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ABSTRACT 

We consider examples (I-D seismic, large flexible structures, bioturbation, 

nonlinear population dispersal) in which a variational setting can provide a 

convenient framework for convergence and stability arguments in parameter 

estimation problems. 
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I. Introduction 

In this note we consider one aspect (arguments for convergence and 

stability via a variational approach) of least-squares formulations of parameter 

estimation problems for partial differential equations. Conceptually, one has a 

dynamical model with "states" u = u(t,x), 0 ~ t ~ T, x e n, and parameters 

q = q(t,x) in some admissible set Q. Given observations or data, z e Z, 

of some type (e.g., 
A 

Z = {ujj} as observations for {u(~,Xj)})' one wishes to 

determine parameters q that give a best fit of the model to the data. That 

is, one has the constrained optimization problem: From an admissible 

parameter set Q, choose a parameter q so that the corresponding solution of 

the dynamical model gives the best fit to data using a least-squares fit 

criterion. 

Abstractly, we have a state space H in which we solve a dynamical 

system (S) for parameter dependent solutions u u(q) with the parameters 

chosen from some infinite dimensional set Q. If C: H ..... Z is a mapping 

from the state space to the observation space Z, the problem is one of 

minimizing 

2 

(1.1 ) J(q,z) ICu(q) - z I 
Z 

over q e Q, where I· I Z is an appropriately chosen norm in Z. 

The fact that many problems of interest are infinite dimensional in both 

state spaces H and parameter sets Q leads to a rich class of mathematical 

questions including well-posed ness, stability, and computational approaches. For 
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example, consider the possibility of approximating the state space H by a 

sequence HN of finite dimensional spaces and approximating the parameter 

set Q by a sequence (/'f. of finite dimensional sets so as to obtain 

approximating problems: Minimize 

(1.2) 

over q E QM, where uN is an approximate solution to (S) lying in HN. An 

important question concerns the ways in which (/'f. approximating Q and 

HN approximating H might guarantee convergence of solutions qN.M of 

the problems of minimizing IN over QM to a solution q of the problem of 

minimizing J over Q. A number of results [8], [27] in this area are a vaila ble 

and we just sketch one set of arguments here (for examples and more details, 

see [8]) 

-
Suppose that the sets Q and QM lie in some metric space Q and that, 

III fact, there is a mapping iM: Q ... QM so that (/'f. = iM(Q). Further, 

assume that the following hypotheses are satisfied by ~ and H N: 

-
(i) For any in Q we have N,k ... Q)' , 

-
(ii) For each N, the mapping q ... IN(q,z) is continuous in the Q 

topology; 

-
(iii) The sets Q and QM, for each M, are compact in the Q topology; 

(iv) For e~ch q E Q, iM(q) ... q in Q, with the convergence uniform in 

q E Q. 
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Under these assumptions, let qN,M be solutions for the problems for (1.2) and 

let '?r,M e Q be such that iM(qN,M) = qN,M. From the compactness of Q, 

we may select subsequences, again denoted by {qN,M} and {qN,M} so that '?r,M 

-+ q e Q and qN,M -+ q (the latter follows from (iv». The optimality of 

qN,M guarantees that for every q e Q 

(1.3) 

Using (i) and (iv) and taking the limit as N,M -+ co in this inequality yields 

J(q,z) , J(q,z) for every q e Q, or that q is a solution of the problem for 

(1.1). (Under uniqueness assumptions on the problems, one can actually 

f h · ~,M guarantee convergence 0 t e entIre sequence 4 in place of subsequential 

convergence to solutions.) 

We note that the essential aspects in the arguments sketched here involve 

compactness assumptions on the sets (j.i and Q. Such compactness ideas play 

a fundamental role in other theoretical and computational aspects of these 

problems. For example, one can formulate distinct concepts of problem 

stability and method stability involving some type of continuous dependence of 

solutions on the observations z in Z, and use hypotheses similar to (i) - (iv), 

with compactness again playing a critical role, to guarantee stability. We 

illustrate with a simple form of method stability (other stronger forms are also 

amenable to this approach). 

We might say that an approximation method, such as that formulated 

above involving (jd, HN and (1.2), is stable if 
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as N,M,k -+ 0 for any .z!< -+ zO in Z, where q(z) denotes the set of all 

solutions of the problem for (1.1) and qN,M(z) denotes the set of all solutions 

of the problem for (1.2). Here "dist" represents the usual distance set function. 

Under hypotheses (i) - (iv) one can use arguments very similar to those 

sketched above to establish that one has this method stability. If the sets 

QM are not defined through a mapping iM as supposed above, one can still 

obtain this method stability if one replaces (iv) by the assumptions: 

(v) If {cfI} is any sequence with cfI e QM, then there exists q* in Q 

and subsequence {q~} with q 11 -+ q* in the Q topology; 

(vi) For any q e Q, there exists a sequence {cfI} with cfI e QM 

such that cfI-+ q in Q . 

Similar ideas may be employed to discuss the question of problem 

stability for the problem of minimizing (1.1) over Q - i.e. the orginal 

problem and again compactness of the admissible parameter set plays a critical 

role. For discussions of other questions related to problem stability, see [19], 

[21] - and specifically Remark 5.1 of [21]. 

Compactness of parameter sets also appears to play an important role in 

computational considerations. For example, in certain problems the formulation 

outlined above (involving q.t = IM(Q)) results in a computational framework 

wherein the q.t and Q all lie in some uniform set possessing compactness 

properties. The compactness criteria can then be reduced to uniform 

constraints on the derivatives of the admissible parameter functions. We have 
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numerical examples which show that imposition of these constraints is 

necessary (and sufficient) for convergence of the resulting algorithms. (This 

offers a possible explanation for some of the numerical failures of such 

methods reported in the engineering literature -e.g. see [37}.). 

Thus we have that compactness of admissible parameter sets play a 

fundamental role in a number of aspects - both theoretical and computational­

in parameter estimation problems. This compactness may be assumed (and 

imposed) explicitly as we have outlined here, or it may be included implicitly 

m the problem formulation through Tychonov regularization as recently 

discussed by Kravaris and Seinfeld [25]. In the regularization approach one 

restricts consideration to a subset Q1 of parameters which has compact 

imbedding in Q, modifies the least-squares criterion to include a term which 

insures that minimizing sequences will be Q1 bounded and hence compact in 

the original parameter set Q. 

Having made a case for the role that compactness of admissible 

parameter sets might play in parameter estimation problems, we turn finally to 

the (not unrelated) focus of this note. In particular, we wish to discuss some 

problems in which a variational formulation (as opposed to the semigroup 

approximation framework we have used in many of our previous discussions of 

these problems - see [3,4,5,7,12,13,17]) permits relaxation of the compactness 

criteria needed in convergence, stability and/or computational analyses. We 

present several problems for which the variational framework can be used to 

give convergence arguments in the spirit of techniques commonly used in the 

finite-element approach (see [22] and the references therein) to initial-boundary 

value problems for partial differential equations. As we shall see below, the 
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"energy functionals" in our case are parameter dependent and the arguments 

can become somewhat tedious in some instances. 

In the next two sections we discuss problems for which the variational 

approach offers an alternative to the semigroup formulation. However, there 

are some problems for which the semigroup approach is not readily employed 

but for which a variational framework is rather natural. 

such examples in Sections 4 and 5. 

We present two 

To facilitate our discussions, in some cases we restrict our remarks to 

problems in which we minimize J and IN of (1.1) and (1.2) over a fixed set 

Q, relegating the role that approximating sets cfi play to comments and 

referring the reader to [8] for an explanation of how one readily extends the 

ideas to problems of minimizing IN over QM where QM approximates Q. 
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II. A "l-D Seismic" Inverse Problem 

We consider the system 

(2.1) 
a au 
- (Q (x)-) 
ax 2 ax 

t > 0, x e n (0,1) 

(2.2) 
au 
-(t,O) + Qau(t,O) f(t) 
ax 

(2.3) 
au au 
-(t,l) + Q4 -(t,l) ° 
at ax 

(2.4) 

and the associated inverse problem of estimating 

set of observations {Yjj} for {u(tj,x)}. 

Such problems are motivated by certain versions of the so-called "l-D 

Seismic Inversion Problem" (see, e.g. [2], [l8]). Roughly speaking, one has an 

elastic medium (e.g., the earth) with density Q
1 

and elastic modulus Q2' A 

perturbation of the system (explosions, or vibrating loads from specially 

designed trucks) near the surface (x=O) produces a source f for particle 

disturbances u that travel as. elastic waves, being partially reflected due to 

the inhomogeneous nature of the medium. An important but difficult problem 

involves using the observed disturbances at the surface or at points along a 
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"bore hole" to determine properties (represented by parameters in the system) of 

the medium. In the highly idealized I-D "surface seismic" problem, one 

assumes that data are collected at the same point (x=O) where the original 

disturbance or "source" is located. In addition to this hypothesis, other 

unrealistic special assumptions are made about the nature of the traveling and 

reflected waves. Although the standard I-D formulations are far from reality, 

exploration seismologists have developed techniques for processing actual field 

data (performing a series of experiments and "stacking" the data) so that the 

I-D problems are generally accepted as useful and worthy subjects of 

investigation. Consequently, numerous papers (for some interesting references, 

see the bibliographies of [2], [18]) on the I-D problems can be found in the 

research literature. 

In many formulations of the seismic inverse problem, the medium is 

assumed to be the half-line x > 0 (with x = 0 the surface) while in others 

(especially some of those dealing with computational schemes) one finds the 

assumption of an artificial finite boundary (say at x = I) at which no 

downgoing waves are reflected ( an "absorbing" boundary). For the 1-D 

formulation this condition is embodied in a simple boundary condition of the 

form (2.3); here q4 = vqz(1) /q1(1) and one can view this boundary condition 

as resulting from factoring the wave equation (2.1) at x = I and imposing 

the condition of "no upgoing waves" at x = 1. 

Equation (2.1) is a I-D version of the equations for an isotropic elastic 

medium while (2.2) represents an elastic boundary condition at the surface x 

= 0 (q3 represents an elastic modulus for the restoring force produced by the 

medium). 
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In the usual seismic experiment, the medium is assumed initially at rest 

so that 1Io = vo = O. While our analysis below can, with some tedium, be 

extended to treat the case of parameter dependent initial conditions, we shall 

assume that are given known functions. 

For our discussions here, we shall also assume that the source term f is 

to be estimated in some function space although frequently this term can be 

parameterized in terms of a Euclidean set of parameters, thus simplifying 

somewhat the analysis. We shall also assume that ql(x) == to facilitate 

our arguments (otherwise the analysis is somewhat more tedious and involves 

the use of parameter dependent inner products). 

We reformulate the system (2.1)-(2.4) in variational or weak form, seeking 

a solution t -+ u(t) on 0 < t , T ,with u(t) e H 1(n) , satisfying 

for all ~ e Hi(n), along with initial conditions 

(2.6) u(O) 

Here and throughout, unless otherwise noted, <, > denotes the usual inner 

product in lfl = L2 and D = ~. The parameters q = (q2' q3' q4' f) are 

assumed to be in some subset of C(n) x R 1 X R 1 x C(O,T) , although as we 

shall point out later, these smoothness requirements can be relaxed. 
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The system (2.5) - (2.6) can, for the purposes of analysis, be abstractly 

formulated using the state space H = R 2 x HO(n) for states " u(t) = (u(t,O), 

u(t,l), u(t,. )). To be precise, define 

v IJ.{O), ~ 

and, for " v = (11,~,V) in H , the operators by 

" Mov = (O,O,v) 

We also define the functionals a: V x V ... R \ b(t): V ... R 1 by 

Then we can rewrite (2.5) - (2.6) as 

(2.7) 

where " A 
\(t), '" E V. We note that in this case the operators and 

the functional a each depend on unknown parameters. 
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Standard arguments [28, p.273] can be used to guarantee existence of 

solutions 
A. 1'\ A I\. 

U to (2.7), (2.6) satisfying u E C(O,T;V), ut E C(O,T;H), Utt E 

HO(O,T;V') with (2.7) being satisfied in a weak or distributional sense. 

Furthermore, one can rewrite (2.7) as a first order system and use semigroup 

techniques to argue that, under additional smoothness assumptions on the 

parameters and initial data, one obtains strong solutions that enjoy additional 

smoothness properties. We shall return to these considerations below. 

Turning to approximation and convergence arguments, we shall work with 

our system in the form (2.5), (2.6) although we could equivalently use (2.7) in 

our considerations. We consider Galerkin approximations on finite 

dimensional subspaces HN H1(n), N = 1,2, ... , and make the standing 

assumption on the orthogonal projections pN: HO(n) .... HN. 

Assumption A: 

If the observations for (2.1) - (2.4) for use in the least-squares functional 

are given in pointwise form u(~,Xj) for the displacement or in an ~ sense 

uX<ti,·) for the strain, it suffices for the convergence and stability arguments 

to argue that uN(t;qN) .... u(t;q) in Hl(n) whenever cf.... q in an 

appropriate sense, where ~ is the Galerkin approximation to the original 

system (2.5), (2.6). 

For parameters in an admissible parameter set 

Q , the approximating systems are given by: Find uN(t) E HN satisfying for 
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(2.8) 

(2.9) 

Regarding the admissible parameter set Q we make the standing 

assumptions: 

-Assumption B: The set Q IS compact in the Q = C(n) x R 1 X R 1 x 

H 1(O,T) topology and is contained in the set 

for some fixed positive constants a./1,v,'Il. 

Suppose then that qN .... q in Q ,where {qN} is any convergent 

sequence in Q, and let uN(qN), u(Q) denote the corresponding solutions to 

(2.8), (2.5) respectively. Under Assumption A, we see from the inequality 



-13-

that it suffices to consider zN(t) == uN(t;qN) - pNu(t;Q) and argue the 

convergence zN(t) .... ° in HI(n) for each t in [O,T]. 

Defining the "potential energy" functional <%I: HI x HI .... R 1 by 

(2.10) 

and the "boundary damping" functional B: HI x HI .... R I by 

(2.11) 

we may use (2.5) (with q = Q) and (2.8) in 

to obtain 

(2.12) 
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for all ~ e HN. In addition to this equation, ~ satisfies the initial 

conditions (see (2.6) and (2.9» 

(2.13) ZN(O) 0, z ~(O) o. 

Choosing ~ = z~ (which is in HN) in (2.12) and defining 

(2.14) 

(2.15) 

we obtain from (2.12) the equation 

(2.16) 

If we further define the total energy functional 
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and the auxilary expressions (for notational convenience) 

(2.17) 

(2.18) 

(2.19) 

then we can rewrite (2.16) as 

(2.20) 

1 d 
2 dt 

We next observe that from Assumption B we have 

v 
~ -

ex 
/zr (t,l) /2 
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bc ~ Lb2 + J.lC2 implies, with a proper choice of 
4J.l 

Using these inequalities in (2.20) we obtain 

(2.21) 

Integrating this expression and using the facts that M>(U) It=o 

and E(qN)(O) = 0 , we thus find 

(2.22) 

where GN is defined as the function on the right side of the inequality 

(2.21). Finally, to make use of this bound on the parameter-dependent energy, 

we employ the following set of inequalities: 
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N N 4 / N /2 VIl/ N /2 263 (t)z (t,O) ~ VIl 63 (t) + 4 z (t,O) 

2 
~ -
" V / 

N /2 Ji/ N /2 4 / N /2 Vll/ N /2 ~t (0 + 2 Dz (~) + VIl 62t(~) + 4 z (~,O) , 

N N 4 / N /2 VIl/ N /2 -263t(~)Z (~,O) ~ VIl 63t (0 + 4" z (~,O) , 

Then (2.22) may be replaced by 

(2.23) 

where 

(2.24) 

and 

(2.25) 2 / /2 4 / /2 4 / /2 IT rN(t) == - ~N(t) + - 6~(t) + - 6~(t) + F(Od~ 
v VIl VIl 0 

with 
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(2.26) 

Thus, from (2.23) and the Gronwall inequality, to establish that 

E(zN(t)) ... 0 (and hence that ~(t) ... 0 in Hi(n)), it suffices to argue that 

[N(t) ... 0 for each t in (O,T]. In view of the definitions (2.15), (2.17) -

(2.19), this convergence is easily argued under the Assumptions A, B (where 

qN ... q in the Q topology) and that u(t) E H 1(n), ut(t) E H 1(n), U tt E 

HO([O,T] x n). To complete the discussions of this section, we shall comment 

on a number aspects of the above-outlined results in the form of several 

remarks. 

Remark 2.1. Recalling Assumption B, we note that the formulation above 

requires the elastic moduli q2 lie in C(n) and that the compactness 

properties of Q with respect to this component be in the C(n) sense. 

These are readily weakened by formulating the problem with the q2 

component replaced by (qiO), q2(l), q2) in Rl x Rl x L eD(n) - see equation 

-
(2.5) - with a corresponding change in the Q topology employed for the 

compactness statement in Assumption B. This is especially useful if one wishes 

to consider discontinuous elastic moduli (an important formulation m 

"multi-layered" seismic problems) and the ease with which such modifications 

are treated in the variational framework above make it ideally suited for 

convergence arguments when estimating discontinuous parameters. 



-19-

Remark 2.2. In cases where the initial functions Ua, va of (2.6) also depend 

on unknown parameters, i.e., Ua = uo( q), va = v o( q), then the initial condi tions 

vo(Q)]. The convergence arguments can be extended to this case if one makes 

appropriate smoothness assumptions on Ua, va as functions of the parameters 

q. 

Remark 2.3. Assumption A, the fundamental approximation hypotheses on 

HN , is readily shown to hold if one chooses either the standard piecewise 

linear or cubic splines as approximation elements and hence these 

approximation schemes are included as special cases in the above treatment. 

The arguments and assumptions must be modified slightly if one wishes to 

include spectral families such as Legendre polynomials. (One obtains the 

convergence pN<I> ~ <I> in HI for <I> E Hl+E and Assumption A must be 

modified accordingly. This, in turn, requires that u(t),ut(t) be in Hl+E in 

order to carry out the convergence arguments above.) 

Remark 2.4. The presentation here assumes that one is performing the 

optimization in the least-squares fit-to-data over the admissible parameter set 

Q. In general, this is an infinite dimensional function space in the com-

ponents q2 and f. Thus one requires, as explained in Section 1, a second 

approximation family c:fi- and a double limit procedure. Recalling our 

discussions from Section 1, ·we note that in the problems considered in this 

-section it suffices to use the set Q = C(n) x R 1 
X R 1 x H 1(n) in the com-

pactness and approximation statements involving c:fi- and Q. 
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Remark 2.5. In the presentation above, we found that to guarantee the desired 

convergence, it suffices to have u(t) and ut(t) in H1(n) and U tt E HO([O,T]xn) 

where u is the solution of (2.5), (2.6) corresponding to any limit parameters 

q in Q. Without further smoothness assumptions on the problem data one 

cannot readily guarantee this desired regularity for u. For example, if q2 

E L men), Uo E HI(n), vo E HO(n) and f E HO(O,T) , as we have already observed 

one can use variational theory to guarantee existence of weak solutions with 

Utt E HO(O,T; H-1). If, however, we assume q2 E HI, Uo E H2, Vo E HI and f 

E C l , then semi group arguments similar to those given in [15] can be made to 

obtain strong solutions with u(t) E H2, ut(t) E HI, and U tt E HO([O,T]xn). Thus, 

q2 in HI and sufficient smoothness on llo, va' f will yield the desired 

smoothness for convergence. 

Remark 2.6. The problem considered in this section was also investigated in 

[13] using a semi group (Trotter-Kato approximation theorem) approach. Several 

differences in the results are noteworthy. First, we note that in the 

variational framework above, the approximating (HN c: H1(n» basis elements 

are not required to satisfy parameter dependent boundary conditions (contrary 

to the situation in [13]). Furthermore, the unknown source term f in the 

boundary condition (2.2) can be treated directly here (in [13], the treatment 

required a transformation to a system with homogeneous boundary conditions 

and nonhomogeneous equation) and this relaxes the smoothness and compactness 

assumptions needed on the f component of Q. (A similar relaxation can 

be obtained in the framework of [13] using a slightly different method for 

transforming the nonhomogeneity in the boundary condition to the system 

equation.) In this regard we also note that the approach in [13] requires 
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convergence cl; -+ q2 in HI(n) as opposed to in C(n) (or R 1 X R 1 X L O)(n) -

see Remark 2.1). Thus the related compactness assumption on 

component Q2 of Q is relaxed from HI to C compactness. 

the q2 

This is 

potentially important in several respects. The characterization of compactness in 

C(n) is somewhat more natural (e.g. the Arzela-Ascoli lemma) than that in HI 

(e.g. see the embedding lemmas in [1]). Furthermore, in extending the ideas 

here or in [13] to treat estimation of discontinuous coefficients, compactness in 

HI (or a piecewise HI compactness) is more awkward and tedious to 

formulate than a concept of piecewise C or LCD compactness. Finally, we note 

that the mode of convergence required in the compactness of Q also dictates 

the type of approximating families c:r one can use. We recall that the 

interpolation operators 1M (see [13] [32]) for both piecewise linear and cubic 

spline approximations satisfy IM(q) -+ q uniformly in q e Q in either C 

or HI whenever Q C H2. However there are occasion where one might 

desire to use the weaker convergence requirement (e.g. when dealing with 

discontinuous coefficients and a piecewise C topology), in which the 

variational formulation of the above presentation can prove advantageous. 
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III. Large Flexible Structures 

In one important class of parameter estimation problems (see 

[5,20,24,29,35]), one wishes to estimate structural parameters (stiffness, damping, 

loading, etc.) in complex continuum models for elastic structures. The methods 

discussed in this paper can be successfully applied to such problems. To 

explain the approach, we consider a variable structure cantilevered damped 

beam with a tip body and base acceleration. Such a model might be used for 

example to describe the vibrations of shuttle attached payloads or large 

flexible spacecraft members. To be more specific we consider an 

Euler-Bernoulli beam of length R with viscoelastic damping (a Kelvin-Voight 

solid) and tip mass m (instead of a tip body). Then the equations for 

transverse (planar) vibrations in the presence of an axial force due to base 

acceleration are given by 

u(t,O) 

u(O,. ) 

au 
- (t,O) ° 
ax 

a au 
ax {a ax } + f, 

I 

t > 0, ° < x < R, 

a3u au 
q --} + a - ] I = g(t) 

3 ax 2 at ax x=R 
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Here ql = p(x) is the linear mass density, q2 = EI(x) is the flexural 

rigidity or stiffness, q3 = coI(x) is the viscoelastic damping coefficient, '4 

= m is the tip mass, f is a distributed lateral load, and g is a 

transversely applied force on the tip mass. The internal tension a due to 

axial loading from base acceleration is assumed to be a known function of ql 

= p, q4 = m , and qs = ao = the base acceleration. From observations of the 

beam (displacement, velocity or strain), one might desire to estimate the 

parameters q = (ql' q2' q3' q4' qs) = (p,EI,coI,m,ao) from a specified para-

meter set Q. 

For such problems one can use a semigroup-Trotter-Kato approximation 

formulation to develop computational procedures - e.g. see [5,26,31]. However, 

some advantages are obtained in using a variational formulation (with "state" 

/\ 

u(t) = (u(t,.), u(t,R» ) similar to that in (2.5), (2.6) or (2.7). This is done in 

[6] and [15], [16] where detailed arguments for convergence are given. We shall 

not discuss them further here, except to note that the variational approach 

allows for a much weaker compactness criterion on the admissible parameter 

set Q. For example one can hypothesize compactness in the qO,R) norm 

(or in the L m(O,.I) norm in a sense similar to that mentioned in Remark 2.1 

above) with respect to the components representing EI and col. (Compare this 

with the H2 or H2weak compactness assumptions in [5] and [26].) 
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IV. Bioturbation in Abyssal Sediments 

In the previous two sections, we introduced problems (seismic and flexible 

structures) for which one can investigate parameter estimation techniques using 

either a semigroup formulation or a variational formulation. In this section 

and the next, we mention briefly two other classes of problems which are not 

readily treated with a semigroup formulation yet which can easily be analyzed 

in a variational setting. We first turn to problems related to the estimation of 

the effects of biological mixing in abyssal sediments. 

Sediment formation in lakes and deep seas is of great importance to 

geophysical scientists who use core samples of this sediment in their 

investigations of the history of the earth. Unfortunately, the historical records 

contained in these core samples are often perturbed by a phenomenon called 

bioturbation [36] which is the mixing of sediments due to the activities of 

organisms near (on the order of 20-40 em.) the sediment-water interface. 

These activities consist primarily of burrowing (e.g., for safety) and 

ingestion-excretion and are not easily described quantitatively. 

An important goal of some geologists is to understand (quantitatively) 

bioturbation well enough so as to enable one to remove its effects and 

properly interpret the data in core samples, thereby sharpening the details in 

these geologic records. A number of increasingly sophisticated mathematical 

models have been proposed and a brief review of a number of these is given 

in [23]. One model of interest is the one proposed by Guinasso and Schink in 

[23]. 
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Briefly, the model involves one-dimensional (depth) transport equations 

for a moving chamber (assumed uniform in horizontal directions) in which 

mixing and advective flow of material takes place. Depth in the chamber is 

represented by coordinates x, 0 ~ x ~ L, and the chamber (and hence co-

ordinate system) is assumed to be moving upward with a velocity Q2 = Q2(t) 

[corresponding to sedimentation rate or build-up] so that it is always located in 

the top L cm. of the· sediment, i.e., x = 0 is always at the 

water-sediment interface. The bottom of the chamber x = L is located at 

that depth beyond which (it is a'ssumed) no further changes (i.e. no 

bioturbation) in the historical records occur. If u = u(t,x) is the 

concentration of material (e.g., shards of ash, tracer, etc.) with whose movement 

one is concerned, a model based on mass balance in the chamber, Fickian flux 

for the bioturbation, and appropriate boundary flux considerations is given by 

(4.1) 

(4.2) 

(4.3) 

au 

at 

au 
-Ql(L) - (t,L) 

ax 

t > 0, 0 < x < L , 

o . 

Here Q1 is a depth dependent "bioturbation" coefficient. 

To understand the effects of bioturbation on the distribution of 

material concentrations in core samples, it is sufficient then to know the 
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parameters q = (ql'q2,q3) • q3 = L and, of course, know that use of these 

parameters in the model gives one an accurate quantitative description of 

concentrations found in core samples. Given observations from core samples, 

this leads to a parameter estimation problem involving estimation of the 

functions ql and q2 and the chamber length q3' In [17], it is shown how 

to formulate and treat such problems in a discrete semi group - Trotter-Kato 

approximation framework if one assumes that ql is chosen from a class of 

functions with finite dimensional parametric representation and is 

independent of time. If one wishes to treat more general problems of 

estimating x .... Ql(x) and t .... Q2(t) in general classes of functions, these are 

not so easily investigated using a semigroup setting (note that (4.2) involves 

time dependent unknowns). However, a variational formulation not unlike that 

given in [10] provides an amenable framework in which convergence 

arguments can be given under rather weak compactness assumptions on the 

admissible parameter sets. These arguments, to be given elsewhere, are similar 

in spirit to those given in [10] for transport problems involving estimation of 

spatially and temporally dependent coefficients. 
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v. Nonlinear Population Dispersal 

In this section we turn to a brief discussion of estimation and a 

variational formulation for problems that are typical of population dispersal 

problems with transport coefficients (such as "diffusion" coefficients) that are 

density dependent. Nonlinearities of the general type we consider here are 

also important in porous media estimation problems. 

Among the fundamental mechanisms often of interest to investigators in 

population dispersal (see [9,11,14,30,33,34]) are (in addition to the usual 

emigration-immigration, birth-death mechanisms): a dispersive mechanism 

associated with random movement or foraging; an attractive or repulsive force 

which induces directed movement of population members toward favorable or 

away from unfavorable environmental surroundings; and a mechanism 

representing population pressure due to interference between individuals in the 

population. In mathematical models for transport including such mechanisms, 

it is density dependent higher order terms that present difficulties in 

theoretical (and computational) considerations. To illustrate how a variational 

framework may be used for such problems, we shall sketch fundamental 

convergence arguments for problems involving estimation of the parameter 

function q in simple models of the form 

(5.1) 

(5.2) 

au 

at 
a ( au ) = q(t,x,u)-
ax ax 

u(t,O) = u(t,l) = ° 

t > 0, X E n = (0,1), 



(5.3) 
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u(O,.) = uo' 

It's not difficult to extend the ideas to many of the more detailed models 

(which include other desirable, but more easily treated mathematically, 

transport terms) studied in [9,14,30,33,34]. While we shall formulate the 

problem here in terms of estimating rather general "diffusion" coefficients q 

in (5.1) from a rather broadly defined class Q, we actually have as basic 

motivation the treatment of coefficients that are bounded below by 

density-independent base values, that are saturation limited with rates that are 

affine as a function of density in the range between the base-value a'nd 

saturation thresholds. To be precise, our development has been motivated by 

problems where ~ ... q(t,x,O is continuous and has the form (see [14]) 

m(t,x) ~ ~ ~ (t,x) 

(5.4) q(t,x,~) = a(t,x) + P(t,xH ~o(t,x) ~ ~ ~ ~ 1 (t,x) 

M(t,x) 

In such problems we seek to estimate a,P'~o'~l' (which determines q In 

(5.4) if the continuity assumption is invoked) from sets A,B,[o,[ 1 respectively. 

We shall sketch our ideas in terms of rather general conditions on the 

parameter set Q, noting that under appropriate assumptions on the sets 

A,B,[ 0'[ 1 ' the above example is included as a special case. 
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We first rewrite (5.1) - (5.3) in variational form, which consists of 

finding u(t) e H~(n) satisfying 

(5.5) <Ut'~> + <q(t, .,u)Du,D~> o 

for all ~ e HMn) along with initial conditions 

(5.6) u(O) 

To define an approximate state system, we assume we have chosen a family of 

finite-dimensional state spaces HN c H~(n) with orthogonal projections pN: 

HMn) -+ HN in the lfl(n) inner product. We also assume Assumption A of 

Section 2 holds with Hl replaced by ~. The approximate systems are then 

given by seeking uN(t) e HN satisfying 

(5.7) o 

for all ~ e HN and 

(5.8) 

The parameters qN are to be chosen from some admissible parameter set Q. 

In the usual manner (see Sections 1,2), for a convergence and stability analysis 
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one desires to argue that qN ... q in Q implies uN(qN) ... u(Q) for arbitrary 

sequences {qN} in Q. The mode of convergence in Q is, of course, also the 

sense in which we wish to define "compactness" of Q. In this 

particular example, we assume Q "compact" in the following sense: 

Assumption C: Any sequence in Q has a convergent subsequence {qk} 

with limit q in Q in the sense 

(5.9) \ qk(t,.,v) - q(t,.,v)\ ... 0 
CD 

f or every vEL CD(n). 

In the case where Q consists. of functions of the form given in (5.4), it is 

straightforward to translate the compactness criteria of Assumption C into 

easily verifiable compactness criteria on the parameter sets A,B,ro,r 1" 

Further assumptions (again motivated by and easily verified for sets 

containing functions of the form (5.4» on Q are necessary for convergence 

arguments and we therefore assume the following: 

Assumption D: There is a constant v > 0 such that <q(t,. ,v)D~,D~> ~ 

v I~ I ~ for every q E Q, v,~ E H6(n). 

Assumption E: There is a constant MQ > 0 such that Iq(t,.,v)~lo ' 

Mol~lo for all v E LCD(n), ~ E HO(n), q E Q. 
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Assumption F: There exists BEL CD«O,T) x n) such that Iq(t,x,O - q(t,x,l1) I 

~ B(t,x)l~ - 111 for all ~,11 E Rl and all q E Q. 

We note that Assumption F implies existence of a constant K such that 

Iq(t,.,v) - q(t,.,u)lo ~ Klv - ul o for all v,u E HO(n). 

We are now in a position to outline convergence arguments, for which it 

suffices (in the usual manner) to consider zN(t) == uN(t) - pNu(t) where 

u , the solutions of (5.7), (5.8), (5.5), (5.6) corresponding to qN, Q, respectively, 

where qN ... Q in the sense of (5.9) given in Assumption C and {qN} is any 

such sequence in Q. 

From (5.5) - (5.8) we obtain zN(O) = 0 and 

(5.10) 

for all '" E HN. Choosing '" = zN in (5.10) and adopting the notation q(v), 

qNCv) for q(t,.,v), qNCt,.,v) throughout, we obtain 

or 

(5.11) 
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From Assumption D we immediately find 

i I NI2 + - Z • 
2 

Considering the first term on the right side of this inequality we find (all 

norms are the Ifl norm unless otherwise indicated) 

(5.13) 

The terms in the right side of this inequality can be estimated (we use 

Assumptions E and F) as follows: 
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Using these estimates and (5.13) in (5.12), we obtain 

(5.14) 

where JL = - + -- Du 1 2K 2 I /2 
2 V m 

and 

The remaining arguments are similar to those (integration, Gronwall, etc.) of 

Section 2. One easily obtains the convergence ~(t) .... ° in HO(n) for each 

t and, actually, considering again (5.14), the additional results ~ .... ° m 

HO(O,T; H 1(n». Of course, appropriate smoothness (e.g. ut e HO([O,T] x n) , Du 

e HO(O,T; L m(n» ) assumptions on the solution u must be invoked. 

We remark that the ideas sketched here readily extend to 

multi-dimensional domains n (see [10]) and that computational efforts based 

on the variational framework have in preliminary calculations (see [14]) been 

promising. 
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