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The developmentof the SHELPCfiniteelementcomputerprogramis
detailed.Thisprogramis specializedto simulatethe nonlinearmaterial
behaviorwhichresultsfromcombustorliner"hotstreaks'.Thisproblem
producesa nonlinear Fourier Series type loading on an axis_metric
structure. Examplecasesare presented.

One problemwhichis uniqueto AircraftGas TurbineEngines(AGTE's)is
the thermalhot streakproblemexperiencedby certaincombustorllners. These
linersarethin axlsymmetrlcpressureshellswhosefunctionis to containand
promotethe combustionprocess.Becauseof the hightemperaturesInvolvedin
thiscombustionprocess,thefunctioningof theselinersdependson their
being"cooled"by lowertemperatureairfromthe compressor.To €omplicate
thisproblemfurther,thetemperaturesgeneratedby the combustionprocessare
not uniformin eitherthe axialor circumferentialdirectionsof the combustor
11ner.

The temperaturevariationin the axialdirectionis the variationnormally
shownin textbooksand calculatedfromthe thermodynamiclawsbasedon
pressure/volumeconsiderations.The circumferentialvariationis a more
complex,threedimensionalmixingproblem. It is a functionof thenumberof
fuelnozzlesemployedand the geometryand thermodynamicsof the combustor.
Theresultis a circumferentialvariationin the metaltemperatureof these
linerswhichcan be approximatedwithFourierSeries.

The functionallivesof theselinersare primarilydictatedby the
resultingmaterialresponseto thesetemperaturevariations,whichproduce
therma] stresses. The stresses producedby the differential pressures across
the liner walls are ltmited to small values andare secondarycontributors to
the problem. Becauseof the high temperatures and large temperature
variations involved, the material response problem is nonlinear and time
dependent. A£BGhas beenactive in developing internal computer tools for
attacking these types of uniqueAGTEproblems. Our capabilities include both
two-dimensional and three-dimensional nonlinear finite element computer
programs.
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The thermal stress problem generated by the axtal variation tn metal
temperatures can be handled quite readily by a two-dimensional (axtsymmetric)
analysis. However, the thermal stresses generated by the circumferential
variation in metal temperatures is truly a three-dimensional problem. As
such, onemethodof attack wouldbe to develop a simulation using
three-dimensional finite elements, such as our 8, 16 or 20 nodedtsoparametric
elements.

This methodof attack has drawbacksin economy,accuracy, and utility.
The numberof hot streaks can be quite large (in the 60's) and the hot to cold
temperature variations can be in the hundredsof degreesFahrenheit. This
wouldrequire a large numberof 3D elementsto producean acCeptable
simulation. This could also producebad element aspect ratios, resulting in
solution accuracyproblems. Varying these models in an tterative design
process would be manpowerand computer intensive. For these reasons we sought
other methodsof attacking this problem.

Since the circumferential temperature variations can be represented as
Fourier Series expansions, this suggestsattacking the structural problem by
meansof Fourier Series. This methodof attack for linear elastic problems in
a finite element format was presentedby E.L. Wilson in Reference (1). For
linear elastic problemsthe methodof superposition of Fourier Series loading
is mathematically exact and precise. Howeverthe problem in question is
nonlinear.

in Reference (2), E.A. Witmer and J.j. Kotanchik presented a nonlinear
solution procedure for axisymmetric shells under asymmetrical loading. In
their approach, they utilized an initial strain methodwith Besseling's
isothermal constitutive model in a sublayer format. This then presented a
methodof attacking nonlinear Fourier Series loading problemsbut with one
tremendousdeficiency; our problemunder consideration is totally
nonisothermel in nature.

Subsequently, one of the present authors, R.L. McKnight, developeda
variable temperature version of Besseling's constitutive model in a subvolume
format as presented in References (3) and (4). This has been the primary
basis of AEBG'sinternal nonlinear computertools since 1975. To this
time-independentplasticityformulation,we addedclassicalcreepcapability
withtime-hardening,strain-hardenlng,And llfe-fractionrulesfor attacking
quasi-statictime-dependentnonlinearproblems.Overthe years,throughlarge
amountsof productionusage,thesetoolshavebeenprovidedwithmuch
verification,validation,andoperationalexperiencefor bothZD and 3D
problems.Withthisbackground,we decidedto reattackthe combustorliner
hotstreakproblem:

SHELPC

The following is a synopsis of the theoretical developmentof the
combustorliner program, SHELPC.A completedevelopmentwill be found in the
Ph.D. Dissertation of P.C. Chen, to be published later.

As in Reference (1), the finite element employedis the triangular ring
element shownin Figure 1. This is an extension of that element commonlyused
for plane stress, plane strain, andaxisymmetric analysis. In those cases,
there are two degrees of freedom, or displacements at each node. To allow for
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the circumferential variationin loada thirddegree of freedom, the
circumferentialor hoopdisplacement,is introduced.Thesethreedisplacement
componentsare assumedto be linearfunctionsof positionIn the R-Z plane.
This is expressedmathematicallyas follows

UR = bI + b2R + b3Z

Uz = b4 + b5R + b6Z (1)

US = b7 + b8R + b9Z

The strain componentsin terms of these displacements are (for small displace-
ment theory),

= aUR
CR @R

_LUz

cz = a_,,
UR

ce=[ _e +F

=P,Z _UR aUz (2)"TZ-- +TF

1 _UzCze= + _-_-

The loadingis now allowedto varyingin the circumferentialdirectionin a
sineor cosinefashionas definedin TableI.

Equations(1),thenbecome

UR = (bln + bznR+ b3nZ) cos Ne

Uz = (b4n + bsnR+ b6nZ) cos Ne (3)

Ue = (b7n + b8nR+ bgnZ) Sin NB

or

UR = (bln+ b2nR+ b3nZ)Sin Ne

Uz = (b4n+ bBnR+ b6nZ)Sin Ne (4)

Ue = (b7n+ b8nR + bgnZ)Cos NB
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TABLE1

FOURIERSERIES LOADINGANDDISPLACEMENTDESCRIPTION

Symmetricabouta Anti-symmetricabouta
planecontainingthe planecontainingthe
axisof revolution axisof revolution

T = _Tn(r,z)cos ne T = ZTn(r,z)sin n e

Sr = _Srn(r,z)cosne Sr = _Srn(r,z)sin ne

Sz = _Szn(r,z)cosnB Sz = ZSzn(r,z)sin nB

SB = _SBn(r,z)sin ne SB = ZSBn(r,z)cos ne

Ur = £Urn(r,z)cos ne Ur = ZUrn(r,z)sin ne

Uz = £Uzn(r,z)cos ne Uz = ZUzn(r,z)sin ne

Ue = IUen(r,z)sin ne Ut = ZUtn(r,z)cos ne

n is theharmonicnumber.

T is the temperature.

S's are the loads.

U's are the displacements.
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To introducenonlinearmaterialbehavior,we make the classicalassumption
thatthe totalstrainsconsistof a summationof elastic,plastic,creep,and
thermalcomponents

€e €c
T

€ - + _P+ + € (S)

We alsoassumethat stressis linearlyrelatedto the elasticstrainonly

o - C€e (6)

o" C(€- €P- €C- €T) (7)

WhereC is the elasticHook'sLaw matrix.

The sumof the plastic, creep, and thermal strains are considered as
initialstrains.

I cC cT€ - CP + + (8)

or
o -c(_- z) (9)

Applyingthe preceptsof Reference(2),we make useof the Principleof
Stationary Total Potential Energy.

The strain energy density is expressedas

O= _ aT €e (10)

or

o=_Cc(_- I}T](_.€i) (11)

O " _ (€ - ¢I)TC(€ - €I) (12)

The totalpotentialenergyof oneringelementis

PE - J'v _(€ - cI) T C (€ - eI)dv - 6TF (13)

where6 is thegeneralizeddisplacementsandF is the generalizedexternal
forces.

For a system of ring elements, this developmentleads to

Kd- F + FI (14)

where

K • elasticstiffnessmatrixfor
discretizedsystem
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6 = generalized displacements of the
dtscrettzed system

F - applied generalized forces

FI • generalized forces due to initial
strains

Now, to introduce the Fourier Series loading into this system of
equations. Our assumption is that the total strain can be considered to be
madeup of the sumof a certain numberof A-series and B-series Fourier
components. TheA-series componentsare those symmetrical about a plane
containing the axis of rotation. The B-series componentsare those
antisymmetrical about a plane containing the axis ef rotation (see Table 1).
Thuswe assume

U(R,Z,e) • £ L_N(R,Z) cos Ne
(15)

+ I:_ (R,Z)Sln Ne

and therefore

€(R,Z,s)-z: CNA (R,Z)cos NB
(16)

+Z €_ (R,Z)Sin NB

or

{(R,Z,e)= cA(R,Z,B)+ cB(R,Z,e) (17)

and, usingEquation(5)

€(R,Z,e)- ceA(R,Z,e)+ cPA(R,Z,e)+ cCA(R,Z,e)

+ TA(R,Z,e)+ ceB(R,Z,e)

+ cPB(R,Z,B)+ cCB(R,Z,e)

+ ,TB(R,Z,e) (18)

For a dfscrettzed model, the system of equations are set up and solved a
harmonic anda series at a time
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The nodal displacements are then given .by

-, A + @NSin (21)NB

NONLINEARSOLUTIONSCHEME

A givenaxisymmetrlcgeometrywiththermaland mechanical1oadingswhich
can be slmulatedby FourierSeriesis firstdlscretizedby triangularrings.
The pertinentsystemof equations,(19}and (ZO),are set upand solved,first
assumingelastlcbehavior.Thisgivesa firstapproximationfor the nodal
pointdisplacements.Withtheseresults,whichare the amplitudesof Fourier
Seriesdisplacementcomponents,we cannow determinethe displacementsat any
circumferentiallocation.

A minimumperiodIs selectedbasedon the lowestorderharmonicotherthan
0 (forthecombustorlinerthisis determinedby thenumberof fuelnozzles).
Thisminimumperiodis thenapproximatedby 10 pointsin the O-direction.At
eachof these10 points,eachringsnodalpointdisplacementscan be
determined.Fromthisthe totalstraincan be determinedfor each location.
Thenusingthe constitutivemodelsas coveredin References(3)and (4),an
initialestimateis madeforthe inelasticstrainsandfromtheseinelastic
pseudo-forces,FP andFC. Theseinelasticpseudo-forcesare then
approximatedby theFourierSeriesharmonics.

FP(R,Z,B)= _FNPA(R,Z)Cos NB + _FNpB (R,Z)Sin NB
(22)

FC(R,Z,B)= ZFNCA (R,Z)Cos NB + £FNCB (R,Z)SinNB
The amplitudesof theseharmonicpseudo-forcesare thenaddedto the initial

forcevector.FNI(R,Z,B) = FNTA(R,Z) Cos NB+ FNTB(R,Z)Sin Ne

+ FNPA(R,Z)Cos NB + FNPB(R,Z)Sin NB
(23)

FNCA(R,Z)CosNe+ FNCB(R,Z)
+ Sin Ne

This newvalue for the initial force vector is usedto obtain a newseries of
solutions. Fromthese, newinelastic strains are predicted and from these a
third initial force vector. This process is continued Until convergence
occurs.

" EXAMPLE_,CASES, ;_ ,, : : -t:,
_ : i : _;_ ! _:_'_ i • . _ :

In orderto verifythe correctnessof the solution,scheme:asoutlined,
severalcomparisonswithfiniteelementmethodsweremade. TWO problems
analyzedare presented,one representingcombinedthermoplasticityand creep
undercyclicloading,and the othera verificationof the elasticFourier
seriesanalysiscapability.Thesecasesrepresenta checkon the two basic
aspectsof the combinedelastic/plastictechniqueforharmonic!Lloading_
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In the first case, which verifies the cyclic plasticity and creep
capability, a thick-walled cylinder is subjected to a time-varying pressure
and temperature loading history (Figure 2). These loadings are the
predominant types experienced by combustors. Plane strain conditions were
assumed,the finite element model being composedof triangular ring elements
as shownin Figure 3. The modelwas also run using the CYANIDEZ-D computer
code, subjected to the sametemperature and pressure history as shownin
Figure 2. The comparisonbetweenSHELPCand CYANIDE2-D under these
axisymmetric loadings was then made, the results being presented in Figures 2
and 4. Figure 2 showsa comparisonof radtal displacementversus time for the
two methods. Figure 5 showsthe residual stress distributio n through the
wall at t • lO hours whenthe pressure was equal to zero. As can be seen from
these results, correlation was very 9ood.

A secondtest case wasused to check the Fourier series methodunder a
thermal loadin9 represented by the combination of temperature harmonicsof the
form:

T(e) - 70 + 30 cos (49)

In an actual component,suchas a combustor, the harmonics used wouldbe a
function of the numberof "hot streaks" around the circumference. The model
usedwas again a thick-walled cylinder as showntn Figure 3. To verify the
response of the structure to this type of loading, the samemodel was run
using the CLASS/MASScodewhich also has harmon4cloadtng capability but
limitedto linearelasticbehavior.Thisproblemwas run elasticallywith
SHELPCin orderto achievea directcomparison.Resultsare presentedin
tabular form to demonstrate the closenessof the numerical comparison. In
Table 2, the displacement componentsfrom SHELPCand CLASS/MASSare compared
for the harmonic loading:

T(O) - 30 cos[4e)

Table 2: Nodal Displacementsat 9 • 0o Due to a
Stngle HarmonicThermal Load
T(O) - 30 cos (40).

Node SHELPC (10 "5 inch) CLASS/MASS (10 -5 inch)

No. 6R 6Z 60 6R 6Z 60
L

1 -8.9&7 -7.726 8.633 -8.958 -7.736 8.6&1

2 -8.946 7.727 8.633 -8.958 7.736 8.641

3 -0.2380 0 3.661 -0.2/,45 0 3.646

4 7.718 -8.767 9.678 7.719 -8.770 9.678

5 7.718 8.767 9.678 7.719 8.770 9.678

In Table 3, the Individual harmonic results from SHELPCfor the displacements,
stresses and strains are shown. The results from a combinedharmonic run are
also tabulated. As can be seen from this table, the results are correctly
superimposed. They also correlate well with the correspondingCLASS/MASS
values.
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Table 3. Nodal Displacements and Element Strains and Stresses at e = 0
Due to Combined Harmonic Therma[ Load (i.e., T(O) - 70 + 30
cos 40).

Nodal D/epleceaenta (I0 "3 Inch)
BmO n-4 Combined

Node tE 4Z il IR _Z 4i IE ll IIHo.

! 0.4200 -0.2100 0 -0.08947 -0.07726 0.08633 0.3)05 -0.2873 0.08655

2 0.4200 0.2100 0 -0.08946 0.07727 0.08613 0.1305 0.287) 0.086))

3 0,6300 0 0 -0.02380 0 0.03661 0.6276 0 0.03661

4 0.8400 -0.2100 0 0.07718 -0.08767 0.09678 0.91Z2 -0.Z977 0.09678

5 0.6400 0.2100 0 0.07718 0.08767 0.09678 0.9172 0.2977 0.09678

Element Strains (!03 Inch/Inch)
Ele. _0 n-O Combined

No. Zr Ez [e Elf [r .... [Z Ee Set "Er EZ le [er

I. 0.420 0.420 0.420 0 0.174 0.155 0.187 [ -0.0480 0.594 0.575 0.607 0.0480

2 •0.420 0.620 0.620 0 0.167 0.165 0,192 I -0.0253 0.557 0.585 0.61J 0.02_33" 0.420 0.420 0.420 0 0.167 0.165 0.192 -0.025,_ 0.587 0.585 0.612 0.0254

4 0.420 0.420 0.420 0 O.IS7 0.175 0.19_ j -0.0320 0.579 0.595 0.615 -0.0320

m

Element Stresses (103 ,el)
Ele. h'O n'O Combined,,, ,

No. or • z 00 Oar or oz n| nor or nZ 00 O|r

l 0 0 0 0 -0.549 -l.O0 -0.244 0.553 -0.549 -I.00 -0.244 0.553

2 0 0 0 0 -2.592 -0.631 -0.005 -0.292 -0.592 -0.631 -0.00_ -0.92

3 0 0 0 0 -0.591 -0.631 -0.005 -0.293 -0,591 -0.631 -0.005 -0.93

4 0 0 0 0 -0.664 -0.289 0.165 -0.370 -0.664 -0.289 -0,165 -0,370 ,

j, ..
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Then three morecomplexnonlinear comparisoncases were run to demonstrate
the capabilities of _IELPC. These cases demonstrate elastic/plastic
comparisonsfor axts_metrtcally loaded structures as well as harmonic
summationcomparisonstn the elastic regtme. Since no other code which does
the harmonicanalysis was available, a direct comparisonof nonlinear harmonic
analysis could not be made. This comparisonwill rely primarily on
experimental results from actual combustors.

To comparethe elastic/plastic analysis capability for axisymmetric
loading, we modeleda typical axis:mmetric combustorlip, as shownin
Figure 5. It was modeledusing 168 3-node finite elements in both SHELPCand
CYANIDE2-D programs. The axts_metrtc loading conditions were run and
comparedsatisfactorily. Figures 6 and 7 showcomparisonsof the effective
stress andeffective plastTc strain, respectively, as predicted by the two
programs. The plot is for the inner surface of the cooling louver around the
_dge from element No. 56 to element No. 136 as shownin Figure 8. As can be
seen from these results, the comparisonbetweenthe two programs ts
excellent. This case was one of those used to validate the analytical
developmentof SHELPCwhere a direct comparisonwith axis_n_metric loads (zero
harmonic) could be made.

Our secondexampledemonstratesthe Fourier series capability of SHELPC
under a mechanical loading situation. Figure 9 gives the particulars of the
problem, a ring under a harmonic pressure distribution applied at the outer
diameter. This problemwas solved both elastically and plastically for the
stress-strain properties shown. Figure 10 showsthe SHELPCpredictions for
the radial displacement at the outer diameter for the two cases. The elasttc
results were correlated wtth handcalculations andCLASS/HASSresults.

As a ftnal validation example, we extended the previous comparisonwith
CLASS/HASSto the nonlinear regime.

Figure 11 showsthe problem conditions, an increased thermal loading, and
the assumedstress-strain curve. The elastic solution was correlated wtth
CLASS/HASS.The plastic solution showsthe difference in effect betweenthe
pressure load of the previous exampleand a thermal hot streak, Figure 12. In
this case, plastic flow reduces the radial displacement.

This programis continuing under developmentwith more verification and
validation cases being pursued.
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Figure 1. Fln±te Element Node Ordering.
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Figure 2. Load, Temperature HistotT; Elastic-Plastic Displacement
Response of a Thick-Walled Cylinder.

R E - 30 x 106psi
v-0.3

= - 6.0 x 10-6 in/(in - • F)

_(_)//_5-- Node Ri Zi

1 1.0 0,02 1.0 1.0
I 2 3 1.5 0.5

4 2.0 0.0
5 2.0 1,0

"-- Zr

Figure 3. Thick-Nailed Cyclinder Model Used for
Combined Harmonic Loading Verification.
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Figure 4. Residual Stress Distribution at Time = 10 hrs. 



Figure 5. SHELPC Model for Combustor Lip.
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•. Figure6, EffectiveStressComparisonfor CombustorModel.
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Figure7. EffectivePlasticStrainComparisonforCombustorModel.

Figure8. CombustorModelLouverDetail.
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Figure 9. Ring Under Harmonic Pressure Load at OD. 
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Figure 10. SHELPC Predictions of Rcdial Displacements. 
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Figure ii. CyLinder Under Harmonic Thermal Load.
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Figure 12. SHELPC Predictions got Hot Streak.
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