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7.1D CONSTRUCTION OF COMPLEMENTARY CODE SEQUENCE SETS
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A set of code sequences is said to be a complementary code sequence set if
the sum of the aperiodic autocorrelation functioms for the sequences is zerc
everywhere except at the origin., This note discusses a simple comstruction for
sets of complementary code sequences. Suppose we have a linear feedback shift
register whose feedback polynomial is irreducible (PETERSON and WELDON, 1972).
For example, accgrding to the tables in (PETERSON and WELDON, 1972, Appendix C),
the polynomial x” + x° + 1 is irreducible and corresponds to the linear
feedback shift register shown below (SARWATE and PURSLEY, 1980),
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A feedback shift register with n stages produces 2% different sequences
corresponding to the 2" initial loadings. The length (or period) of the se-
quences is N where N = 2“—1 if the feedback polynomial is primitive, and N is
a proper divisor of 2"-1 if the polynomial is nonprimitive (PETERSON and
WELDON, 1972). TFor example., if we choose a primitive polynomial of degree 6,
we can get 64 sequences of length 63. while if we choose a nonprimitivenpoly-
nomial of degree 6, we can get 64 sequences of length 21 or 9. These 2" se-
quences form a complementary code sequence set. For example, the 8 sequences
of length 7 generated by the shift register shown above form a complementary
code sequence set, The sequences are as follows:

0000000
0011101
0111016
1110100
1101c01
1010011
0100111
1001110

It will be noted that the all-zeroes sequence is always one of the se-
quences obtained thus. Since this may not be convenient for some applications,
we consider the following modification. Choose an arbitrary binary sequence of
length N and add it to all the sequences obtained from the shift register.
Here, addition means bit~by-bit EXCLUSIVE OR addition of sequences. The re-
sulting set of sequences is still a complementary code sequence set., For
example, if we choose the sequence 0011010 and add it to the sequences above.
we obtain the set of sequences shownm:
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C01101¢
0000111
0100000
l101110
1110011
1001601
0111101
1010100

" The aperiodic autocorrelation function for a binary sequence is computed

by first converting the sequence from the alphabet (0,1) to the alphabet (+1,~-1)

and then using the formula

N-2-1 : :
c (2) = iZO R0 02 <N-1.

The results of such computations for the 8 sequences are as shown below.
It is clear that these sequences do indeed form a complementary code sequence

" set.

£} 0 1 2 3 .4 5 [
7 -2 -1 ¢ -1 0 1
7 4 1 -2 -3 -2 -1
7 2 3 2 1 0 1
7 0 -1 ¢ 3 ¢ -1
7 2 -3 =2 1 2 1
7 =2 -3 4 -1 =2 1
7 0 1 0 -1 2 -1
7 -4 3 =2 1 0 -1 ,

In general, we can construct 2"P gifferent complementary code sequence

. sets from a given shift register. Some of these may be more suitable for ap-

plications than others. The constructiom given in this note can be generalized
to produce polyphase sequences also., Details are given in (SARWATE, 1983).
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