.

، ^د

NASA Contractor Report 177933

NASA-CR-177933 19850024666

STATISTICAL METHODS FOR EFFICIENT DESIGN OF COMMUNITY SURVEYS OF RESPONSE TO NOISE: RANDOM COEFFICIENTS REGRESSION MODELS

Thomas J. Tomberlin

THE BIONETICS CORPORATION Hampton, Virginia

THOMAS J. TOMBERLIN, CONSULTANT (SUBCONTRACTOR) Montreal, Quebec, Canada

Contract NAS1-16978 July 1985

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665 LIBRARY COPY

AUG 2 1 1985

LANCLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRCINIA

***** .

TABLE OF CONTENTS

c

•

.

1.	INTRODU	ICTION	• • •	• •	•	• •	•••	•	• •	•	•	•	•	•	1
2.	MODELS	WITH FIXED	REGRES	SION	I SLO	OPES	•	•	•••	•	•	•	•	•	2
3.	RANDOM	COEFFICIENT	'S REGF	RESSI	ON I	MODE	LS	•	•••	•	•	•	•	•	3
	3.1	Model I: 1 the First S	wo~sta tage .	ige D	esiq •	gn, •••	Para	ame •	ter	s] •	Rar •	nd c	om •	at •	4
		3.1.1 The	Model	and	the	des	ign	•	• •	•	•	•	•	•	4
		3.1.2 Esti asso opti	mating ciated mal de	reg sam sign	ress pli	sion ng v • •	pan aria	ram anc	ete es,	rs a	, nd	•	•	•	5
		3.1.3 Esti para and	mating meters optima	rat , as 1 de	ios soc: sign	of iate n .	regi d sa	res amp	sic lin • •	n gv	var •	ia •	inc •	es.	7
		3.1.4 Esti	mating	var	iand	ce c	ompo	one	nts	•	•	٠	•	•	8
	3.2	Model II: at the Firs	Three- t Two	•stag Stag	e De es	esig	n, 1	Par •	ame	te: •	cs •	Ra •	nd •	•	9
		3.2.1 The	model	and	the	des	ign	•	•••	•	•	•	•	•	9
		3.2.2 Esti opti	mation mal de	, sa sign	mpli	ing •••	var: •••	ian •	ces •••	, a	and •	•	•	•	10
		3.2.3 Esti	mating	var	iand	ce c	ompo	one	nts	٠	•	•	•	•	13
	3.3	Model III: Parameters Terms Neste PSU's	Three Random d, Ind	-sta at ivid	ge I the uals	Desi Fir s wi	gn, st % thii	Sl Iwo n S	op, St SU'	age s v	es, vit	E hi	rr n	or	14
		3.3.1 The	model	and	the	des	ign	•	•••	•	•	•	•	•	14
		3.3.2 The vari	estima ances,	tes, and	ass opt	soci cima	ateo 1 de	l s esi	amp gn	liı •	ng •	•	•	•	15
		3.3.3 Esti	mating	var	iand	ce c	ompo	one	nts	•	•	•	•	•	19
4.	AN EXAM	PLE		••	•	• •	••	•	•••	•	•	•	•	•	20
5.	SUMMARY	AND CONCLU	SIONS	• •	•	• •	••	•	•••	•	•	•	•	•	22
REFE	ERENCES				•			•							23

i

1. Introduction

Many social surveys have as their main purpose, the analysis of relationships between variables. In particular, studies of public reactions to aircraft noise generally have as a principal goal, the estimation of regression parameters for a model predicting annoyance as a function of various measures of noise exposure. For example, in studying the trade-off between noise levels and numbers of events, the following two-variable regression model is commonly employed:

(1.1) $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + e_i$

where, y_i is a measure of annoyance associated with the ith individual in the population, x_{1i} and x_{2i} are measures of the noise level and number of events, respectively, to which the ith individual is exposed, and the e_i are independent random disturbance terms.

For simple random sample designs, the model given in (1.1) is quite adequate. Discussion of design and analysis issues for such models appears in many standard texts on multiple regression. See for example, Draper and Smith (1981) or Neter, Wasserman and Kutner (1985).

More commonly, samples for social surveys are drawn using complex sampling schemes, usually stratified, multi-stage cluster sample designs. For example, studies of residents' responses to noise most often consist of interviews with samples of individuals drawn from a number of different compact study areas, usually neighborhoods. In order to design such studies, it is necessary to determine the numbers of individuals and numbers of study areas to include in order to achieve specified research objectives. The statistical techniques developed in this report provide a basis for these sample design decisions.

Optimal design and estimation for means and totals using these designs is well understood. (Cochran, 1963) On the other hand, no such consensus exists for design and estimation for regression parameters using such samples. One approach to this problem is described by Kalton (1983) in an earlier NASA Contractor Report. His methodology is briefly described in Section 2, below. Kalton employed regression models which incorporate nested random intercepts associated with various stages of a multi-stage cluster sample design. For cases where there is little or no variability in predictor variables within clusters, this approach provides useful results. However, when such variability does exist, it can lead to results which seem counter-intuitive.

In Section 3, we build on the models proposed by Kalton. Three regression models are presented for which the regression parameters themselves are considered random, with components of variability corresponding to the stages of a multi-stage cluster sample design. These models differ in the assumptions regarding variability of model parameters. For each, sampling variances and covariances are derived for estimates of linear regression parameters and ratios of parameters. Optimal allocation of sample resources across the stages of the design is derived for each situation. These allocations depend, in part, on estimates of variability at the various levels of the sample designs. Variance component estimates for this purpose are derived. These estimates could be obtained from existing data, contributing to the efficient design of future surveys. In Section 4, we apply some of these techniques in a simple example. Finally, the results of this research are summarized in Section 5.

2. Models with Fixed Regression Slopes.

The task of designing complex sample surveys for estimating regression parameters has been addressed elsewhere. Specifically, Kalton (1983) considered essentially the same problem in an earlier NASA Contractor Report. The simplest sampling situation considered by Kalton is that of a two-stage design. In the first stage, primary sampling units (PSU's) are selected. In the second, individuals are sampled within the selected PSU's. For example, for a survey around a single airport, PSU's might correspond to Census Tracts, and individuals within these PSU's might correspond to households within Census Tracts. The first multiple regression model for such a design considered by Kalton is a classical nested random effects model:

(2.1) $y_{ij} = B_{0i} + \beta_1 x_{1ij} + \beta_2 x_{2ij} + e_{ij}$

where, B_{0i} and e_{ij} are random effects corresponding to PSU's and individuals within PSU's, repectively. (See equation (11) in Kalton.)

Note that the slope parameters in equation (2.1), β_1 and β_2 , are constant. They do not vary from cluster to cluster. While this assumption is standard for such random effects analysis of covariance models, the design implications are somewhat counter-intuitive. As was noted by Kalton, assuming a standard cost model, if the within-cluster variability of

the x-variables is the same as that of the associated population variability, a sample of a single cluster can be the implied optimal design for estimating slope parameters or functions of slope parameters. This seems counter-intuitive because one suspects that the structure of the relationship (the slope parameters) is probably not constant across clusters. Under such circumstances, drawing a sample of a single cluster would not be considered a safe alternative. In the following sections, we consider models which incorporate this structural variability.

3. Random Coefficients Regression Models.

The principal difference between the models considered in this section and those employed by Kalton is that here, the slopes are allowed to vary from cluster to cluster. They are assumed to be random, with components of variability associated with the various stages in a multistage cluster sample design. Below, three model-design combinations are presented. In the first two of these, estimates of regression slopes and of variance components are functions of individual slope estimates associated with observations belonging to the same penultimate stage sampling units.

Model I is for a two-stage design as described in Section 2 above. For such designs, penultimate stage sampling units are PSU's. Model III incorporates structural varibility at two levels for a three stage design. Such a sampling scheme might be used for a national or regional survey with cities or counties serving as PSU's, Census Tracts selected within PSU's as secondary sampling units (SSU's), and finally households within SSU's.

For some samples, an estimation strategy based on regression parameter estimates obtained within penultimate stage sampling units is feasible, however for many others, it is not. For example, in order to obtain slope estimates within a cluster, there must be variability in the predictor variables in that cluster. In the present case, that means variability in the noise exposure measurements within penultimate clusters. For many available studies, there is little or no variability in these predictors at the penultimate cluster level and the procedures described for Models I and II are not feasible.

Model III is also based on a three-stage design. It contains random effects which incorporate variability in regression slope parameters only at the first stage. Estimates depend on individual slope estimates associated with data from PSU's. Such a procedure could be applied to data from most available studies. It should be noted however that should substantial variability in regression slopes exist at the SSU level, conclusions obtained from analyses based on Model III should be limited to designs with similar final stage characteristics. That is, in designing future studies, only designs which have PSU's of size comparable to those associated with PSU's in the studies used to obtain estimates of variance components should be considered. Any variability in slope parameters associated with SSU's in these studies will be included in the estimate of the variance component associated with PSU's. However, the effect on the estimated component will change depending on the number of SSU's per PSU.

3.1 Model I: Two-stage design, parameters random at the first stage.

3.1.1 The model and the design.

First, we consider a two-stage sample design, together with a model which incorporates variability in regression parameters at the first stage:

<u>Design</u>: Select n PSU's, and within the ith PSU, select n_i individuals for a total sample size of $\sum_i n_i = n_i$

(3.1)
$$y_{ij} = B_{0i} + B_{1i}x_{1ij} + B_{2i}x_{2ij} + e_{ij}$$
, where
 $B_{mi} = \beta_m + a_{mi}$; m=0,1,2, and where
 $E(a_{mi}) = 0$; m=0,1,2
 $E(a_{mi}a_{mi}) = \sigma_{amm'}$; m,m'=0,1,2
 $E(e_{ij}) = 0$; j=1,2,...,n_i; i=1,2,...,n
 $E(e_{ij}^2) = \sigma_{e}^2$; j=1,2,...,n_i; i=1,2,...,n
 $E(e_{ij}e_{ij'}) = 0$; i≠i' or j≠j'
 $E(e_{ij}a_{mj'}) = 0$; m=0,1,2; j,j'=1,...,n_i; i=1,...,n

Here, for simplicity, the independent variables x_{1ij} and x_{2ij} are corrected for within PSU means. That is,

(3.2)
$$x_{mij} = x'_{mij} - \bar{x}'_{mi}$$
; m=1,2; j=1,...,n; ; i=1,...,n

where x'_{mij} is the raw, uncorrected measurement, and where \bar{x}'_{mi} = $\sum_{i} x'_{mij}/n_{i}$, is the mean of the uncorrected measurements for the ith PSU.

3.1.2 Estimating regression parameters, associated sampling variances, and optimal design.

Let b_{mi} be the usual least squares estimate for $B_{mi},\,m=0,1,2$, calculated within PSU's. That is,

$$(3.3) \qquad b_{0i} = \sum_{j} y_{ij} / n_{i} = \overline{y}_{i}, ,$$

$$b_{1i} = \frac{(\sum_{j} x_{2ij}^{2})(\sum_{j} x_{1ij}y_{ij}) - (\sum_{j} x_{1ij}x_{2ij})(\sum_{j} x_{2ij}y_{ij})}{(\sum_{j} x_{1ij}^{2})(\sum_{j} x_{2ij}^{2}) - (\sum_{j} x_{1ij}x_{2ij})^{2}}, \text{ and}$$

$$b_{2i} = \frac{(\sum_{j} x_{1ij}^{2})(\sum_{j} x_{2ij}y_{ij}) - (\sum_{j} x_{1ij}x_{2ij})(\sum_{j} x_{1ij}y_{ij})}{(\sum_{j} x_{1ij}^{2})(\sum_{j} x_{2ij}^{2}) - (\sum_{j} x_{1ij}x_{2ij})^{2}}.$$

Estimates of the β_m , m=0,1,2 are obtained by averaging the PSU estimates, i.e.,

(3.4)
$$\hat{\beta}_{m} = \sum_{i} b_{mi}/n$$
; m=0,1,2.

Then, since the within PSU least squares estimates, the b_{mi} , are unbiased for the associated B_{mi} , the overall estimates, $\hat{\beta}_m$ are unbiased for the parameters β_m . That is,

(3.5)
$$E(\hat{\beta}_{m}) = E_{i} [E_{j|i} (\sum_{i} b_{mi}/n)]$$
$$= E_{i} [\sum_{i} B_{mi}/n]$$
$$= \sum_{i} \beta_{m}/n = \beta_{m}.$$

Here, the notation, $E_{j|i}$ represents the conditional expectation taken over all samples of individuals (the j's) for a fixed set of PSU's (the i's).

The sampling variances of these estimates are determined as follows,

(3.6)
$$\operatorname{Var}(\hat{\beta}_{0}) = \operatorname{E}_{i} [\operatorname{Var}_{j|i} (\hat{\beta}_{0})] + \operatorname{Var}_{i} [\operatorname{E}_{j|i} (\hat{\beta}_{0})]$$

= $\operatorname{E}_{i} (\sigma_{e}^{2}/n_{i}) + \operatorname{Var}_{i} (\sum_{i} B_{0i}/n)$
= $[\sigma_{e}^{2} [\sum_{i} (1/n_{i})] / n] + (\sigma_{a00}/n)$.

The conditional variance notation, $Var_{j|i}$ is defined in a manner analogous to that of the conditional expectation described above for equation (3.5). If there is a constant PSU size, $n_i = \sum_i n_i/n = \bar{n}$, then (3.6) simplifies as follows,

(3.7)
$$Var(\hat{\beta}_0) = (\sigma_e^2/n\bar{n}_{\bullet}) + (\sigma_{a00}/n)$$

= $(\sigma_e^2/n_{\bullet}) + (\sigma_{a00}/n)$,

where, n. = \sum_{i} n_i is the total sample size.

For $\hat{\beta}_1,$ the sampling variance is developed as follows,

(3.8)
$$\operatorname{Var}(\hat{\beta}_{1}) = \operatorname{E}_{i} [\operatorname{Var}_{j|i}(\hat{\beta}_{1})] + \operatorname{Var}_{i} [\operatorname{E}_{j|i}(\hat{\beta}_{1})]$$

$$= \operatorname{E}_{i} [(\sigma_{e}^{2}/n^{2}) \sum_{i} \sigma_{i22}/n_{i}(\sigma_{i11}\sigma_{i22} - \sigma_{i12}^{2})] + \operatorname{Var}_{i}(\sum_{i} \operatorname{B}_{1i}/n)$$

$$= [(\sigma_{e}^{2}/n^{2}) \sum_{i} \Delta_{i22}/n_{i}] + \sigma_{a11}/n, \text{ where}$$

$$\Delta_{i22} = \sigma_{i22}/(\sigma_{i11}\sigma_{i22} - \sigma_{i12}^{2}), \text{ and where}$$

$$\sigma_{i11} = \text{variance of } x_{1ij} \text{ within the ith PSU,}$$

$$\sigma_{i22} = \text{variance of } x_{2ij} \text{ within the ith PSU, and}$$

$$\sigma_{i12} = \text{covariance of } x_{1ij} \text{ and } x_{2ij} \text{ within the ith PSU.}$$

Again, if $n_i = \bar{n}$., this simplifies to

(3.9)
$$\operatorname{Var}(\hat{\beta}_1) = \sigma_e^2 \overline{\Delta}_{22}/n. + \sigma_{a11}/n$$
, where

$$\overline{\Delta}_{22} = \Sigma_i \Delta_{i22} / n$$
 .

Similarly, for $\hat{\beta}_2$,

(3.10) $\operatorname{Var}(\hat{\beta}_{2}) = \{(\sigma_{e}^{2}/n^{2}) \sum_{i} \Delta_{i11}/n_{i}\} + \sigma_{a22}/n, \text{ where}$ $\Delta_{i11} = \sigma_{i11}/(\sigma_{i11}\sigma_{i22} - \sigma_{i12}^{2}), \text{ and if } n_{i} = \overline{n}.,$ $\operatorname{Var}(\hat{\beta}_{2}) = \sigma_{e}^{2} \overline{\Delta}_{11}/n. + \sigma_{22}/n, \text{ where}$ $\overline{\Delta}_{11} = \sum_{i} \Delta_{i11}/n.$

Under the simple cost model assumed by Kalton, $C = C_0 + nC_a + n.C_b$, where C_0 is the fixed cost of the survey, C_a is the average cost of including a cluster in the sample, and C_b is the average cost of including an individual in the sample, the optimum cluster size for estimating β_1 is given by,

(3.11)
$$\bar{n}.(opt) = [\sigma_e^2 \overline{\Delta}_{22} / \sigma_{a11}]^{1/2} \{C_a / C_b\}^{1/2}$$

3.1.3 Estimating ratios of regression parameters, associated sampling variances and optimal design.

Finally, for designing a sample to estimate ratios of regression coefficients, one requires the sampling covariances of the estimates, $\hat\beta_1$ and $\hat\beta_2$,

(3.12)
$$\operatorname{Cov}(\hat{\beta}_{1},\hat{\beta}_{2}) = [(-\sigma_{e}^{2}/n^{2})\sum_{i} \Delta_{i12}/n_{i}] + \sigma_{a12}/n$$
, where
 $\Delta_{i12} = \sigma_{i12}/(\sigma_{i11}\sigma_{i22} - \sigma_{i12}^{2})$, and if $n_{i} = \bar{n}$,
 $\operatorname{Cov}(\hat{\beta}_{1},\hat{\beta}_{2}) = -\sigma_{e}^{2} \overline{\Delta}_{12}/n$, $+ \sigma_{a12}/n$, where
 $\overline{\Delta}_{12} = \Sigma_{i} \Delta_{i12}/n$.

For estimating the ratio of the two regression coefficients, R = (β_2/β_1) , we propose to use $\hat{R} = (\hat{\beta}_2/\hat{\beta}_1)$. Then, we can use the Taylor

expansion method to obtain an approximation of the variance of this ratio estimate,

$$(3.13) \quad \operatorname{Var}(\hat{\mathsf{R}}) \approx \beta_1^{-2} \left[\operatorname{Var}(\hat{\beta}_2) + \operatorname{R}^2 \operatorname{Var}(\hat{\beta}_1) - 2\operatorname{R} \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_2) \right].$$

Again, if there is a constant cluster size of $n_i = \bar{n}$, this simplifies to

$$\begin{array}{ll} (3.14) & \operatorname{Var}(\widehat{R}) \approx \beta_{1}^{-2} \left[(\sigma_{e}^{2} \,\overline{\Delta}_{11} / n. + \sigma_{a22} / n) \right. \\ & + \operatorname{R}^{2} \left(\sigma_{e}^{2} \,\overline{\Delta}_{22} / n + \sigma_{a11} / n \right) \\ & - 2\operatorname{R} \left(- \sigma_{e}^{2} \,\overline{\Delta}_{12} / n. + \sigma_{a12} / n \right) \right] \\ & = \beta_{1}^{-2} \left[\left[\sigma_{e}^{2} \left(\overline{\Delta}_{11} + \operatorname{R}^{2} \,\overline{\Delta}_{22} + 2\operatorname{R} \,\overline{\Delta}_{12} \right) / n. \right] \\ & + \left[\left(\sigma_{a22} + \operatorname{R}^{2} \,\sigma_{a11} - 2\operatorname{R} \,\sigma_{a12} \right) / n \right] \right]. \end{array}$$

Under the cost model described above, the optimum PSU size for estimating the ratio is given by,

(3.15)
$$\bar{n}.(opt) = \{\sigma_{e^2} (\bar{\Delta}_{11} + R^2 \bar{\Delta}_{22} + 2R \bar{\Delta}_{12}) / (\sigma_{a22} + R^2 \sigma_{a11} - 2R \sigma_{a12})\}^{1/2} \{C_a/C_b\}^{1/2}$$
.

3.1.4 Estimating variance components.

Thus, in order to determine the optimum PSU size for estimating regression coefficients and ratios of regression coefficients, one requires the following information, the average cost parameters, C_a and C_b , the design characteristics, the variance and covariance components of the random parameters, and an approximation for the true ratio R. The design characteristics describe the within PSU distribution of the x variables in terms of $\overline{\Delta}_{11}$, $\overline{\Delta}_{22}$, and $\overline{\Delta}_{12}$. These in turn depend on σ_{i11} , σ_{i22} , and σ_{i12} calculated within clusters. The variance components of the random parameters, σ_{a11} , σ_{a22} , σ_{a12} , and σ_e^2 can be estimated from previous surveys using the methods described below.

The residual variance, σ_{e}^{2} , is estimated in the usual manner as,

(3.16)
$$\hat{\sigma}_{\theta}^{2} = \frac{\sum_{i j} (y_{ij} - \hat{y}_{ij})^{2}}{\sum_{i j} (n_{i} - 3)} = \frac{\sum_{i j} (y_{ij} - \hat{y}_{ij})^{2}}{n. - 3n}$$

The remaining components are estimated as follows:

(3.17)
$$\hat{\sigma}_{a11} = \sum_{i} (b_{1i} - \hat{\beta}_{1})^{2} / (n-1) - \hat{\sigma}_{e}^{2} (\sum_{i} \Delta_{i22} / n_{i}) / n$$

or for constant cluster size, $n_{i} = \bar{n}$.

$$\hat{\sigma}_{a11} = \sum_{i} (b_{1i} - \hat{\beta}_{1})^{2} / (n-1) - \hat{\sigma}_{e}^{2} \overline{\Delta}_{22} / \overline{n}.$$

$$(3.18) \quad \hat{\sigma}_{a22} = \sum_{i} (b_{2i} - \hat{\beta}_2)^2 / (n-1) - \hat{\sigma}_{e^2} (\sum_{i} \Delta_{i11} / n_i) / n_i$$

or for constant cluster size, $n_i = \vec{n}$.,

$$\hat{\sigma}_{a22} = \sum_{i} (b_{2i} - \hat{\beta}_2)^2 / (n-1) - \hat{\sigma}_e^2 \overline{\Delta}_{11} / \overline{n}_{\bullet}.$$

$$(3.19) \quad \hat{\sigma}_{a12} = \sum_{i} (b_{1i} - \hat{\beta}_1)(b_{2i} - \hat{\beta}_2)/(n-1) + \hat{\sigma}_{e^2} (\sum_{i} \Delta_{i12}/n_i)/n$$

or for constant cluster size, $n_i = \bar{n}$.

$$\hat{\sigma}_{a12} = \sum_{i} (b_{1i} - \hat{\beta}_1)(b_{2i} - \hat{\beta}_2)/(n-1) - \hat{\sigma}_{e}^2 \overline{\Delta}_{12}/\bar{n}_{\bullet}.$$

3.2 Model II: Three-Stage Design, Parameters Random at the First Two Stages.

3.2.1 The model and the design.

Now, we consider a three-stage sample design, together with a model which incorporates variability in regression parameters at the first two stages:

(3.20)
$$y_{ijk} = B_{0ij} + B_{1ij}x_{1ijk} + B_{2ij}x_{2ijk} + e_{ijk}$$
, where
 $B_{mij} = \beta_m + a_{mi} + c_{mij}$; m=0,1,2; j=1,...,n_i; i=1,...,n.
 $E(e_{ijk}) = E(a_{mi}) = E(c_{mij}) = 0$; m=0,1,2;
 $k=1,...,n_{ij}$; j=1,...,n_i; i=1,...,n.
 $E(a_{mi}a_{mi}) = \sigma_{amm'}$; m,m'=0,1,2; i=1,...,n.
 $E(c_{mij}c_{m'ij}) = \sigma_{cmm'}$; m,m'=0,1,2; j=1,...,n_i; i=1,...,n,
 $E(a_{mi}a_{mi'}) = 0$; m,m'=0,1,2; i≠i'.
 $E(c_{mij}c_{m'ij'}) = 0$; m,m'=0,1,2; i≠i or j≠j'.
 $E(a_{mi}c_{m'ij}) = 0$; m,m'=0,1,2;
 $E(a_{mi}c_{m'ij}) = 0$; m,m'=0,1,2;

The last four lines of (3.20) imply that the e_{ijk} , a_{mi} , and c_{mij} terms are independent of each other.

3.2.2 Estimation, sampling variances, and optimal design.

Here again, regressions are carried out within the penultimate stage sampling units, that is within SSU's. Let b_{mij} be the usual, within SSU least squares estimate of B_{mii} , and let

(3.21)
$$\bar{b}_{mi*} = \sum_{j} b_{mij}/n_{ij}$$
,
 $\hat{\beta}_m = \sum_{i} \bar{b}_{mi*}/n$, and finally
 $\hat{R} = \hat{\beta}_2/\hat{\beta}_1$.

Using an argument analogous to that used in section 3.1, it is easy to see that the regression parameter estimates, $\hat{\beta}_m$, are unbiased for the parameters β_m . Sampling variances and covariances are also derived in a similar manner,

$$(3.22) \quad Var(b_{1ij}) = Var_{ij} E_{klj} (b_{1ij}) + E_{ij} Var_{klj} (b_{1ij})
= Var_{ij}(a_{1i} + c_{1ij}) + E_{ij} [\sigma_e^2 \sigma_{ij22} / n_{ij}(\sigma_{ij11}\sigma_{ij22} - \sigma_{ij12}^2)]
= \sigma_{a11} + \sigma_{c11} + \sigma_e^2 \Delta_{ij22} / n_{ij} . Further,
(3.23)
$$Cov(b_{1ij}, b_{1ij'}) = Cov_{ij,ij'} E_{klj,ij'} (b_{1ij}, b_{1ij'})
+ E_{ij,ij'} Cov_{klj'ij'} (b_{1ij}, b_{1ij'})
= Cov_{ij,ij'} (a_{1i} + c_{1ij}, a_{1i} + c_{1ij'}) + 0 = \sigma_{a11} . Therefore,
(3.24)
$$Var(\hat{\beta}_1) = n^{-2} \sum_i n_i^{-2} \sum_j (\sigma_{a11} + \sigma_{c11} + \sigma_e^2 \Delta_{ij22} / n_{ij})
+ n^{-2} \sum_i n_i^{-2} \sum_j \sum_j * j' \sigma_{a11} .
= (\sigma_{a11} + \sigma_{c11}) n^{-2} (\sum_i n_i^{-1}) + (\sigma_e^2/n^2) [\sum_i n_i^{-2} (\sum_j \Delta_{ij22}/n_{ij})]
+ \sigma_{a11} n^{-2} \sum_i (n_i^{-1})/n_i .
= (\sigma_{a11}/n) + (\sigma_{c11}/n^2) \sum_i n_i^{-1} + (\sigma_e^2/n^2) [\sum_i n_i^{-2} (\sum_j \Delta_{ij22}/n_{ij})] .$$$$$$

In equations (3.22-24), $\sigma_{ijmm'}$ and $\Delta_{ijmm'}$ are defined to be the variances, covariances and functions of these, for predictor variables x_{1ij} and x_{2ij} , calculated within the ijth SSU, analogous to the definitions of $\sigma_{imm'}$ and $\Delta_{imm'}$ given in equation (3.8).

Now, if we have a constant PSU and SSU size, $n_i=\bar{n}.$ and $n_{ij}=\bar{n}_i.=\bar{n}...$, and if the design characteristics Δ_{ij22} are constant over SSU's at $\overline{\Delta}_{22}$, then we have,

(3.24)
$$\operatorname{Var}(\hat{\beta}_1) = (\sigma_{a11}/n) + (\sigma_{c11}/n\bar{n}_{\bullet}) + (\sigma_{e}^2 \overline{\Delta}_{22}/n\bar{n}_{\bullet}\bar{n}_{\bullet})$$

= $(\sigma_{a11}/n) + (\sigma_{c11}/n_{\bullet}) + (\sigma_{e}^2 \overline{\Delta}_{22}/n_{\bullet})$.

Under similar assumptions, the Var($\hat{\beta}_2$) and Cov($\hat{\beta}_1, \hat{\beta}_2$) are seen to be,

(3.25)
$$Var(\hat{\beta}_2) = (\sigma_{a22}/n) + (\sigma_{c22}/n.) + (\sigma_{\theta}^2 \overline{\Delta}_{11}/n..)$$
, and

(3.26)
$$\operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_2) = (\sigma_{a12}/n) + (\sigma_{c12}/n) - (\sigma_{e^2 \overline{\Delta}_{12}}/n).$$

Therefore, for the estimate of the ratio between the two coefficients, \hat{R} = $\hat{\beta}_2/\hat{\beta}_1$,

$$(3.27) \quad \operatorname{Var}(\hat{R}) \approx \beta_{1}^{-2} \left[\operatorname{Var}(\hat{\beta}_{2}) + R^{2} \operatorname{Var}(\hat{\beta}_{1}) - 2R \operatorname{Cov}(\hat{\beta}_{1}, \hat{\beta}_{2}) \right]$$

$$= \beta_{1}^{-2} \left[\left[(\sigma_{a22}/n) + (\sigma_{c22}/n) + \sigma_{e}^{2}\overline{\Delta}_{11}/n \right] \right]$$

$$+ R^{2} \left[(\sigma_{a11}/n) + (\sigma_{c11}/n) + (\sigma_{e}^{2}\overline{\Delta}_{22}/n) \right]$$

$$- 2R \left[(\sigma_{a12}/n) + (\sigma_{c12}/n) - (\sigma_{e}^{2}\overline{\Delta}_{12}/n) \right]$$

$$= \beta_{1}^{-2} \left\{ (\sigma_{a22} + R^{2} \sigma_{a11} - 2R \sigma_{a12})/n \right\}$$

$$+ (\sigma_{c22} + R^{2} \sigma_{c11} - 2R \sigma_{c12})/n$$

$$+ (\sigma_{e}^{2} (\overline{\Delta}_{11} + R^{2} \overline{\Delta}_{22} + 2R \overline{\Delta}_{12})/n \right]$$

Using these results, combined with a simple cost model for threestage cluster sampling we can arrive at optimum sampling unit sizes in a manner similar to that used for Model I. Let,

$$(3.28) \quad C = C_0 + C_1 n + C_2 n_1 + C_3 n_2,$$

where, C_0 is the constant overhead cost of the survey, C_1 is the average cost of including a PSU in the sample, C_2 is the average cost of including an SSU in the sample, and C_3 is the average cost of including an individual in the sample. Then, using the Cauchy-Schwartz inequality, we have the following condition for optimum allocation for estimating the ratio R:

(3.29)
$$(\sigma_{a22} + R^2 \sigma_{a11} - 2R \sigma_{a12})^{1/2} / (n C_1^{1/2})$$

= $(\sigma_{c22} + R^2 \sigma_{c11} - 2R \sigma_{c12})^{1/2} / (n C_2^{1/2})$
= $\sigma_e (\overline{\Delta}_{11} + R^2 \overline{\Delta}_{22} + 2R \overline{\Delta}_{12})^{1/2} / (n C_3^{1/2})$

This relation translates into the following optimum sampling unit sizes:

$$(3.30) \quad \bar{n}.(opt) = [(\sigma_{c22} + R^2 \sigma_{c11} - 2R \sigma_{c12})C_1 \\ / (\sigma_{a22} + R^2 \sigma_{a11} - 2R \sigma_{a12})C_2]^{1/2}$$

$$(3.31) \quad \bar{n}..(opt) = \sigma_e [(\overline{\Delta}_{11} + R^2 \overline{\Delta}_{22} + 2R \overline{\Delta}_{12})C_2 \\ / (\sigma_{c22} + R^2 \sigma_{c11} - 2R \sigma_{c12})C_3]^{1/2}$$

3.2.3 Estimating variance components.

In order to determine necessary sample sizes and optimum allocation, one needs some idea of cost parameters, design characteristics summarized by $\overline{\Delta}_{11}$, $\overline{\Delta}_{22}$, and $\overline{\Delta}_{12}$, an approximation of the ratio R and its denominator β_1 , and the variance components σ_{a11} , σ_{a22} , σ_{a12} , σ_{c11} , σ_{c22} , σ_{c12} , and σ_{s}^2 . These may be obtained from previous survey data using the following estimates:

(3.32)
$$\hat{\sigma}_{\theta}^2 = \sum_{i} \sum_{j} (y_{ijk} - \hat{y}_{ijk})^2 / (n_{..} - 3n_{.})$$

$$(3.33) \quad \hat{\sigma}_{c11} = \{\sum_{i} \sum_{j} (b_{1ij} - \bar{b}_{1i})^2 - \hat{\sigma}_e^2 \sum_{i} [(n_i - 1)/n_i] \sum_{j} \Delta_{ij22}/n_{ij}\}/(n_i - n),$$

which if $n_i = \bar{n}$. and $n_{ij} = \bar{n}$., further simplifies to,

$$\sum_{i,j} \sum_{j=1}^{j} (b_{1ij} - \overline{b}_{1i})^2 / (n, -n) - \hat{\sigma}_e^2 \overline{\Delta}_{22} / \overline{n}.$$

(3.34)
$$\hat{\sigma}_{c22} = \{\sum_{i} \sum_{j} (b_{2ij} - \bar{b}_{2i})^2 - \hat{\sigma}_{e}^2 \sum_{i} [(n_i - 1)/n_i] \sum_{j} \Delta_{ij11}/n_{ij}]/(n_i - n),$$

which if $n_i = \bar{n}$. and $n_{ij} = \bar{n}$., further simplifies to,

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (b_{2ij} - \overline{b}_{2i})^2 / (n, -n) - \hat{\sigma}_{\theta}^2 \overline{\Delta}_{11} / \overline{n}.$$

(3.35)
$$\hat{\sigma}_{c12} = \{\sum_{i} \sum_{j} (b_{1ij} - \bar{b}_{1i})(b_{2ij} - \bar{b}_{2i})\}$$

+
$$\hat{\sigma}_{e^{2}} \sum_{i} [(n_{i}-1)/n_{i}] \sum_{i} \Delta_{ij12}/n_{ij}]/(n_{i}-n),$$

which if $n_i = \bar{n}$. and $n_{ij} = \bar{n}$., further simplifies to,

$$\sum_{i} \sum_{j} (b_{1ij} - \bar{b}_{1i}) (b_{2ij} - \bar{b}_{2i}) / (n, -n) + \hat{\sigma}_{\theta}^2 \overline{\Delta}_{12} / \bar{n}.$$

$$(3.36) \quad \hat{\sigma}_{a11} = \{ \sum_{i} (\bar{b}_{1i} - \hat{\beta}_{1})^{2} - \hat{\sigma}_{c11} [(n-1)/n] \sum_{i} n_{i}^{-1} \\ - \hat{\sigma}_{e}^{2} [(n-1)/n] \sum_{i} \sum_{j \geq 2} \Delta_{ij22} / n_{i} \cdot n_{ij} \} / (n-1)$$

which if $n_i = \overline{n}$. and $n_{ij} = \overline{n}$., further simplifies to,

$$\sum_{i} (\bar{b}_{1i} - \hat{\beta}_{1})^{2} / (n-1) - \hat{\sigma}_{c11} / \bar{n}_{\cdot} - \hat{\sigma}_{e}^{2} \overline{\Delta}_{22} / \bar{n}_{\cdot}_{\cdot} ,$$

 $(3.37) \quad \hat{\sigma}_{a22} = \{\sum_{i} (\bar{b}_{2i} - \hat{\beta}_{2})^{2} - \hat{\sigma}_{c22}[(n-1)/n] \sum_{i} n_{i}^{-1} - \hat{\sigma}_{e}^{2}[(n-1)/n] \sum_{i} \sum_{j} \Delta_{ij11}/n_{i} \cdot n_{ij}\} / (n-1),$

which if $n_i = \bar{n}$. and $n_{ij} = \bar{n}$., further simplifies to,

$$\sum_{i} (\bar{b}_{2i} - \hat{\beta}_2)^2 / (n-1) - \hat{\sigma}_{c22} / \bar{n}. - \hat{\sigma}_{\theta}^2 \overline{\Delta}_{11} / \bar{n}.. , and finally,$$

 $(3.38) \quad \hat{\sigma}_{a12} = [\sum_{i} (\bar{b}_{1i} - \hat{\beta}_{1}) (\bar{b}_{2i} - \hat{\beta}_{2}) - \hat{\sigma}_{c12} [(n-1)/n] \sum_{i} n_{i}^{-1} \\ + \hat{\sigma}_{e}^{2} [(n-1)/n] \sum_{i} \sum_{j} \Delta_{ij12} / n_{i} . n_{ij}] / (n-1),$

which if $n_i = \bar{n}$. and $n_{ij} = \bar{n}$., further simplifies to,

$$\sum_{i=1}^{\infty} (\bar{b}_{1i} - \hat{\beta}_1) (\bar{b}_{2i} - \hat{\beta}_2) / (n-1) - \hat{\sigma}_{c12} / \bar{n}_{\bullet} + \hat{\sigma}_{e}^2 \overline{\Delta}_{11} / \bar{n}_{\bullet}$$

3.3 Model III: Three-stage design, slope parameters random at the first two stages, error terms nested, individuals within SSU's within PSU's.

3.3.1 The model and the design.

As stated earlier, it is not always possible to estimate regression parameters at the SSU level as required with Model II. For this reason, we introduce a model-design combination based on the same sampling scheme as that for Model II, but with a model which allows for variability of slope parameters among first stage units only.

1

3.3.2 The estimates, associated sampling variances, and optimal design.

Consider the following estimates for the slope parameter β_{1i} associated with the ith PSU:

where,
$$d_i = (\sum_{j k} \sum_{k} x_{1ijk}^2) (\sum_{j k} \sum_{k} x_{2ijk}^2) - (\sum_{j k} \sum_{k} x_{1ijk} x_{2ijk}^2)^2$$

= $n_i \cdot 2(\sigma_{i11} \sigma_{i22} - \sigma_{i12}^2)$.

.

Here, the x_{mijk} are mean corrected within PSU's as for Model I. Then for the estimate of the overall mean slope, β_1 , consider

(3.41)
$$\hat{\beta}_1 = \sum_{i=1}^{n} b_{1i}/n$$
.

It can be shown, using the following logic, that $\hat{\beta}_1$, as defined in equations (3.40) and (3.41) above, is unbiased for the mean slope β_1 . First, notice that the observations y_{ijk} can be expressed as follows:

$$(3.42) \qquad y_{ijk} = \beta_0 + a_{0i} + c_{0ij} + (\beta_1 + a_{1i}) x_{1ijk} + (\beta_2 + a_{2i}) x_{2ijk} + e_{ijk}.$$

Now, the conditional expectation of b_{1i} given that the ith PSU is in the sample is given by,

$$\begin{array}{ll} (3.43) & \mathsf{E}_{\mathsf{j}\mathsf{k}\mathsf{h}}(\mathsf{b}_{1\mathsf{i}}) = \mathsf{E}_{\mathsf{j}\mathsf{k}\mathsf{h}} \, \mathsf{d}_{\mathsf{i}}^{-1} \sum_{\mathsf{j}} \sum_{\mathsf{k}} \{(\sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}}^2) \mathsf{x}_{1\mathsf{i}\mathsf{j}\mathsf{k}} - (\sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{1\mathsf{i}\mathsf{j}\mathsf{k}} \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}}) \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}}\} \mathsf{y}_{\mathsf{j}\mathsf{k}} \\ & = \mathsf{d}_{\mathsf{i}}^{-1} \mathsf{E}_{\mathsf{j}\mathsf{k}\mathsf{h}} \left((\sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}}^2) \left[\sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{1\mathsf{i}\mathsf{j}\mathsf{k}} \mathsf{C}_{0\mathsf{i}\mathsf{j}} + (\sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{1\mathsf{i}\mathsf{j}\mathsf{k}}^2) (\beta_1 + a_{1\mathsf{i}}) \right. \\ & + (\sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{1\mathsf{i}\mathsf{j}\mathsf{k}} \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}}) (\beta_2 + a_{2\mathsf{i}}) \right] \\ & - (\sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{1\mathsf{i}\mathsf{j}\mathsf{k}} \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}}) \sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}} \mathsf{C}_{0\mathsf{i}\mathsf{j}} + \sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{1\mathsf{i}\mathsf{j}\mathsf{k}} \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}} (\beta_1 + a_{1\mathsf{i}}) \\ & + \sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}}^2 (\beta_2 + a_{2\mathsf{i}}) \right] \right] . \\ & = \mathsf{d}_{\mathsf{i}}^{-1} \mathsf{E}_{\mathsf{j}\mathsf{k}|_{\mathsf{i}}} \left\{ \sum_{\mathsf{j}} \left[\sum_{\mathsf{k}} (\sum_{\mathsf{i}} \sum_{\mathsf{k}} \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}}^2) \mathsf{x}_{1\mathsf{i}\mathsf{j}\mathsf{k}} - (\sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{1\mathsf{i}\mathsf{j}\mathsf{k}} \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}}) \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}} \mathsf{I}_{0\mathsf{i}\mathsf{j}} \right] \\ & + \left[(\sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{1\mathsf{i}\mathsf{j}\mathsf{k}}^2) (\sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}}^2) - \sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{1\mathsf{i}\mathsf{j}\mathsf{k}} \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}} \mathsf{X}_{2\mathsf{i}\mathsf{j}\mathsf{k}} \mathsf{I}_{0\mathsf{i}\mathsf{j}} \right] \\ & + \left[(\sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{1\mathsf{i}\mathsf{j}\mathsf{k}}^2) (\sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}}^2) - \sum_{\mathsf{j}} \sum_{\mathsf{k}} \mathsf{x}_{1\mathsf{i}\mathsf{j}\mathsf{k}} \mathsf{x}_{2\mathsf{i}\mathsf{j}\mathsf{k}} \mathsf{X}_{2\mathsf{j}\mathsf{j}} \mathsf{k}} \mathsf{X}_$$

Thus, $E(\hat{\beta}_1) = E_i E_{jkli} (\hat{\beta}_1) = \beta_1$. That is, $\hat{\beta}_1$ is unbiased for β_1 . Similarly, it can be shown that, $\hat{\beta}_2$, defined in an analogous fashion is unbiased for β_2 .

Using a similar treatment, sampling variances and covariances can be derived for these estimates. For $\hat{\beta}_1$ we have,

(3.44)
$$Var(\hat{\beta}_1) = E_i Var_{jkli}(\hat{\beta}_1) + Var_i E_{jkli}(\hat{\beta}_1)$$
. Now,

Now, if we have a constant SSU size, $n_{ij} = \tilde{n}_i . = n_i . / n_i$, this simplifies to,

 $(3.52) \qquad n_{i}.^{2} \ \bar{n}_{i}. \ (\sigma_{i22} \ \Omega_{i11} \ \sigma_{i11} + \sigma_{i12}^{2} \ \Omega_{i22} \ \sigma_{i22} - 2 \ \sigma_{i22} \ \sigma_{i12} \ \Omega_{i12}),$ where, for example,

(3.53)
$$\Omega_{i11} = (\sum_{j} n_{ij} \bar{x}_{1ij}.^2) / (\sum_{j} \sum_{k} x_{ijk}^2)$$

is the proportion of within PSU variance "explained" by SSU's. Now if $\Omega_{i11}=\Omega_{i22}=\Omega_{i12}=\Omega_i$, this further simplifies to,

(3.54)
$$\sum_{j} (\sum_{k} A_{1ijk})^2 = n_{i} \cdot 2 \bar{n}_{i} \cdot \Omega_i \sigma_{i22} (\sigma_{i22} \sigma_{i11} - \sigma_{i12}^2)$$
$$= (n_i \cdot / n_i) \Omega_i \sigma_{i22} d_i.$$

So, assuming that the SSU's are of constant size within the ith PSU, i.e. that $n_{ij}=\bar{n}_{i}=n_{i}/n_{i}$, and that the proportions of within ith PSU variances and covariance of the two predictor variables explained by SSU's are all equal to Ω_{i} , we have,

$$(3.55) \quad \text{Var}_{jk|i} \ b_{1i} = d_i^{-2} \{n_i \cdot \sigma_{i22} d_i \sigma_e^2 + \sigma_{c11} \bar{n}_i \cdot \Omega_i \sigma_{i22} d_i\} \\ = \{n_i \cdot \sigma_{i22} (\sigma_e^2 + \Omega_i \sigma_{c00} / n_i)\} / d_i \ .$$

Now, if we further assume constant number of individuals per PSU, and a constant number of SSU's per PSU, as well as constant within PSU design characteristics,

$$(3.56) \quad n_{i} = \sum_{i} n_{i} / n = n .. / n = \bar{n} .. ,$$

$$n_{i} = \sum_{i} n_{i} / n = n ./ n = \bar{n} .. , \text{ and}$$

$$\Omega_{i} = \Omega \text{ and } d_{i} = d , \text{ we have,}$$

$$(3.57) \quad \text{Var} (\hat{\beta}_{1}) = n^{-2} \sum_{i} [n_{i} .. \sigma_{i22} (\sigma_{e}^{2} + \Omega \sigma_{c00} / n_{i}) / d_{i}] + \sigma_{a11} / n$$

$$= n^{-2} \sum_{i} [n .. / n] [\sigma_{22} (\sigma_{e}^{2} + \Omega \sigma_{c00} / n_{.}) / d] + \sigma_{a11} / n$$

$$= (\Delta_{22} / n ..) (\sigma_{e}^{2} + \Omega \sigma_{c00} / \bar{n} .) + \sigma_{a11} / n$$

$$= (\sigma_{a11} / n) + \Delta_{22} [(\Omega \sigma_{c00} / n .) + \sigma_{e}^{2} / n ..].$$

Similarly for $\hat{\beta}_2$ and the covariance, we have

(3.58)
$$Var(\hat{\beta}_2) = (\sigma_{a22}/n) + \Delta_{11}[(\Omega\sigma_{c00}/n.) + \sigma_e^2/n..]$$
, and

$$(3.59) \quad \text{Cov} \ (\hat{\beta}_1, \hat{\beta}_2) = (\sigma_{a12}/n) - \Delta_{12} \left[(\Omega \sigma_{c00}/n_{\bullet}) + \sigma_{e}^2/n_{\bullet} \right].$$

Thus, if we estimate the ratio of the expected values of the two slope parameters by the ratio of the individual parameter estimates, $\hat{R} = \hat{\beta}_2 / \hat{\beta}_1$, we have,

$$(3.60) \quad \text{Var}(\hat{R}) = \beta_1^{-2} \left\{ (\sigma_{a22}/n) + \Delta_{11} \left[(\Omega \sigma_{c00}/n.) + \sigma_{e}^{2}/n.. \right] \right. \\ \left. + R^2 \left[(\sigma_{a11}/n) + \Delta_{22} \left[(\Omega \sigma_{c00}/n.) + \sigma_{e}^{2}/n.. \right] \right] \right. \\ \left. - 2R \left[(\sigma_{a12}/n) - \Delta_{12} \left[(\Omega \sigma_{c00}/n.) + \sigma_{e}^{2}/n.. \right] \right] \right\} \\ \left. = \beta_1^{-2} \left\{ (\sigma_{a22} + R^2 \sigma_{a11}^{-2} R \sigma_{a12}^{-2}) / n \right. \\ \left. + (\Delta_{11} + R^2 \Delta_{22}^{+2} R \Delta_{12}^{-2}) (\Omega \sigma_{c00}/n. + \sigma_{e}^{2}/n..) \right\} \right.$$

Using the cost model described in Section 3.2.2, equation (3.28), for Model II, the Cauchy-Schwartz inequality yields the following optimum unit sizes for estimating R:

(3.61)
$$\bar{n}.(opt) = \{(\Delta_{11} + R^2 \Delta_{22} + 2R \Delta_{12})\Omega \sigma_{c00}C_1 / (\sigma_{a22} + R^2 \sigma_{a11} - 2R \sigma_{a12})C_2\}^{1/2}, \text{ and}$$

(3.62) $\bar{n}..(opt) = (\sigma_e^2 / \sigma_{c00} \Omega)^{1/2} (C_2 / C_3)^{1/2}$

3.3.3 Estimating variance components.

Again, estimates of variances and covariances of the random parameters are required for determing sample allocations. These can be obtained as follows:

$$(3.63) \qquad \frac{\sum_{j \in K} \sum_{k} (y_{ijk} - \hat{y}_{ijk})^{2}}{\hat{\sigma}_{e}^{2}} = \frac{\sum_{j \in K} \sum_{k} (y_{ijk} - \hat{y}_{ijk})^{2}}{\sum_{i \in j} \sum_{j} (n_{ij} - 3)},$$

$$(3.64) \qquad \sum_{i \in j} \sum_{j} (\bar{y}_{ij} - \bar{y}_{im})^{2} = \hat{\sigma}_{e}^{2}}{\sum_{i \in j} (n_{ij} - 1)} = n_{ij},$$

4. An Example.

Fields and Walker (1982) describe a study of the effects of railway noise on residents based on a social survey of 1453 respondents in 75 areas in Great Britain. Among other things, estimates of 24 hour L_{eq} dB(A) and the difference between daytime 15 hour L_{eq} and nightime L_{eq} were obtained for each individual surveyed using physical noise measurements. Several measurements of annoyance were obtained using an interviewer administered questionnaire. Here, we make use of the four category verbal scale of annoyance obtained from Question 17 of that study: "Does the noise of the trains bother or annoy you?" Possible responses ranged from (1) "Not at all," to (4) "Very much."

For purposes of illustration, we regress this annoyance variable (y_{ij}) on the two independent variables, 24 hour $L_{eq}(x_{1ij})$ and the daytimenightime L_{eq} difference (x_{2ij}) . An ordinary least squares regression yields the following parameter estimates:

(4.1) $b_0 = 0.0327$, $se(b_0) = 0.132$ $b_1 = 0.0287$, $se(b_1) = 0.00229$ $b_2 = -0.00110$, $se(b_2) = 0.00500$

The standard errors in (4.1) are those obtained from the least squares analysis assuming simple random sampling, and are provided only as rough indications of sampling variability.

We now analyse these data assuming Model I as described in equation (3.1). In doing so, regression coefficients are estimated within PSU's, and then averaged over PSU's. As stated in Section 3, this requires an acceptable joint distribution of independent variables within PSU's. In particular, there must be reasonable variation in both x_{1ij} and x_{2ij} and the two independent variables must not be too highly correlated within PSU's.

The acceptability of these within PSU design characteristics can be determined by inspecting the design measures Δ_{i11} and Δ_{i22} as described in equation (3.8) above. After eliminating those PSU's with insufficient variability in independent variables, we are left with 44 PSU's for Model I analysis.

Least squares estimates of the regression slopes were calculated within each of the 44 PSU's, and overall estimates of the two slopes were obtained as the averages of these PSU estimates as described in equation (3.4). By treating each PSU as an independent replicate, estimates of standard errors of these estimates can be obtained based on the variability of the individual PSU estimates. The results of this analysis are given below:

(4.2)
$$\hat{\beta}_1 = 0.0527 \text{ se}(\hat{\beta}_1) = 0.0169$$

 $\hat{\beta}_2 = 0.689 \text{ se}(\hat{\beta}_2) = 0.725$
 $\hat{R} = 13.07 \text{ se}(\hat{R}) = 14.57$

Variance components estimates are obtained by using equations (3.16-19) as,

(4.3)
$$\hat{\sigma}_{e} = 0.659$$

 $\hat{\sigma}_{a11} = 0.00819$
 $\hat{\sigma}_{a22} = 4.331$
 $\hat{\sigma}_{a12} = 0.0331$

Using these estimates in the formulas developed in Section 3 for optimum sample design, equations (3.11) and (3.15) we get the following estimated optimum cluster sizes for estimating the three parameters, β_1 , β_2 and R

(4.4) $\bar{n}.(opt)$ for estimating $\beta_1 = 4.82(C_a/C_b)^{1/2}$

 $\bar{n}.(opt)$ for estimating $\beta_2 = 13.8(C_a/C_b)^{1/2}$

 $\bar{n}.(opt)$ for estimating R = 13.8(C_a/C_b)^{1/2}

For example, for estimating the ratio R, optimum cluster sizes for various ratios of C_a/C_b are given below:

C _a /C _b	5	10	25	50
ñ.(opt)	31	44	69	98

These calculations are only meant to be illustrative, and several qualifications concerning these estimates should be made. First, it should be noted that the estimate of β_2 , and consequently that of the ratio R, is not very precise. It follows that the corresponding variance components and hence the optimum cluster sizes are not very precisely determined either. In addition, the actual design used in the Fields and Walker study does not correspond exactly to that described in Model I. A three-stage design rather than a two-stage design was employed. As a result, these calculations are relevant only for designs with PSU sizes similar to those observed in the study used here.

5. Summary and Conclusions

Interview studies of residents' response to noise are often based on two-stage sample designs. For these designs, samples of individuals are drawn within samples of compact study areas. In a typical survey, such a compact study area could consist of a neighborhood or a set of adjacent households. If the variability of the noise exposure variables within these compact study areas is not large, then the techniques described by Kalton (1983) can be used to determine optimal cluster design. On the other hand, if there is substantial within area variation in noise exposure, then the possibility of variability in the structural relationships (the "true" regression coefficients) over clusters should be considered. In such situations, the methods described for Model I in Section 3 can be used to assist in sample design. Other noise studies have been based on a more complex design, a three-stage design. In such a design, samples of individuals are drawn from samples of compact study areas, which in turn are drawn from a sample of larger areas. For example, for a multi-airport study, these larger areas might correspond to cities. If there is substantial variability in noise exposure within compact study areas, the techniques based on Model III described in Section 3 can be used to assist in sample design. On the other hand, if there is substantial variability in noise exposure within compact study areas, then the methods described for Model II should be employed. These methods allow for the possibility of variability in the "true" regression coefficients among compact areas.

The statistical techniques described in this report can be used to provide assistance in designing noise surveys. It should also be noted that these techniques are more generally useful in a broad range of sample survey applications. Indeed, the conclusions regarding multi-stage sample design are applicable for any two-variable linear regression model of the form given in equation (1.1).

REFERENCES

Cochran, William G. (1977), <u>Sampling Techniques</u>, Third Ed., New York: Wiley.

Draper, N. R. and H. Smith (1981), <u>Applied Regression Analysis</u>, New York: Wiley.

Fields, J. M. and J. G. Walker (1982), "The Response to Railway Noise in Residential Areas in Great Britain", <u>Journal of Sound and Vibration</u>, Vol. 85, No. 2,177-255.

Kalton, Graham (1983), "Estimating Regression Coefficients from Clustered Samples: Sampling Errors and Optimum Sample Allocation", NASA Contractor Report 166117.

Neter, John, William Wasserman, and Michael Kutner (1985), <u>Applied Linear</u> <u>Statistical Models</u>, Second Edition, Homewood, IL: Irwin.

1. Report No. NASA CR-177933	2. Government Access	ion No.	3. Reci	pient's Catalog No.				
4. Title and Subtitle	<u></u>		5. Report Date					
Statistical Methods for E	fficient Design of	Communi	ty July	July 1985				
Surveys of Response to Not	6. Perfo	orming Organization Code						
Regression Models								
7. Author(s)			8. Perfc	orming Organization Beport No				
Thomas J. Tomberlin								
D. Performing Oceanization Name and Addre	10. Work	CUnit No.						
Bionetics Corporation	Thomas I To	r: mherlin						
20 Research Drive	3615 Duroche	r Street	11. Cont	ract or Grant No.				
Hampton, VA 23666	Montreal Que	hec	NAS1_	16978				
hampeon, we 20000	CANADA H2X	1E9	17. Ture	of Report and Paried Coursed				
12 Sponsoring Agency Name and Address			13. Type	of heport and Period Covered				
National Aeronautics	ion Cont	ractor Report						
Washington, DC 20546	und opuce numi.		14. Spon	14. Sponsoring Agency Code				
wasnington, so issue		505-3	5-13-53					
15. Supplementary Notes								
T. J. T. Marked J. Market	Clamore A Dorre	.11		-				
Langley Technical Monitor	: Clemans A. Powe	211						
16 Abstract	<u> </u>		<u> </u>					
		•						
								
Research studies of	f residents' responses	s to noise	consist of interv	iews with samples of				
individuals who are dra	wn from a number	of diffe	rent compact s	tudy areas (usually				
neighborhoods). In order	to design such studie	es, it is ne	cessary to detern	nine the numbers of				
individuals and numbers	of study areas which	ch must b	e included to ac					
objectives. The statistical	tach nimuae davalanad	in this es		nieve the research				
design decisions. These techniques are suitable for a wide range of sample survey.								
applications. A sample may consist of a random sample of residents selected from a sample of								
applications. A sample ma	techniques developed y consist of a random	itable for sample o	port provide a ba a wide range f residents select	sis for those sample of sample survey ted from a sample of				
applications. A sample ma compact study areas, or i	techniques developed techniques are su y consist of a randon n a more complex de	itable for sample o sign, of a	port provide a ba a wide range f residents select sample of resid	nieve the research sis for those sample of sample survey ted from a sample of ents selected from a				
applications. A sample ma compact study areas, or i sample of compact study ar	techniques developed techniques are su y consist of a randon n a more complex de reas which has in tu	itable for a sample o sign, of a rn been se	port provide a ba a wide range f residents select sample of resid elected from a sa	sheve the research sis for those sample of sample survey. ted from a sample of ents selected from a mple of larger areas				
applications. A sample ma compact study areas, or i sample of compact study ar (e.g. cities). The techniqu	techniques developed techniques are su y consist of a randon n a more complex de reas which has in tur es may be applied to	itable for sample o sign, of a rn been so estimates	port provide a ba a wide range f residents select sample of resid elected from a sa of the effects on	sheve the research sis for those sample of sample survey ted from a sample of ents selected from a mple of larger areas annoyance of noise				
applications. A sample ma compact study areas, or i sample of compact study and (e.g. cities). The techniqu level, numbers of noise e	techniques developed techniques are su y consist of a randon n a more complex de reas which has in tur es may be applied to vents, the time-of-da	itable for a sample o sign, of a rn been so estimates y of the ev	port provide a ba a wide range f residents select sample of resid elected from a sa of the effects on vents, ambient n	shieve the research sis for those sample of sample survey. ted from a sample of ents selected from a mple of larger areas annoyance of noise oise levels, or other				
applications. A sample ma compact study areas, or i sample of compact study an (e.g. cities). The techniqu level, numbers of noise ev factors. Methods are prov	techniques developed techniques are su y consist of a randon n a more complex de reas which has in tur es may be applied to vents, the time-of-day vided for determining	itable for n sample o esign, of a rn been so estimates y of the ev g, in advan	port provide a ba a wide range f residents select sample of resid elected from a sa of the effects on vents, ambient n nce, how accurat	sheve the research sis for those sample of sample survey ted from a sample of ents selected from a mple of larger areas annoyance of noise oise levels, or other ely these effects can				
applications. A sample ma compact study areas, or i sample of compact study ar (e.g. cities). The techniqu level, numbers of noise ev factors. Methods are prov be estimated for different	techniques developed techniques are su y consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-day vided for determining sample sizes and stu	itable for a sample o sign, of a rn been so estimates y of the ev g, in advan dy designs	port provide a ba a wide range of residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat s. Using a simple	shieve the research sis for those sample of sample survey. ted from a sample of ents selected from a mple of larger areas annoyance of noise oise levels, or other ely these effects can e cost function, they				
applications. A sample ma compact study areas, or i sample of compact study ar (e.g. cities). The techniqu level, numbers of noise er factors. Methods are prov be estimated for different also provide for optimum a	techniques developed techniques are su sy consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-day vided for determining sample sizes and stu allocation of the samp	itable for a sample o sign, of a rn been so estimates y of the ev g, in advar dy designs le across t	port provide a ba a wide range f residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat s. Using a simple the stages of the c	shieve the research sis for those sample of sample survey. ted from a sample of ents selected from a mple of larger areas annoyance of noise oise levels, or other ely these effects can e cost function, they lesign for estimating				
applications. A sample ma compact study areas, or i sample of compact study ar (e.g. cities). The techniqu level, numbers of noise ev factors. Methods are prov be estimated for different also provide for optimum a these effects. These techn	techniques developed techniques are su y consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-da vided for determining sample sizes and stu filocation of the samp iques are developed v	itable for a sample o sign, of a rn been so estimates y of the ev g, in advan dy designs ale across t via a regre	port provide a ba a wide range f residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat s. Using a simple the stages of the c ssion model in w	inieve the research isis for those sample of sample survey ted from a sample of ents selected from a mple of larger areas annoyance of noise oise levels, or other ely these effects can e cost function, they lesign for estimating which the regression				
applications. A sample ma compact study areas, or i sample of compact study ar (e.g. cities). The techniqu level, numbers of noise ex factors. Methods are prov be estimated for different also provide for optimum a these effects. These techn coefficients are assumed	techniques developed techniques are su y consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-day vided for determining sample sizes and stu allocation of the samp iques are developed v to be random, with	itable for a sample o esign, of a rn been so estimates y of the ev g, in advan dy designs de across t ia a regre compone	port provide a ba a wide range f residents select sample of resid elected from a sat of the effects on vents, ambient n ince, how accurat s. Using a simple the stages of the c ssion model in w ints of variance	chieve the research isis for those sample of sample survey. ted from a sample of ents selected from a mple of larger areas annoyance of noise oise levels, or other ely these effects can e cost function, they lesign for estimating which the regression associated with the				
applications. A sample ma compact study areas, or i sample of compact study ar (e.g. cities). The techniqu level, numbers of noise ev factors. Methods are prov be estimated for different also provide for optimum a these effects. These techn coefficients are assumed various stages of a multi-s	techniques developed techniques are su y consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-day vided for determining sample sizes and stu allocation of the samp iques are developed v to be random, with tage sample design.	itable for a sample o sign, of a rn been so estimates y of the ev g, in advan dy designs le across t via a regre compone.	port provide a ba a wide range of residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat s. Using a simple the stages of the c ession model in w ints of variance	shieve the research is for those sample of sample survey. ted from a sample of ents selected from a mple of larger areas annoyance of noise oise levels, or other ely these effects can e cost function, they lesign for estimating thich the regression associated with the				
applications. A sample ma compact study areas, or i sample of compact study ar (e.g. cities). The techniqu level, numbers of noise ev factors. Methods are prov be estimated for different also provide for optimum a these effects. These techn coefficients are assumed various stages of a multi-s	techniques developed techniques are su y consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-day vided for determining sample sizes and stu filocation of the samp iques are developed v to be random, with tage sample design.	itable for a sample o sign, of a rn been so estimates y of the ev g, in advar dy designs le across t via a regre compone	port provide a ba a wide range of residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat s. Using a simple the stages of the c ession model in w ints of variance	shieve the research sis for those sample of sample survey. ted from a sample of ents selected from a mple of larger areas annoyance of noise oise levels, or other ely these effects can e cost function, they lesign for estimating which the regression associated with the				
applications. A sample ma compact study areas, or i sample of compact study ar (e.g. cities). The techniqu level, numbers of noise ev factors. Methods are prov be estimated for different also provide for optimum a these effects. These techn coefficients are assumed various stages of a multi-s	techniques developed techniques are su y consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-day vided for determining sample sizes and stu allocation of the samp iques are developed v to be random, with tage sample design.	itable for isample o sign, of a rn been so estimates y of the ev g, in advar dy designs le across t via a regre compone	port provide a ba a wide range of residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat s. Using a simple the stages of the c ession model in w ints of variance	shieve the research isis for those sample of sample survey. ted from a sample of ents selected from a mple of larger areas annoyance of noise oise levels, or other ely these effects can e cost function, they lesign for estimating which the regression associated with the				
applications. A sample ma compact study areas, or i sample of compact study ar (e.g. cities). The techniqu level, numbers of noise ev factors. Methods are prov be estimated for different also provide for optimum a these effects. These techn coefficients are assumed various stages of a multi-s	techniques developed techniques are su y consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-day vided for determining sample sizes and stu allocation of the samp iques are developed v to be random, with tage sample design.	in this ie itable for a sample o sign, of a rn been so estimates y of the ev g, in advan dy designs ile across t ia a regre compone	port provide a ba a wide range if residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat be stages of the of ession model in w ints of variance	inieve the research isis for those sample of sample survey. ted from a sample of ents selected from a mple of larger areas annoyance of noise oise levels, or other ely these effects can e cost function, they lesign for estimating which the regression associated with the				
applications. A sample ma compact study areas, or i sample of compact study ar (e.g. cities). The techniqu level, numbers of noise er factors. Methods are prov be estimated for different also provide for optimum a these effects. These techn coefficients are assumed various stages of a multi-s	techniques developed techniques are su y consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-da vided for determining sample sizes and stu allocation of the samp iques are developed v to be random, with tage sample design.	In this ie itable for a sample o sign, of a rn been so estimates y of the ev g, in advan dy designs ile across t ia a regre compone.	port provide a ba a wide range f residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat s. Using a simple the stages of the c ession model in w ints of variance	inieve the research isis for those sample of sample survey. ted from a sample of ents selected from a mple of larger areas annoyance of noise oise levels, or other ely these effects can e cost function, they lesign for estimating which the regression associated with the				
applications. A sample ma compact study areas, or i sample of compact study ar (e.g. cities). The techniqu level, numbers of noise er factors. Methods are prov be estimated for different also provide for optimum a these effects. These techn coefficients are assumed various stages of a multi-s	techniques developed techniques are su y consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-da vided for determining sample sizes and stu allocation of the samp iques are developed v to be random, with tage sample design.	itable for isample o sign, of a rn been so estimates y of the ev g, in advan dy designs le across t ria a regre compone.	port provide a ba a wide range f residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat be stages of the of ession model in w ints of variance	shieve the research isis for those sample of sample survey ted from a sample of ents selected from a mple of larger areas annoyance of noise oise levels, or other ely these effects can e cost function, they lesign for estimating which the regression associated with the				
 applications. A sample ma compact study areas, or i sample of compact study and (e.g. cities). The techniqu level, numbers of noise ev factors. Methods are provide for different also provide for optimum a these effects. These techn coefficients are assumed various stages of a multi-s 17. Key Words (Suggested by Author(s)) Cluster Samples A Multi-stage Designs 	techniques developed techniques are su y consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-day vided for determining sample sizes and stu allocation of the samp iques are developed v to be random, with tage sample design.	itable for isample o sign, of a rn been so estimates y of the ev g, in advan dy designs le across t via a regre compone	port provide a ba a wide range of residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat s. Using a simple the stages of the c ession model in w ints of variance	ted				
 applications. A sample ma compact study areas, or i sample of compact study areas, or i sample of compact study and (e.g. cities). The techniqu level, numbers of noise evidences of a constant of the set of t	techniques developed techniques are su y consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-day vided for determining sample sizes and stu allocation of the samp iques are developed v to be random, with tage sample design.	itable for itable for sample o sign, of a rn been so estimates y of the ev g, in advar dy designs le across t la a regre compone 18. Distribut	port provide a ba a wide range of residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat be stages of the c ession model in w ints of variance	ted				
applications. A sample ma compact study areas, or i sample of compact study ar (e.g. cities). The techniqu level, numbers of noise er factors. Methods are prov be estimated for different also provide for optimum a these effects. These techn coefficients are assumed various stages of a multi-s 17. Key Words (Suggested by Author(s)) Cluster Samples Multi-stage Designs Optimal Design Bandom Effects	techniques developed techniques are su y consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-day vided for determining sample sizes and stu allocation of the samp iques are developed v to be random, with tage sample design.	 In this ie itable for a sample or sign, of a range of the event of the eve	port provide a ba a wide range of residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat s. Using a simple the stages of the c ession model in w ints of variance	ted ted ted ted ted ted ted from a sample of ted from a sample of ents selected from a mple of larger areas annoyance of noise oise levels, or other ely these effects can ted ted ted 71				
 applications. A sample ma compact study areas, or i sample of compact study areas, or i factors. Methods are provide factors. Methods are provide for optimum a these effects. These techn coefficients are assumed various stages of a multi-s 17. Key Words (Suggested by Author(s)) Cluster Samples A Multi-stage Designs Optimal Design Random Effects Noise 	techniques developed techniques are su sy consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-day vided for determining sample sizes and stu allocation of the samp iques are developed v to be random, with tage sample design.	In this ic for itable for a sample or sign, of a range of the event	port provide a ba a wide range of residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat be stages of the of ession model in w ints of variance	ted ted ted ted ted ted ted from a sample of ted from a sample of ted from a sample of ted ted the the the the ted the ted the ted the ted the ted the ted the ted ted ted ted ted ted ted te				
 applications. A sample ma compact study areas, or i sample of compact study areas, or i level, numbers of noise ev factors. Methods are prov- be estimated for different also provide for optimum a these effects. These techn coefficients are assumed various stages of a multi-s 17. Key Words (Suggested by Author(s)) Cluster Samples A Multi-stage Designs Optimal Design Random Effects Noise 	techniques developed techniques are su sy consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-day vided for determining sample sizes and stu allocation of the samp iques are developed v to be random, with tage sample design.	 In this ic itable for a sample or sign, of a range of the event of the even of the even of the event of the event of the event of the event	port provide a ba a wide range f residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat be stages of the c sisting a simple he stages of the c sisting a simple ion Statement sifted Unlimi- ct Category -	ted ted ted ted ted ted from a sample of ted from a sample of ents selected from a selected from a mple of larger areas annoyance of noise oise levels, or other ely these effects can ted ted ted ted				
 applications. A sample ma compact study areas, or i sample of compact study and (e.g. cities). The techniqu level, numbers of noise ev factors. Methods are prov- be estimated for different also provide for optimum a these effects. These techn coefficients are assumed various stages of a multi-s 17. Key Words (Suggested by Author(s)) Cluster Samples Multi-stage Designs Optimal Design Random Effects Noise 19. Security Classif. (of this report) 	techniques developed techniques are su y consist of a random n a more complex de reas which has in tur es may be applied to vents, the time-of-day vided for determining sample sizes and stu allocation of the samp iques are developed v to be random, with tage sample design.	 In this ic itable for a sample or sign, of a restimates of the event o	port provide a ba a wide range of residents select sample of resid elected from a sa of the effects on vents, ambient n ince, how accurat s. Using a simple the stages of the c ession model in w ints of variance	ted 22. Price				

For sale by the National Technical Information Service, Springfield, Virginia 22161

End of Document