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SIMULA TION OF COMPLEX THREE-DIMENSIONAL FLOWS 

G EOHGI:: ~. DEIWERT. 1 HERBERT J. ROTHM'L:j'\DJ: AND K AZUHIRO 1\ AKAHASHI" 

TIl(-' concept of splitlinl!, is used 
OIl mooefIj computer architectures. 
determination of th<> final converged 

extensively to simulat<> complex thre<>-dimensional fiow.<
l~sed in all aspects. from initial grid generation to the 
solution. splitting is used to enhance code vectorization. 

to permit solution-driven grid adaption and grid enrichment, to permit the use of concurren t 
processing. and to enhance data fiow through hierarc hal memory systems. Three examples 
are used to illustrate these concepts to complex three-dimensional fiow fields: 1) interactive 
fiow over a bump. 21 supersonic fiow past. a blunt-based conical afterbody at incidence to a 
free stream and containing a centered propulsive jet. and 3) supersonic fiow past a sharp
leading-edge delta wing at incidence to t.he free stream. 

I ~TROD1JCT10\ 

In this paper a general approac h is describ ed for constructing efficien t fiow codes for modern 
computer architectures which are capable of treating a wide variety of complex geometries 
and of describing a wide variety of fiowfield features. Emphasis is placed on a data construct 
that permits the effective use of multivector processing and permits the treat men t of a variety 
of flows without t.he need for major reco ding. The concept of splitting. defined here to be 
the use of a sequence of one-dimensional operations to compute a multi-dimensional flow, is 
relied on to effect these goak 

The simulation of complex three-dimensional flows on digital computers involves two major 
processes. One is to define the appropriate equation set and solution algorithm so that the 
solution can be found in an efficien t manner and the other is to adequately discretize the 
computational space so that pertinen t flow features can be resolved effiden tly. These two 
processes should be considered con curren tly so that the best possible solution procedure is 
developed. 

For more than 20 years it has been recognized that, for large data bases, directional splitting 
can be used to achieve computational efficiency. For example. Douglas and Gunn 11) in 1964 
describ ed an alternating direction implicit metho d for solving fiow-field equations.: MacCor
mack [2: in 1969 used splitting in conjunction with his explicit method, and Yanenko l3) in 
1971 published an excellen t volume on "The Metho d of Fractional Steps." Beam and Warming 
[4! used approximate factorization to enhance their now widely used implicit metho d, and, in 
this meeting, Kovenya :5: again addresses the advantages of splitting. 

During this same period there has been continued improvement both in the efficiency of 
numerical methods and in the speed of digital computers. These improvements permit us 
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today 10 realisticall~' simulat,(, many complex flow:-- of practical illterest. Til(' speed of digita! 

comnulers has bf>€Il realized both by improved hardware and by improved architecture. The 
architeflurc improvement that has been most dramatic is the vector processor concept. Thi~ 

concepl permits orders of magnitude improvements in computer speeds. Modern algorithmf 
should be designed. as much as possible. to take advantage of these vector processing archi
t eClures and. when this is done. the single most crucial item in the vector process is the design 
of the data base (Rizzi 16 j, 

Thrf>{'-dimensional flowfield" can be considered complex when either the geometry is com
plex ii,e .. the computational space contaim holes and corners) or the flowfield itself is complex 
(i.e .. there are regions (If strong viscous; in viscid interaction. separated shear layers. obliquf> 

shocks. elc.). or both. Ttw problem of discretization (grid generation) is an important consid
('ration in bOlh cases. with the first case (geometry) emphasizing initial grid generation and 
the other emphasizmg a solution-adaptive and/or grid-enrichment procedure. In both casef 
it is imponan t to consider the solution algorithm~ the computer architecture. and the design 
of the data base. simultaneously. in order to maintain an efficien t solution metho d. 

Om' procedure used to discretize complex three-dimensional flowfields is the zonal approach 
(e.g .. Lee 7 and Holst et a1. ,8) In these procedures the computational space is divided 
into separat.e and distinct zones. each of which, being simpler than the complete space. i:: 
discretized separately. The equation set and solution algorithm can be differen t for each 
zone. Inheren t in these metho ds is a scheme to interface the solutions in the differen t zones 
to one another. Another procedure used to discretize complex flowfields is the embedded 
grid approach (e.g .. Atta and Yadyak !9 and Benek et aJ. ~1O)' In these methods a grid 
of one type (say a high-resolution. body-orien t.ed. near-surface grid) is completely embedded 
in a grid of another type (say a coarse grid for the external flow). Again. it is necessary to 
interface the solutions on the differen t grids to one another. 

A third procedure,whic h takes advantage of the concept of splitting. is the block/pencil 
dat.a base approach (e.g .. Lomax and Pulliam :lli and Deiwert and Rothmund [12]). Here 
the topological space is subdivided into blocks which interface one another exactly. These 
methods are capable of treating complex geometries and flow fields and DO NOT INVOLVE 
IXTERF ACING. They are highly vectorizable and are readily amenable to concurren t pro
cessing. another architectual enhancemen t of modern computers. 

It is the purpose of this paper to describ e a general approach for efficien tly simulating com
plex three-dimensional flows. Emphasis is placed on data structures compatible with modern 
multivect.or processors. The concept of splitting (or fractional steps) is used extensively in all 
aspects of the approach. including grid generat.ion, grid adaption. the solution algorithm, and 
the data flow. The concepts are general and are relevant to a variety of numerical methods 
and schemes. 

GRID GEKERATlOI\ 

Recently an adaptive rrid method was described 113~14~ that is based on variational princi
ples and is suitable for multidimensional steady and unsteady flows. The concept of splitting 
is used to make the metho d practical. efficien 1" and robust. In ref. 13 it was shown that by 
beginning with a uniform gri.d in a topological box (or system of topological boxes) functions 
describing the geometry of the bod~' of interest can be used to stretc h and cluster grid points 
and thus generate a suitable starting grid for complex. three-dimensional, flowfield computa-
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tion. Sub~equent)~' this grid can be further refined. using the same schem(· used in th£' initial 
generation. b~' adapting the grid point.s t.o the developing solution itself. and by enriching ttJ(' 
grid ill regions where even more detail is desired. The highlights of this scheme are out.lined 
hen. 

Beginning with a uniform grid distribution in each of the three directions, the points are 
redistributed in one direction at a time. along grid lines. such that 

!,B'~" 1/'(s) d.< ::. const (1) 

for all i" where 6 1 is the arc length to the itt, gridpoinl and w(s) is a positive weighting function 
that defines the stretching and clustering. For distributions across wall-bounded shear layers. 
a geometric (exponential) function would be used. For distributions around curved surfaces. 
the local curvature would be used. 

To maintain a uniform grid in ~-space (i.e .• computational space), Eq. (1) implies that 

s~w(~) = const (2) 

'where s! is the metric coefficient and corresponds to the ratio of arc lengths in physical and 
computational space. Equation (2) is the Euler-Lagrange equation for the minimization of 
the integral 

(3) 

The minimization of this integral is analogous to minimizing the energy of a system of springs 
with constants 11'(cl between each pair of grid points. 

Additional contraints to control orthogonalit y (or skewness) and smoothness can be imposed 
similarly which results in minimizing the energy of a system of torsion springs, between grid 
lines. located at each node point. (For further details see ref. 14.) By considering these torsion 
forces from one side only (e.g., upwind) the concept of splitting is maintained, and simple 
marching procedures can be used in the secondary adapting directions (from one grid line to 
the next). In the principal adapting direction (along the grid line), the resulting equations 
are one-dimensionally elliptic and form a simple tridiagonal set. 

The application of the scheme to three-dimensional grid generation is illustrated by con
sidering the supersonic flow past a bump. Initially a rectangular grid (49 x 29 x 40) is 
generated with uniform spacing on each side of a rectangular parallelepip ed. One surface of 
the rectangular paraJlelepip ed is deformed to describ e a bump by shortening the z-coordinate 
in a prescribed manner. fig. 1(a). The shape of the bump is defined by 

! 
.25 [sin (47r (x - .5) - .57r) + 1] Icos (47rY) + 1] 

z(x, y) = for .5 :::.: x :::.: 1 and 0::; y ::; .25 

0, for x ::; .5 or 1 ::; x or .25 ::; y 

This grid is then redistributed successively in each coordinate direction. 
i-direction first, the function, w, is given by an equation 

U', = ZI 1,j,k - 2Z"j,k T Zi+l,),k 

3 
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Considering the 
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Thi~ expression for '11' clusters trw grid points to regions of large cur\"alure in the ;r:-;: plane. The 

end-point mesh spacings /:).Xl,).k = X~,.7.k - Xl,).k and L1x 1ma:r-I,).k = xtmax,).k - X,max-l,j.r. 

arC' specified. In the .i-direction. U' is specified by the similaF expression to Eq. (5) in the y-= 
plane. Again. end spacings are specified. In the k-direction an exponential funct.ion is used 
to cluster points near the wall surface in order to resolve the wall-bounded shear layer. 

The inclination of grid lines an' controlled by using t.orsion springs t.o make t.he grid qua
siorthogonal. This orthogonalit y is enhanced near the bump on the wall by increasing the 
torsion spring coefficients As shown in fig. lib). the grid spacings and grid line inclinations 
are genericall) clustered in all three direCliom. 11 is geJ](Tall) easier to control the grid b~ 
using this scheme than b) using elliptic metho ds. and the generalit) available is greater than 

with algebraic methods. 

During the course of reaching a steady state. the resulting initial grid is subsequently 
adapted to the solution. The function w. used initially to generate the grid, is replaced by 
the computed density gradien 1. The solution is redistributed onto the newly distributed grid 
points by using simple one-dimensional int.erpolation schemes after each directional adaption. 
For unsteady flows, grid speeds can be determined and used in the conservation equations 
themselves (see ref. 14). 

Figure l(c) shows computed density contours before grid adaptation. Grid points are then 
twice adapt.ed in both the .i- and k-directions, fig. 1 (d), before obtaining the final solution. 
which is shown in fig. 1(e). This final solution shows a crisper three-dimensional shock surface 
in front of the bump and separated shear layer behind the bump. 

This consisten t procedure of grid generation and flow-field computation. coupled with 
solution-adapti\' e rediscretization. considerably reduces the computational effort for the three
dimensional grid generation and flow-field computation and provides accurate solutions with 
a minimal number of points. This approach can be used with any of a wide variety of algo
rithms. one of which is describ ed briefly in the next section. 

ALGORITHM 

The equations used to describe three-dimensional int.eracting flows are the Reynolds-a ver
aged ::\ a vier-5t ok es equations for compressible flow. To numerically solve these efficien t.ly 
on present-day computers for systems describ ed with large data bases requires the use of 
directional splitting. This splitting can be achieved quite naturally with explicit metho ds 
where communication between grid points is only with near neighbors (e.g., refs. 2 - 3). 
Implicit methods, however. require approximate factorization of the sequence of difference 
operators to realize directional splitting (e.g., ref. 4). This method was used for the computed 
examples presented herein and is also used here to illustrate the data flow for a split algorithm. 

The Navier-Stokes eqClations can be writ.t.en in strong conservative form in generalized 
coordinates as 

at Q + a ~ ( F . iff.) -- a'7 (F . if'7) ,- a, (F . if) o (6) 

where 
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( p \ ( pq \ 

I :~ J pw 

e I 
puq -' 1 . LI 

J 

F = rl pvij - 1 . (]..' (7 ) 
pwq - 1 . (:: 

eq - 1 . q - 11:,\'T 

I-I' I). •• and i~:: are the Cartesian unit vectors. {i~. {iT;. and {i' are t}H' contravarian1 base vect.ors. 

and J is the Jacobian of the transformation. 
TIl(, stress tensor. 7. i~ written in t.ermo, of the transformed coordinates. ~. rIo and ( and. 

in keeping with the thin-la:ver approximation. only those terms are ret.ained which will not 
result in cross derivatives. (I.e .. 'liU, vu, et.e.. terms are retained but.. 'lit,." Vt;,.,. etc .. are nOL) 
This permits the consideration of shear layers coaligned with each of the principal coordinate 
directions. is consisten t with thin shear layer theory. and does not inhibit code vec1orization. 

The corresp onding difference equation for Eq. 6. written in operator notation IS 

where the operators are defined by 

L. = (J - b.t 6. e" - f] J- I \, (b.~J) 

R f. = - b. t 6 f, (J F . {if,) r; - (E J - I (v t; b. f, ) 2 J Q Yi t p J - I rV' t; b. f, p)( V f, b. d J Q r; 

R" = -b.t 0,., (JF '9')YI - tEJ- 1 (Vt'/b.,,)2JQ" - lpJ- I (Vt'/b.t'/p) (V,.,b.t'/)JQr. 

R., = -b.iOr (JF'it)fl - (EJ- I (V~b.()2JQfl - lpJ- 1 (V'~b.iP)(V'ib.I)JQfl 

(8) 

and the b~, by,. and br are central-difference operators; b. f" b.t'/, and b. r are forward-difference 
operat.ors: and v f" v7)" and '\" 5' are backward-difference operat.ors in the ~-, 1]-, and ~

directions. respectively. The b. t term is a forward-difference operat.or in time. For example, 

The Jacobian matrices are 

A 0 Q (F H . {i~) - J - 1 0 Q (F p . {if,)J 

B OQ(FH .9') -+- J-JoQ(Fp ' 9')J 

C OQ(FH . iF) T J-IoQ(Fp ' iF)J 

where FH contains only the convective-like terms of the flux vector F. and Fp contains only 
the gradient diffusive t.erms of F. A combination of fourth~order (fE) and second-order (fp) 
explicit smoothing terms and second-order ((]) implicit smoothing terms have been added to 
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control nonlirH'r instabilitief,. Variabl(> time stepping. based on local Mach number and OJ: 

the local Jacobian. can be used to increa!'c the convergencc rate to steady state. 
l:.,quation E- is solved in successive sw('eps of the data base. with each sweep inverting Oll(' 

of the opcrators on the left-hand side. The solution is advanced in time by adding b..tQ to Q 
after the third sweep, 

In general the data arc operated on four times for each time step advance. First the right
hand side of Eq. l' is formed b~ passing through the data base for each direction. one at a 
time. and then the left-hand-side operators are inverted one by one. For two of the directiom 
! fns! alia third in the operator inversion sequence). both 111e right-sidc' operator and left-side 
lIlver51011 can be determined in the same step. T~'picall~' the dala base will be organized 
for efficien t vector operation in one direction onl~·. Depending on the comput.er archit.ecture. 
either vector operations employing wide strides or gather: scatter data inversions must be used 
to realize efucien t vector operations in the other two directions. If neither of these constructs 
are available. then arithemetic inversions. while more costly. should be used 

Most modern vector processors are curren tly available with sufficien t high-sp eed memory 
that hierarc hal memory storage is not a serious problem in the developmen t of efficien t code~ 
for most problems. Earlier processors haying less. say. than two million words of high-speed 
memory. however, posed serious constrain ts on algorithm developmen t for three-dimensional 
flows. Treatmen t of some of these problems i~ discussed in some length in refs. 11 and 12. 

DATA STRLCTLRE 

Geometries for realistic three-dimensional flow problems are not simple. 'Yet we must have 
a way 10 solve a variety of flows without having to recode for every problem. Furthermore. 
application of boundary conditions should not have a significan t eflect on the efficiency of 
the vectorization or on the use of concurren t processing. And finally we must be able to 
redistribute grid points to achieve adequate resolution at minimal cos:. 

One way to eflect these goals is to map the physical space containing our flow field into a 
topological box (or group of boxes) in computational space. This permits the use of a general
solution algorithm for a variety of physical geometries. By using body-orien ted coordinates 
in physical space. all boundary conditions can be mapped to planar surfaces in computa
tional space. For algorithms employing the splitting concept, the boundary conditions can 
be imposed one-dimensionally at the ends of the topological box. and highly efficien t vector 
operations can be used to operate in between. The data can be subdivided into blocks that 
interface their neigh bars in a one-to-one manner. These blocks can be combined to form 
"pencils" of data in each coordinate direction. Concurren t processing can be used to operate 
on more than one pencil in each direction simult.aneously. There need be no special interfac
ing bet ween these blocks when the splitting concept is employed. The redistribution of grid 
points during the course of the solution process can be realized in a straigh tforward manner 
b~' remapping between the physical and computational space, using the variational principles 
discussed in a previous section. with the concept of splitting used to main tain efficiency. Two 
examples are chosen to illustrate these concepts: 1) flow past a blunt-based conical afterbody 
at incidence to a free stream and containing a centered propulsive jet. and 2) flow past a 
sharp-leading-edge delta wing at incidence to the free stream .. 

Consider first the afterb ody geometry. Shown in fig. 2a is a cone-cylinder forbody with 
a conical afterb ody con taining a centered conical nozzle. A physical space control volume 
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contamlllg thi~ Lod~' and the flow field ahout it is a hemispherical (upstream) cylindrical 
(downstream) shape. In computational space tht· control volume can be described by ,I 
lopologiccd box with a not.ch cut out to fit the body geometry. This is a convenient wa~' to 
treat geometries with corners and holes. This topological box can be subdivided into bloch 
whic h can be mate hed to specific regions of the physical space and can be stacked together in 
pencils for efiicien t vector operations. Shown in fig. 2d is an example of a computational space 
for the fon-hody,' aflerb od~ geometry. Here the computational space has been subdivided into 
14 bloch. whir IJ arc numbered in the figure Block 1 has one side coinciden t with the je1 
('xiI phtlJ( and bjunt-ba~e bOllndar~. and OTIC side coinciden t with the downstream control 
\"o!ume cent erline. Block 2 eXlend~ further downstream and has one sid(, coinciden t with 
tll(' downstream control volume centerline and another side coinciden t with the downstream 
exit plane. These two blocks are stacked together to form a pencil in the E-direction, with 
boundary conditions imposed on the jet exit plane and blunt base and on the downstream 
exit plane. Block 3 has one side coinciden t with the upstream centerline and one coinciden t 
with the cone/cylinder forebody. Block 4 lies on the cylindrical forebody and on the conical 
afterb (Jd~·. These are followed in the ~-direction by blocks 5 and 6. where block 6 has one side 
coinciden t with the downstream exit plane. Blocks 3 through 6 are joined to form a pencil in 
the ~-direct.ion with boundary conditions on the upstream centerline and on the downstream 
exit plane. Blocks I through 10 are coaligned with blocks 3 through 6 as are blocks 11 through 
14. Bloch I and 11 have one side coinciden 1 with the upstream centerline. blocks 10 and 12 
have one side coinciden t with the downstream exit plane. and blocks 11 through 14 have one 
side coinciden t with the far-field lateral boundar~-. Each of the 14 bloch has opposing side~ 
coinciden t with the leeward and windward planes of bilateral symmetry. All remaining sides 
are adjacen t to a neigh bor block with a one-to-one corresp ondence. and no special interfacings 
are necessary. In the ry-direction the blocks are stacked together to form pencils such that 
blocks 3-7-11 form one pencil with boundary conditions on the forbody surface and at the 
far field. blocks 4-8-12 form a second pencil with boundary conditions on the cylinder and 
afterbody surface and at the far field. and blocks 1-5-9-13 and 2-6-10-14 form pencils with 
boundary conditions on the downstream centerline and far field. In the ~-direct.ion the pencil 
lengths a.re just one block long. The blocks can. however, be grouped together to form broader 
based pencils such as blocks 1 and 2. blocks 3-4-7-8-11-12, and blocks 5-6-9-10-13-14. It is the 
pencil base dimensions that define the vector length used for vectorized operations. In the 
presen t example the block dimensions are each 40 in the ~-direction. 40 in the 7J-direct.ion for 
boxes :I and 2. 20 for boxes 3 through 14. and 20 in the ~-direction for all blocks. The block 
boundaries are shown in physical space in fig. 2b and 2c. With the blocks in computational 
space remaining fixed. the grid in physical space is solution adapted to density and pressure 
gradients. The computed density and pressure contours and final adapted grid are shown in 
fig 3 in the vicinit y of the afterb ody only. 

The computed results shown in fig. 3 are for a Mach 2 flow past a blunt-based. 8°, half
angle. conical afterbody containing a Mach 2.5 centered propulsive jet emanating from a 20 e 

half-angle. conical nozzle. The jet-t.o-free stream static pressure ratio is 2:1, and the body is at 
a 6 C incidence to the oncoming free stream. Plotted in fig. 3a are computed density contours 
in the bilateral plane of symmetry with the windward in the lower portion and the leeward 
in the upper: Figure 3b shows computed pressure con tours. Flow-field features obvious in 
these displays include: 1) the boundary layer on the afterb ody surface; 2) a lower-densit y gas 
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OIl the leeward compared with the windward: 3) a rapId expansion around the nozzle lip: 4) 

an oblique shock. weaker OJl the leeward than the windward. that radiat.es at an angle about 
:m to 1.h<' body axis and emanating just off the annular bitse: 5) the plume boundary (slip 

surface I which extends radially downstream of the base just outside the high-densit y jet flow: 
(j I a barrel shock that extends downstream of the base inside the plume boundary: and 7) a 
rapid expansion in the central part of the jet from the high-density. high-pressure exit plaTlf: 
10 Q lo\\'-,densit y. IOV\'-pressurf> core SOTTle 1.;) calibers downstream. 

Consider next the flow past a sharp-leading-edge delta wing at incidence to the free stream. 
Shown ill fig. 4 is an exploded view of a suggested block structurf' in both physical and 
computational space. Blocks ] through 3 corresp ond to the windward with the top surface 
of block] coinciding with the lower surface of the wing. Blocks 2 and 3 correspond to the 
regiom downstream of t.he trailing edge and away from the leading ed&e. respectively. Bloch 

4 through 6 corresp ond to the leeward. with blocks 5 and 6 corresp onding to the downstream 
and lat.eral regions, respectively. The bottom surface of block 4 corresponds to the lee surface 
of the wing and is coinciden t with the top surface of block 1. This topology is mapped 
to describe the Dillner delta wing configurationi15 which has a 6% biconvex circular arc 
profile. Two ~-pencib are formed by blocks 1-2-3 and 4-5-6. respectively. similarl~' for two 
~-pencils. Four 1]-pencib arE formed b~· block 1. block 4. blocks 2 and 5. and blocks 4 and 
6. respectively. Boundar~' conditions for the ~-pencils are supersonic inflow at the upstream 
boundary and outflow at Ow downstream. For the ~-pencils symmetry is imposed on one 
plane and free-stream conditions on the other. For the 1]-pencils free stream is imposed on 
the bottom and lop surfaces. For the two pencils formed by blocks 1 and 4. though, the wing 
surface boundar~' condiriom: are used on the planes that are coinciden t with the wing. InitiaIly 
the block dimensions in the (.17, (-directions are (18x30x18). (12x30x18). (30.30,12). As the 
solution develops in time the grid is enriched such that these dimensions become (36x35x36), 
(24x35x36), (30.35,24), (36x55x36). (24x55x36). and (30.55,24). respectively. This grid is also 
solution-adapted to computed density gradients. Shown in fig. 5a are static surface pressure 
contours which show a low-pressure region just underneath the leading-edge vortex. In fig. 
5b are computed density contours for selected stream wise planes. These contours indicate the 
low-densit y fluid in the leading-edge vortex. In fig. 5c are computed particle paths showing 
the leading edge vortex and surface streamlines. 

CONCLl.1DING REMARKS 

The concept of directional splitting in conjunction with a block/pencil data structure has 
been describ ed for efficien tly computing complex three-dimensional flow fields, requiring large 
data bases. on modern multivector processors. The block data structure permits discretization 
of complex geometries (i.e., topologies containing holes and corners) while at the same time 
permitting con curren t vector processing. The concept of splitting is used in grid generation 
and grid adaption to effect optimal discretizations with a minimal number of points. Splitting 
is also used to simplify the application of boundary conditions for vectorized algorithms and 
to eliminate any need for special interfacing of data blocks. Two illustrative examples have 
been given to show how these concepts are applied. With a little imagination a wide variet y 
of flowfields can be effectivly treated in a similar manner, without any recoding of the general 
solution procedure. 
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Fig. 3. Computed afterbody flowfield: (a) 
Isopycnics, (b) Isobars, (c) Solution adapted 

grid. M co = 2.0, M J = 2.5, PJ/ Poo = 2.0, 
0' = 6°. 
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Fig. 5. Computed delta wing ftowfield: (a) 
Lee surface isobars, (b) Leeward isopycnics, 
(c) Leading edge vortex and surface stream
lines. Moo = 1.5, 0 = 15 G
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