternatives to optical
measurements, automated data acquisition systems provide desirable
features. Electric potential drop measurements, although requiring
sophisticated equipment and calibration, can provide continuous
data on crack length. Compliance measurements from periodic
unloading and reloading can provide discrete crack length values in
the absence 'of an observer. The simplest measurement, however, 1is
a continuous displacement measurement across two suitably chosen
points under constant load. If these displacement values can be
related to crack extension, crack length data can be obtained
easily and continuously.
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A procedure has been developed for determining crack length
from displacement measurements during sustained load crack growth
tests. This procedure, labeled the Hybrid Experimental Numerical
(HEN) method, utilizes experimental displacement data in finite
element method computations where a realistic constitutive model
describing the material behavior is incorporated. The model
describes time-dependent viscoplastic flow in an incremental strain
rate equation with a single state variable which includes the
materials history of loading. The constants for the model are
obtained from constant strain rate tests and creep data. The model
has been incorporated into a constant strain triangle finite
element program which is used in the HEN procedure. This procedure
has been applied to several cracked specimen geometries using
different displacement measurement techniques and locations. In
addition, the finite element program has been used to evaluate the
stress and strain states in cracked bodies under cyclic loading.
This paper presents a review of these applications of the finite
element method to cracked geometries.

BODNER-PARTOM FLOW LAW

The constitutive equations used to describe the elevated
temperature viscoplastic material behavior in this investigation
are those of Bodner and Partom.(ref. 1) The equations represent
time~dependent viscoplastic flow over a wide range of strain rates
using a state variable and are of the incremental type which does
not require a yield surface. Total strain rate is decomposed into
nonzero elastic and inelastic portions. The elastic portiom is
given by the time derivative of Hookes law while the inelastic
portion takes the form

2 .
P =(n+1) 2" \n -k
eij Do exp[_zn (3J2) ] ‘IZ sij (1)
where D and n are material constants, J, and s,; represent the
second Invariant and the components of tﬁe devialoric stress
tensor, respectively, and Z is a history dependent state variable
representing the materials resistance to plastic flow. The evolu-

tion equation for Z is given in rate form

[ - - - Z—Zz Tr
Z m(z1 z)wp AZI( 71 ) (2)

where m, Z,, Z,, A, and r are material constants and W_ is plastic
work. In %ota , there are 7 constants to be determinel from
experimental data. A procedure has been developed by Stouffer
(ref. 2) to determine the constants from constant strain rate
stress-strain data and creep curves. This procedure was applied to
Gatorized IN100 at 732°C, The constants used in the computatioms
described here were obtained from that investigation. Further
refinements to the procedure and a parametric study of the effects
of each constant on material behavior were presented by Beaman
(ref. 3) who obtained the constants for Inconel 718 at 649°C.
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Determination of Constants

The constant D_represents the limiting plastic strain rate or
the rate at which agplied stresses tgnd to infinity to sustain that
strain rate. It cap be chosen as 10 /second for most metals and
has been used as 10  in previous investigations. Unless high
strain rate behavior is being evaluated, any value above the range
of strain rates6being computed is adequate. We recommend fixing
the value at 10 . The next pair of constants to be evaluated are n
and Z.. The strain rate sensitivity at conventional testing rates
is de%ermined by n. The value of Z, represents the maximum value
or saturation value of Z. For the ﬁodner-Partom model,
stress-strain curves at conventional constant strain rates
asymptote towards a constant value of stress. At this stress, the
material is fully saturated, ie Z=Z,. At conventional strain
. rates, furthermore, the second term in eq. (2) can be neglected.
The procedure for determining n and Z, i1s to obtain values of
saturation stress for several (at least two) constant strain rate
tests over several decades in strain rate. The uniaxial version of
the flow law is written as

. 2 22
& - Fo 5 e (el &) (3

. Setting Z=Z, in eq. (3) and rearranging term leads to

1

o+l
1 + ln(ﬁ)] (4)
The first term, which involves ép » 18 linearly related to 1n<.
Plotting the experimental data and fitting the best straight line
will provide a value -2n for the slope. From n, a valq%,of Zl can
be determined from eq. (3) from any pair of values of & and o
along the straight line. Considering again the high strain rate
regime where the recovery term in eq. (2) can be neglected, eq. (2)
can be written in differential form and integrated to yield

1n [-1ln

r
%5 ] = =2n lno+ [2n 1nZ
(]

ln(Z1 -2) = ln(Z1 - Zo) - me (5)

where Z 1is the initial hardness when no plastic work has been
expendea. From a stress-strain curve at a constant (high) rate,
values of Z can be computed for corresponding values of W_ allows
the determination of Zo as the extrapolated value for W R 0 which
are obtained by integrating the area under the stress-plgstic gtrain
curve, Plotting 1n(Z,-2Z) against plastic work W_ allows the
determination of Zo a8 the extrapolated value for W = 0 from a
best linear fit to the data. The slope of this 1in will define
the value for m which controls the shape of the stress-strain
curve.

If material behavior at very low strain rates, in the creep
regime, 1s to be modeled, the second term in eq. (2) has to be
used, Determination of the constants A, r, and Z, requires creep
or very low rate stress-strain data. Note that the saturation
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stress in a stress-strain test at very low constant strain rate is
equivalent to an applied stress in a creep test causing a steady
second stage creep rate. The constants can be determined by
matching the experimental data on a plot of ln strain rate against
stress as shown in Fig. la. For steady state values, ie constant
strain rate under constant stress or vice versa, Z must achieve a
steady state value from eq. (3) and, thus, Z must be zero in eq.
(2). These two equations, when combined, provide a functional
relation between the non-dimensional quantities § P/D andc/z
Figure la shows the overall behavior of the curve and the reglons
affected by the several constants. Figures lb, ¢, and d show the
effects of varying each of the constants, A r, and Z, individually.
These curves also show the insensitivity to these constants at the
higher strain rates. An interactive computer program with graph-
ical display of the equations has been found useful in determining
the constants A, r, and Z, by trial and error manipulation.
Basically, each constant controls one aspect of the curve, ie
either slope or location of an inflection point. Following the
procedure outlined above in the correct order makes it relatively
easy to arrive at the Bodner-Partom constants from uniaxial data.

THE HEN PROCEDURE

The hybrid experimental numerical procedure (HEN) was devel-
oped by Hinnerichs (ref. 4) to determine creep crack growth rates
from expermental displacement measurements. The procedure uses a
finite element computer program called VISCO (ref. 4) and utilizes
the Bodner-Partom equatiomns to describe the inelastic material
behavior. These equations are incorporated into the VISCO computer
code which uses constant strain triangular elements. The code
computations utilize experimental displacement data as input in the
HEN procedure. Essentially, the HEN procedure compares
experimental displacements at a fixed point on a specimen to finite
element model displacements at the same fixed experimental point.
If the finite element displacement values (including creep and
plasticity) are below the experimental ones, the crack is allowed
to extend by popping a node. In this manner, increments of crack
extension occur by node popping in the finite element scheme,
Figure 1 shows a schematic of a center cracked specimen which was
utilized by Hinnerichs et al (ref. 5) in the first application of
the HEN procedure to determine qreep crack growth rates in IN100Q.
The experimental displacements were determined by Sharpe (ref. 6)
using a laser interferometric technique which has a measurement
precision of approximately 0.0l micron. The center cracked panel
specimen was 25 mm wide by 7.6 mm thick. Displacements were
obtained across two closely spaced microhardness indents on either
side of the initial crack at distances of approximately 0.1 mm
behind the crack tip as shown schematically in figure 2.

The computational scheme provides displacements at the mea-
surement location from creep strains in the cracked specimen under
sustained load. Figure 3a shows the computed displacements (NO
CRACK GROWTH) compared to the experimental values. It is seen that
the computed values are much less than those measured. The reason
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is that the crack is extending in the experiment which increases
the compliance of the specimen. To match the experimental dis-
placement measurements, the HEN procedure provides for node popping
to simulate crack growth. Nodes are popped whenever additional
displacements are required to match the experimental values. 1In
figure 3a, the points labeled RUN S2 show the displacements matched
to the experimental data through the appropriate node popping. The
node popping simulates the crack growth as seen in figure 3b. From
the slope of the crack extension versus time plots for each of the
experiments, a series of crack growth rates were obtained. These
values are plotted against stress intensity factor in figure 4 and
show very good correlation with creep crack growth data obtained by
Donath et al (ref. 7) at higher K values. Additionally, the total
amounts of crack extension computed for each numerically simulated
experiment agreed very closely with those measured on the fracture
surface of the specimen. In most of these cases, very small
amounts of crack growth were obtained (see fig. 3b, for example).

Computational Procedure

The finite element analysis uses the residual force method to
incorporate nonlinear viscoplastic material behavior into VISCO.
This method increments time directly, but load, strain and stress
are incremented indirectly through a time integration procedure.
To implement the residual force method, the plastic strain rate of
the material is determined from the Bodner-Partom constitutive
eqns. (1) and (2) describid in the previous section. Using the
current time increment dt~ and the plastic strain rate, &" , the
incremental plastic strain vector is

{detj’}i = {éq'} dt’ (6)

where the superscript "i" represents the current time increment.
The total plastic strain is then computed from the incremental
plastic strain from eqn. (6) as

'{e.;,-'} - o} " faeg} )

Pt
where {Qj} is the total plastic strain at_the current time
increment. Next, the plastic load vector {Qf, representing the
nodal forces generated by viscoplasticity is formulated as

il T i
(@7 = [ o7 p1{e} aw ®
Yol
where [B]T is the transposed strain-displacement matrix and [D] is
the stress—-strain matrix, TEe plastic load vector is then added to

the current nodal loads {P} to determine the current nodal
displacements, computed by
{U}i - &yt €1} 1. {o} -1y (9)
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where [K]-l, is the inverse elastic stiffness matrix and {U} 14s
the nodal displacement vector. The total strain vector is then

computed by .
{&d - 1 o}t (10)

Finally, the stress is updated using eqns. (7) and (10),

_ fou} - m1 {Gc'}l- {e.-}’}i> (11)

where {cy}‘is the current updated stress. This becomes the new
stress value to be entered into the constitutive model to generate
a new viscoplastic strain rate. This procedure continues for each
time increment until the desired simulation time for the problem is
reached,

Application to CT Geometry

The Hen procedure was subsequently applied to the compact
tension (CT) specimen geometry (ref. 8) using experimental dis-
placement data of Donath et al (ref. 7). Displacements were
obtained off E-shaped plates fixed to the top and bottom of the
specimen along the load line using LVDT's., These specimens were
5.4 mm thick and were tested using initial K values ranging from
33.0 to 49.5 MPa.m“, Figure 5a shows the finite element mesh used
in these computations. Figure 5b shows displacement data for one
of the specimens for the early part of the test. The crack ex-
tensions computed from these data using the HEN procedure are shown
in figure 5c. The data for the entire test which involved a
considerable amount of crack extension are presented in figure 5d.
It can be seen that the computed values follow those labeled
"effective length" fairly well. The effective lengths were ob-
tained from unloading compliance measurements taken periodically
during the sustained load test. There was fairly severe tunneling
in all of the tests after the crack had extended several millime-
ters. The final crack lengths, as determined from the numerical
computations using the HEN procedure, agreed with these from the
fracture surface better than those determined from compliance
measurements!

Application to a Ring Geometry

The third type of specimen was a 6 mm thick circular ring
having an outside diameter of 76 mm and an inner diameter of 38 mm.
The ring is loaded in tension using a pin and clevise arrangement
and is cracked from the inner diameter at a location 90° from the
two loading pins as shown in figure 6 which also shows the finite
element mesh details, The stress intensity solution for this
geometry shows a region of nearly constant K over half the
thickness of the ring. Displacements were obtained across the two
loading pins using LVDT's. Since load is constant and the tests
are under isothermal conditions, the differential displacements are
not affected by deflection of the load train or pins after the
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initial load 1is applied. The numerical solution in the HEN
procedure is, however, very sensitive to the manner in which the
load is applied to the finite element grid.

The displacement measurements along with experimental data on
crack length from compliance measurements were obtained by Donath
et al (ref. 7). There was considerable scatter in the experi-
mentally determined crack lengths and difficulty in correlating
total crack extension with that measured on the fracture surfaces.
The displacement data, on the other hand, appeared to be smoother
and more consistent. For this reason, the HEN procedure was
applied to obtain a somewhat independent determination of crack

"extension in the same specimens. Results of a typical case are
presented in figure 7. Crack extension versus time from the HEN
procedure are compared to the experimental data, The final crack
lengths from the HEN procedure agreed closely with.those obtained
experimentally. In figure 8, the stress in the "y" direction is
plotted versus horizontal distance ahead of the crack tip after
various crack extensions. These stresses are determined at the
centrold of each triangular element ahead of the crack tip which

" has the same dimensions, therefore, element size effects are
eliminated. Notice that the peak stress at a crack length of 8.26

mm (.325 in) is 955 MPa (138.5 KSI) but drops to 782 MPa (113.4
KSI) after 3.18 mm (.125 in) of crack growth. This peak stress
reduces slightly with each subsequent crack advance. As the crack
advances, the stress distribution becomes sharper indicating that
as the crack propagates to the edge of the ring, stresses ahead of
the crack are greatly reduced as the other side of the ring carries
the major load.

CRACKED BODIES UNDER CYCLIC LOADING

- The Bodner-Partom constitutive equations have been used in
finite element computations to determine the stress and strain
fields in a compact tension specimen in the vicinity of the crack
tip when the specimen is subjected to cyclic loading. The VISCO
computer code was used in these investigations, In the application
of the Bodner-Partom equations, no modifications were made to
account for kinematic versus isotropic hardening behavior of the
material. The material was assumed to undergo isotropic hardening
during cyclic loading. The first problem investigated was that of
a CT specimen under cyclic loading at various frequencies at a
stress ratio (ratio of minimum to maxi..:m applied load) of 0.1.

The uniaxial response of the constitutive model to an applied
cyclic load of load ratio 0.1 was also computed for comparison.
Figure 9a shows the uniaxial response to a maximum stress of 1241
MPa at a frequency of 0.167 Hz. Figure 9b shows the effective
stress versus strain in an element directly ahead of the crack tip.
It was observed in both the uniaxial model and the CT specimen at
the crack tip that strain continued to accumulate under cyclic
loading. In the CT specimen, the element ahead of the crack tip
appears to cycle under more or less fixed stress limits. The
finite element computations were able to provide additional details
of the stress and strain fields around the crack tip. Figure 10
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shows the stress profile ahead of the crack tip after 2% cycles and
then after a 15 min hold at maximum load. It can be seen that
there is a slight change in the stress field during the hold time.
Experimentallg, sustained load crack growth occurs at this K value
of 38.5 MPa.m*. To simulate this crack extension, a node was re-
leased. The results, shown in figure 10, indicate that the stress
field with respect to the position of the crack tip has not
changed. This is in contrast to the results in the ring tests
where there was a change with crack extension (see fig. 8).

A similar study was carried out to evaluate the stress and
strain field under fully reversed cyclic loading in a CT geometry
(ref. 10). Figure 11 shows the displacement profile behind the
crack tip at various load levels. It can be seen that residual
displacements due to inelastic deformation have occured, At zero
load, there is crack opening a small distance behind the crack tip.
In these_ numerical exercises, no account was taken of any plastic
wake which formed behind the crack due to prior cycling.

CONCLUSIONS

The Bodner-Partom flow law is a realistic representation of
material behavior in nickel base superalloys at elevated tempera-
tures. The use of this model in finite element computations of
stress fields in cracked bodies provides valuable insight into
elevated temperature creep and fatigue phenomenology. These tools
are also very valuable in predicting sustained load crack growth
rates from experimental displacement data using a hybrid-
experimental-numerical procedure,
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‘FINITE ELEMENT ANALYSIS OF NOTCH
BEHAVIOR USING A STATE VARIABLE CONSTITUTIVE EQUATION

L.T. Dame, D.C. Stouffer and N. Abuelfoutouh
Department of Aerospace Engineering and Applied Mechanics
University of Cincinnati, Cincinnati, Ohio 45221

The state variable constitutive equation of Bodner and Partom was used

to calculate the load-strain response of Inconel 718 at 649°¢C in the root of
a notch. The constitutive equation was used with the Bodner-Partom
evolution equation and with a second evolution equation that was derived
from a potential function of the stress and state variable. Data used in
determining constants for the constitutive models was from one-dimensional
smooth bar tests. The response was calculated for a plane stress condition
at the root of the notch with a finite eleément code using constant strain
triangular elements. Results from both evolution equations compared
favorably with the observed experimental response. The accuracy and
efficiency of the finite element calculations also compared favorably to
existing methods.

INTRODUCTION

The purpose of this work is to explore the development, efficiency and
accuracy of a finite element computer code for hot section gas turbine
components that is based on a state variable constitutive equation. The
Bodner-Partom constitutive equation [1,2,3] used for this study, does not
require the use of a yleld surface or separate representations for loading
and unloading in the elastic and inelastic domains. The model contains a
single state variable to define the resistance to inelastic flow or
hardness. This variable is determined from the deformation history in this
study using two different evolution equations. The results from the
evolution equation developed by Bodner and Partom and proposed with the flow
equation are compared to the results computed from an evolution a2quation
that is derived from the inelastic flow equation itself, [4,5]. The second
formulation is established using a potential function that can be derived
from the first law of thermodynamics.

One of the important aspects of this study is to test the tensorial or
multidimensional characteristics of the Bodner-Partom flow equation. The
material parameters for the study are determined from one dimensional tests

(tensile, creep and fatigue) on Inconel 718 at 649°c. The equations are
used to compute the response of a notched specimen using a plane stress
finite element computer analysis. The calculated results for the strain in
the root of the notch are compared to measured values reported by Domas et
al in [6] for the same material. This provides a test of the model to
predict the response in a general state of loading from data obtained in
uniaxial experiments. A comparison that is usually difficult to achieve.
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Another {important aspect of this work is the development of the finite
element computer code as a design tool and utlilizes the state variable
constitutive model. The code 1s based on two-dimensional constant strain
triangles, an initial strain iterative procedure, piecewise linear load
histories in a steady state thermal environment and a dynamic time stepping

algorithm,
THE BODNER-PARTOM EQUATIONS

These equations were motivated by the concepts of dislocation
dynamics and formulated in the context of mechanics. For small strains, the

strain rates are considered to be decomposable into elastic, ETJ, inelastic,
é{J, and thermal, éTJ, components; that is
. [X-) oI oT
= e + € 1
13 7 13 * Fyy * Eyy (1)
where éij are given in terms of the stress rates determined from the time
derivative of Hooke's Law and eT is proportional to the change in

13
temperature from a reference state. All components of Equations (1) are
always nonzero for all nonzero values of stress and stress rate. However,
the values of the inelastic strain rate term are negligible for small values
of stress; thus, a yleld criteria and separate loading and unloading
representations are not required.

The inelastic strain rate is written in a form similar to the Prandtl-
Reuss flow law; i.e.

I _n+1.2% .n iJ
€13 D, exp{ 5 L3J2] } 3 (2)
where D0 is the limiting strain rate in shear. The material constant n

controls the strain rate sensitivity and also influences the overall level

of the stress-strain curves and J2 is the second invariant of the deviatoric

stress tensor, SiJ’ The internal state variable, Z, governs the resistance
to inelastic flow such that an increase in Z corresponds to work hardening
and would require an increase -in-stress to maintain a constant inelastic

strain rate.

The hardening law proposed by Bodner and Partom for application with
several materials is
Z- Z
Z -z, - )W - Az, (—-—) (3)
1 .
where Z = Z0 initially. The first term defines the rate strain hardening

and W = Sijéij 1s the inelastic rate of working. The second term in
Equation (3) characterizes the thermal recovery and is important for
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predicting creep. The representation is only for primary and secondary
creep, and the secondary creep rate is obtained when Z = 0. The constant Z1
defines the maximum value of Z and 22 is the minimum value of_Z obtained in
thermal recovery. Frequently Z2 is taken equal to Zo; that is, the initial

hardness and minimum recoverable value of Z are equal. Methods to determine
the constants are presented in References [7] and [8], and the constants for

Inconel 718 at 649°C are given in Table 1.

The model presented above, in addition to neglecting tertrary creep, is
limited to an isothermal environment and isotropic hardening. An extension
to time varying temperature histories is based on making n temperature
dependent as reported in [3]. Extension to a hardening rate similar to
kinematic hardening for uniaxial histories is given Reference [9]; but a
full three dimensional anisotropic hardening law still needs to be verified
for a variety of loading conditions.

A POTENTIAL FUNCTION DERIVATION

Recently it has been shown [4,5] that a system of equations to predict
the inelastic strain rate and evolution of the state variables are derivable
from a potential function. The essential structure of the theory is based
on the balance law of thermodynamics and the concept of work hardening. For
isothermal histories, the reduced form of the potential relationship is

.I -al o -ﬂ
€13 3oy, and u = 37 (4

where ¢ is a function the stress and stress state variable, Z. The quantity
# is a strain on the microscopic scale such that Zdu is the stored energy of
cold work. The relationship between u and Z on the microscopic scale is
taken in the form of the Prandtl-Reuss equation on the macroscopic scale;
i.e.

p=gZ+hz (5)
where g and. h are generally assumed to be functions of o1J and Z but are

taken as constants in this study. Combining Equations (4) and (5) and
redefining the constants as o« and B gives

Z = - a(Z-£) + a8l (6)
where £ 1s a material parameter. The quantity I is the integral
I - ft Gt do (7)
o1 9z ij
le7] o
where |éI - (éijéij)1/2 and éij is evaluatéd using the Bodner Partom

Equation in this example.
The parameter a characterizes the initial rate of hardening, io, which

arises from the integration. This term contributes to the strain rate
sensitivity of the model and includes the initial loading such as in a creep
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test [4]. For this exercise a is taken as 125|§°|: The remaihing parameters

£ and £ can be calculated directly from creep or tensile data during steady
state conditions; that is, when both the strain rate and stress are

approximately constant. In this case Z = 0 and Z obtains a steady value,
Zs, that depends on the test conditions. A plot of Zs vs I for Inconel 718

at 6"9°C shows that this response is nearly trilinear and can be represented
by the parameters shown in Table 1.

FINITE ELEMENT IMPLEMENTATION

The finite element code utilizes two dimensional constant strain
triangles and an initial strain iteration technique. To facilitate the
simulation of arbitrary load histories, the load history is partitioned into
plecewise linear segments. In order to simplify input, reduce stability
problems and minimize cost a dynamic time stepping procedure is also
incorporated.

The incremental equilibrium equation for the initial strain method with
steady satate thepyal coqgit;ons is

tk1{ad’} = {aF} + {aFT} (8)
where [K] is the elastic stiffness matrix, {AdT} is the increment in the
total_gisplacement vector, {AF} is the increment in the applied force vector
and {AFI} is a pseudo force vector due to the increment in a vector of the
inelastic strains components. The vector {AFI} is calculated by

1, N Teoy I

{aF7} = (I[B] [E]{Ac"}dv) (9)

1 v

where N is the number of elements. In Equation (9), [B] is the strain
displacement matrix and [E] is the elastic constitutive matrix.

At the beginning and end of a linear load case the elastic solutions
are obtained using

E . -1
and
{dE}F - EK]°1{F}F . (10)

The vectors {dE}o p are the {nitial and final elastic displacements due to
?
initial and final applied thermomechanical loads. The elastic displacements

at any time ti in the load case are given by
t,.-t
E E i 70 E E -
{a¥}, = {a%}, * T, [{a™}g - {a¥},). (1)

The total displacement vector at time t1 is written as

("}, = 1}, + (¥}, + {ad”] (12)
where the increment in the inelastic displacement vector is
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{ad} = [k]™"{arT} | (13)

'and'the increment in the inelastic pseudo force vector 1s given by Equation
(9). Thus, it is necessary to integrate the constitutive model from time

t1_1 to ti. Although any number of integration schemes could be used, a

second order Adams-Moulton method was employed. Since the flow equation and
the state variable evolution equation are coupled an iterative procedure is

required to compute {éI} and Z at the end of a time step. The integration
of the constitutive equation is within the overall equilibrium iteration
loop as shown in Figure 1.

A significant improvement in the iteration scheme was achieved by
making an initial estimate of the incremental inelastic pseudo force vector

{AFI} in the first iteration of a new time step. If {AFI} is set equal to

zero on the first iteration of a new time step (as is usually done) the
first estimate of the solution may be very poor. An initial estimate of the

inelastic strain increment for each element can be made using {AeI} =
{EI}i_1At, where {EI}i_1 is the inelastic strain rate at the beginning of

the time increment. If this is then used in Equation (9) to make an initial
estimate of the incremental inelastic force vector the stability and rate of
convergence of the method is improved. By including this logie, the number
of equilibrium iterations was reduced by about 60%.

In a finite element code that allows a linear variation of applied
loads, large excursions in stress and inelastic strain rate are to be
expected. To be economical and easy to use, dynamic time incrementing is a
necessity. There are two important considerations in developing such an
algorithm; first the stability of the iteration scheme and second the
accuracy of the integration procedure. The stability of the system of
equations depends on the constitutive model, geometry, loading history and
material parameters. An approximate but simple and effective approach is to
base the time step on the maximum inelastic strain increment to occur in all
of the elements. In order not to overshoot the point where inelastic strain
rates become significant it is also necessary to limit the maximum stress
increment. A final consideration is controlling the local integration error
when computing inelastic strain increments. For components in which fatigue
life is a major consideration the accurate calculation of local stresses and
strains is crucial. In order to control the error the time step should be
chosen such that the local integration error does not exceed some allowable
value,

CALCULATED AND EXPERIMENTAL RESULTS

A recent comprehensive study, [6], of the strain in the root of a notch
was conducted for a variety of local patterns in Inconel 718 notch

specimens at 6ﬁ9°C (1200°F). A laser interferometric strain displacement
gage was used with reasonable certalinty to evaluate the displacement of a
gage 100 microns in length at the root of the notch at temperature. The
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measurements were made for six load histories including continuous cyecling
and cyecling with hold time periods in tension, tension and compression, and
compression., The specimen was a thin flat double notch bar, as shown in
Figure 2, with an elastic stress concentration factor of 1.9. The geometry
in the test section is approximately plane stress and is modeled by the
constant strain triangular element mesh also shown in Figure 2.

The above study included a limited number of smooth bar tests in
tension, creep and cyecling for use with a Neuber analysis. These data and
other published tensile, [10], and creep, [11], data were used to evaluate
the material parameters in the flow and evolution equations. The constants
were evaluated using the methods reported in (4], (7] and [8]). The major
difficulty encountered was not having two complete tensile curves at
different strain rates to evaluate the parameter n in the inelastic flow
equation. Thus an estimate was used based on déne curve and the other
constants, as shown in the Table 1, were evaluated based on this value.
Increases in n would change the values of the other parameters, but the
combined effect would produce essentially the same predictions with less
strain rate sensitivity in the tensile response. Decreases in n would cause
the equations to overpredict the tensile strain rate sensitivity.

The calculated response to a smooth bar tensile test at a strain rate
of one percent per minute is shown in Figure 3a for the two evolution
equations. The potential function representation overpredicts the observed
streas in the transition from elastic to plastic response; however the
asymptotic behavior of both representations match the data very well. The
calculated smooth bar creep response is shown in Figure 3b for three values
of stress. The results of the calculations are mixed with the potential
function representation better at the high value of stress, the Bodner-
Partom representation better at the intermediate value of stress and both
models underpredicting the creep strain at lower values of stress. In
general, representations could be improved by adjusting the material
parameters; however, with only five curves in the smooth bar data base there
is no guarantee that this would improve the predicted response of the notch
strain. The flow law i3 also limited to primary and secondary creep, sSo no
correlation with the tertiary creep is included.

The strain response at the root of the notch for three tests is shown
in Figures 4, 5 and 6. The total specimen load is held constant for two
minutes in compression, tension and compression, and tension as shown in
Figures 4, 5 and 6, respectively. The finite element and experimental
results are for the first cycle. 1In general, both evolution equations match
the measured data rather well. The largest error is the over prediction of
the tensile creep in Figure 6 by both equations; however, the measured
tensile creep in Figure 6 is much léss than the measured tensile creep in
Figure 5 where the predictions are satisfactory. The assumption of
isotropic hardening appears reasonable for the first cycle and the
correlation with compressive creep {s shown in Figures 4 and 5.

DISCUSSION

The state variable constitutive models used in this study have several
advantages and limitations. The formulation is convenient for finite
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element methods, because it admits a forward time marching integration
procedure and does not require separate loading and unlocading
representations. The flow law and evolution equation can predict many
inelastic effects; however, for Inconel 718 there still are some areas that
need improvement. Inconel 718 general exhibits a combination of "kinematic
and isotropic®" hardening and softening in uniaxial c¢ycling which is not
included in the current formulation. Further, the constitutive models have
not been fully developed and verified for nonisothermal loading conditions.
For extension to multiple cycle analysis it would also be advantageous to
use the cyclic stress—-strain curve rather than the monotonic response curve
to determine the material parameters.

There 1s a correlation in the errors observed in the calculated finite
element response at the root of notch and the smooth bar calculated
response. When using the Bodner-Partom evolution equation, (3), the creep
strain at 827MPa(120KSI) was over predicted. The calculated tensile creep
response in the root of the notch is largest for the Bodner-Partom equations
as shown in Figures 5 and 6. This observation indicates that the finite
element predictions could be refined by improving the smooth bar calculated
response. Recalling that the constitutive parameters were obtained from
five curves, one tensile and four creep published [6,10,11] between 1971 and
1982, the calculations are reasonable and could be improved by improving the
smooth bar data base.

The computational exercises were limited to Initial cycle of three load
patterns for reasons of cost and lack of cyeclic data to develop the model.
The computational efficiency proved to be very good. On a Honeywell 6000
computer, the run times varied from 1.5 to 3.5 CPU hours for a model with
over 1000 elements. This is very competitive with similar finite element.
calculations based on classical plasticity and creep formulations. Further,
the longest time could have been reduced by incorporating all the time
saving features used in the later runs.
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Table 1. Constitutive Parameters

Flow Equation:

D, = 10%sec”! n = 1.954
Bodner Partom Evolution Equation:
Z, = 1805MPa (262 KSI) A = 5.6 x 107%sec”
z, = 2253¥Pa (327 KSI) M = 0.160MPa "
Z, = 1805MPa (262 KSI) R = 1.37

Potential Function Evaluation Equation:

Z, = 1860MPa (270 KSI) a = 125|e |
|&¥] s3.2x107%ec™ -0
B = 4.01 x 107MPa/SEC(5.82 x 10°KSI/SEC)
1€l > 3.2 x 107"%Ecana ¢ - -4033MPa(~585 KsI)
18] s 7 x 1078sec™ 8 = 1.60 x 10°MPa/SEC(2.33 x 107KSI/SEC)
18] > 7 x 1078sec™ g = 1102MPa(160 KSI)
7 6

B = 2.94 x 10 'MPa/SEC(4.27 x 10 KSI/SEC)
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Figure 1. Schematic diagram of the iteration procedure for the finite
element program.
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Figure 2., Description of the benchmark notch specimen and the finite
element mesh at the root of the notch.
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Figure 3., Comparison of experimental and calculated response of Inconel 718

at 649°% using the Bodner-Partom and potential function evolution
(A) tensile response at 1% per minute and (b)
comparison of creep response at 689MPa(100KSI), 758MPa(110KSI)

equations:

and 827MPa(120KSI).
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Figure 4., Comparison of experimental and calculated load-strain response at
the root of the notch for Benchmark Notch Test 8 with a hold in
compression.
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NONLINEAR ANALYSIS OF AN AXISYMMETRIC
STRUCTURE SUBJECTED TO NON-AXISYMMETRIC LOADINGS

P.C. Chen and R.L. McKnight
General Electric Company
Cincinnati, Ohio 45215

The development of the SHELPC finite element computer program is
detailed. This program is specialized to simulate the nonlinear material
behavior which results from combustor liner "hot streaks*. This problem
produces a nonlinear Fourier Series type loading on an axisymmetric
structure. Example cases are presented.

One problem which is unique to Aircraft Gas Turbine Engines (AGTE's) 1is
the thermal hot streak problem experienced by certain combustor liners. These
liners are thin axisymmetric pressure shells whose function is to contain and
promote the combustion process. Because of the high temperatures involved in
this combustion process, the functioning of these liners depends on their
being "cooled" by lower temperature air from the compressor. To complicate
this problem further, the temperatures generated by the combustion process are
?gt uniform in either the axial or circumferential directions of the combustor

ner.

The temperature variation in the axial direction is the variation normally
shown in textbooks and calculated from the thermodynamic laws based on
pressure/volume considerations. The circumferential variation is a more
complex, three dimensional mixing problem. It is a function of the number of
fuel nozzles employed and the geometry and thermodynamics of the combustor.
The result is a circumferential variation in the metal temperature of these
liners which can be approximated with Fourier Series.

The functional lives of these liners are primarily dictated by the
resulting material response to these temperature variations, which produce
thermal stresses. The stresses produced by the differential pressures across
the Tiner walls are limited to small values and are secondary contributors to
the problem. Because of the high temperatures and large temperature
variations involved, the material response problem is nonlinear and time
dependent. AEBG has been active in developing internal computer tools for
attacking these types of unique AGTE problems. Our capabilities include both
two-dimensional and three-dimensional nonlinear finite element computer
programs.
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The thermal stress problem generated by the axial variation in metal
temperatures can be handled quite readily by a two-dimensional (axisymmetric)
analysis. However, the thermal stresses generated by the circumferential
variation in metal temperatures is truly a three-dimensional problem. As
such, one method of attack would be to develop a simulation using
three-dimensional finite elements, such as our 8, 16 or 20 noded isoparametric
elements.

This method of attack has drawbacks in economy, accuracy, and utility.
The number of hot streaks can be quite large (in the 60's) and the hot to cold
temperature variations can be in the hundreds of degrees Fahrenheit. This
would require a large number of 3D elements to produce an acceptable
simulation. This could also produce bad element aspect ratios, resulting in
solution accuracy problems. Varying these models in an iterative design
process would be manpover and computer intensive. For these reasons we sought
other methods of attacking this problem.

Since the circumferential temperature variations can be represented as
Fourier Series expansions, this suggests attacking the structural problem by
means of Fourier Series. This method of attack for linear elastic problems in
a finite element format was presented by E.L. Wilson in Reference (1). For
linear elastic problems the method of superposition of Fourier Series loading
is mathematically exact and precise. However the problem in question is
nonlinear.

In Reference (2), E.A. Witmer and J.J. Kotanchik presented a nonlinear
solution procedure for axisymmetric shells under asymmetrical loading. In
their approach, they utilized an initial strain method with Besseling's
isothermal constitutive model in a sublayer format. This then presented a
method of attacking nonlinear Fourier Series loading problems but with one
tremendous deficiency; our problem under consideration is totally
nonisothermal in nature.

Subsequently, one of the present authors, R.L. McKnight, developed a
variable temperature version of Besseling's constitutive model in a subvolume
format as presented in References (3) and (4). This has been the primary
basis of AEBG'S internal nonlinear computer tools since 1975. To this
time-independent plasticity formulation, we added classical creep capability
with time-hardening, strain-hardening, and 1ife-fraction rules for attacking
quasi-static time-dependent nonlinear problems. Over the years, through large
amounts of production usage, these tools have been provided with much
verification, validation, and operational experience for both 2D and 3D
problems. With this background, we decided to reattack the combustor liner
hot streak problem:

SHELPC

The following is a synopsis of the theoretical development of the
combustor liner program, SHELPC. A complete development will be found in the
Ph.D. Dissertation of P.C. Chen, to be published Tater.

As in Reference (1), the finite element employed is the triangular ring
element shown in Figure 1. This is an extension of that element commonly used
for plane stress, plane strain, and axisymmetric analysis. In those cases,
there are two degrees of freedom, or displacements at each node. To allow for
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the circumferential variation in load a third degree of freedom, the
circumferential or hoop displacement, is introduced. These three displacement
components are assumed to be linear functions of position in the R-Z plane.
This is expressed mathematically as follows

UR = b1 + bzR + b3Z

Uy = b, + bR + b2 (1)

Uso = b, + bR + b2

S 7 8 9

The strain components in terms of these displacements are (for small displace-
ment theory).

.« 2R
R 3R
Uz
e = -
u u
=l.3_9 —
€9 "R ® 'R
U U
. 3R 32 2
‘Rz " 37 - Y| (2)
U U
€70 = 0 8 1372
4] e + R ?EV'
u u U
=1l 3R .36 8
R " R 36 +3R - R

The loading is now allowed to varying in the circumferential direction in a
sine or cosine fashion as defined in Table 1.

Equations (1), then become

UR = (b1n + b2nR + b3nZ) cos Ne
UZ = (b4n + bSnR + bsnz) cos Ne (3)
Ue = (b7n + anR + bgnZ) Sin Ne

or
Up = (bln + ban + b3nz) Sin Ng

Uy = (by, * bg R + bg Z) Sin Ne | (4)
Ug = by, * bgyR + bgZ) Cos Ne
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TABLE 1

FOURIER SERIES LOADING AND DISPLACEMENT DESCRIPTION

Symmetric about a Anti-symmetric about a
plane containing the plane containing the
axis_of revolution axis of revolution

T = zTn(r,z) cos né Ts= zTn(r,z) sinn o
Sp = zsrn(r,z) cos né S, = zsrn(r,z) sin ne
S, = ;Szn(r,z) cos né S, = zszn(r,z) sin ne
Se = zsen(r,z) sin ne Sq = zsen(r,z) cos ne
U, = zUrn(r,z) cos ne U, = zUrn(r,z) sin ne
u, = EUzn(r,z) cos ne u, = zuzn(r,z) sin ne
'Ue = tUg,(r,2) sin ne U = U, (r.z) cos ne

n is the harmonic number.
T is the temperature.
S's are the loads.

U's are the displacements.
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To introduce nonlinear material behavior, we make the classical assumption
that the total strains consist of a summation of elastic, plastic, creep, and
thermal components

€= ee + eP + ec + eT ' (5)
We also assume that stress is linearly related to the elastic strain only
o=(C ¢° : (6)

o= C(e - eP - cc - eT) (7)

Where C is the elastic Hook's Law matrix.

The sum of the plastic, creep, and thermal strains are considered as
initjal strains.

I
e P eC €T (8)

or ¢ = C(e - cI) (9)

Applying the precepts of Reference (2), we make use of the Principle of
Stationary Total Potential Energy.

The strain energy density is expressed as

=5 OT e (10)
or

U= 5lc(e - )T (e - &) (12)

U0=13% (¢ - el)T C(e - eI) (12)

The total potential energy of one ring element is

T

PE = 1, (e - )T ¢ (c - el)av - &TF (13)

where § is the generalized displacements and F is the generalized external
forces.

For a system of ring elements, this development leads to
Ks = F + FI (14)
where

K = elastic stiffness matrix for
discretized system
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8 = generalized displacements of the
' discretized system

F = applied generalized forces

FI = generalized forces due to initial
strains

Now, to introduce the Fourier Series loading into this system of
equations. Our assumption is that the total strain can be considered to be
made up of the sum of a certain number of A-series and B-series Fourier
components. The A-series components are those symmetrical about a plane
containing the axis of rotation. The B-series components are those
antisymmetrical about a plane containing the axis of rotation (see Table 1).
Thus we assume

U(R,Z,0) =2 uﬁ (R,Z) cos Ne

15
+3 U8 (R,2) Sin Ne (15)
" and therefore

e(R,Z,8) = ¢ cﬁ (R,Z) cos Ne

4y B (16)

Iey (R,Z) Sin Ne

or

A B

e(R,Z2,8) = ¢ (R,Z,8) + ¢ (R,Z,8) (17)
and, using Equation (5)
e(R,2,68) = eeA(R,Z.e) + ePA(R.Z,e) + eCA(R,Z,e)
+ AR,2,0) + 2B(R,2,0)
+ ¢'8(R,2,8) + ¢®B(r,2,0)
4+ ¢1B(R,2,0)  (18)
For a discretized model, the system of equations are set up and solved a
harmonic and a series at a time
A, »IA o '
an 5 Fﬁ + FN - ' - : (19)
B, 8, B L B -

Tl & ™ P+ P | (20)
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The nodal dispiacgments are then given by

6(R,2,8) = aﬁ cos Ne + zsﬁ Sin Ne (21)

NONLINEAR SOLUTION SCHEME

A given axisymmetric geometry with thermal and mechanical loadings which
can be simulated by Fourier Series is first discretized by triangular rings.
The pertinent system of equations, (19) and (20), are set up and solved, first
assuming elastic behavior. This gives a first approximation for the nodal
point displacements. With these results, which are the amplitudes of Fourier
Series displacement components, we can now determine the displacements at any
circumferential location.

A minimum period is selected based on the lowest order harmonic other than
0 (for the combustor liner this is determined by the number of fuel nozzles).
This minimum period is then approximated by 10 points in the 0-direction. At
each of these 10 points, each rings nodal point displacements can be
determined. From this the total strain can be determined for each location.
Then using the constitutive models as covered in References (3) and (4), an
initial estimate_is made for the inelastic strains and from these inelastic
pseudo-forces, FP and FC. These inelastic pseudo-forces are then
approximated by the Fourier Series harmonics.

FP(R,Z,8) = 2R, PP (R,2) Cos Ne + IF,'D (R,Z) Sin Ne
(22)
FER,Z,0) = 2FyCR (R,2) Cos Ne + zF, B (R,Z) Sin Ne
The amplitudes of these harmonic pseudo-forces are then added to the initial
force vector. FyL(R,Z,8) = FyTA(R,Z) Cos Ne + F,TB(R,2) Sin e

+ F,PAR,2) cos Mo + FPB(R,2) Sin Ne (23)

+ F,%(R,2) Cos Mo + Fy,®(R,2) Sin Ne

This new value for the initial force vector is used to obtain a new series of
solutions. From these, new inelastic strains are predicted and from these a
third initial force vector. This process is continued until convergence

occurs.
EXAMPLE "CASES -

- In order to verify the correctness of the solution .scheme: as outlined,
several comparisons with finite element methods were made. Two problems
analyzed are presented, one representing combined thermoplasticity and creep
under cyclic loading, and the other a verification of the elastic Fourier
series analysis capability. These cases represent a check on the two basic
aspects of the combined elastic/plastic technique for harmonic -loading. -
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In the first case, which verifies the cyclic plasticity and creep
capability, a thick-walled cylinder is subjected to a time-varying pressure
and temperature loading history (Figure 2). These loadings are the
predominant types experienced by combustors. Plane strain conditions were
assumed, the finite element model being composed of triangular ring elements
as shown in Figure 3. The model was also run using the CYANIDE 2-D computer
code, subjected to the same temperature and pressure history as shown in
Figure 2. The comparison between SHELPC and CYANIDE 2-D under these
axisymmetric loadings was then made, the results being presented in Figures 2
and 4, Figure 2 shows a comparison of radial displacement versus time for the
two methods. Figure 5 shows the residual stress distribution through the
wall at t = 10 hours when the pressure was equal to zero. As can be seen from
these results, correlation was very good. '

A second test case was used to check the Fourier series method under a
;hermal loading represented by the combination of temperature harmonics of the
orm:

T(8) = 70 + 30 cos (48)

In an actual component, such as a combustor, the harmonics used would be a
function of the number of "hot streaks® around the circumference. The model
used was again a thick-walled cylinder as shown in Figure 3. To verify the
response of the structure to this type of loading, the same model was run
using the CLASS/MASS code which also has harmonic loading capability but
limited to linear elastic behavior. This problem was run elastically with
SHELPC in order to achieve a direct comparison. Results are presented in
tabular form to demonstrate the closeness of the numerical comparison. 1In
Table 2, the displacement components from SHELPC and CLASS/MASS are compared
for the harmonic loading:

T(8) = 30 cos (49)

Table 2: Nodal Displacements at 8 = 00 Due to a
Single Harmonic Thermal Load

T(8) = 30 cos (40).

Node SHELPC (10-3 jnch) CLASS/MASS (10™3 inch)
No. R P %o IR ) 13
1 | -8.947 | -7.726 | 8.633 | -8.958 | -7.736 | 8.641
2 | -8.946 | 7.727 | 8.633 | -8.958 | 7.736 | 8.641
3 | -0.2380| © 3.661 | -0.2445| © 3.646
4 7.718 | -8.767 | 9.678 | 7.719 | -8.770 | 9.678
5 7.718 | 8.767 | 9.678| 7.719 | 8.770 | 9.678

In Table 3, the individual harmonic results from SHELPC for the displacements,
The results from a combined harmonic run are

stresses and strains are shown.

also tabulated.

superimposed.
values.

As can be seen from this table, the results are correctly
They also correlate well with the corresponding CLASS/MASS
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Table 3. Nodal Displacements and Element Strains and Stresses at 8 = 0
Due to Combined Harmonic Thermal Load (i.e., T(8) = 70 + 30
cos 40).
Nodal Dleplecements (10~3 fnch)
Node n=C <k Towbined
No 0" iz [ b iz (7 ([ iz T
t |o0.4200 | -0.2100 | 0 | -0.08947 | -0.07726 | 0.08633] 0.3305 | -0.2873 | 0.08655
2 |o0.4200 0.2100| 0 | -0.08946 | 0.07727 { 0.08633| 0.3305 | 0.2873 | 0.08623
3 Jo.6300] o0 o | -0.02380 | o 0.03661| o0.6276 | o 0.03661
4 |o0.8400 ] -0.2100 ] 0 0.077218 | -0.08767 | 0.09678| 0.9172 { -0.2977 | 6.09678
s |0.8400 | 0.2100| O 0.07718 | 0.08767 | 0.09678| 0.9172 | 0.2977 | 0.09678
Element Strains (103 Inch/Inch)
Ele. n=0 n=0 Comb ined
No. g, 7] Ey LI [ Ez LY Eor £ [7] Ey Egr
1. |o0.420 | 0.420 | 0.420| © 0.174 | o0.155 | 0.187 | -0.0480 | 0.594 | 0.575 | 0.607 ] o0.0480
2 |0.420)] 0.420 | 0.620] 0 0.167 | 0.165 | 0,192 | -0.0253 | 0.557 | 0.585 | 0.612| 0.025)
3" 10.420 | 0.420 | 0.420( © 0.167 | o.165 | 0.192 ! -0.025: | 0.587 | 0.585 | 0.612 | 0.0254
4 |o0.420 ] 0.420 | 0.420] o 0.157 | 0.175 { 0.19> | -0.0320 | 0.579 | 0.595 | 0.615 | -0.0320
Element Stresses (103 psi)
Ele. n=0 n=0 Comb ined
No. oy 9z oy [T A 9z dy Oy a9, L oy Ogy¢
1 o folo 0 | -0.549 ) -1.00 } -0.244 ] 0.553 ] -0.549 | -1.00 | -0.244 | 0.553
2 0o |o|o o | -2.592 | -0.671 | -0.005 | -0.292 | -0.592 | -0.631 | -0.005 | -0.92
3 0 |o o o | -0.591 | -0.631 | -0.005 | -0.293 | -0.591 | -0.631 | -0.005 | -0.93
4 0 |o|o o | -0.664 | -0.289 | 0.165 | -0.370 } -0.664 | -0.289 | -0.165 | -p.370

319




Then three more complex nonlinear comparison cases were run to demonstrate
the capabilities of SHELPC. These cases demonstrate elastic/plastic
comparisons for axisymmetrically loaded structures as well as harmonic
surmation comparisons in the elastic regime. Since no other code which does
the harmonic analysis was available, a direct comparison of nonlinear harmonic
analysis could not be made. This comparison will rely primarily on
experimental results from actual combustors. .

To compare the elastic/plastic analysis capability for axisymmetric
loading, we modeled a typical axisymmetric combustor 1ip, as shown in
Figure 5. It was modeled using 168 3-node finite elements in both SHELPC and
CYANIDE 2-D programs. The axisymmetric loading conditions were run and
compared satisfactorily. Figures 6 and 7 show comparisons of the effective
stress and effective plastic strain, respectively, as predicted by the two
programs. The plot is for the inner surface of the cooling louver around the
edge from element No. 56 to element No. 136 as shown in Figure 8. As can be
seen from these results, the comparison between the two programs is
excellent. This case was one of those used to validate the analytical
development of SHELPC where a direct comparison with axisymmetric loads (zero
harmonic) could be made.

Qur second example demonstrates the Fourier series capability of SHELPC
under a mechanical loading situation. Figure 9 gives the particulars of the
problem, a ring under a harmonic pressure distribution applied at the outer
diameter. This problem was solved both elastically and plastically for the
stress-strain properties shown. Figure 10 shows the SHELPC predictions for
the radial displacement at the outer diameter for the two cases. The elastic
results were correlated with hand calculations and CLASS/MASS results.

As a final validation example, we extended the previous comparison with
CLASS/MASS to the nonlinear regime.

Figure 11 shows the problem conditions, an increased thermal loading, and
the assumed stress-strain curve. The elastic solution was correlated with
CLASS/MASS. The plastic solution shows the difference in effect between the
pressure load of the previous example and a thermal hot streak, Figure 12. 1In
this case, plastic flow reduces the radial displacement.

This program is continuing under development with more verification and
validation cases being pursued.
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ANALYTICAL SIMULATION OF
WELD EFFECTS .IN CREEP RANGE

A.K. Dhalla
Westinghouse Electric Corporation
Advanced Energy Systems Division

Madison, Pennsylvania 15663

The purpose of this paper 1s to present the inelastic analysis procedure
used to investigate the effect of welding on the creep rupture strength of a
typical Liquid Metal Fast Breeder Reactor (LMFBR) nozzle. The current study
1s part of an overall experimental and analytical investigation to verify the
inelastic analysis procedure now being used to design LMFBR struc¢tural
components operating at elevated temperatures. Two 1important weld effects
included in the numerical analysis are: (a) the residual stress introduced in
the fabrication process, and (b) the time-independent and the time-dependent
material property variations. Finite element inelastic analysis was performed
on a CRAY-1S computer using the ABAQUS program with the constitutive equations
developed for the design of LMFBR structural components. The predicted peak
weld residual stresses relax by as much as 40X during elevated temperature
operation, and their effect on creep-rupture cracking of the nozzle 1is
considered of secondary importance.

INTRODUCTION

A test facility was designed and built to perform thermal transient load
tests on prototypic Liquid Metal Fast Breeder (LMFBR) Intermediate Heat
Exchanger (IHX) inlet and outlet nozzles. Three prototypic nozzles forged
from type 304 stainless steel were welded -equidistantly around the
circumference of the cylinder as shown in Figure 1.

A1l nozzles were subjected to internal pressure (p) and creep hold time
(t) in a two stage creep-ratcheting test at a temperature of 1100°F (593°C):
(a) Stage 1--p = 200 ps? (1.4 MPa) and t = 1400 hours, and (b) Stage 2--p =
450 pst (3.1 MPa) and t = 3000 hours. One of the shell nozzles was subjected
to a total of 26 thermal downshock transients; the remaining nozzles in the
test article were baffled off and did not experience thermal transients.
After each transient the pressure vessel was depressurized, repressurized, and
uniformly heated and held at a temperature of 1100°F (593°C) for about 160
hours of creep hold time before 1initiating the next thermal transient.
Post-test 1iquid dye penetrant examination revealed cracks paraliel and
perpendicular to the weld in the heat affected zone (HAZ) on nozzle side of
all the shell nozzles. A metallurgical examination revealed that
creep-rupture was the major cause of these cracks.
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The investigation reported here is part of an overall experimental and
analytical 1investigation to verify 4inelastic analysis procedures used to
predict the creep ratcheting and the creep-rupture fatlure 1in welded
structural components operating at elevated temperature. This paper presents
only the analytical procedure used to investigate the weld residual stress
relaxation and weld matertal property variation in a prototypic LMFBR- IHX
shell nozzle. The following three specific areas are discussed:

1. selection of an appropriate 3-D mesh in the weld region.

2. representation of time-independent | and time-dependent material
response based upon uniaxial tensile and creep test data.

3. simulation of weld shrinkage due to weld cool-down.

The predicted peak effective, circumferential and longitudinal weld
residual stresses relax by about 40% during elevated temperature operation,
and their effect on cracking is considered of secondary importance. In
subsequent discussion, the maximum weld residual stress parallel to the weld
. s1ice around the nozzle —cylinder intersection 1s designated as a
circumferential stress, and the intermediate principal stress along the nozzle
and perpendicular to the weld slice is designated as a longttudinal stress.

FINITE ELEMENT IDEALIZATION OF THE SHELL NOZZLE GEOMETRY

Three planes of symmetry were advantageously utilized to generate the
refined finite element mesh shown in Figure 2 which represents the as-built
nozzle geometry. The as-built nozzle sections were measured by the fabricator
(Foster Wheeler Energy Applications, Inc.) after final machining but before
the nozzles were welded to the cylindrical shell. The geometric dimensions of
the as-built cross-sections of the nozzle were transferred via a Digitizing
Tablet linked to the FIGURES-II interactive mesh generation program [1].* The
finite element analysis was performed on a CRAY-1S computer using Version-4 of
the ABAQUS computer program [2]. A reduced integration (2x2x2) scheme was
used to obtain better accuracy at integration points than that predicted by
the full (3x3x3) integration scheme [3]. The reduced integration option of
the ABAQUS program uses a higher order (3x3x3) integration to form element
stiffnesses and the distributed loads are integrated fully, but stresses and
strains are calculated only at the reduced (2x2x2) integration points. To
utilize computer resources more efficiently and to improve overall accuracy of
predictions, it 1s preferable to use more elements in the nozzle weld region
with reduced integration instead of using more integration points per element.

Boundary Conditions

In addition to the symmetric boundary conditions along the transverse,
longitudinal and 60° symmetry planes shown in Figure 2, 1t was necessary to
apply appropriate end cap pressure 1loadings and displacement boundary
conditions to the finite element model. The pipe welded to the nozzle is

*Numerals in brackets designate references at the end of this paper.
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quite flexible, hence the end cap pressure loading was applied to the pipe
attachment of the nozzle without restraining the ovalization deformations of
“the nozzle end. In contrast, two hemispherical heads welded to the cylinder
constrain free ovalization deformations of the cylinder ends. This effect was
included in the analysis by constraining the circular cylinder end section to
expand only axisymmetrically; end cap pressure was also applied to the
cylinder end.

Convergence Study

Three elastic analyses were performed to evaluate the convergence
characteristics of the 20-node i{soparametric (tri-quadratic) element of the
ABAQUS computer program. To select an economical mesh in the weld region
internal pressure was applied to the nozzle. The three finite element models
evaluated in this study are designated as:

1. I-Q1: Coarse surface mesh (72 elements), and one tri-quadratic
continuum element through the thickness.

2. A-Q1: Refined surface mesh (108 elements) near the weld region, and
one tri-quadratic element through the thickness.

3. A-Q3: Refined surface mesh (108 elements) near the weld region, and
three tri-quadratic elements through the thickness.

The effect of weld region surface mesh refinement is shown in Figure 3.
The component stress distributions predicted from the I-Q1 and A-Q1 models are
in good agreement except near the weld. The surface mesh model [-Q1 is coarse
and any as-built thickness variations are smoothed out. In contrast, the
solid 1ine stress distributions predicted by the A-Q1 analysis show
significant 1irregular variation of stresses due to as-built thickness
variations in the vicinity of the weld. The insert in Figure 3 shows the
irreguiar thickness varifation and slope discontinuity at the transverse
section near the weld. The maximum change in thickness is from 1.19 to 1.29
inches (about B8%). The stress variations predicted by model A-Q1 near the
weld are not directly proportional to the thickness because the stress
distribution near the nozzle cylinder intersection is not uniform through the
thickness and around the doubly curved nozzle surface.

The effects of mesh refinement through the thickness are illustrated in
Figure 4, where the oy and oy, stress components are plotted at the
highly stressed welded 1location on the transverse section. The stress
distributions predicted by the one and three element models (A-Q1 and A-Q3)
with the same surface mesh of 108 elements are in good agreement. Similar
good agreement was observed at other locations in the nozzle. Either of these
two models would have been adequate for final analysis; however, the three
element refined model (A-Q3) was selected for final 1inelastic analysis to
include stress distributions through the thickness that would occur due to
~ temperature variations during the simulated weld cool-down process.
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MATERIAL MODEL FOR INELASTIC ANALYSIS

A spare nozzle forging of the same heat of material was sectioned to
obtain tensile and creep material property data in circumferential and
longitudinal directions from various Tocations 1in the nozzle forging.
Thirteen short term tensile tests and six short term cyclic tests were
performed on specimens extracted from the spare nozzle at temperatures ranging
from 70 to 1100°F (21 to 593°C) to obtain time-independent stress-strain
curves ' for elastic-plastic analysis. Twenty-two creep tests and nine
relaxation tests were performed at two temperatures, 1050 and 1100°f (566 and
593°C), to obtain time-dependent creep properties. Four tensile and eight
creep tests were also performed on uniaxial miniature specimens fabricated
from the HAZ and the weld material. The test specimens were along the nozzle
(longitudinal) and perpendicular to the circumferential weld slice.

The creep and tensile material test data indicate that properties change
rapidly within a distance of 1 inch (25 mm) of the weld region of the
nozzle-cylinder intersection. Although the change is continuous, from weld to
HAZ to the nozzle forging base metal, in the finite element idealization it
was necessary to simulate this change as a stepwise function. To simulate the
observed material property variation at a reasonable computation cost, a five
zone material model was developed for the nozzle side of the nozzle-cylinder
intersection, where creep-rupture cracks were observed in the experiment. The
creep-rupture cracks, as well as slip traces, were observed as far away as 0.5
in. (12 mm) from the weld. Material model presented in this paper reflects
the nozzle matertal work hardening and other material property changes due to
welding.

Time-Independent Material Model

The time-independent 1isothermal tension coupon tests conducted on the
nozzle forging material at 1100°F (593°C) show a significant scatter 1in
Figure 5. This figure displays both monotonic (first cycle) and tenth cycle
test data, along with the ASME Code curves for type 304 stainless steel
material. The base metal data are within the scatterband represented by the
ASME minimum and average curves shown as solid lines. The curve designated as
BASE METAL represents a reasonable average of specimens extracted from
different locations in the nozzle forging. The nozzle weldment test results
are designated as WELD and HAZ 1in Figure 5. To comply with the constitutive
theory of 1linear kinematic hardening, it was necessary to bilinearize the
stress strain curves obtained from the weld, HAZ and base metal of the
nozzle. Figure 6 shows the decrease in bilinear yleld stress with respect to
the distance from the weld.

Temperature in the weld region during weld cool-down varies from room
temperature to 2000°F (1093°C). Therefore, to predict residual stresses it is
necessary to 1include temperature dependence of material properties in the
analysis. The tests performed on the nozzle material were not sufficient to
develop a complete temperature dependent material model. Therefore,
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engineering judgment was used to utilize and extrapolate the data available in
the ASME Code. The material property variations presented in [4 to 6] also
provided guidance in the selection of the material model.

Temperature dependence of yield stress oy, and plastic slope (E, =
80/B8cp) are shown in Figures 7 and 8, rgspectively. The 1dea1?zed
var1aE1ons to be used in analysis are shown as dotted 1ines. A finite, but
small, value was assumed for both ¢, and Ep at 2000°F (1093°C). At that
temperature the material 1s 1liquidus "and cannot sustain significant stress.
For weld and the HAZs, the variations with respect to temperature were assumed
to be the same as those for the base metal up to 1500°F (816°C); thereafter,
the corresponding values at 1500°F (816°C) were 1linearly connected to the
finite value of 1 ksi (6.9 MPa) at 2000°F (1093°C). The temperature dependent
material property vartations of Young's Modulus E, Poisson Ratio, v, and
coefficient of thermal expansion, a are given in Table 1.

TABLE 1.-TEMPERATURE DEPENDENT MATERIAL PROPERTIES
FOR TYPE 304 STAINLESS STEEL

MOOULUS OF ELASTICITY (E)
E (ksi) = [28.31 x 103 - 5.286 (T-70)] 70 < T < 700
= [24.98 x 103 - 8.16 (T-700)] 700 < T < 1200
= [20.9 x 103 - 24.88 (T-1200)] 1200 < T < 2000

POISSON'S RATIO (v}
v - [0.2672 - 4.02 x 107 (T-70)] 70 < T < 2000

COEFFICIENT OF THERMAL EXPANSION (o)
@ (/°F) = [8.58 x 10°° + 1.82 x 10™° (T-70)] 70 < T < 700
= [9.73 x 108 + 1.13 x 107 (7-700)] 700 < T < 2000

Note: Temperature T 1s in degrees Fahrenheit.
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Time-Dependent Creep Model

Twenty-two uniaxial constant load creep tests on specimens fabricated
from the spare nozzle forging were conducted at stress levels ranging from 7.5
to 25 kst (51.7 to 172.4 MPa). Eight additional creep and/or creep-rupture
tests were also performed to obtain data for the HAZ and the weld region of
the nozzle. Initially, attention was focused on developing an appropriate
analytical representation from creep data obtained for the base metal.

Thereafter, the analytical representation was extended to simulate the weld
and HAZ creep data.

The experimental base metal data are compared in Figures 9a and 9b with
available creep curves for type 304 stainless steel material. Typical
comparisons are shown at only two stress levels: a low stress of 10 kst (68.9
MPa) and a high stress of 20 ksi (137.9 MPa). The numerals 1 and 2 designate
the single exponential (1-Exp.) and the double exponential (2-Exp.) creep
equations developed for specific heats of type 304 SS material. The letters A
and 0 designate the "“ORNL ALL DATA" and *1000 HOUR DATA" creep equations
developed by 0Oak Ridge National Laboratory for a specific heat of type 304 SS
material. The letter C designates the nozzle forging base metal creep data
and the letter R designates the final best-fit rational polynomial creep
equation used in this study. A comparison of uniaxial creep data and the
avatlable mathematical representations show that the correlation between
measured data and the analytical curve 'R' developed for the present study is
quite good.

The rational polynomial creep equation form selected for the present
study is as follows:

Cpt .
cc = (.‘ + pt) + l:mt “)

where, ¢ 1s the total creep strain in %; C 1s the amount of transient
creep strain in %; p is the primary creep parameter in 1/hr, which relates to
sharpness of curvature of primary creep region; c¢qm 15 the minimum creep rate
in %/hr; and t s the elapsed time in hr. Booker, et al., [7] have
developed functional relationships for C and p in terms of ¢p, with ¢n having
a term Cp (1ot constant) to adjust for differences between heats of the material.

The minimum creep rate, in Equation (1), 1s a kpown quantity that is
obtatned from each untaxial creep test. Based upon ey and the average lot
constant, Cp, the primary creep parameters C and p were calculated according
to the relationships presented in [7]. The creep strains predicted by the
rational polynomial creep equation (1) are compared with the experimental data
in Figures 10a and 10b for the low and high stress levels. The measured creep
strains (designated by a letter C) are not in good agreement with the rational
polynomial predictions (designated by numeral 1), which were calculated
according to the procedure presented in [7]. Consequently, it was necessary
to adjust constants C and p in Equation (1) to obtain a better fit to the
creep data, especially to the initial primary creep strain rates, which in the
analysis would determine the relaxation of residual stress due to weld
effects. Various combinations of constants C and p were examined. A
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reasonable fit to creep data (designated by numeral 3 in Figures 10a and 10b)
was obtained by adjusting the constants C and p. That 1s, to obtain curve 3
from curve !, the constant C calculated as per [7] was reduced by a factor of
3 and the constant p was increased by a factor of 9. The adjusted rational
polynomial creep equation (designated as curve 3 in these figures) is adequate
to represent creep response of the nozzle forging material.

The uniaxial data obtained from the HAZ and the weld material indicate
that the weld region is substantially stronger (lower creep rates) than the
base metal. To develop a material model for the weld region, the creep
equation constants C and p were appropriately adjusted to obtain reasonably
smooth variations of creep rates between the weld and the nozzle forging. The
rational polynomial creep curves for five zones in the weld region are shown
in Figure 11. The nozzle forging and -the weld metal analytical curves are
designated by numerals 1 and 5, respectively.

The rational polynomial creep model developed here is considered adequate
to simulate the creep response in the nozzle analysis, however, the actual

properties used 1in the analytical model are difficult to Justify in all
respects because:

1. the extent of heat affected zone (HAZ) in the as-built nozzle cannot
be defined accurately,

- 2. the size and the number of finite elements used in the analytical
model to represent the weld region require discontinuous
representation of the material properties, and

3. the scatter in uniaxial material data [8] requires some approximation
in the analytical representation.

THERMAL LOADING TO SIMULATE RESIDUAL STRESSES DURING WELD COOL-DOWN PROCESS

The distribution and the peak amplitude of the residual stress introduced
during the welding process depend upon many variables. A few of these
variables mentioned in the 1literature [9 to 12] are: (a) plate thickness,
(b) heat 1input, (c) rate of cooling (heat. sink, surface convection and
radiation, etc., in complex geometries), (d) shift in peak temperatures during
the cooling process, (e) weld repair (if any), (f) geometric configuration of
the weld groove, (g) number of weld passes, and (h) geometry and size of the
welded component. v . .

Temperature}Prdf11es Developed for the Nozzle

The purpose of the present 1nvest1gat1on is to evaluate the relaxation
and subsequent redtstribut1on of residual stresses during creep hold time of
1100°F (593°C).. Consequently, it 1s not necessary to simulate accurately the
residual stress d1str1but10n,_ and predtct the peak residual stress in the
nozzle. An overall ~simulation of residual stress distribution was
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accomplished by specifying temperature dfstr1but1ons due to the last weld pass
cool-down on the outside surface. Typical weld thermal cycle charts presented
in the Welding Handbook [9] show that:

1. the cooling rate of a weld and the width of the corresponding HAZ can
be controlled by manipulating energy input and preheat temperature,

2. the cooling rate increases with increase in plate thickness,

3. the time at elevated-temperature decreases with increase in plate
thickness, and

4. the heat flow pattern changes from a two-dimensional flow for very
thin plates to a three-dimensional flow for very thick plates. The
heat flow change qualitatively explains the influence of plate
thickness on cooling rates.

Figure 12, taken from [10], shows the weld cool-down rate measured with
respect to time and distance for a 1,3 1in. (33 mm) thick 26 in. (660 mm)
diameter type 304 stainless steel butt welded pipe. The weld and geometric
parameters for the welded pipe, although similar, are not the same as those
used to fabricate the nozzle test assembly. Temperature profiles during weld
cool-down were not measured 1in the nozzle experiment, therefore, the
temperature distributions shown in Figure 12 were used to generate temperature
profiles for the nozzle weld cool-down analysis. Time dependent temperature
profiles along the nozzle are shown in Figures 13a to 13c for three layers
(outside, middle, and inside) through the thickness of the weld region. These
nodal temperature distributions along the nozzle are assumed to be
circumferentially symmetric (axisymmetric with respect to the nozzle
centerline).

Figures 13a and 13c show that the temperature decreases rapidly away from
the weld and within 50 seconds the highest temperature of 800°F (427°C) fis
below the creep range of type 304 stainless steel. Also the temperature
decreases below 800°F at a distance of about 0.5 inch (13 mm) away from the
edge of the weld. The analytical simulation of the nozzle weld cool-down
process shown in Figures 13a to 13c. is consistent with the temperature
measurements presented in [9 and 10]. The metal temperatures up to a distance
of about 0.8 in. (20.3 mm) from the welded hot spot decrease with elapsed
time, whereas the metal temperatures at distances greater than 0.8 in. (20.3
mm) 1increase with elapsed time, up to about 50 seconds, before reaching a
steady state uniform temperature distribution of 200°F (93°C). To further
simplify the analysis, the weld deposition (heat-up) process was not
simulated. The justification is that at the end of heat-up the weld would be
1iquidys at temperatures above 2000°F (1093°C), and would not be able to
sustain significant stresses before 1t cools down.

'Load1ng History for Weld Residual Stress Ana]ys1s

The following steps summar1ze the load1ng history used to: perform the
inelastic analysis: : . :
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1. Assume an inittal stress-free state at a time tess than 3 seconds for
temperature distribution shown in Figures 13a to 13c, with 200°F
(93°C) uniform temperature away from the weld.

2. Apply temperature distributions at times of 20 sec., 50 sec., and
greater than 2000 secs. to simulate the weld cool-down process.

3. Heat-up to 1100°F (593°C) uniform operating temperature, hold at
elevated temperature (without pressure) for 156 hours and cool-down
to 70°F (21°C) ambient temperature.

INELASTIC ANALYSIS RESULTS

The finelastic analysis was performed in accordance with the constitutive
equations recommended in [13] for the LMFBR structural components operating at
elevated temperature. Figures 14a to 14c show deformations of the nozzle at
the end of 156 hours of creep hold time. These deformations include free
thermal deformations of the nozzle. The dotted 1lines in these figures
represent the original nozzle geometry and the solid 1ines show the deformed
shape, where the displacements are magnified 100 times. Figure 14a shows the
overall deformations, whereas Figures 14b and 14c show two deformed sections
along the length of the nozzle: (a) longitudinal section and (b) transverse
section. The weld shrinkage effects are clearly seen in these figures. At
distances away from the weld, free thermal expansion deformation is large but
the differential thermal deformatijon between contiguous elements is small.
Consequently, the residual stresses away from the weld region are small. Thus.
the stress distribution of interest 1s around the weld slice--a
circumferential set of elements around the nozzle-cylinder intersection.

Figure 15 shows distribution of two principal stresses (circumferential
and longitudinal) around the nozzle weld slice. The maximum principal
residual stress is in the circumferential direction. Two curves for each
principal stress in this figure show that the residual stresses decrease when
the test article 1is uniformly heated from 200°F (93°C--cold state) to an
operating temperature of 1100°F (593°C--hot state). At 200°F (93°C) the
residual stresses are on the yield surface; at the 1100°F (593°C) operating
temperature the yleld surface shrinks and residual stresses decrease to
satisfy the flow rule of the material.

Residual Stress Distribution

Figures 16 and 17 show the circumferential stress and effective plastic
strain distributions along the 1longitudinal and transverse sections. The
stress and strain predictions are plotted at the boundary of two contiguous
fintte elements as an average of two fintegration points to present smoothed
stress distribution in these figures. The distributions are displayed along
the inside surface of the longitudinal section in Figure 16, and along the
outside surface of the transverse section in Fiqure 17, ' '
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The stress and strain profiles along the length of the nozzle, shown in
Figures 16 and 17, indicate that the peak stress levels are predicted near the
weld as anticipated. At the end of creep hold time of 156 hours the peak
residual stresses near the weld region relax by as much as 40%. Longitudinal
and effective peak stresses also relaxed by about the same amount. The
maximum plastic strain of about 1.4% is accumulated at the transverse section
of the weld slice (Figure 17). The residual stress relaxation predicted here
s consistent with relaxation results presented in ([14 and 15] for
circumferentially welded pipes. '

After completing the weld cool-down analysis, the nozzle was subjected to
the 1internal opressure 1loadings and creep hold times recorded 1in the
experiment. The creep-rupture predictions, which will be presented in a
separate paper [16], 1indicate that . the observed creep-rupture cracking
parallel to weld is not due to the presence of weld residual stresses. The
maximum principal residual stress 1is parallel and not perpendicular to the
observed circumferential cracking on the outside. surface. The secondary
importance of residual stress on cracking can also be judged by the fact that
the weld residual stresses relax rapidly during creep hold time. In contrast,
the internal pressure stresses do not relax significantly and the maximum
principal pressure stress is aligned perpendicular to the observed cracking.
Therefore, the primary cause of cracking observed in the experiment is due to
the pressure stresses [16].

CONCLUDING REMARKS

A 3-D finite element model consisting of 324 tri-quadratic elements of the
ABAQUS computer program was used to predict residual stresses in a prototypic
LMFBR nozzle. The weld shrinkage effects and the residual stresses were
simulated numerically by specifying time-dependent temperature profiles for
the nozzle weld. The variation of time-independent and time-dependent
analytical material models for the weld region were established from the
uniaxial tensile and creep tests of the nozzle weldment material.

The deformation plots of the nozzle after weld cool-down qualitatively
show that the analysis simulated the weld shrinkage effects very well. Two
highly stressed regions where cracks were observed in the experiment were
correctly identified by the analysts. The maximum residual stresses occur on
either side of the weld, and attenuate away from the weld region. In the
absence of experimental measurements, the residual stress distributions
predicted by the 1inelastic nozzle weld analysis are considered reasonable,
especially at highly stressed nozzle locations where the residual stresses are
limited by the yield surface specified for the weld, HAZ and nozzle forging
material. An important conclusion from this analytical study is that the peak
residual stresses relax by as much as 40% during elevated-temperature
operation.

The present study 1is part of an oyerall analytical investigation

undertaken to evaluate the effect of weld residual stresses on creep-rupture
failure of structural components operating in creep range. In a separate
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paper [16] it 1s shown that the residual stresses raise the total stresses
predicted 1in the internally pressurized nozzle; however, the observed
circumferential cracking (parallel to weld) on the outside surface of the
‘nozzle is parallel to the maximum principal residual stress.

A detailed evaluation of analytical predictions in [16] show that the
effect of residual stresses on creep-rupture cracking 1is of secondary
importance. The primary reasons for nozzle weld cracking are: (a) the
principal pressure stresses which are perpendicular to the observed cracks and
do not relax significantly during creep hold time, and (b) the weld effect in
the form of higher HAZ and weld material yield strength with about the same or
s1ightly lower creep-rupture strength than that of the base metal.
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