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NONLINEAR ANALYSIS OF AN AXISYMMETRIC
STRUCTURE SUBJECTED TO NON-AXISYMMETRIC LOADINGS

P.C. Chen and R.L. McKnight
General Electric Company
Cincinnati, Ohio 45215

The development of the SHELPC finite element computer program is
detailed. This program is specialized to simulate the nonlinear material
behavior which results from combustor liner *hot streaks®. This problem
produces a nonlinear Fourier Series type loading on an axisymmetric
structure. Example cases are presented. -

One problem which is unique to Aircraft Gas Turbine Engines (AGTE's) is
the thermal hot streak problem experienced by certain combustor liners. These
liners are thin axisymmetric pressure shells whose function is to contain and
promote the combustion process. Because of the high temperatures involved in
this combustion process, the functioning of these liners depends on their
being “"cooled" by lower temperature air from the compressor. To complicate
this problem further, the temperatures generated by the combustion process are
?gt uniform in either the axial or circumferential directions of the combustor

ner.

The temperature variation in the axial direction is the variation normally
shown in textbooks and calculated from the thermodynamic laws based on
pressure/volume considerations. The circumferential variation is a more
complex, three dimensional mixing problem. It s a function of the number of
fuel nozzles employed and the geometry and thermodynamics of the combustor.
The result is a circumferential variation in the meta] temperature of these
Tiners which can be approximated with Fourier Series.

The functional Tives of these liners are primarily dictated by the
resulting material response to these temperature variations, which produce
thermal stresses. The stresses produced by the differential pressures across
the liner walls are limited to small values and are secondary contributors to
the problem. Because of the high temperatures and large temperature
variations involved, the material response problem is nonlinear and time
dependent. AEBG has been active in developing internal computer tools for
attacking these types of unique AGTE problems. Our capabilities include both
two-dimensional and three-dimensional nonlinear finite element computer
programs.
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The thermal stress problem generated by the axial variation in metal
temperatures can be handled quite readily by a two-dimensional (axisymmetric)
analysis. However, the thermal stresses generated by the circumferential
variation in metal temperatures is truly a three-dimensional problem. As
such, one method of attack would be to develop a simulation using
three-dimensional finite elements, such as our 8, 16 or 20 noded isoparametric
elements.

This method of attack has drawbacks in economy, accuracy, and utility.
The number of hot streaks can be quite large (in the 60's) and the hot to cold
temperature variations can be in the hundreds of degrees Fahrenheit. This
would require a large number of 3D elements to produce an acceptable
simulation. This could also produce bad element aspect ratios, resulting in
solution accuracy problems. VYarying these models in an iterative design
process would be manpower and computer intensive. For these reasons we sought
other methods of attacking this problem.

Since the circumferential temperature variations can be represented as
Fourier Series expansions, this suggests attacking the structural problem by
means of Fourier Series. This method of attack for linear elastic problems in
a finite element format was presented by E.L. Wilson in Reference (1). For
linear elastic problems the method of superposition of Fourier Series loading
is mathematically exact and precise. However the problem in question is
nonlinear,

In Reference (2), E.A. Witmer and J.d. Kotanchik presented a nonlinear
solution procedure for axisymmetric shells under asymmetrical loading. 1In
their approach, they utilized an initial strain method with Besseling's
isothermal constitutive model in a sublayer format. This then presented a
method of attacking nonlinear Fourier Series loading problems but with one
tremendous deficiency; our problem under consideration is totally
nonisothermal in nature.

Subsequently, one of the present authors, R.L. McKnight, developed a
variable temperature version of Besseling's constitutive model in a subvolume
format as presented in References (3) and (4). This has been the primary
basis of AEBG's internal nonlinear computer tools since 1975. To this
time-independent plasticity formulation, we added classical creep capability
with time-hardening, strain-hardening, and life-fraction rules for attacking
quasi-static time-dependent nonlinear problems. Over the years, through large
amounts of production usage, these tools have been provided with much
verification, validation, and operational experience for both 2D and 3D
problems. With this background, we decided to reattack the combustor liner
hot streak problem:

SHELPC

The following is a synopsis of the theoretical development of the
combustor liner program, SHELPC. A complete development will be found in the
Ph.D. Dissertation of P.C. Chen, to be published later.

As in Reference (1), the finite element employed is the triangular ring
element shown in Figure 1. This is an extension of that element commonly used
for plane stress, plane strain, and axisymmetric analysis. In those cases,
there are two degrees of freedom, or displacements at each node. To allow for

312



the circumferential variation in load a third degree of freedom, the
circumferential or hoop displacement, is introduced. These three displacement
components are assumed to be linear functions of position in the R-Z plane.
This is expressed mathematically as follows
Up = by + bR+ byZ
Uy = by + beR + b,Z (1)
Ug = b7 * bgR + bgZ

The strain components in terms of these displacements are (for small displace-
ment theory).

U
‘z'azu .
‘e=%'§e_e R
g * R+ L (2)
t'=Ze=-glzj—"— +-§—%
o " ¥ ?2’—“+%L’—° 'E%

The Toading is now allowed to varying in the circumferential direction in a
sine or cosine fashion as defined in Table 1.

Equations (1), then become

UR = (bln + bZnR + b3nZ) cos Ne
UZ = (b4n + bSnR + bsnz) cos Ne (3)
Ue = (b7n + anR + bgnZ) Sin Ne

or
Up = (bln + ban + b3nz) Sin Ne

Uy = (by, + bgyR + by Z) Sin Ne | (4)
Ug = by, + bgR + b Z) Cos Ne
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TABLE 1

FOURIER SERIES LOADING AND DISPLACEMENT DESCRIPTION

Symmetric about a
plane containing the
axis of revolution

Anti-symmetric about a
plane containing the
axis of revolution

-
(]

w
L]

[ =g
L]

2Tn(r,z) cos né

zsrn(r,z) cos né

;Szn(r,z)
zsen(r,z)
zUrn(r,z)
:Uzn(r,z)

ten(r,z)

cos

sin

cos

cos

sin

n is the harmonic number.

neé

ne

ne

ne

ne

T is the temperature.

S's are the loads.

U's are the displacements.
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To introduce nonlinear material behavior, we make the classical assumption
that the total strains consist of a summation of elastic, plastic, creep, and
thermal components

e=¢t 4 eP +e+ eT ' (5)

We also assume that stress is linearly related to the elastic strain only
o=C ¢ : (6)

g = C(e - eP - cc - eT) (7)

Where C is the elastic Hook's Law matrix.

The sum of the plastic, creep, and thermal strains are considered as
initial strains.

I

€ eP

+ eC + tT (8)

or 1
o =Cle-c¢) (9)

Applying the precepts of Reference (2), we make use of the Principle of
Stationary Total Potential Energy.

The strain energy density is expressed as

0=1o ¢ (10)
or

U= x5lc(e - T (e - &) (11)

U=3%(c- el)T C(e - eI) (12)

The total potential energy of one ring element is
PE =/, k(e - e!)T € (e - eT)av - 67F (13)

where & is the generalized displacements and F is the generalized external
forces.

For a system of ring elements, this development leads to
Ks = F + FI (14)
where

K = elastic stiffness matrix for
discretized system
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8 = generalized displacements of the
' discretized system

F = applied generalized forces

FI = generalized forces due to initial
strains

Now, to introduce the Fourier Series loading into this system of
equations. Our assumption is that the total strain can be considered to be
made up of the sum of a certain number of A-series and B-series Fourier
components. The A-series components are those symmetrical about a plane
containing the axis of rotation. The B-series components are those
antisymmetrical about a plane containing the axis of rotation (see Table 1).
Thus we assume

U(R,2,6) =z U (R,Z) cos Ne

15
+3 U8 (R,2) Sin Ne (15)
- and therefore

e(R,Z,8) = ¢ cﬁ (R,Z) cos Ne

+y B (16)

T ey (R,Z) Sin Ne

or

A B

e(R,2,8) = ¢ (R,Z2,8) + ¢ (R,Z,8) (17)
and, using Equation (5)
e(R,Z2,8) = eeA(R,Z.e) + ePA(R.Z,e) + eCA(R,Z,e)
+ e A(R,2,0) + B(R,2,0)
+ &B(R,2,8) + ¢®B(r,2,0)
4 ¢B(R,2,8) ~ (18)
For a discretized model, the system of equations are set up and solved a
harmonic and a series at a time ‘
A, =IA - '
an S Fﬁ + FN - ' - : (19)
B . :elB RS ,V;t L ‘ , ', |

Bwl N ™ P+ P | (20)
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The nodal dispiacgments are then given by

6(R,2,8) = £ aﬁ cos Ne + ¢ 6: Sin Ne (21)

NONLINEAR SOLUTION SCHEME

A given axisymmetric geometry with thermal and mechanical loadings which
can be simulated by Fourier Series is first discretized by triangular rings.
The pertinent system of equations, (19) and (20), are set up and solved, first
assuming elastic behavior. This gives a first approximation for the nodal
point displacements. With these results, which are the amplitudes of Fourier
Series displacement components, we can now determine the displacements at any
circumferential location.

A minimum period is selected based on the Towest order harmonic other than
0 (for the combustor liner this is determined by the number of fuel nozzles).
This minimum period is then approximated by 10 points in the O-direction. At
each of these 10 points, each rings nodal point displacements can be
determined. From this the total strain can be determined for each location.
Then using the constitutive models as covered in References (3) and (4), an
initial estimate_is made for the inelastic strains and from these inelastic
pseudo-forces, FP and FC. These inelastic pseudo-forces are then
approximated by the Fourier Series harmonics.

FP(R,Z,8) = 2R, PP (R,2) Cos Ne + TF,'D (R,Z) Sin Ne

' (22)
FE(R,Z,0) = 2FyCR (R,2) Cos Ne + £F, B (R,Z) sin Ne

The amplitudes of these harmonic pseudo-forces are then added to the initial

force vector. FyL(R,Z,8) = FyTA(R,Z) Cos Ne + F,TB(R,2) Sin Ne

+ F,PAR,2) cos No + F"B(R,2) Sin Ne (23)

+ F,%(R,2) Cos N + Fy®(R,2) Sin Ne

This new value for the initial force vector is used to obtain a new series of
solutions. From these, new inelastic strains are predicted and from these a
third initial force vector. This process is continued until convergence

occurs.
EXAMPLE “CASES -

- In order to verify the correctness of the solution scheme: as outlined,
several comparisons with finite element methods were made. Two problems
analyzed are presented, one representing combined thermoplasticity and creep
under cyclic loading, and the other a verification of the elastic Fourier
series analysis capability. These cases represent a check on the two basic
aspects of the combined elastic/plastic technique for harmonic-loading.

317



In the first case, which verifies the cyclic plasticity and creep
capability, a thick-walled cylinder is subjected to a time-varying pressure
and temperature loading history (Figure 2). These loadings are the
predominant types experienced by combustors. Plane strain conditions were
assumed, the finite element model being composed of triangular ring elements
as shown in Figure 3. The model was also run using the CYANIDE 2-D computer
code, subjected to the same temperature and pressure history as shown in
Figure 2. The comparison between SHELPC and CYANIDE 2-D under these
axisymmetric loadings was then made, the results being presented in Figures 2
and 4. Figure 2 shows a comparison of radial displacement versus time for the
two methods. Figure 5 shows the residual stress distribution through the
wall at t = 10 hours when the pressure was equal to zero. As can be seen from
these results, correlation was very good. '

A second test case was used to check the Fourier series method under a
thermal loading represented by the combination of temperature harmonics of the
form:

T(8) = 70 + 30 cos (46)

In an actual component, such as a combustor, the harmonics used would be a
function of the number of ®hot streaks® around the circumference. The model
used was again a thick-walled cylinder as shown in Figure 3. To verify the
response of the structure to this type of loading, the same model was run
using the CLASS/MASS code which also has harmonic loading capability but
limited to linear elastic behavior. This problem was run elastically with
SHELPC in order to achieve a direct comparison. Results are presented in
tabular form to demonstrate the closeness of the numerical comparison. In
Table 2, the displacement components from SHELPC and CLASS/MASS are compared
for the harmonic loading:

T(8) = 30 cos (49)

Table 2: Nodal Displacements at © = 00 Due to a
Single Harmonic Thermal Load

T(8) = 30 cos (40).

Node SHELPC (10~3 inch) CLASS/MASS (10~3 inch)
No. R 37 %o TR K1 %o
1 | -8.947 |-7.726 | 8.633 | -8.958 |-7.736 | 8.641
2 | -8.946 | 7.727 | 8.633 | -8.958 | 7.736 | 8.641
3 | -0.2380| © 3.661 | -0.2645| © 3.646
4 7.718 | -8.767 | 9.678 | 7.719 | -8.770 | 9.678
5 7.718 | 8.767 | 9.678 | 7.7119 | 8.770 | 9.678

In Table 3, the individual harmonic results from SHELPC for

stresses and strains are shown.

also tabulated.
superimposed.

values.
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The results from a combined harmonic run are
As can be seen from this table, the results are correctly

They also correlate well with the corresponding CLASS/MASS




Table 3.

Nodal Dispiacements and Element Strains and Stresses at 6 = Q
Due to Combined Harmonic Thermal Load (i.e., T(8) = 70 + 30

cos 40).
Nodel Displacements (10~3 tnch)
" hel =k Comb ined
:: ol T i M iq i; %W [ P iz T,
1 0.4200 | -0.2100 | © -0.08947 ~0.07726 | 0.08633] 0.32305 | -0.2873 ] 0.0865%
2 0.4200 0.2100 | O ~0.08946 0.07727 | 0.08633| 0.3305 0.287) | 0.0861)
3 0.6300 0 0 ~0.02380 0 0.03661 0.6276 0 0.03661
4 0.8400 ~0.2100 0 0.07718 ~0.082767 0.09678 0.9172 -0.2917 06.09678
5 0.8400 0.2100 | © 0.07718 0.08767 0.0#678 0.9172 0.2977 | 0.096712
Element Strains (103 Inch/Inch)
Ele. n=0 n=0 Combined
No. g, 7] Ey L' [ Ez Ky Eor [ [ 7] Ey Egr
1. 0.420 | 0.420 [ 0.420) © 0.174 | 0.155 | 0.187 | -0.0480 | 0.594 0.575 0.607 { 0.0480
2 0.420 | 0.420 | 0.420] 0 0.167 0.165 | 0.192 ~0.0253 | 0.557 | 0.585 } 0.612 ) 0.025)
3 10,420} 0.420] 0.420] o 0.167 | 0.165 | 0.192 | -0,025+ 0.587 { 0.585 | 0.612 | 0.0254
4 0.420 | 0.420 | 0.420] © 0.157 0.175 | 0.19> 1-0.0320 0.579 | 0.595 0.615 | -0.0320
Element Stresses (107 poi)
Ele. n=0 n=0 Comb ined
No. Jog T oz 9 [ s ¢ % % Soc % % % %¢
1 0 0 1] 1] -0.549 ~-1.00 ~-0.244 0.553 | -0.549 | -1.00 ~-0.244 0.55)
2 0 o 0 0 -2.5%92 -0.6)1 -0.005 ~0.292 -0.592 | -0.631 -0.005 }| -0.92
k) 0‘ 0 0 ) -0.591 -0.631 -0.605 -0.293 ~0.591 -0.631 -0.005 -0.93
4 0 1] 0 0 -0.664 ~0.289 0.165 -0.370 | -0.664 | -0.289 -0.165 | -D0.370
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Then three more complex nonlinear comparison cases were run to demonstrate
the capabilities of SHELPC. These cases demonstrate elastic/plastic
comparisons for axisymmetrically loaded structures as well as harmonic
summation comparisons in the elastic regime. Since no other code which does
the harmonic analysis was available, a direct comparison of nonlinear harmonic
analysis could not be made. This comparison will rely primarily on
experimental results from actual combustors. .

To compare the elastic/plastic analysis capability for axisymmetric
loading, we modeled a typical axisymmetric combustor 1ip, as shown in
Figure 5. It was modeled using 168 3-node finite elements in both SHELPC and
CYANIDE 2-D programs. The axisymmetric loading conditions were run and
compared satisfactorily. Figures 6 and 7 show comparisons of the effective
stress and effective plastic strain, respectively, as predicted by the two
programs. The plot is for the inner surface of the cooling Touver around the
edge from element No. 56 to element No. 136 as shown in Figure 8. As can be
seen from these results, the comparison between the two programs is
excellent. This case was one of those used to validate the analytical
development of SHELPC where a direct comparison with axisymmetric loads (zero
harmonic) could be made.

Our second example demonstrates the Fourier series capability of SHELPC
under a mechanical loading situation. Figure 9 gives the particulars of the
problem, a ring under a harmonic pressure distribution applied at the outer
diameter. This problem was solved both elastically and plastically for the
stress-strain properties shown. Figure 10 shows the SHELPC predictions for
the radial displacement at the outer diameter for the two cases. The elastic
results were correlated with hand calculations and CLASS/MASS results.

As a final validation example, we extended the previous comparison with
CLASS/MASS to the nonlinear regime.

Figure 11 shows the problem conditions, an jncreased thermal loading, and
the assumed stress-strain curve. The elastic solution was correlated with
CLASS/MASS. The plastic solution shows the difference in effect between the
pressure load of the previous example and a thermal hot streak, Figure 12. In
this case, plastic flow reduces the radial displacement.

This program is continuing under development with more verification and
validation cases being pursued.
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Figure 1., Finite Element Node Ordering.
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Figure 2. Load, Temperature History; Elastic-Plastic Displacement
Response of a Thick-Walled Cylinder.
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5 2.0 1.0
2

Figure 3. Thick-Walled Cyclinder Model Used for
Combined Harmonic Loading Verificatiom.
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Figure 10. SHELPC Predictions of Radial Displacements.
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Figure 11. Cylinder Under Harmonic Thermal Load.
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Figure 12. SHELPC Predictions for Hot Streak.
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