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1.0 INTRODUCTION:

This Semiannual Status Report summarizes the work performed under Grant

NAG5-458 entitled "Investigation of Dynamic Noise Affecting Geodynamics In-

strumentation in a Tethered Subsatellite."

During the reporting period, SAO has

- Written an invited paper to be p %iblished in the forthcoming Special
Issue or Geodynamics of the TFFF Transactions Qn Geoscience &nd Remote
SenIIing•

- Continued modeling of the atmospherically induced dynamic noise in the
subsatellite through the modification and use of the SKYHOOK program;
interaction wish an elementary form of random atmosphere was simulated.

- Developed a method for stabilizing the subsatellite against the rota-
tional effects of atmospheric perturbations and analyzed a simplified
model.

- Performed a variety of analytic studies of tether dynamics aimed at
elucidating dynamic noise processes and at continuing the rotational
stabilization analysis.

Discovered a novel mechanism for coupling longitudinal and latitudinal
oscillations of the tether: a longitudinal (approximately vertical) 	 `.
oscillation causes an oscillation in the subsatellite's altitude; this,
ir turn, causes an oscillation in the drag experienced, which is in the	 J

horizontal (latitudinal) direction.

- Begun study of random vibration analysis for modeling the TSS under
atmospheric perturbation.
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2.0 INVITED REVIEW PAPER

A paper entitled "Gravity Gradiometry from the Tethered Satellite System",

by G. E. Gullahorn, F. Fuligni and M. D. Grossi, was written and submitted for

the Special Issue on Geodynamics of IEEE Transactions 2a Geoscience and Remote

Sensing. This paper has been accepted and is scheduled for publication in the

July, 1985 issue. It lias been modified substantially from the draft version

included as an appendix to the Semiannual Report.

Our survey of the open (published) literature showed virtually ncthing on

the topic of TSS gravity gradiometry; even among less readily available sources

such as contract and grant reports or limited distribution summaries of meet-

ings, nothing at an introductory level was found. Thus, in keeping with the

spirit of a "Special Issue" intended for a broad audience, we decided to write a

largely tutorial/review paper rather than simply report one or two current

results comprehensible only to a few other specialists. We did, however, also

summarize some SAO work in the field.

Although researching and writ'.ng this paper was a substantial effort, we

believe that the product was valuable. It will publicize t

advantages of TSS gradiometry (and of space-born gradiometry p

eral) , and provide a ready entree for the fledgling researcher

interested scientist from a related field.
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2.1 The Significance Of Platform Rotation

The discipline of producing such a review was also of value to the authors.

The process of TSS gradiometry, and the role of dynamic noise calculations, was

placed in context. The important role of rotation of the instrument platform

(subsatellite) was examined and emphasized. Excerpting some paragraphs from the

paper:

The gravity gradient is a tensor whose components in Cartesian coordinates

are definers as

raj = 9g,/8x j _ — 83U/8xj8xj	(2.1.1)

The gravity gradient is expressed in Eotvos units, 1 E - 10 -9 gal/cm = 10 -9

sec -2 . Note that because the gravity vector arises from a potential, r, = r,i

and in free space Poisson's equation will relate the three diagonal components,

r. + ryy + r„ = 0. Thus, of the nine components, only five are truly indepen-

dent.

Measurements made with an instrument linearly accelerated relative to a

rest frame will not be affected due to the phenomenon of common mode rejection

discussed below. However, if the instrument is subject to a rotation with

angular velocity w(t), the measured gradient will be

r'•" = rre•t + T + V	 ( 2.1.2 )

where rr••t is the gradient of (2.1.1) , T (t) is the matrix
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r0	 -W3	 W3

T(t)	 =	 W3	 0	 -Wt	 (2.1.3)

	

-W3	 W1	 0

and T3 means matrix multiplication in the common sense. Note that the term

depender.- on the angular acceleration is anti-symmetric and can be immediately

distinguished from the inertial frame gradient if the full tensor gradient is

measured accurately enough; the term dependent on the angular velocity is sym-

metric, and cannot be removed from the observations without knowledge of the

instrument's rotation.

If the gradlometer is not attached to a completely motionless platform, the

measured gradient may contain errors. A linear acceleration, with no rotation,

is relatively innocuous due to the phenomenon of "common mode rejection": the

two test masers will be subject to the same: non-gravitational acceleration, so

the difference, the measured gradient, will not be affected. Rotation of the

instrument, however, will innately alter the sensed gradient as shown by

(2.1.2). If the rotation has angular velocity w(t), ignoring for simplicity the

vector nature, then the T2 term of (2.1.2) will have magnitude approximately W2.

Measurements at the goal level of 3 x 10 4 E = 3 x 10 -13 sec -2 will be degraded

if W > 5.5 x 10 -7 sec -1 = 0.1 deg/hr.	 Stability at thin level should be

readily achievable, and if not, such rotational velocities can be easily

measured and their effect removed via (2.1.2). The rotational acceleration

term, T, however, will interfere with measurements if w > 3 x 10 -11 sec -2 ; to

subtract the effects would require, over a one second integration, knowledge

of w to about 3 x 10 -13 sec -1 = 6 x 10 -2 deg/hr, well beyond current technology.

If eight of the nine components of r are measured, the rotational acceleration

effects can be removed by their anti-symmetry. However, even a very small m



Page 7

will generate large spurious gradients, and an enormous dynamic range require-

ment, so it will still be very important to isolate the gradiometer from rota-

tional acceleration. Alternately, one can measure the diagonal terms only,

which are not affecr^ed by the rotational acceleration; but then one must be

careful to avoid contamination by the cross terms, due, for instance, to

misalignment of the accelerometer pair.

Another source of error lies in the vertical 3000 E background due to the

overall Earth mass. Any slight misalignment of the spacecraft reference frame

will project this on the otl.sr axes, e.g.	 1/2 arc sec will lead to 10 -1 E.

This is not critical in itself, but any fluctuation in alignment at the arc

second level could cause serious problems.

3.0 NUMERICAL SIMULATIONS

The numerical simulations being done at SAO use a modified version of the

SKYHOOK program, which models the TSS as set of discrete masses and connecting

(massless) tether segments. As described in the Final Report to the previous

contract, NAGS-325, we have added facility for superimposing spatial fluctua-

tions on the standard atmospheric density routine and outputting the resultant

accelerations of the subsatellite, together with ambient densities at each mass,

for later analysis. The acceleration components found to be most elucidating

are those tangent to the tether at its attachment to the subsatellite and or-

thogonal. Expressed this way, the effects of tether longitudinal vibrations are

separated from the direct effects of atmospheric drag variations. Restrictions

are that the subsatellite is considered a point mass (attitude dynamics and

aerodynamic effects are not included) and that computational effort limits the

number of masses to about 10 for routine use, hence limiting the frequency

A
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response of the :'stem. All cases considered have been limited to a tether

deployed in the orbital p:'.ane, though this restriction is not inherent in the

program.

3.1 Software Modifications

3.1.1 Graphic Capability Enhancement -

One simple, yet important, enhancement of SAO capabilities was the adapta-

tion of graphics tools allowing informative and compact display of the accelera-

tion and spectral outputs. Compare the figures in this report with the hand

drawn Figure 7-1 or the printer plots in Appendix D of the NAGS-325 Final

Report.

3.1.2 Modification Of Underlying (Mean) Atmospheric Density Routine -

We resolved a subtle problem in the standard SKYHOOK atmospheric density

routine which had been causing an occasional sharp jump in the orthogonal accel-

eration component. The difficulty arose from an interaction of two factors:

First, to eliminate residual deployment effects we have been forced to make two

SKYHOOK runs for each case considered, a "reference" run with no atmospheric

perturbation and a run with the perturbation we wish to study. The resulting

accelerations are differenced before plotting, computing spectra or other analy-

sis. Second, the atmosphere routine used simple linear interpolation in a

table, resulting in a p(h) curve with only piecewise continuous derivative.

Because the two runs are different, the subsatellite will be at slightly

different altitudes in each and thus subject to slightly different drag. If

both subsatellites are in the same tabular interval, this difference will be

constant or vary only very slowly, causing minimal effect. But when one sub-
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satellite crosses a tabular altitude, and thus is subject to a different d, isity

as function of altitude, this difference in drag takes a sharp jump.

To remedy this problem, we created a smoo ther atmospheric density routine.

We first attempted to simply interpolate log(p), but ended up fitting a moderate

order	 Polynomial	 to	 the	 log(p)	 data	 (with	 independant	 variable

altitude-100km ) at each tabulated temperature and interpolating in tempera-

turf. This produced the desired smoothness with no noticeable deterioration in

execution time. Our scheme of differencing the two runs may still have some

effect at very low frequencies, as the relative altitudes of the subsatellites

J
change gradually over the run.

Tracking down this effect of altitude on drag did point up one interesting

mechanism:-

Any variation in the subsatellites altitude due to tangont
accelerations produced by the tether (approximately vertical)
will cause a variation in the ambient stmcspheric density,
hence the drag experienced, hence the orthogonal (approxi-
mately horizontal) acceleration.

3.1.3 Multiple Smooth Perturbations -

i

The version of SKYHOOK created during the previous contract had allowed

only a single density perturbation, with a sharp cutoff between the enhanced (or

diminished) region and unperturbed density; the region is elliptical in cross

section and extends indefinitely to either side of the orbital plane. Apart

from the obvious restriction to a single perturbed region, the sharp boundary

results in very long integration time due to the, peculiarities of the Gear

integrator used to solve the differential equations of motion.

1
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We have extended the allowed perturbation s to include, up to two hundred

(possibly overlapping) regions each with a smooth cutoff to enhance computa-

tional efficiency. The parameters of each region are: a vertica! radius, rv;

n horizontal radius, rh ; altitude of center, hc ; a distance "along orbi+" from

j ,	the start of the Pimulation, . a.; and an enhancement factor, e. Again, since we
II

	 are concerned with deployment in or near the orbita l. plane, the density per-

turbations extend indefinitely perpendicular to the plane. First, we defines a

scaled radius

r = V ( (h-h.) /r„) 1 + ( ( a - ac) /rh) '

where h is the altitude and a the "along orbit” distance. Then the density

perturbation for a single region, relative to the "base" unperturbed density, is

;I

s .

P/Pb... = 1 + 0/(' +r 2) 3

The region so defined has the same total mass (in a two dimensional sense) as

the previous sharply bounded region with the same vertical and horizontal radii

and enhancement factor. When there is more than one perturbed region, the right

hand side of this equation is comp^ited for each part-lrbation and they are all

multiplied together to form the total perturbation.



3.2 Simulations Of Single Perturbations

We have analyzed four casein: smooth and sharp bounded i

on the subsatellite at 120 km and on the tether at 170 km alt:

were circular with 20 km (effective) radius ; and 20% enhancemo

A typical plot of the residual tangent and o r thogonal aci

enced after encounter with the perturbation is given In Figu

cases were similar. Note th6 smoother nature, an3 much sma

the orthogonal acceleration.

The spectra of the accelerations produced in the varii

surprisingly similar. Figure 3-2 shows those for two cases:

tion impacting directly on the subsatellite, and a sharply bi

impacting halfway up the tether. The sharp peaks correspond

mass mode and the expected eight longitudinal 3ibration

visible in the tangent acceleration. These unperturbed mod

the orthogonal acceleration, with the addition of a mode at i

possibly due to latitudinal vibration modes. The spectra aT

though the peaks in the case with tether impact are smaller :

that the background levels are the same in both cases. 7

detail we tabulated the frequencies and riagnitude3 of the sp4

printout. The frequencies are all very close, to within t0

nitudes are plotted In Flglrb 3-3. The disturbances with

cutoffs, at subsatellLte altitude, are very similar in both T

tive strengths of the peaks. The disturbance at mil-tether

cives the modes In roughly the samb ratios, although with

magnituds.

0-0,.-MMP— J
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compares identical enhancements impacting on the subsatellite a ,,: 120 km altitude
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is for the tangent component, the bottom for the orthogonal component.
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3.3 Modelling A Random Atmosphere

Simulations of ancounters with individual "bumps" in the atmospheric den-

sity serve to elucidate the impulse response of the TSS. However, it would also

be instructive to simulate the TS3 passing through a realistic randomly varying

atmosphere.

From Gross, Reber and Huang (1984) and Gross and huang (1985), we know that

the power spectral density of variations at 250 km is roughly a power law with

exponent -3 at low spatial frequencies and -3 to -4 at higher frequencies. This

appears to be the best information available, no similar data existing at the

lower altitudes of primary interest to us. The best that can be done, in the

absence of some physical theory, is to simply assume the same per-cent variation

relative to mean ambient density in the regions of interest.

Creating a randow atmosphere by superposing a set of the perturbed regions

discussed above was attractive for several reasons:

- By analogy to individule "turbules" in a turbulent medium.

- The individual elements can be implemented and studied before combining
them. The superposition is then a relatively simple programming task.

- The Gear integrator used in SKYHOOK demands smooth data for efficient
operation. Interpolating on a grid, for instance, would cause much step
size and integration order adjustwent crossing each mes,i line.

The amount of data needed to represent the atmospher" at a one second time
resolution in the horizontal dir..ction and an e quivalent distance (say 8
km) vertically is large: roughly 50,000 points for a one hour run.

- Because the Gear integrator, it adjusting step size, may loot- at intermedi-
ate time values after ;taking one large time step, the density must be
effectively cre,-.ted In toto rathe r than step by step as the simulation
proceeds. Having the density at tine same place and time change in value
depending upon the series of time steps used would be likely to wreak havoc
with 'the integrator's performance.

We have started an investigation of how to create a set of perturbed regions for

:r,
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use by the current version of SKYHOOK which will have a given spectrum (as seen

by the subsatellite traversing the atmosphere). This method apoears, in light

of these efforts, not to be capable of producing the desired atmosphere model

(an individual realization of the random atmosphere).

Two methods appear to show promise, though time was not available to pursue

them: First, as an ad hag. approximation assume that the masses in SKYHOOK are

at constant altitude. For each mass, create a time series with the desired

resolution, interpolate this with a high order spline, and use these separate

series. This would still require a substantial amount of data, but would be

less strongly inte rconnected and require no interpolation in the vertical direc-

tion. Although acceptable, perhaps, for SKYHOOK with it's limited number of

masses, this method could not be extended to simulations requiring greater

vertical resolution.	 Second, the "turning lines method" (see Bras and

Rodriguez-Iturbe, 1985) allows reconstruction of a two or three dimensional ran-

dom field from distributions along a set of lines through a common center; the

number of lines suggested is small, 4 to 16. This method is for producing a

distribution on a grid, but may be adaptable to our need for densities at unpre-

dictable points.

In the absence of a good theory, we have created a set of 200 regions with

random centers (altitudes 120 to 220 km, random distance along track), random

radii (up to 30 km vertical, 50 km horizontal) and random enhancement factors

(in the range -0.5 to +0.5); all distributions being uniform. The induced

accelerations are shown in Figure 3-4, and the spectra in Figure 3-5. The

tangent acceleration is roughly similar to that produced by single regions, and

i,: the spectrum we see the same peaks as before although more weakly (note the

higher br.seline)	 The same modes are being excited, but with more "noise"

generated by the random forcing function. The orthogonal acceleration, however,

i
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is totally dominated by the direct effect of the drag variations, and its

spectrum is featureless. For reference, the ambient density at the subsatellite

is shown in Figure 6, along with its spectrum. These are similar in character

to the orthogonal acceleration, as expected if we are seeing largely direct drag

effects in the latter.

4.0 ANALYTIC INVESTIGATIONS

SAO has performed several analytic investigations of tether and TSS system

dynamics. These fall in two categories: those aimed at overall understanding

of tether dynamics and it's implications for dynamic noise, and those specifi-

cally aimed at developing noise abatement methods. We treat the latter first.

4.1 Simple Model For Eliminating Rotational Perturbations

As pointed out in Section 2.1, rotational perturbations of the instrument

platform are much more insidious than simple translational accelerations. The

SKYHOOK simulations described in Section 3 do not include subsatellite rotation,

but it is easy to see that intersection with a density enhancement must cause

the subsatellite to rotate: the center of force will be near to the center of

the subsatellite, rot through the attachment point to the tether, and hence any

differential acceleration of the subsatellite and tether will cause a torque.

To alleviate this torque, we adopt the idea of a ballast mass: a second

mans attached by a short piece of tether (or rigid rod) to the instrumented

subsatellite and with an area/mass ratio chosen so that drag variations will riot

excite rapid oscillations. We assume that this suspended subsystem is small

enough thrt all points experience the same atmospheric density at any one time,

J
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anc that the gravity gradient strength (which we shall simply call "g") is

uniform.

A full analysis of such a system, some attempts at which are given in the

next section, promises to be exceedingly complex, probably being incapable of

analytic solution. Here, we present a very simplified m,.ri,-tl problem which,

however, demonstrates the feasibility of the ballast mass idea and illustrates

the basic form which a complete engineering analysis would probably follow. The

ballast mass concept, and our simple model, are illustrated in Figure 4-1. We

model the system as a pair of coupled pendulums suspended from an "infinite

mass" S1.uttle in the orbital plane, and assume small deviations so that the

syste- becomes linear. We take as the reference configuration simple hanging

equilibrium without the complication of the equilibrium displacement due to the

mean drag, which should be adequate for the nearly vertical configurations ex-

pected. The tether segments are assumed massless and inextensible, and the

masses are point masses; the rotation will be apparent in the motion of the

angle of the segment joining the two masses. The equilibrium tensions in the

two segments, which we may assume to be constant, are

T1 = g (ml + m2)
(4.1.1)

Ta = g m2

The system state is fully described by the two angles 9 1 and 6 2 . We shall

explicitly balance forces in the x (horizontal) direction, and express the

result in 0 1 and B,. The homogeneous part of the equations is also easily

derived via a Lagrangian, leading to the same result. We have:

mlxl = — T1 sin (0 1 ) + Tz sin (0 2 ) + dl
(4.1.2)

mlxl = — T2 sin (0 2) + d2

To evaluate the left hand sides, use

xl = L sin (B 1) = L 01
(4.1.3)

Ida

--Aw
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?-,t

EI.Q 4_1. Simplified model of the ballast mass concept for alleviating rota-
tional perturbations due to atmospheric density variations. The system is
modelled as two coupled pendulums, with inextensible massless tether segments
and point masses.

11,
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x, = x, + b sin (B,) = LB 1 + b 03

and similarly expand the sin() functions on the right hand sides. Use the

dimensionless parameters

e = b/L
n .

a = dl/da = Al/A 2 	(4.1.4)

Y = m7/ml

where Al and A; are the cross sectional areas of the two masses; a will be a

small parameter, while a and P may be manipulated to achieve desired behavior

and are of order unity. Also write d = d 2 and m = m l , and after some manipula-

tion obtain:

0	 S1	 1+^ -^	 B1

L	
1	 + g	

a
-	 d t	

(4.1.5)

1	 0	 1	 0,	 1	 m

where we explicitly show the dependence of drag on time, d(t). In more concise

matrix notation,

A# + B1 = a d(t) (4.1.6)

To solve this system of equations we shall assume that it is initially at rest

and apply the Laplace transform

C[f(t)] = F (r)	 r e -T°f (t)dt	 (4171
0

Using the properties

C [f' (t)] = -f(0)  + rF (r)

Z[f" (t)] = - f'(0) - rf (0) + r'F (r)

along with the initial conditions, and letting

D(r) = C(d(t)]

j	 e(r)	 [Al, 92]T = C[#(t)]

we find

r 2A9 + Be = aD (r)

iI
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This is an algabralc equation for 9(r), and can be solved to give

91	1	 Lrlc+g	 g,	 a	 D–

A3	A	 -Lr^	 Lr"+g (1+p) 	 1/^	
m

where
A =	 (Lr 2 + g ( 1 + fi))	 (Lr 'c + g)	 + q#Lr 3 (4.1.12) f

We are specifically interested in 62:

(Lr 1 + 9(1 +	 aLr2	 D t
' 03 (T)	 _ (4.1.13)A	 m

To progress	 further,	 we asPlime	 a simple impulse,	 d(t)	 = do 6 ( t-T) .	 TEen

D(r)	 =	 doe -Z'.	 For	 the	 moment,	 let	 co	 =	 m	 =	 1;	 if	 needed,	 linearity	 of	 the

Laplace transform would	 let us	 factor	 them in	 after	 the	 answer	 is	 obtained.
M

Also,	 we can	 let T = 0,	 since the	 factor e -T '	 in the 'Laplace tra .,sform	 simply

shifts	 the	 time-domain	 function	 by T:	 r -1 [e'T'	 F(r)]	 =	 f(t-T). Thus,	 we may

take D(r)/m  = 1 in 	 ( 4. 1 .13) .

We now need the inverse Laplace transform of the 	 (known) 62 (r). From here

on, wA shall aaaums L SS 1^ that 1a h SS L.	 Then we factor the denominator to {

lowest order in e: !w'f

A =	 cL'	 ( r 2 + e 2 ) ( t 3 + f 2 ) (4.1.14)

where

e1 =9 1 +	 =9 1 +
Lc	 b (4.1.15)

f 2 = g
L

As we shall see below,	 f represents a slow mode of overall oscillation, while e

gives a fast mode of subsatellite oscillation. 	 Noting that

1	 _	 1	 1	 _ _1_
I

(4.1.16)
1	 (r2 + e 2 ) ( r l + f I )	 fa — e2	 r 2 + e 1	 ra + V

l	 and that f 3-e' = - e 2 to lowest order in c, and letting

h' = g 1 +	 — (4.1.1'7)
L (1

we find after considerable algebra:

_	 1 – a	 h2 – e 3	 h3 – f^
6^(t)	 _	 –

[
(4.1.18)

9Q (1 + p)	 r3 + 03	 r2 + fz
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Putting the factor dhO1/m back into the answer, and using C- 1(1/(r'*a3)]

(1/a) sin (ut) , we obtain

(t) — —	 fm	 0(1 + a)	 h e 

e	
sin !et)	

h3 
f f	 sin (ft)	 (4.1.19)

We have two parameters, a and P, at our disposal and we use them to elimi-

nate the fast mode corresponding to sin(et) by setting h 2 -e 2 = 0, which leads to

aQ _ 1-c, or

- = (1 - t) "
A2	 Al

to first order in c.

(4.1.20)

This answer is in some sense obvious, to zero'th order in e: for the

masses to accelerate equally, neglecting the suspending tether, their mass/area

ratios must be equal. What we have done here is to derive a first order approx-

imation and, more importantly, illustrated techniques that might be used in a

more complicated and realistic calculation. The fact that we have been able to

eliminate the fast mode in this first otdar calculation, as well as the zeroth

order one, also is promising for success in eliminating fast rotational modes in

more complete models.

Before leaving this very simple model, we should consider one last ques-

tion: What is L? Most simply, if the assumption cf a massless, inextensible

tether were precise, L would simply be the distance from the subsatellite to the

shuttle. The real tether, however, will have an influence and an L ufeful for

back-of-the-envelope calculations might be taken as, say, the length of tether

whose mass equals the subsatellite (not substantially different in the case of a

100 km tether with density 8 kg/km and a 500 kg subsatellito;, or the wavelength

of transverse waves having the same period as the subsa tellite pondular oscilla-

tion (which is much smaller: for a subsatellite with 0.2 Hz oscillations and a

tether with spectrum 0.001n Hz, this gives mode n=200, or wavelength about 1/2

1

A;
	 -

111V -	
.ar ..
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km). Providing a confident answer to this question will depend on sixperierce

from sample calculations including a continuum tet*er ; the beginnings of such

calculations are discussed in the next anctio,,.

4.2 Extensions To The Simple Model

In the above section we have domunstrated the feasibility of uQing a bal-

last mass to help eliminate rotational perturbations of the nubeatellite inatru-

ment platform by atmospheric density variations. A great deal remains to be

done before such abatement methods can be considered fully designed.

Still within the context o: non-continuum tethers, one could add to the

model such factors as tether elastIcA ty and damping, rotational dynamicr of the

subsatellite and ballast, and more ccmplicsted arrays of ballast masses (e.g.,

one below and one above the instrumant platform) and specially designed connect-

ing elements (such as highly damped cables) . Such comp I.i ations are likely to

soon reach the limits of analytic solubility and require numeri•..al solution and

various numerical parameter optimization methods.

Adding the continuum tether adds another whole level of complexity, requir-

ing solutions to mixed partial and ordinary differential equations, but must be

done: before the problem can be considered fully s:;plcred. We have achieved a

partial solution of a simple cane: one point mass on the ono of a tether with

no dampiv; and no body forces (drag, gravity), Banging from an infirtte sass

shuttle. The suspended mass experiences a variable drag d(t).

We shall not give our calculations in detail. The oscillations in the

three orthogonal directions are decoupled ( for small displacements), and only

the horizontal, along - orbit direction is effected by d(t). The equations for

ML_ ^jlswr. r

Ash	 1 - -- -- -^--
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this component are:

pvtt = (T.L/L) v..	 0 < s < l

v(O,t) = 0

v	 t) = q (t)

m	 (t) = — (.T.l/L) v. (l , t) + .d (t)

where l is the tether's natural length, L its stretched length in equilibrium,

T. the equilibrium tension, q(t) the displacement of the end mass, and the rest

of the notation follows previous discussion. Laplace transforming this system

with respect to time generates an ordinary different!al equation with r as a

parameter:

r2V(s, r) = c 2 V.. (s, r)	 0 < s < l

V(O, r) = 0

V(C,r) = E(r)

r-^ E(r) - -tv : V.(C,r) + D(r)

where V and E are Laplace transforms of v and q, D is the transform of d(t)/m,

and b and c are constants. This system is readily soluble to give

T) (r)
	 sinh(rs/c)

sinh(rl/c) + (b 2 /rc) cosh(rl/c)

E (r) = D (r) 	 sinh (rl/c)
r = 	sinh (rl/c) + ()--, 2 /rc) cosh (rl/c)

We are primarily interested in the motion of the mass and thus in the inverse

transform of E(r). Unfortunately, even for simple forms of D(r) this does not

seem to be tabulated nor to be modifiable to a recognizable form. Further

Investigation may provide an analytic solution, but fully r©aliatic calculations

with systems of suspended, finite extent masses will likely require numerical

approaches. A modal (separation of variables) analysis should also be made to

attempt to find the response to a drag impulse.
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4.3 Cooperation With Prof. Silvio Bergamaschi

In December 1984 Prof. Silvio Bergamaschi of the Institute of Applied

Mechanics in Padova, Italy visited SAO. Though NAG5-458 provided no direct

funds for his visit, we did spend several days discussing tether dynamics, par-

ticularly dynamic noise, with Prof. Bergamaschi. Prof. Bergamaschi is develop-

ing a model of the TSS including a full continuum tether with end masses, and

gravity gradient force on the tether itself. Modal anal/sis is being applied to

this model. We assisted him vith score numerical mode calculations, and dis-

cussed some non-intuitive physical implications of the results. We hope to

continue the cooperation in developing this model, which will provide both a

valuable check on SKYHOOK numerical computations, and results not obtainab:e

with SKYHOCK. In the future we hope to cooperate with Prof. Bergamaschi on

measurement and analysis of the TSS dynamic environment during the TSS Demon-

f 
'A

stration Flights.

4.4 Effects Of Tether Internal Damping

Our simulations and analytical calculations have ignored the effect of en-

orgy dissipation within the tether. The simplest form of such dissipation would

be internal viscous damping. This has been partially because of the added

complications this would introduce and partially because of uncertain knowledge

of tether properties. We have, however, made some simple theoretical calcula-

tions which we present here and which indicate that tether viscous damping may

be quar • itatively significant though probably not qualitatively crucial to un-

derstanding of dynamic noise. (Some of the work in this section has been per-

formed in conjunction with NASA Contract NASB-36160, and a portion of this sec-

^1

rr,
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tion has been excerpted from Quarterly Reporto 2 and 3 of that contract.)

We begin at the very beginning, and derive the equations governing a tether

with internal viscous damping. Though certainly not new, this material does not

seem to be readily available (typical sources give equations for cables subject

to external damping, such as an ambient fluid). First we consider a tether

segment, for the moment considered massless; later we shall derive the partial

differential equation for a continuum tether. We wish to derive the dependance

of the :tamping constant for a piece of tether material on the length of the

piece, under some very general assumptions. Specifically, we assume that the

material is viscous but aDt plastic. That is, there will be resistance to

motion, but no permanent change in the equilibrium state. We assume a simple

Hooke's law form for the elastic portion of the stress, and the viscous damping

will add a term proportional to velocity.

Consider a simple physical system: a length of tether fastened to a wall

at one end and a mass M at the other. Neglect the tether mass. Let x be the

extension of the segment past natural length. Then the equation of motion is

Mx = - Kx - Bz
	

(4.4.1)

where K is the Hooke's law spring constant and B is some damping constant. Now

suppose we cut the tether in its center and place a small mass m Letween the

pieces; denote the extension of the segment between the wall and mass m by y.

Then the equations of .notion are twofold:

i'
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MR	 =	 — k(x — y)	 — b(k — y)

my	 =	 — ky	 — bj	 (4.4.2 )

+k(x—y)	 +b(z — jr)

If we let ^ = (x-y), a bit of ma>>ipulation arrives at the equation

MR = - =jkx - =5bz - 1=m (z — ^ )	 (4.4.3)

Let m —+ 0 and compare the result to equation (1). If the accelerations in

the third term of (3) remain finite, which we shall simply assume since this is

not meant to be a rigorous proof, agreement between these two results for the

motion of mass M requires that k = 2K, b = 2H. Generalizing the argument, we

have that

k a	 b a	 (4.4.4)

where L is the (natural) length of the tether segment. Cor the spring constant

k, the proportionality constant is simply EA, Young's modulus times the cross

sectional area. For the damping constant b, we shall follow a remark in Rodley

and Park (1983; p. 54) and denote the proportionality constant by C,. 	 (Note

that EA and Cv apply to a tether of given cross section and manufacture. It

seems raasonable that the energy dissipation, hence the resistive force, will be

proportional also to the cross sectional area of the tether; we may expect that

c„ - C„/A is a material constant analogous to E . )

Now let us derive the partial differential jquation for longitudinal motion

of a tether with viscous damping, considered as a continuum. We suppose that

the tether remains in a straight line, and is sufficiently extended in its

equilibrium state (e.g., by loading) so that it does not go slack for small

perturbations. Let u(s,t) be the displacement from equilibrium of a mass ele-

ment which would be at coordinate s in equilibrium; thus the full position will



Page 31

be x(a,t) = s + u(9,t). The tether has properties AE and Cv as above, and mass

per unit length µ.

Apply the lumped mass	 or ball-and-spring approximation to	 the continuum

tether, with masses separated by As = h. The mass of each particle is then µh,

and denote it's displacement from equilibrium by U i (t).	 The acceleration of a

particular mass will then be given by the sum of the spring forces and damping

of the two tether segments on each side; these will each have k = AE/h and b =

Cv/h.

µhUi = +	 (AE/h ) (Ui•i- Ui)	 + ( Cv/h) (Ui•i-Ui)
t (4.4.5)
t -	 (AE/h) (Ui -Ui- i) 	- (Cv/h) (Ui-Ui-i)

leading to

µUi	 = (AE) 
I Ui . i — 2Ui + Ui- i I + Cvl Ui + l — 2Ui + Ui-i

IL 	 h2	 J	 L	 h3	 J

(4.4.`)

y	 (AE) as=i + Cv a
2 UV as,

In the limit as h	 0, this becomes a damped wave equation:

µ at=	
u (s, t) = 

L
AE + Cv at I 

as  
u (s, t)	 (4.4.7)

We are now able to examine the effects of damping. Consider a tether of

length L, with fixed ends as a "standard" case. With a - AE/µ and b = Cv/µ,

the '.'DE becomes utt = (a + ba/at) u... Standard separation of variables with

u (s, t) = S(s)T(t)  yields modes

S„ (s) = sin (x,,$)
(4.4.8)

T„ (t) = exp (a (r,) t)

where

r, = n x/L
(4.4.9)

a: (a) = (1/2) [ — sc 2 b t (rcAb) —2 —  4rc2

The wavelength of a mode asso--iated with x is just W = 2x/x.

. r

l	

f

t	 _

i



Page 32

Note that for K, corresponding to the longest wavelength modes, the square

root in (4.4.9) is imaginary and the modes will be oscillatory. For non-zero

damping, though, the higher modes will be overdamped with no oscillatory behav-

ior. This occurs when the square root becomes real, at

WAIT = 1r Cv

(4.4.10)
nCRIT = 2L/WniT

Note that this critical wavelength for damping depends only on the tether

properties and not on the length of tether involved; the total length deter-

mines only how many oscillatory modes will actually exist. Of related interest

is the maximum achievable frequency of an oscillatory mode. The frequency, that

is the imaginary part of a(K) , is zero for x=O, rises to a maximum value, and

declines to zero at K = 21r/WQ1zi above this, the modes are not oscillatory.

This maximum value is

w..: = AE/Cv
	

(4.4.11)

To evaluate these quantities we need estimates of the tether properties,

particularly the damping Cv. We have two sources of information as to the

damping in the tether material, both provided by Martin Marietta Corporation.

These sources appear to differ substantially.

First, there is a June 1983 report (Bodley and Park, 1983) which uses a

value Cv = 9.19 x 10 4 at one point in its analysis (p. 54); the source of this

number is not clear, and it may be a preliminary value. Second, an internal

report (Martin Marietta Corporation, 1983) dated September 1983 was kindly

provided by A. C. Park of MMC; this report gives a "per cent damping" for an

experimental setup consisting of a mass i:anging on the end of a length of

tether. We have calculated the damping coefficient from the experimental report

(but see the caveats below), and converted the earlier number to the same (mks)

units. In summary:
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- From the experimental data, AE a 10 5 kg-m/s 3 and Cv — 200 kg-m/s ("aver-

aging" the experiments described). These imply a critically damped

wavelength for tether longitudinal oscillations of about 25 meters (say,

between 10 and 100), and a maximum oscillatory frequency of about 300

sec -1

Ti , e value Cv	 9.19 x 10 4 kg-km/hr given in the "... Orbital Dynamics

report, when converted to mks system becomes 2.6 x 10* kg-m/s. This is

about_ 100 times greater than the value calculated from the experimental

data above. The critically damped wavelength implied is about 3 km and the

maximum oscillation frequency is about 4 sec -1 . (The values for AE and p,

converted to mks, are consistent with the experimental AE and assumed 3 mm

Kevlar at 1.5 g/cc density.)

Our interpretation of the experimental recultc, hc.e •:cr, is Gomewhat uncer-

tain since (1) the precise testing and computation procedures used were not

clear, and (2) neither the direct experimental results nor a derived material

property (Cv) were reported, but a "per cent damping", presumably the damping

ratio for the experimental setup consisting of a 4.5 kg mass on the end of an 11

or 21 m "spring."

In summary, we can say that viscous damping (and possibly other forms of

energy dissipation such as friction among the strands of the )arn-like tether)

can alter the frequencies of longitudinal oscillation modes. The available

values for the damping coefficient span a wide range, and the maximum oscilla-

tion frequency corresponding to the larger of the two values is close enough to

frequencies of interest (1 second period or frequency 1/2x) to be of have sub-

stantial impact. A clearer determination of tether damping properties, par-

titularly in a space environment, would be of value.
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5.0 MISCELLANEOUS EFFORTS

5.1 Random Vibration Analysis:

The methods we have been using, and which have been discussed so far in

this report, are all deterministic in the sense that we consider a given input

(the atmospheric density as a function of pos—Lon), make computations with a

computer simulation program or an analytical model, and observe the result (ac-

celerations or rotations). The density may be a simple localized enhancement,

or it may be a complicated randomized function, but during the analysis it is

fixed; statistical information would need to be garnered from repeated simula-

tions, or (equivalently under stationarity assumptions) from observing isolated

sections of a single long simulation.

Random vibration analysis, which takes into account explicitly the random

nature of the input, is also likely to be useful. Both the atmospheric density

variations and the resulting subsatellite acceleration and rotation are random

processes. The system connecting input and uutput is still deterministic, but

rather than simulating the response to an individual realization of the input

process to achieve an individual realization of the output, we provide a

statistical description of the input process and gain a statistical description

of the output process.

This resulting statistical information complements the specificity of indi-

vidual case studies. With it we can derive information of use in designing

instruments, such as the expected time to first excursion to a given response

level (which might, for instance damage or saturate an instrument) or failure

due to accumulated stress. Also, the perturbations to the instrumental output

can then be analyzed to determine their effect on the gravity field after final

I
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data analysis. Finally, such considerations might elucidate the knowledge of

the atmospheric fluctuations required, either from further experiment (or re-

analysis of old data) or from theoretical arguments (such as gravity wave

models) .

Performing such analysea of the dynamically complicated TSS is likely to

require substantial effort, but the results promise to be of substantial value.

An early monograph on the subject, lucid but limited, is Crandall and Mark

(1963). More complete and recent works are Lin (1967) and Nigam (1983).

6.0 DIRECTIONS FOR FUTURE RESEARCH

As with any major project, the possible tasks seem to increase as work is

done. We make here some suggestions for future workers in the field. SAO hopes

to continue dynamic noise studies in connection with the TSS Demonstration Mis-

sions either under direct contract or in cooperation with other investigatorsP	 g	 ^	 y

I	 t

such as Prof. Bergamaschi. 	 ^	 J

Improvements in simulation capabilities could proceed along two lines:
q

First, a simplified, streamlined and enhanced program similar to SKYHOOK is

in orde, • . Much of SKYHOOK's broac capabilities are of little importance to

dynamic noise analysis and only inhibit investigation of the features of inter-

est as well as making program maintenance a burden. For situations with rapidly

varying forcing functions the Gear method may not be the best (other methods

such as Runge -Kutta-Fehl-,erg exist for stiff systems); even if it is, the

specific: subroutine should be tuned to avoid such frequent step size and order

changes. The system of equations in SKYHOOK is in actuality not merely stiff

but stiffly oscillatory. There appear to be no general purpose routines or
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1

methods	 for	 such systems,	 but	 there	 is	 some promise	 of developing	 a	 special

purpose method for tethered systems. 	 The data structure should be changed to

allow use of off-the-shelf band matrix techniques 	 (or special routines written).

Subsatellite rotational and aerodynamics should be added, 	 as well	 as the	 facil-

ity	 for	 multiple mass	 subsatellite	 systems.	 Rotational	 effects,	 particularly

rotational acceleration, are of key importance in gravity gradiometry. 	 Generat-

ing equilibrium initial conditions would avoid the current differencing with a
I

reference simulation.

Second,	 although not a classical 	 form of simulation,	 the random vibration

methods should be attempted. 	 The statistical results obtained would provide a

valuable alternate view to the case studies possible with SKYHOOK like programs.

For case study simulations,	 realistic sample atmospheres should be goner- r

ated.	 Superposition of moderate numbers of local	 enhancements seems	 to be of

limited worth.	 Methods of generating and using a large grid of 	 (smooth)	 random
r

densities should be explored,	 including the ad hQ.G method suggested in Section

3.3 and the Rotating Lines Method.	 Also, apart from the question of generating

random atmospheres, it would be worthwhile to add a damped wave (or set of such)

to the perturbation options. 	 This feature is suggested by observations of Gross i

and Huang (1984) .

The tools for analyzing the results of simulation runs can be simplified

and streamlined. On a more fundamental level, use of the Maximum Entropy Method

for spectral analysis seems very promising. Both theory and the experience

shown in our figures indicate that we should expect a number of sharp peaks on a

smoother background. This sort of spectrum is ideally suited to MEM techniques,

which effectively use rational function approximations to the spectrum rather

than the simple polynomial approximation of Fourier analysis, and are thus bet- lI
J
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ter able to represent sharp peaks or lines. 	 (Press, et al., 1985.) MEM is

likely to be useful also for analyzing actual data from a physical gradiometer.

Design of stabilizing ballast configurations will involve complicated ana-

lytical studies, probably eventually requiring numerical work for realistic

designs. Detailed study of mixed partial and ordinary differential systems may

derive some rules which may be applied to estimate the effects of the continuum

tether without requiring the full formality.
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