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LIST OF SYMBOLS

al, a2 - Grid generation parameters

CI, C2, C_ - Turbulence model parameters

Cp - Specific heat

D - Sublayer damping factor

k - Turbulence energy

£ - Mixing length

p - Pressure

R - Gas constant

u, v - Velocity components

x, y - Cartesian coordinates

e - Incidence angle

- Boundary layer thickness

- Turbulence dissipation

- Viscosity

- Kinematic viscosity

_, _ - Computational coordinates

0 - Density

r - Time

_ij - Shear Stress

- Frequency



INTRODUCTION

Recent advances in both computer hardware and numerical techniques have

led to a significant broadening of the practical choices available for

analyzing a wide variety of viscous flow problems. Prior to recent

computational advances, most predictive techniques were confined to inviscid

flow analyses possibly combined with boundary layer corrections. More

recently efforts have focused upon more complex flows which were not

necessarily suited to boundary layer type analyses. One important problem of

this type is the two-dimensional isolated airfoil flow field problem.

The two-dimensional isolated airfoil flow field presents a problem which

has long been of practical interest. The accurate knowledge of airfoil lift,

drag and moment coefficients under a range of steady and unsteady operating

conditions is required in assessing the airfoil performance. In the general

case the airfoil flow field presents complex phenomena even when three

dimensional effects are neglected. This problem contains viscous regions

which are laminar, transitional and turbulent, may exhibit extremely strong

favorable and adverse pressure gradients, may contain multiple regions of

large separation as well as shed vortices and exhibit important unsteady flow

characteristics. A particularly complex airfoil flow field occurs in the

helicopter rotor which may periodically undergo dynamic stall. Dynamic stall

differs from its static counterpart in two major ways. First of all, the

maximum lift obtainable under dynamic conditions is greater than that under

static conditions. Secondly, though under static conditions lift and moment

are uniquely related to incidence, under dynamic stall conditions the flow

depends upon the time history of motion and the lift and moment coefficients

have hysteresis loops associated with them. As the helicopter blade travels

through the rotor disc, the blade experiences a varying incidence angle.

Over most of the disc the blade will be unstalled (i.e., the flow will not

contain any large separated regions leading to a decrease in blade lift or a

generation of large blade moment coefficients); however, over a portion of

the disc large regions of separated flow may appear and over these regions

the blade performance will deteriorate. This time history dependence of the

problem makes dynamic stall prediction a particularly difficult task.

Typical experimental investigations of this complex phenomenon are discussed

in Refs. I-8.



In regard to predictive procedures for airfoils in both steady and

unsteady flow, airfoils at low incidence are expected to have small viscous

displacement effects. In these cases accurate predictions of airfoil

pressure distributions can be obtained from an inviscid flow calculation

without consideration of viscous boundary layer effects. If a boundary layer

growth prediction is desired, the inviscid analysis can be combined in a

non-interactive mode with a boundary layer analysis (e.g. Refs. 9 and i0) to

predict both the pressure distribution and boundary layer development. The

non-interactive inviscid flow-boundary layer calculation can give accurate

predictions as long as viscous displacement effects are small and can even be

used when limited regions of local separated flow are present (Ref. ii).

However, for those cases in which viscous displacement effects significantly

alter the inviscid pressure distribution, an alternate procedure is required.

For the airfoil flow field problem significant viscous displacement

effects are most pronounced in flows having regions of significant

separation. In the presence of significant separation, the observed pressure

distribution will differ considerably from that predicted from inviscid flow

considerations. The actual pressure distribution corresponds to that around

a body equivalent in shape to the airfoil plus a displacement correction (for

viscous displacement effects), and in the presence of large separated regions

the displacement correction is not small. In such cases an anlysis which is

more complete than a purely inviscid analysis is required. One possibility

for solving the separated airfoil flow field problem is the boundary layer

strong interaction approach. In this approach an inviscid analysis and a

boundary layer type analysis are solved so that the viscous displacement

effects resulting from boundary layer growth influence the inviscid pressure

distribution. Although this approach can give good results for some cases,

it does have certain drawbacks. Usually, the approach requires an iteration

between the two solutions and in the case of subsonic flow the iteration is a

global one; e.g., the inviscid analysis is sol_Ted for a given displacement

surface. The inviscid pressure distribution is then imposed upon the

boundary layer equations and these equations are solved to predict the

boundary layer development including a new displacement surface and the

process is repeated until convergence occurs. This iteration process may be



difficult to converge under some circumstances, for example when large

regions of separation occur or when the flow is transonic. Furthermore,

assumptions may be required to treat the boundary layer equations in

separated regions and normal pressure gradients must be assumed negligible in

the viscous flow region. The approximations required in separated regions

and the neglect of transverse pressure gradients in the regions where viscous

effects are important may lead to serious inaccuracies for flow containing

significant regions of separation. The drawbacks associated with boundary

layer strong interaction techniques have led some investigators to seek an

alternate means of predicting airfoil flow fields which solve the entire flow

via a single set of viscous flow equations.

Two general types of analyses which solve the viscous flow equations

throughout the entire region of interest are in current use. These are the

so-called 'thin-shear layer' analysis and the Navier-Stokes analysis. The

thin shear layer equations are an approximate form of the Navier-Stokes

equations which contain all pressure and convective terms, but retain only

some viscous terms. The viscous terms retained are those appropriate for a

thin shear layer flow in which the shear layer is aligned with one of the

computational coordinate directions. Use of the thin shear layer equations

allows simultaneous calculation of pressure distribution and viscous and heat

transfer effects without resorting to an interaction analysis and as such may

be a valid approach for certain flow cases. However, since only part of the

stress tensor is retained, the equations omit important terms for flows in

which the streamlines vary significantly from computational coordinate lines

such as in the case of flow separation. Although the thin shear layer

equations are solved in less CPU time than are the Navier-Stokes equations,

the saving is usually not more than twenty per cent. Therefore, thin shear

layer equations do not have any major computer run time advantage over the

full Navier-Stokes solution. Since one major item of interest in the present

study focuses upon airfoils with significant regions of flow separation, only

Navier-Stokes analyses shall be considered in the present discussions.

The initial airfoil analyses based upon the Navier-Stokes equations

considered incompressible laminar flow. Early examples are those of Mehta

and Lavan (Ref. 12) and Lugt and Haussling (Ref. 13). Mehta and Lavan solved



a stream function vorticity formulation of the laminar incompressible

Navier-Stokes equations to predict flow about an impulsively started

airfoil and Lugt and Haussling utilized an incompressible stream

function-vorticity approach to investigate flow about an abruptly started

elliptical cylinder. More recent incompressible stream function-vorticity

analyses have focused upon various aspects of the airfoil flow field

problem. For example, Mehta (Ref. 14) used a numerical scheme considerably

more efficient than that of Ref. 12 to solve incompressible laminar flow

about an airfoil oscillating through incidence regimes in which stall

occurs. Wu and Sampath (Ref. 15) and Wu, Sampath and Sankar (Ref. 16)

applied the Wu-Thompson integro-differential formulation (Ref. 17) to both

the impulsively started airfoil and the oscillating airfoil problem. In a

similar vein Kinney and Cielak (Refs. 18 and 19) have investigated unsteady

airfoil flow fields and Lugt and Haussling (Ref. 20) have investigated the

time scale required to establish the Joukowski condition in incompressible

flow. Finally, Thompson and his coworkers (e.g. Ref. 21) have calculated the

flow about a variety of airfoil shapes and Hodge and Stone (Ref. 22) have

investigated stalled airfoils using an incompressible primitive variable

approach.

Other investigations have considered compressible airfoil flow fields.

Verhoff (Ref. 23) applied MacCormack's fully explicit method (Ref. 24) to the

airfoil problem; however, since the procedure is fully explicit, a small time

step is necessary to maintain numerical stability as a result of the locally

refined mesh in the boundary layer and long computer run times result. In

this regard conditionally stable schemes such as fully explicit schemes are

not an optimum choice when mesh refinement is required for boundary layer

definition; in these schemes the maximum allowable time step size is limited

by the spatial step size leading to large run times. The time-step

limitation problem, which is severe even in laminar flows, is magnified

considerably in turbulent flows where a much finer spatial resolution is

required in the boundary layer. On the other hand, unconditionally stable

schemes (in a linear sense) such as some of the implicit schemes do not

suffer from this characteristic. Both Deiwert's (Ref. 25) and Levy's

(Ref. 26) analyses are based upon MacCormack's hybrid implicit-explicit-

characteristics scheme (Ref. 27). By virtue of an enlarged stability bound

this new procedure is more efficient than the original MacCormack procedure



(Ref. 24) for airfoil calculations; however, it does present formidable

coding problems. Implicit schemes, although more complicated to code than

explicit schemes, do not present the formidable coding problems associated

with the hybrid scheme. An implicit solution of the full Navier-Stokes

equations has been developed by Gibeling, Shamroth and Eiseman (Ref. 28) who

applied the Briley-McDonald (Ref. 29) numerical technique to the airfoil flow

field. A similar approach has since been used by Sankar and Tassa (Ref. 30)

to study an oscillating airfoil in a compressible low Reynolds number fluid.

E1 Refaee, Wu and Likoudis (Ref. 31) have extended the integral approach of

Wu and his associates (Refs. 15 and 16) to compressible flow. In another

approach Steger (Ref. 32) used the thin shear layer equations in conjunction

with the coordinate generation procedure of Thompson, Thames and Mastin

(Ref. 33) to predict laminar flow about an airfoil.

As expected most of the Navier-Stokes airfoil analyses were applied to

laminar flow before turbulent flow calculations were attempted. In extending

these analyses to the turbulent regime, several factors must be considered.

Since turbulent flow requires considerably more resolution in the viscous

wall boundary layer region than does laminar flow, a turbulent calculation

requires very high near wall resolution and this high near wall resolution

makes explicit procedures with their associated stability limits

impractical. A second point concerns turbulence modelling. In general the

airfoil flow field presents a very difficult turbulence modelling problem.

The flow field contains regions of laminar, transitional and turbulent flow

as well as significant separation regions. In cases where the flow is

unsteady, shed vortices may be present. In general a turbulence energy model

which includes a transition capability is required to analyze turbulent

airfoil flow fields. However, useful information can also be gained by using

a simpler model such as a mixing length model throughout.

An early application to the airfoil turbulent flow problem was carried

out by Shamroth and Gibeling (Ref. 34). The method was applied in Ref. 34 to

airfoils at modest incidence. In addition it was applied to airfoils in

stall by Shamroth and Gibeling (Ref. 35) and airfoils pitching at low

incidence by Shamroth (Ref. 36). Other turbulent analyses are those of Tassa

and Sankar (Ref. 37) and Sankar and Tang (Ref. 38) who studied a turbulent

airfoil undergoing dynamic stall using an algebraic mixing length model.



The present report describes a work effort aimed at the turbulent

airfoil flow field and contains results for a variety of steady and unsteady

flow situations. Some of these have been previously reported in the open

literature (Refs. 35 and 36), however, since the calculations presented in

Refs. 35 and 36 were supported under the present contract, the results are

repeated here.



ANALYS IS

The Coordinate System

The presence of bounding surfaces of a computational domain which do not

fall upon coordinate lines presents significant difficulties for numerical

techniques which solve the Navier-Stokes equations. If a bounding surface

(such as the airfoil surface) does not coincide with a coordinate line,

serious numerical errors may arise in the application of boundary conditions

and considerable effort may be required to reduce these errors to an

acceptable level. Although this problem arises in both viscous and inviscid

flows, it is more severe in viscous flows where no-slip conditions on solid

walls can combine with boundary condition truncation error to produce

numerical solutions which are both qualitatively and quantitatively in

error. Thus coordinate systems are sought in which each no-slip surface of

the specific problem falls on a coordinate line. Such a system is termed a

body-fitted coordinate system. Several approaches are available to form a

body-fitted coordinate system. Among the coordinate system candidates are

conformal coordinate systems such as that used by Mehta (Ref. 14), systems

based upon solution of a Poisson equation such as those developed by Thompson

and his coworkers (e.g., Ref. 33) or Haussling (Ref. 39) and a constructive

system.

The approach used in the present effort is a constructive approach in

which the required airfoil is by defintion a coordinate line and in which

grid point placement is specified by the user. The procedure was developed

originally for the isolated airfoil problem by Gibeling, Shamroth and Eiseman

(Ref. 28) and explained in general terms by Eiseman (Ref. 40). The

coordinate system generated by the constructive process has several

advantages. The system allows packing of grid points in regions where high

grid resolution is required. In general, the high resolution regions are

required near the airfoil surface (where the boundary layer is found) and in

the vicinity of the airfoil leading edge where rapid streamwise changes are

present. In addition, although the grid has a branch cut emanating from the

airfoil trailing edge, metric data are continuous across the branch cut.

Furthermore, although the grid is nonorthogonal, the amount of

nonorthogonality is not large. Finally, as applied to the airfoil problem



the metric data remain smooth from grid point to grid point. A computer

generated plot of the airfoil coordinate system is given in Fig. I where for

clarity not all lines are shown. The actual grid used has very high

resolution near the surface where the transverse grid spacing is of the order

of 10-5 chords and near the leading edge where the streamwise grid spacing

is of the order of 10-3 chords.

The coordinate system consists of a set of two families of curves; the

= constant curves such as line HI in Fig. I and the q = constant curves

such as ABCD or A'ED' in Fig. I. The coordinate system is constructed by

first forming the inner loop A'ED' which includes the airfoil. The airfoil

may be either specified by an analytic equation or by discrete data points.

If an equation is used, then construction of the inner loop is

stralght-forward. If the airfoil is specified by discrete data points, then,

in general, the points required on the inner loop will not coincide with any

point used for airfoil specification. In this case, a curve fit is used to

obtain the required inner loop points. The curve fit used is based upon a

local parabolic fit. For any given point required on the inner loop, a

parabola is fit through three adjacent specifying points, two on the right

and one on the left. A second parabola is then fit through the two points on

the left and one on the right. The location of the required point is

obtained via a weighted average of these curve fits with the weighting factor

being determined by the distance from the required point to the center

specifying point of each parabola. Alternatively the airfoil may be fit in a

piecewise manner through a least squares polynominal constrained to maintain

continuous first and second derivatives at joining points.

This is followed by constructing an outer loop ABCD which consists of

line segments AB and CD at a specified distance from the airfoil chord llne

and a frontal curve BC. Both the inner and outer loops are then represented

by parametric curves

x =x(s), y= y(s) (1)

where the parameter varies from zero to unity. The present coordinate

generation process utilizes a multi-part transformation. First x and y are

expressed as a function of s', the physical distance along the curve. Then

9



s' is related to s via a hyperbolic tangent parameterization centered about

the leading edge for the inner loop and a cubic polynomial representation for

the outer loop. The inner loop transformation parametric representation is

chosen so as to have rapid variation in the airfoil leading edge region.

Both the inner loop hyperbolic tangent transformation and the outer loop

cubic transformation are applied between s'/2 and 0 and between s'/2 and s'

on each loop. This ensures that corresponding points on the branch cut will

be equi-distant in s from the branch cut end points, points A' and D'. This

property is required if corresponding branch cut points are to fall on the

same pseudo-radial line.

Having specified loop I, the inner loop, and loop 4, the outer loop, the

construction process now specifies loop 2 and loop 3. Both loop 2 and loop 3

are located between loop I and loop 4 with loop 2 being a normal distance A2

from loop 1 and with loop 3 being a normal distance A3 from loop 4. Loops 2
Ii 01

and 3 have parameters S2 and S3 associated with them and the method of

determination of these parameters is discussed subsequently. Before

discussing this point it is necessary to introduce a pseudo-radial parameter

r and a position vector P associated with each loop. The radial parameter is

defined at the downstream boundary (line A'A) as the distance from the loop

in question to the inner loop divided by the distance from the outer loop to

the inner loop. Thus rI = 0, r2 = A2/RMAX, r3 = (RMAX - A3)/RMA X and

r_ = I where RMAX is the distance from the inner loop to the outer loop.

The position vector Pi(t) is a vector whose components are the x and y
i,

coordinates of the ith loop (i = i, 2, 3, 4) when the parameter Si = t

where t is a number between 0 and i. With the definition of these quantities

it is possible to introduce the general position vector _(r,t) where

= (I-r)2CI-a, + (an+2)(I-r)2r 2Ct)
(2)

2 2

al = 3r e- I ae = 3(I- r2_-, I (3)

10



-).

It should be noted that at r = 0, P(0,t) = _l(t) and at r = I,
+ +

P(1,t) = Ph(t). Further since at r = O,

8-_(O,t) = [_e(t)- _,(t)](a,+2) (4)

and at r = 1

O____.(l,t) __._4(t)-_3(t) (ae+2) (5)

specification of the derivatives at the inner and outer boundaries determines

the parametric representation of intermediate loops 2 and 3. Since 8_/ar

implies ax/ar and ay/ar, specification of a_/ar at the boundaries controls

the angle which the pseudo-radial coordinate llne forms with the boundary

line. Thus, the four loop method allows specification of the boundary point

locations and coordinate angles at these boundaries.

After loops 2 and 3 are parameterized to satisfy the coordinate angle at

the boundary points, the grid is constructed as follows. If the grid is to

contain M pseudo-radial lines (such as line HI of Fig. I) and N

psuedo-azimuthal lines (such as line QPR), the values of the pseudo-radial

coordinate are

r(i) = i/(N-I) i=0,1,2, ...,N-I

and the values of the pseudo-azimuthal coordinate are

t(j) = j/(M-I) j= 0,1,2, ...,M-I

Then the position vector for each point in the grid is given by Eq. (i).

The preceding has assumed a uniform spacing in the radial direction. If

radial grid point concentration is desired, it is simply necessary to assume

a radial distribution function. The present analysis assumed a distribution

function

[ tanhD(l-r)]R = I- t_h-D ' (6)

ii



which concentrates points in the wall region. Grld points then were chosen

at r(i) = (1)/(N-I) and the analysis proceeded as outlined. Once the grid

point locations are obtained, the required metric data can be calculated by

numerical differentiation.

Mean Flow Equations

A solution of the compressible, time-dependent Navler-Stokes equations

in conjunction with a suitable turbulence model would serve to predict the

flow field for both laminar and turbulent flows. The form of the equations

expressed in the more common coordinate systems can be found in standard

fluid dynamic texts and the equations themselves have been derived in general

tensor form by McVlttie (Ref. 41) for invlscld flow and by Walkden (Ref. 42)

for viscous flow.

One possible approach for solving the equations in general nonorthogonal

form is the strong conservation approach such as that used by Thomas and

Lombard (Ref. 43). A second possible approach solves a set of equations in

which the metric coefficients do not appear within derivatives (quasillnear

form). In both cases the independent spatial variables are transformed from

the Cartesian coordinates (x,y) to a new set of coordinates (_,n) where

= _(x,y,t)

-r/ = "q(x,y, t)

r =t (7)

The strong conservation form of the equations then becomes

_W/D a W_"t F_ x + G_y + + _ +
a-"--_ + "_ T +T D -_ D D D (8)

, [-Re _" D + +-_-_ D D

12



where D " _x_y- _y_x

W = , F = pu2+p , G = FI = rxx GI = r_xy
Vv puv/ p (9)

The quasilinear form of the equations is expressed as

C3W aW _F c3G aW aF aG

--+ _'t + + _'Y + "r/t'_" + +

I { OF, OF, 0G, 0G,]- [ + + + (1o)

The problem of proper equation form in non-Carteslan spatial variables

has been discussed by several investigators (e.g., Refs. 34, 43 and 44). If

the strong conservation form of the equations is to be used, then care must

be taken to evaluate the metric data by a method which is consistent with a

control volume approach (Ref. 43). Usually this requires numerical

evaluation of the metric data even if an analytic functional relationship for

the transformation is available. The analytic representation of the metric

data, _x, _y, etc., when combined with the strong conservation form of

the equations leads to significant error for as straightforward a calculation

as low Reynolds number flow about a circular cylinder (Ref. 34). The present

effort utilizes the quasilinear form of the equations since this form is much

less sensitive to the form of metric evaluation and gives good results for

both numerical and analytic evaluations of the metric data. Furthermore, as

shown in Refs. 45-47, the quasilinear equations have been used with good

results for transonic flow in a cascade environment.

A final item related to the choice of equations is the choice of

dependent variables. In the present approach the density and velocity

components are used as dependent variables. The energy equation is replaced

13



by an assumption of constant total temperature thus leading to a relation

between pressure, density and velocity.

u 2 + w 2
p : pR(T ° ) (Ii)

2Cp

where R is the gas constant, T° is total temperature and Cp is specific
heat.

It should be noted that the energy equation can be solved with the

momenta and continuity equations at the cost of adding an additional

governing equation which increases computer run time. Calculations of this

type in transonic cascades which include comparison with heat transfer data

have been made by Weinberg, Yang, Shamroth and McDonald (Ref. 48). For

steady airfoil flow fields this assumption is reasonable. For unsteady flow,

it represents an approximation as can be noted from examination of the

unsteady total temperature equation. However, as discussed in Ref. 49, for

the cases considered here this assumption should still be valid.

The Turbulence Model

Since the present effort is concerned with high Reynolds number

turbulent flows, it is necessary to specify a turbulence model. The results

presented were obtained primarily with a mixing length model. The mixing

length model assumes the existence of a mixing length, £, and then relates an

eddy viscosity, BT, to the mixing length by

r( u,
_T = p'e2 "\ 0xj + _xi l'_xj ] (12)

For flow regions upstream of the leading edge where the flow is attached the

mixing length is determined by the usual boundary layer formulation

,{= KyD ,e_< 9.max (13)

14



where K is the von-Karman constant, D is a sublayer damping factor and %max

is taken 0.09 6 where 6 is the boundary layer thickness. The damping factor,

D, which has for the most part been utilized is the van Driest damping factor

-y+l 27
D = (I - e ) (14)

where y+ is the dimensionless coordinate normal to the wall, yuT/v.

When the mixing length formulation is used in a boundary layer

environment, 6 is usually taken as the location where u/ue = 0.99.

However, this definition assumes the existence of an outer portion of the

flow where ue is independent of distance from the wall and assumes that the

location where ue becomes independent of distance from the wall marks the

end of the viscous region. In an airfoil Navier-Stokes calculation no such

clear flow division occurs as u approaches the upstream velocity, u_, as

distance from the wall increases. Therefore, the boundary layer thickness,

6, is set by first determining Umax, the maximum velocity at each given

streamwise station and then setting 6 by

= 2.Oy (U/Uma x = kl ) (15)

i.e., 6 is taken as twice the distance from the wall to the location where

U/Uma x = kI. Two values of kI were used; these were 0.80 and 0.90. If the

flow is separated, then a minimum mixing length is set by

'[min : O.IhD (16)

where h is the local height of the separated region. In the wake the mixing

length is made proportional to the wake thickness, 6, and a linear growth of

6 with distance is assumed based upon classical free jet boundary growth

(e.g., Ref. 50). With this assumption

(_ = ((_ps+ Bss)+ 0.2 (X - XTF.) (17)

where 6ps and 8SS are the pressure and suction surface trailing edge

boundary layer thicknesses and XTE is the trailing edge location.

15



The mixing length, £, is taken as 0.25. The viscosity is smoothed between

regions obtained using the wall formulation for £ and the wake formulation

for £. Having obtained the turbulent viscosity, _r, the turbulent stress,

-pui'u j' is given by

_ p U _ U J

I

P'TL\u^j aXi / 3 "X k. U

Although the mixing length model does not include a transition model,

transition can be simulated by specifying a location upstream of which the

flow is laminar. This corresponds to forced transition. Even if no forced

transition is assumed, the flow in the leading edge region will be laminar as

the boundary layer thickness becomes very small in this region.

A second turbulence model which was implemented for a case of an

NACA 0012 airfoil at 6° incidence was the two-equatlon k-€ model. This model

is well known (e.g. Refs. 51-54), and has been used by several investigators

(e.g., Ref. 48). In brief, the model is based upon a turbulence energy

equation

Ot + Ox + O---y--=-_'k F"+

(ou, auk) Ou, Ok"2Ok''2+ /J"T OX-'---k-+ _ aX k pc - e/s. axj axj (19)

and a turbulence dissipation equation

o. °[(
_ ( aUi aUk ,_ 8Ui (Zp 2/z [( aeui )jR (20)+ C,'-_- /z T _ + Oxi / Oxk Cz k /'tT aXkSXt '

The turbulence viscosity is then obtained via the Prandtl-Kolmogorov relation

FT = PCF kz/(f(yla) (21)

16



where C_ is a turbulence structural coefficient and f(y/6) is a factor used

to ensure small turbulent viscosities at locations far from the airfoil.

The function f(y/_) is taken as

f(y/a) = 1.0 y_ a

f(y/_) : e-_y/B-t.o) y > 8 (22)

where b is a constant.

In the present analysis the following values were assumed

o'_ " 1.3

o"k " 1.0 (23)

C I = 1.55

and C_ and C2 were made functions of turbulence Reynolds number,

RT = pk2/_,

C/_" O.09exp [-2.5(1. +Rr/50.) ] (24)

[e,,(-,:)]}

Numerical Procedure

The numerical procedure used to solve the governing equations is a

consistently split linearized block implicit (LBI) scheme originally

developed by Briley and McDonald (Ref. 29). A conceptually similar scheme

has been developed for two-dimensional MHD problems by Lindemuth and Killeen

(Ref. 55). The procedure is discussed in detail in Refs. 29 and 56. The

method can be briefly outlined as follows: the governing equations are

replaced by an implicit time difference approximation, optionally a backward

difference or Crank-Nicolson scheme. Terms involving nonlinearities at the

implicit time level are llnearized by Taylor expansion in time about the

solution at the known time level, and spatial difference approximations are

introduced. The result is a system of multidimensional coupled (but linear)

difference equations for the dependent variables at the unknown or implicit
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time level. To solve these difference equations, the Douglas-Gunn (Ref. 57)

procedure for generating alternating direction implicit (ADI) schemes as

perturbations of fundamental implicit difference schemes is introduced in its

natural extension to systems of partial differential equations. This

technique leads to systems of coupled linear difference equations having

narrow block-banded matrix structures which can be solved efficiently by

standard block-elimlnatlon methods.

The method centers around the use of a formal linearization technique

adapted for the integration of initial-value problems. The linearization

technique, which requires an implicit solution procedure, permits the

solution of coupled nonlinear equations in one space dimension (to the

requisite degree of accuracy) by a one-step noniterative scheme. Since no

iteration is required to compute the solution for a single time step, and

since only moderate effort is required for solution of the implicit

difference equations, the method is computationally efficient; this

efficiency is retained for multidimensional problems by using what might be

termed block ADI techniques. The method is also economical in terms of

computer storage, and in its present form requires only two time levels of

storage for each dependent variable. Furthermore, the block ADI technique

reduces multidimensional problems to sequences of calculations which are

one-dimensional in the sense that easily solved narrow block-banded matrices

associated with one-dimensional rows of grid points are produced. A more

detailed discussion of the solution procedure is discussed by Briley, Buggeln

and McDonald (Ref. 58) and is given in the Appendix.

Boundary Conditions

An important component of the airfoil analysis concerns specification of

boundary conditions. The present analysis requires boundary conditions to be

set along the lines, _ = _min, _ = _max, n = nmin and n = Nmax- With

the coordinate system sketched in Fig. I, _ = _min (line AA') and

= _max (line DD') are downstream boundaries. In the early work done

under this effort derivatives were set to zero at this boundary and function

conditions specified on the remainder of the outer boundary. On the airfoil

surface no-slip conditions are used in conjunction with an inviscld momentum

equation (which for no motion and no heat transfer reduced to zero density
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gradient) as boundary conditions and either the turbulence energy or its

derivative was specified at the surface when turbulence energy was included

as a variable. More recently the boundary conditions were modified based

upon a suggestion by Briley and McDonald (Ref. 59). Following this

suggestion, static pressure is specified along with velocity derivatives

along the downstream boundaries (lines AA' and DD') and along the aft portion

of the outer boundary (line segments AB and CD). Total pressure, angle of

incidence and the density derivative are specified along the outer boundary

segment BC. This approach was used successfully (Refs. 45-48, 60) in a

Navier-Stokes solution to the cascade problem and has been incorporated into

the airfoil analysis.

In addition, calculations have been made with the full transverse

momentum equation rather than the normal pressure gradient equal to zero as a

wall boundary condition. Little difference was noted in the solution

although the full transverse momentum equation boundary condition

occasionally showed some tendency toward numerical instability and may

require smaller time-steps. Finally, calculations have been made in which

tunnel wall boundary conditions are simulated by specifying the flow

direction and a full slip condition along AB and CD.

Artificial Dissipation

One major problem to be overcome in calculating high Reynolds number

flows using the Navier-Stokes equations is the appearance of spatial

oscillations associated with the so-called central difference problem. When

spatial derivatives are represented by central differences, high Reynolds

number flows can exhibit a saw tooth type oscillation unless some mechanism

is added to the equations to suppress their appearance. This dissipation

mechanism can be added implicitly to the equations via the spatial difference

molecule (e.g., one-sided differencing) or explicitly through addition of a

specific term. The present author favors this latter approach for two

reasons. First, if a specific artificial dissipation term is added to the

equations, it is clear precisely what approximation is being made. Secondly,

if a specific term is added to suppress oscillations, the amount of

artificial dissipation added to the equations can be easily controlled in
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magnitude and location so as to add the minimum amount necessary to suppress

spatial oscillations.

The results presented herein basically utilize two levels of artificial

dissipation. During initial phases of the present study a term of the form

Var t _2_/_z2 was added to the governing equation where _ = p, u, v for the

continuity, x-momentum and y-momentum equations respectively and Var t is

determined by

UzAZ I
<

+ (_ ) _ (26)
art z z

In the above equation AZ is the distance between grid points in a given

coordinate direction, UZ is the velocity in this direction, OZ is the

artificial dissipation parameter for this direction and _ is the kinematic

viscosity. The equation determines Var t with Var t taken as the smallest

non-negative value which will satisfy the expression. It should be noted

that in two space dimensions each equation contains two artificial

dissipation terms, one in each coordinate direction. For example, the

streamwise momentum equation expressed in Cartesian coordinates would contain

the artificial dissipation terms

a2u + ( or,)yaau(Uort)x aX 2 ay2 (27)

The parameter _z was taken as 0.5.

During the time period of the present contract effort, various methods

of adding artificial dissipation were investigated in Ref. 46 and these were

evaluated in the context of a one-dimensional model problem. The model

problem used was one-dimensional flow with heat transfer. Flow was subsonic

at the upstream boundary, accelerated via heat sources until a Mach number of

unity was reached and then accelerated by heat sinks. The exit back pressure

was raised to cause a shock to appear in the supersonic region. This basic

one-dimensional problem contained many relevant features including strong

accelerations and, therefore, it served as a good test case for evaluating

various forms of artificial dissipation which could be used. Several

different types of artificial dissipation terms were considered, and

it was concluded that for the present numerical method, a second order
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artificial dissipation approach such as represented by Eqs. (26) and (27) is

suitable. However, instead of the parameter, a, being 0.5 it should be set

at approximately 0.05. At this value, sufficient artificial dissipation is

added to the equations to suppress spurious oscillations, but the amount

added does not significantly change the physical solution. Furthermore, as

shown in Refs. 47-48, the solutions obtained with o = 0.050 change only

little when o is lowered to 0.025. Other confirmations of this approach were

given in Refs. 61 and 62 as well as in this present effort. Based upon these

studies, it has been concluded that _ < 0.I gives accurate representation for

most two-dimensional flows.

An alternate method of including artificial viscosity is the so-called

conservation form in which dissipation terms of the type

a-7 ay

are added to the equations. This form confines the integrated effect of the

terms over the computational domain to the computational boundaries since

0U

(29)
Ou Ou Oy as0. o,

where A is the area of the computational domain and S is the boundary llne.

If the artificial viscosity and its derivative are set to zero on the

boundary, global conservation is obtained. However, local conservation

obviously is not. Calculations have been run with this latter form of

artificial dissipation and for the cases run no significant differences

appear in the predicted flow fields due to artificial dissipation of the form

given in (28) as opposed to that given in equation (27).

Convergence and Run Times

When a steady flow is sought via a time marching technique, the question

arises as to when convergence is obtained. In considering this question,

several factors must be taken into account. First of all, not all flows
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reach a steady state. For example, airfoils at high incidence which shed

vortices or airfoil flows in which a shock wave is present may never become

truly steady. In the former case, vortices are shed in some quasi-periodic

manner and the unsteadiness has a large time scale. In the latter case, the

shock position may move leading to an unsteadiness with a small time scale.

Obviously, in these cases no steady flow solution is guaranteed. Secondly,

the numerical technique used may hinder complete convergence. For example,

in the present approach the turbulent viscosity is lagged by one step in time

and this interaction between the viscosity evaluation and the mean flow

calculation may hinder or even prevent complete convergence.

During the early part of the present effort when steady state solutions

were sought, the calculated results were monitored to assess convergence. In

particular, the surface pressure distribution, the location of separation

points and the velocity field in the vicinity of the airfoil were monitored

and when they ceased to vary significantly for significant time scales, the

calculation was terminated. During latter parts of the effort, an additional

criterion was added. This was based upon the evaluation of the residual for

each equation. The residual of each equation is obtained by setting the

tlme-derivative term to zero, and placing all remaining terms on the

right-hand side of the equation. The sum of all terms on the right hand side

of the equation defines the residual. Obviously, when the residual is zero

the equations satisfy a steady state solution. Both the maximum residual

throughout the domain for each equation and the average residual within the

domain for each equation were monitored. These usually could be decreased by

between two to four orders of magnitude during the run when steady solutions

were sought.

However, even the presence of residuals requires interpretation. As

previously discussed, these could be indicative of flow unsteadiness. Also,

relatively large residuals occur at the airfoil cusp trailing edge. In

general, calculations for which steady solutions are sought are initiated

from a very simple initial flow field. The initial flow field has constant

pressure throughout and a velocity field identical to that at upstream

infinity with a simple boundary layer correction. For steady flows converged

solutions are usually obtained within 70 time steps.

In regard to run time, the current code is a general research type code

which was created with flexibility in mind. Therefore, items such as the
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equations solved, boundary conditions specified, dependent variable choice,

form of artificial dissipation, etc. can be changed with only a small amount

of effort. Obviously, the price of flexibility is increased computer run

time. In the present code the run time for a 141 x 39 grid is approximately

15 cpu secs per time step on a CYBER 203. The code used is not fully

optimized for scalar operation and has no vectorization. It is estimated

that the run time could be reduced to 7 sec per time step with further scalar

optimization without compromising existing generality and an additional

factor of ten could be obtained through vectorlzation.
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RESULTS

Results obtained under this contract effort include both steady and

unsteady airfoil calculations under a variety of flow conditions. Early

results appear in Ref. 34. Results obtained since Ref. 34 are presented in

the present section.

Low Mach Number - High Incidence NACA 0012 Airfoil

The low Mach number - high incidence calculation was made for an

NACA 0012 airfoil immersed in a free stream having a Reynolds number of 106

and a Mach number of 0.148. The calculation was run prior to the artificial

dissipation study (Refs. 47 and 48) and consequently a dissipation parameter,

o, equal to 0.5 was used. Since the flow was subsonic, the results are

expected to be qualitatively correct with more numerical dissipation than

actually required; the major discrepancy is expected to be in the leading

edge suction peak region. Results of this case which have been presented in

Ref. 35 are reproduced in a condensed form here.

The calculation was run on a 'C' type grid having 81 pseudo-radial lines

and 39 pseudo-azlmuthal lines. The grid was highly non-uniform with the

first point off the airfoil a distance of 0.2 x i0-_ chords away from the

airfoil. In contrast, the last point was placed four chords away from the

airfoil with a radial spacing of 0.5 chords. Similarly, the streamwlse

(pseudo-azlmuthal) grid was concentrated in the vicinity of the airfoil

leading edge with the minimum spacing being approximately 0.4 x 10-2 chords.

The calculation was initiated from a converged solution for the airfoil at

6 degrees incidence. The incidence was then changed to 19 degrees via the

equation

AcI I -,i
cl = ao+TL'.O-:os 1o<, (30)
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where

a ° = 6 ° , Aa : 13°, _o = 5, to = 1.20 (31)

For t>(to+_)/_, the incidence was held constant at

a = ao + Ae (32)

It should be noted that the dimensionless frequency, k = mc/2U= = 2.5,

represents a very high value for airfoil calculations with the 13° ramp

amplitude.

The results of the calculation during the ramping period are presented

in Figs. 2 and 3. Figure 2 shows the pressure coefficient distribution at

various incidence angles. At six degrees the pressure distribution is

typical of that found for a steady airfoil; the suction peak has been smeared

and diminished due to insufficient streamwise resolution and the relatively

large amount of artificial dissipation as discussed previously. As the

incidence changes from 6 to 9 degrees the rapid motion, particularly in the

trailing edge region, causes high pressure to appear on the lower side of the

airfoil and low pressures to appear on the upper side. It should be noted

that the velocity of the airfoil trailing edge relative to the inertial frame

reaches a maximum value of 0.4 U= and, therefore, large deviations from the

steady solution are to be expected. The situation becomes more pronounced at

12.5 degrees; however, by 14 degrees a tendency to return to the usual static

airfoil pressure distribution appears. Finally, at the last incidence angle,

19 degrees, (t = 1.93), the basic pressure distribution is approaching the

type expected for a steady airfoil with no evidence of stall. The location

of the separation points is presented in Fig. 3. At the initiation of the

ramp motion no separated flow was present; however, separation appeared soon

after the ramp motion began and the trailing edge separation point moves

continuously upstream as shown in the figure. During this process the

separated region remains very thin and has only a minimum viscous

displacement effect upon the outer nominally inviscid flow.

After cessation of the motion, the flow continues to develop and the

pressure distribution undergoes radical changes as shown in Figs. 4-6. The

major changes occur in the airfoil leading edge region where the suction peak
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appearing on the airfoil upper surface continues to drop in magnitude from a

value of approximately 6.8 at t = 1.83 (just after the cessation of airfoil

motion) to a value of approximately 1.2 at t = 5.38. A unit increment in t

represents the time required for a particle moving at free stream velocity to

transverse a distance of one chord. The drop in the suction peak and the

accompanying decrease in airfoil lift exhibited in Figs. 4-6 are consistent

with the development of airfoil stall. The calculation also predicts a minor

movement of the airfoil front stagnation point towards the geometric leading

edge. In addition to the loss of lift, the analysis predicts a pressure

perturbation to initiate at t = 3.7 (see Fig. 5) and then move downstream at

a speed of approximately 35% free stream velocity. Although quantitative

comparisons between this prediction and data are not available, the predicted

flow seems physically realistic.

Upon reaching 19 degrees, the motion ceased and the airfoil flow field

was allowed to develop at 19°. A comparison of the calculated results and

the measured data of Young, Meyers and Hoad (Ref. 63) for an airfoil at 19.4 °

incidence is presented in Fig. 7. Figure 7 compares the predicted and

measured values of the zero velocity line. Below this line, the flow is

directed toward the leading edge and above this line the flow is directed

toward the trailing edge. The predicted values are shown as a function of

time. During the ramping process, the separated region present was too thin

to be shown on the scale of Fig. 7 and the results shown are at times well

past the cessation of the ramping motion at t = 1.9. The results presented

in Fig. 7 show the growth of the backflow velocity zone with time, and at the

latter times shown the backflow zone position has converged over most of the

airofil as continued growth is confined to regions in the vicinity of the

airfoil trailing edge. As can be seen, the comparison between the calculated

zone location and that measured by Young, Meyers and Hoad is very

good.

A vector plot of the velocity field as measured by Young, Meyers and

Hoad is shown in Fig. 8. These results show a large separated region to be

present over the airfoil upper surface with separation initiating in the

immediate vicinity of the airfoil leading edge. A vortex appears to be

centered at roughly the eighty percent chord location. The data (not shown

on this figure) indicated that the wake closure point was located well

downstream of the airfoil trailing edge and above the airfoil suction

surface.
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Another feature is the appearance of a very strong shear layer in the airfoil

trailing edge vicinity where the suction surface and pressure surface flow

fields meet. Finally, the calculated results, Figs. 9 and i0, indicate that

flow is entrained into the recirculation region from two sources. One source

is the flow region above the recirculation zone. The second source is the

flow which originates on the airfoil pressure surface, then passes into the

mixing layer which forms at the airfoil trailing edge and finally is

entrained into the recirculation region from below.

Predicted velocity vector fields are shown in Figs. 9 and I0. These

figures represent the flow field at times tI and tl+At where At is the time

required for a free stream particle to move a distance of one chord length.

The analysis predicts the formation of a large separation region which

initiates very near the airfoil leading edge; the calculated flow field is in

qualitative agreement with the data shown in Fig. 8. Other similarities

between data and calculation can be found in the vortex formation and in the

strong shear layer which appears at the airfoil trailing edge. In addition,

the calculated flow field was characterized by significant flow unsteadiness

in the leading edge region which limited the permissible maximum time step.

This characteristic of unsteady leading edge flow also appeared in the

experimental study.

In regard to other features, the analysis showed the vortex to be moving

downsteam at a velocity of approximately 0.3 U=; however, no regular

shedding pattern was observed in the experiment. Some comments on this are

in order. First of all, the calculation was not run long enough to determine

if a regular shedding will result although the first vortex being formed

definitely appears to be in the process of shedding. Secondly, although the

experiment did not detect any regular shedding pattern, it is possible that

an irregular shedding did occur.

Calculated vorticity contours at the two times are shown in Figs. II

and 12. The vorticity contours presented correspond to normalized values of

-I00, -25, -10, -5, 0, 5, I0, 25, I00. In both figures, the vorticity on the

airfoil pressure surface is confined to the boundary layer whereas that on

the suction surfaces occurs in two locations. One region of vorticity is

located in the wall layer close to the airfoil surface; the second region is

a 'tongue-like' region extending from the vicinity of the airfoil leading
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edge into the 'free stream'. This contour line represented by the value 5 is

a region of a local maximum vortlcity. As can be seen by comparing Figs. Ii

and 12, the tongue-like region of vorticlty appears to break off and be

convected downstream as a local concentrated region (See Fig. 12). This may

be interpreted as the initiation of a shed vortex. A third area of high

vortlclty concentration occurs at the airfoil trailing edge where the sharp

mixing layer is present.

A closer examination of the predicted flow field shows the emergence of

an inner counter-clockwise rotating separation zone which occurs under the

main suction surface separation zone. As can be seen in Figs. 8-10, the

major separated region is a large region of clockwise rotation. However, a

detailed vector plot of the mld-chord portion of the suction Surface

presented in Fig. 13 shows a secondary separation region of counter-clockwlse

rotation completely embedded within the primary separated zone. The

stagnation point location, the flow separation at the stagnation point, the

acceleration about the leading edge and the initiation of flow separation are

all shown clearly. A detail of the leading edge region is shown in Fig. 14.

Static pressure contours are presented in Ref. 35.
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0.5 Mach Number - High Incidence NACA 0012 Airfoil

A calculation similar to the low Mach number - high incidence case

discussed previously was made for an NACA 0012 airfoil immersed in a free

stream of Reynolds number 1.4 x 106 and Mach number of 0.5. The calculation

was initiated from 6 degrees incidence with a cosine ramp motion,

Eqs. (30-32), bringing the airfoil to 19 degrees incidence. In general, the

results for the 19°, M_ = .5 case were similar to the results obtained for

the 19=, M_ = .15 case discussed previously. The flow did not become

steady during the calculation as a large separation zone appeared over the

suction surface. A velocity vector plot showing the flow field at a time

2 Tre f past the cessation of airfoil motion is shown in Fig. 15; Tre f is

the time for a free stream particle to move a distance of one chord. Several

features of the flow are clearly evident in this figure. The flow approaches

the airfoil leading edge and branches with part of it passing over the

suction surface and part passing over the pressure surface. A detail of the

leading edge region is shown in Fig. 16. Figures 15 and 16 clearly show the

flow branching and the acceleration about the airfoil leading edge. The flow

on the pressure surface remains well-behaved with a thin boundary layer

developing on the airfoil surface. The situation on the suction surface is

much different with separation occurring almost at the airfoil leading edge

and a large separation zone being formed over the suction surface. The

separation zone and accompanying vortex is also shown clearly in Fig. 17

which gives vorticlty contours, the vorticlty being defined as V x V. The

vorticlty pattern is generally similar to that obtained for the M_ = .15

calculation with the maximum core value in the present case being

approximately twice that of the previous case. Static pressure contours are

presented in Fig. 18.

Flow About an Airfoil Oscillating in Pitch at Low Incidence

The first oscillating airfoil case considered was flow about an

NACA 0012 airfoil immersed in a free stream at a Reynolds number based upon

airfoil chord of 0.26 x I0?, and a Mach number of 0.20. The case was run as
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an initial demonstration case for an oscillating a_ oil prior to attacking

the dynamic stall problem. The airfoil was assumed o oscillate in pitch

about its quarter chord point with the incidence giw_n by

Aa r

= _O + --L I O - COS W(I -'o)J (33)• 2

The reduced frequency, _ = mc/2U=, was taken to be 0.12. The calculation

was run with the dissipation parameter, o, set equal to 0.5 and was initiated

from a steady solution at zero degree incidence and then followed the

incidence variation given by Eq. (33).

The predicted lift versus incidence curve is presented along with the

steady and unsteady data of Grey and Liiva (Ref. 64) in Fig. 19. Considering

first the experimental data, the unsteady curve shows a hysteresis loop.

Furthermore, the general slope of the curve is less than that of the steady

data and the unsteady lift at zero incidence is higher than that of the

steady data (which is zero). The prediction shows the same general

characterstics. The calculation was initiated at zero degrees incidence from

a steady calculation and followed the theoretical quasi-steady lift-incidence

curve until a = 4°. After reaching 4°, the lift predicted is less than the

inviscid value and this is primarily a result of the under prediction of the

suction peak resulting from the specification of o = 0.5 where _ is the

artificial dissipation parameter. The dissipation factor was taken as

= 0.5 since this calculation was made prior to the dissipation parameter

study of Refs. 45 and 46. Upon reaching the maximum incidence, _ = 10.5 °,

the curve forms a hysteresis loop as incidence decreases. This loop is

somewhat more pronounced than that measured. After reaching the minimum

value of a = 0°, the lift increases with incidence and at the last time

calculated the loop is closing. Although the thickness of the predicted

hysteresis loop is somewhat greater than that of the measured loop, the

average slopes agree. In addition, both prediction and data show significant

lift at zero incidence; this is in contrast to the quasi-steady calculation.

A detailed examination of the flow field prediction shows the major

contribution to the finite thickness lift loop results from the suction
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surface boundary layer thickness for _ < 0 being greater than that for & > 0

at the same value of e. This result represents a lag in the boundary layer

reaction of the pressure gradient which modifies the mid-chord and trailing

pressure distribution. The mid-chord and trailing edge effect is somewhat

modified by differences in the leading edge where the suction peak for _ < 0

is more pronounced than that for & > 0. It should be noted that the loop

calculation is a very sensitive one and its formation results from relatively

small pressure changes on both the pressure and suction surfaces. Further,

this interpretation should be regarded as approximate due to the value of

artificial dissipation used. Velocity vector plots are given in

Figs. 20-22. These figures clearly show the general flow pattern which

includes the approach to the leading edge stagnation point, acceleration

around the leading edge and the boundary layer and wake development.

A comparison of Figs. 20 and 22 shows that during the upstroke (& > 0) the

flow along the aft portion of the airfoil tends to align with the pressure

(lower) surface. Furthermore, the differences in the suction surface

boundary layer thickness and wake position are evident. Vector plots in the

vicinity of the leading edge are shown in Figs. 23-25. It should be noted

that the flow patterns upstream of the airfoil in Figs. 23 and 25 are

significantly different with the flow for _ < 0 (Fig. 25) showing

considerably more turning in the region upstream of the leading edge region.

Further discussion of this case is presented in Ref. 36.

NACA 4412 Airfoil

The next calculation to be discussed is flow about an NACA 4412

airfoil at high incidence. The calculation models the experiment of Coles

and Wadcock (Ref. 65) which considered flow about an NACA 4412 airfoil at

Reynolds number based upon chord of 1.5 x 106 and Mach number of

approximately .07. The airfoil was placed in a wind tunnel and oriented at

geometric incidence of 13.7 degrees to the free stream. Data taken included

static pressure measurements on the airfoil surface as well as velocity

profile measurements at selected boundary layer and wake locations. Details

of the experiment can be found in the cited AIAA Journal article (Ref. 65).
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The NACA 4412 calculation differed from those previously presented in

two ways. First, the calculation was run with slip tunnel wall boundary

conditions as discussed in the boundary condition section of this report and

the calculation was run in a 141 x 39 mesh as opposed to the 81 x 39 mesh

previously used. Finally, the calculation was run using an artificial

dissipation parameter, a, of 0.05. As shall be shown, the increased

resolution and decreased dissipation parameter had a major beneficial effect

on the quantitative comparison between calculation and measurement.

The NACA 4412 calculation was carried out with a grid containing 141

pseudo-azimuthal (streamwise) grid points and 39 pseudo-radial grid points

with high streamwise resolution being obtained in the vicinity of the airfoil

leading edge and high normal resolution being obtained in the airfoil

boundary layer. The streamwise grid spacing in the leading edge region was

approximately .002 chords and the radial grid spacing at the airfoil surface

was approximately I0-S chords.

Calculations were made for flow at four incidences; 7.7 degrees,

10.8 degrees, 12.3 degrees and 13.7 degrees. The calculation at 7.7 ° was

initiated from a uniform flow with a no-slip condition gradually applied by

decreasing the velocity over several grid points in the vicinity of the

airfoil surface. The calculation was made using the time-conditioning

methods suggested in Refs. 66 and 67. It should be noted that the zero lift

incidence for the NACA 4412 airfoil is -4° (Ref. 68) and, therefore, the

cases considered represent airfoil flow fields at large incidence. Predicted

surface pressure distributions for each case are shown in Fig. 26. Although

to our knowledge no data are available for comparison at the lower incidence

angles, the comparison between data and prediction is excellent for the 13.7

degree case.

A comparison also can be made of the predicted and measured separation

points. At the two lower incidences only a small amount of separation was

predicted as the boundary layer separation occurred at x/c = .96. However,

32



at 12.3 ° incidence the separation point moved upstream to x/c = .82 and at

13.7 ° it progressed to x/c = .72. This final value is in good agreement with

the Coles-Wadcock data which indicated separation at x/c = .70. Although

detailed pressure distribution comparisons cannot be made at the lower

incidences, lift coefficient comparisons can be made to assess the prediction

procedure. A comparison between predicted and measured lift coefficient is

shown in Fig. 27 where the data are taken from Abbott and yon Doenhoff

(Ref. 68) for Rec = 3.0 x 106. Although the predictions and data apply to

somewhat different Reynolds numbers, the results should be insensitive to

Reynolds number at lower incidences and only become somewhat sensitive as

stall is approached. As can be seen in Fig. 27, the comparison is very good.

The final comparisons concern velocity profiles. The Coles-Wadcock data

give velocity profiles for both the velocity component parallel to the line

connecting the airfoil leading and trailing edge locations and the component

normal to this line. The streamwise velocity profiles are compared in

Fig. 28, and the normal velocity profiles are compared in Fig. 29.

Considering first the streamwise velocity profiles, it should be noted that

the velocity is normalized by Uref, the velocity at a specified tunnel

location and, therefore, U/Ure f does not necessarily approach unity at the

edge of the profile. In all cases, however, the predicted and measured edge

velocities were in good agreement. Of the profiles compared in Fig. 28, two

are taken in the aft region suction surface boundary layer and two in the

wake. Both boundary layer profiles (x/c = .642 and x/c = .908) are in a

strong adverse pressure gradient region. The predicted velocity profiles are

somewhat thicker than the measured profiles and appear somewhat more advanced

toward separation. However, the comparison is reasonably good in a

qualitative sense. Similarly the wake profiles are affected by the somewhat

too large prediction of the suction surface boundary layer thickness,

however, the wake development also is reasonably good. Obviously, further

investigations concerning both grid resolution (particularly in the

streamwise direction) and turbulence and transition modeling may be required

if the comparison is to improve. In particular based upon some more recent

studies for cascade flows accurate prediction of the transition point are

required to obtain accurate predictions of the suction surface boundary layer

profile. Comparisons between the predicted and measured normal velocity

profiles are given in Fig. 29. Again, the predictions and measurements are

in reasonable agreement.
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A more comprehensive view of the flow field can be obtained via vector

and contour plots. A velocity vector plot of the flow field is shown in

Fig. 30 and contours of U-velocity, W-velocity and pressure coefficients are

presented in Figs. 31-33. The velocity vector plot clearly shows the flow

turning as it passes about the airfoil and the boundary layer build-up on the

suction surface. The development of the large W-velocity component in the

leading edge region is shown in Fig. 32 and the pressure field is shown in

Fig. 33. The leading edge region is shown in detail in Figs. 34-37 which

considers the flow in the initial 5% chord region.

NACA 4412 - Grid Resolution and Artificial Dissipation Study

As part of the NACA 4412 study, an effort was undertaken to assess the

effects of the artificial dissipation parameter, o, and grid resolution. As

previously discussed, the present prediction procedure utilizes second order

central spatial differences and consequently requires addition of artificial

dissipation terms to suppress spatial oscillations. The present approach

adds a second-order dissipative term in the following manner. During the

calculation, the flow field is examined at each grid point and to maintain

stability terms of the form

dx _2_ and dy _2_

n _ 2 _y2
p x pn

are added to the equation. The variable _ is taken as p in the continuity

equation, u in the x-momentum equation and v in the y-momentum equation and n

is 1 for the continuity equation and zero for the momentum equations. The

factor dx is taken as the maximum of opuAx-_ and zero and the factor dy

is taken as the maximum of opvAy-_ and zero where o is the artificial

dissipation parameter, p is density, u and v are velocity components, Ax

and Ay are grid spacing and _ is viscosity. These points are discussed in

detail in the artificial dissipation subsection of the present report.
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In addition to the calculations for o = .05, presented in the previous

subsection, NACA 4412 airfoil calculations were also made for o = .i0 and

0.5. The calculation for _ = 0.I0 was initiated from the _ = .05 calculation

by abruptly changing the value of the dissipation parameter as the solution

was restarted. The prediction for _ = .05 and .I0 were nearly identical as

shown in Fig. 38. The insensitivity of predicted flow to changes in

between 0. i0 and 0.05 has since been observed in other calculations performed

at SRA (e.g.; Refs. 62 and 69). After completing the o = .i0 calculation,

the procedure was restarted with _ = .50. This calculation proceeded to

diverge from the _ = .05, .i0 results and the _ = .50 calculation was

discontinued after fifty time steps although it had not yet converged and was

continuing to move farther from the previous solutions. Since these results

clearly demonstrate the effort of increasing the artificial dissipation

factor to 0.5, no attempt was made to obtain the converged solution.

The results of Fig. 38 clearly indicate that for the case considered

(i) once _ = .I0 a further decrease to o = .05 does not affect the solution,

and (ii) a value of _ = .50 leads to an inaccurate solution and calculations

run with this value of artificial dissipation must be regarded as suspect in

terms of quantitative results.

The second item considered under the present study concerns grid

resolution. The NACA 4412 results presented in the previous subsection were

obtained with a highly stretched grid having 141 pseudo-azimuthal grid points

and 39 pseudo-radial grid points. The grid was stretched so as to obtain

maximum radial resolution near the airfoil surface (the grid spacing here was

10-5 chords), and maximum streamwise resolution in the leading edge region

(the grid spacing here being .002 chords). For the grid resolution study,

the calculation at 7.7 degrees incidence was repeated for two new grid

sizes. In each case, the pseudo-radlal grid was kept the same (39 points)

since it is felt that this grid is required due to the presence of the

Heimenz layer in the leading edge region and the laminar sublayer on the mid-

chord and trailing edge regions. However, the streamwise grid requirements

are somewhat less definite and consequently the 7.7 ° incidence calculation

was repeated for 81 and 51 streamwise grid points. In each case, the

relative stretch was kept the same as used for the 141 grid point cases. The

calculations for the three cases showed no significant differences. The

surface pressures were nearly identical with some slight smearing of the
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suction peak for the 81 and 51 point calculations. However, the predicted

llft coefficients only varied by + 3 per cent and the skin friction

coefficients were also in very close agreement. Therefore, for the 7.7 °

incidence case, a 51 x 39 grid appeared to be adequate.

The 7.7 ° incidence case is not a severe test since the flow is

reasonably well behaved in this case. Therefore, a second study was made for

a case at 12.3 ° incidence. In this case, a converged surface pressure

distribution was obtained with the 141 x 39 grid and the results are shown in

Fig. 39. However, when the calculation was repeated for a 51 x 39 grid, the

surface pressure distribution would not converge and a nonconverged result is

shown in Fig. 39. Obviously, in this more demanding case at higher

incidence, 51 pseudo-azlmuthal grid points are inadequate.
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High Incidence Dynamic Stall Calculation - NACA 0012 Airfoil

The final case considered is that of an NACA 0012 airfoil in dynamic

stall. The calculation was run against the data of St. Hilaire, Carta, Fink

and Jepson (Refs. 70 and 71). The case chosen was case 51.005 for a

NACA 0012 airfoil oscillating in pitch. The free stream Reynolds number was

2.08 x 106 the free stream Mach number was 0.30 the reduced frequency was

0.125, the mean incidence was 12°, and the oscillation amplitude was 8°. A

converged calculation was first obtained for an airfoil at 4° incidence; this

result is compared with the data of Gregory and O'Reilly (Ref. 72) in

Fig. 40. As can be seen, the comparison for this steady calculation is very

good. A comparison between predicted and measured lift and moment

coefficients is presented in Figs. 41 and 42. In regard to the lift

coefficient agreement is reasonably good on the upstroke, however, the

measured lift stall appears to occur before the calculated lift stall. The

dotted portion of the line represents that portion of the calculation for

which it was necessary to increase the artificial dissipation factor to 0.5

as will be discussed subsequently. During stall, the measured lift was less

than that calculated. However, the agreement appears to be qualitatively

reasonable for this case. Considering next the moment coefficient

comparison, the agreement between calculation and measurement again is

qualitatively good.

Although instructive, the comparison of measured and calculated

coefficients only gives a comparison of integrated quantities.

Relatively small differences in pressure distributions can lead to

significant differences in lift coefficient and large differences in moment

coefficients. Obviously, more insight can be gained via a comparison of the

pressure distributions. Such distributions are presented in Figs. 43-50.

Three comparisons during the upstroke are shown in Figs. 43 and 44. As can

be seen, the agreement is very good. The data were reconstructed from the

Fourier coefficients given by St. Hilaire and Carta (Ref. 72). The third

measured data point on the pressure surface (x/c _ .066) gave very erratic

results and was not plotted for most of the comparisons. The excellent

comparisons shown in Figs. 43 and 44 give evidence to the time-accurate

calculation for the surface pressure.
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Figure 45 presents a comparison at a = 17.7 °, _ > 0. This is near the

incidence where stall would first be inferred fom the llft and moment curves

of Figs. 41 and 42. The figure shows some discrepancy between predicted and

measured values as the data present some evidence of a vortex being shed on

the suction surface leading edge. The discrepancy increases in Fig. 46 where

the data clearly indicate stall. The plateau in the calculation on the

suction surface, x/c _ .15, seems to indicate a vortex being initiated.

Furthermore, the calculated maximum suction peak at _ = 19.5 °, Fig. 46, is

considerably less than that at _ = 17.7 °, Fig. 45. Based upon the plateau

and the drop in suction peak, the calculated distribution at 19.5 ° appears to

be beginning the stall process. This agrees with the normal force and moment

coefficients of Figs. 41 and 42. The data at 19.5 ° is presented with the

calculation at _ = 19.9 °, & > 0 in Fig. 47. Although these are at different

values of _, they represent pressure distributions at approximately the same

incremental time after stall is initiated; distributions are remarkably

similar. Figures 45-47 indicate that although the calculation predicts stall

to occur after the measured incidence, once stall occurs the calculated and

measured pressure distributions become quite similar. The major discrepancy

in the calculated and measured values may lie in the prediction of vortex

initiation. This in turn is influenced by turbulence and transition

modelling.

Comparisons over the downstroke are given in Figs. 48-50. Obviously,

the basic trends are in agreement as a strong qualitative comparison is shown

between the calculation and the measured data. Overall, the detailed

pressure distributions show good agreement with data and present a more

favorable comparison than would appear from the integrated coefficients

presented in Figs. 41 and 42. Although surface pressure comparisons

obviously do not represent the entire story, these results indicate

substantial agreement between calculation and measurement for this very

difficult test case.
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Velocity vector plots and vorticlty contour plots are presented in

Figs. 51-54. The results are qualitatively similar to those obtained for

previous cases. During much of the upstroke, the velocity field remains well

behaved and the vorticity is confined to the immediate region of the airfoil

surface. However, near _max the flow field changes dramatically as a large

clockwise vortex appears on the suction surface. This is evident in both the

vector plot, Fig. 51 and the vortlcity plot Fig. 54. Also, note the

appearance of the trailing edge counterclockwise vorticity. This phenomenon

has been noted and discussed in detail by Robinson and Luttges in a study of

airfoils in pitch (Ref. 74). By e = 18.3°, _ < 0 the leading edge vortex has

clearly broken away and the trailing edge vortex of opposite sign has

increased in size and is moving somewhat upstream. This is demonstrated

more clearly in the vorticity contour plot. By _ = 16.5°, & < 0 the vortices

are tending to interact and begin to move downstream. This process also has

been discussed by Robinson and Luttges. During the initial portion of the

downstroke the flow is a very complex one with interacting shed vortices of

opposite sense. The grid used concentrates resolution near the airfoil;

however, during this portion of the downstroke, the complex vortex

interaction occurs in a region removed from the airfoil where grid resolution

is relatively coarse. The calculation encountered stability problems which

almost surely could have been solved by increased resolution in this region.

However, generation of such a grid and the subsequent calculation was beyond

the scope of the present effort and, therefore, the problem was addressed by

increasing the value of c to 0.5 over a portion of the downstroke as shown

in Figs. 41 and 42. Finally, by _ = 9.5 °, _ < 0 the flow has fully

recovered.
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CONCLUSIONS

A numerical procedure for calculating steady and unsteady airfoil flow

fields has been developed, demonstrated and documented under the present

contract effort. The procedure solves the full tlme-dependent, compressible

Navier-Stokes equations via an alternating direction implicit (ADI) method.

The calculations are performed on a highly stretched grid which places the

first grid point off the airfoil in the viscous sublayer. No sllp conditions

are applied at solid boundaries. The calculation has been run extensively

with a mixing length turbulence model. Although not detailed in the present

report, calculations have also been run with a two equation model for an

NACA 0012 airfoil at 6° incidence. The procedure is capable of calculating

steady solutions using a matrix preconditioning technique which allows rapid

convergence over a Mach number range between virtually incompressible and

transonic. Unsteady flows which require transient accuracy, can be made for

M > 0.15.

The procedure has been used for several calculations including steady

flows about an NACA 0012 airfoil at zero and modest incidence and flow about

an NACA 4412 airfoil at modest to high incidence. In all cases excellent

agreement between calculated and measured pressure distributions was shown.

High incidence unsteady calculations were made for an NACA 0012 airfoil at

19° which showed good agreement with available data. Calculations of an

airfoil in pitch below the stall angle also showed good agreement with data.

Finally, a calculation was made for an airfoil in deep dynamic stall,

4= < e< 20 °. This represents a very difficult case which contains dynamic

effects, large scale separation and multiple interacting shed vortices.

Considering the difficulty of the case, the agreement between calculated and

measured pressure distribution was very good.

In regard to boundary layer velocity profiles, the only comparison

considered under this effort focused upon suction surface boundary layer on

the aft section of a NACA 4412 airfoil. The calculated profiles agreed

reasonably well with those measured, however, some discrepancies were

apparent. Based upon other efforts at SRA the reason for the discrepancy

appears to be due to the calculated transition location and prediction of

transition location remains a subject of current investigation.
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The calculation procedure gives very rapid convergence for cases in

which a steady flow is sought. For the range of Mach numbers considered,

.01 < M_< .5 convergence is obtained within 70 time steps independent of

M_. It is anticipated that this convergence property would remain through

the transonic region. The present code is a scalar code which requires

15 secs/time step for 5600 grid points on the CYBER 203. This translates

into approximately I000 secs/converged solution. Further code speed-up could

reduce this run time by a factor of 10-20. For unsteady flow where

transients must be resolved between 400 and 700 time steps are required per

cycle.

In summation, the code developed represents a powerful tool for

calculating steady and unsteady airfoil flow fields. The calculations run to

date indicate good agreement with pressure data even for the very demanding

dynamic stall case. Agreement with velocity profile data although reasonable

may require further efforts concentrating upon turbulence and transition

modelling.
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APPENDIX B - SOLUTION PROCEDURE [58J

Background

The solution procedure employs a conslstently-spllt llnearized block

implicit (LBI) algorithm which has been discussed in detail in [29, 56].

There are two important elements of this method:

(I) the use of a noniterative formal time llnearlzation to

produce a fully-coupled linear multidimensional scheme which is

written in "block implicit" form; and

(2) solution of this llnearlzed coupled scheme using a consistent

"splitting" (ADI scheme) patterned after the Douglas-Gunn [57]

treatment of scalar ADI schemes.

The method is thus referred to as a split llnearlzed block implicit (LBI)

scheme. The method has several attributes:

(I) the nonlterative linearlzatlon is efficient;

(2) the fully-coupled llnearlzed algorithm eliminates instabilities

and/or extremely slow convergence rates often attributed to methods which

employ ad hoc decoupling and linearlzatlon assumptions to identify

nonlinear coefficients which are then treated by lag and update

techniques;

(3) the splitting or ADI technique produces an efficient algorithm

which is stable for large time steps and also provides a means for

convergence acceleration for further efficiency in computing steady

solutions;

(4) intermediate steps of the splitting are consistent with

the governing equations, and this means that the "physical" boundary

conditions can be used for the intermediate solutions. Other spllttlngs

which are inconsistent can have several difficulties in satisfying

physical boundary conditions [56].

(5) the convergence rate and overall efficiency of the algorlthm are

much less sensitive to mesh refinement and redistribution than algorithms

based on explicit schemes or which employ ad hoc decoupllng and

llnearlzatlon assumptions. This is important for accuracy and for

computing turbulent flows with viscous sublayer resolution; and
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(6) the method is general and is specifically designed for the

complex systems of equations which govern multiscale viscous flow in

complicated geometries. This same algorithm was later considered by Beam

and Warming [75], but the ADI splitting was derived by approximate

factorization instead of the Douglas-Gunn procedure. They refer to the

algorithm as a "delta form" approximate factorization scheme. This scheme

replaced an earlier non-delta form scheme [76], which has inconsistent

intermediate steps.

Spatial Differencing and Artificial Dissipation

The spatial differencing procedures used are a straightforward

adaption of those used in [29] and elsewhere. Three-point central

difference formulas are used for spatial derivatives, including the

first-derivatlve convection and pressure gradient terms. This has an

advantage over one-slded formulas in flow calculations subject to

"two point" boundary conditions (virtually all viscous or subsonic flows),

in that all boundary conditions enter the algorithm implicitly. In

practical flow calculations, artificial dissipation is usually needed and

is added to control high-frequency numerical oscillations which otherwise

occur with the central-difference formula.

In the present investigation, artificial (anisotropic) dissipation

terms of the form . 22
d uk
_I (1)

J hj2 _xj2

are added to the right-hand side of each (k-th) component of the momentum

equation, where for each coordinate direction xj, the artificial

diffusivity dj is positive and is chosen as the larger of zero and the

local quantity _e (_ ReAx-1)/Re" Here, the local cell Reynolds number

ReAx j for the j-th direction is defined by

ReAx j = Re Ipujl Axj/_ e (2)

This treatment lowers the formal accuracy to 0 (Ax), but the functional

form is such that accuracy in representing physical shear stresses in thin

shear layers with small normal velocity is not seriously degraded. This
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latter property follows from the anisotropic form of the dissipation and

the combination of both small normal velocity and small grid spacing in

thin shear layers.

Split LBI Algorithm

Linearization and Time Differencing

The system of governing equations to be solved consists of three/four

equations: continuity and two/three components of momentum equation in

three/four dependent variables: p, u, v, w. Using notation similar to

that in [29], at a single grid point this system of equations can be

written in the following form:

_H(_)/_t = D(_) + S(1) (3)

where _ is the column-vector of dependent variables, H and S are

column-vector algebraic functions of i, and D is a column vector whose

elements are the spatial differential operators which generate all spatial

derivatives appearing in the governing equation associated with that

element.

The solution procedure is based on the following two-level implicit

time-difference approximations of (3):

(Hn+l- Hn)/At = B(D n+l+ Sn+l) (I-8) (Dn + Sn) (4)

where, for example, Hn+l denotes H(_ n+l) and At = tn+l - tn. The

parameter g (0.5 ! B j I) permits a variable time-centering of the scheme,

with a truncation error of order [At2, (B - I/2) At].

A local time linearlzation (Taylor expansion about _n) of requisite

formal accuracy is introduced, and this serves to define a linear

differential operator L (cf. [29]) such that

Dn+l = Dn + Ln(_n+l_ _n) _ 0(At 2) (5)

Similarly,

iin+l = Hn+ (_H/_)n (_n+l _ _n) + 0 (At2) (6)

sn+l = sn+ (_S/_)n (_n+l _ _n) + 0 (At2) (7)

Eqs. (5-7) are inserted into Eq. (4) to obtain the following system which

is linear in _n+l

(A - BAt Ln) (_n+l _ _n) = At (Dn + Sn) (S)
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and which is termed a linearized block implilcit (LBI) scheme. Here, A

denotes a matrix defined by

A _ (_H/_) n - BAt (_S/_i) n (9)

Eq. (8) has 0 (At) accuracy unless H _ _, in which case the accuracy is

the same as Eq. (4).

Special Treatment of Diffusive Terms

The time differencing of diffusive terms is modified to accomodate

cross-derlvative terms and also turbulent viscosity and artificial

dissipation coefficients which depend on the solution variables. Although

formal linearization of the convection and pressure gradient terms and the

resulting implicit coupling of variables is critical to the stability and

rapid convergence of the algorithm, this does not appear to be important

for the turbulent viscosity and artificial dissipation coefficients.

Since the relationship between _e and dj and the mean flow variables

is not conveniently linearized, these diffusive coefficients are evaluated

explicitly at tn during each time step. Notationally, this is

equivalent to neglecting terms proportional to _ _e/_ or _dj/_ in

Ln, which are formally present in the Taylor expansion (5), but

retaining all terms proportional to _e or dj in both Ln and Dn.

It has been found through extensive experience that this has little

if any effect on the performance of the algorithm. This treatment also

has the added benefit that the turbulence model equations can be decoupled

from the system of mean flow equations by an appropriate matrix

partitioning [56] and solved separately in each step of the ADI solution

procedure. This reduces the block size of the block tridiagonal systems

which must be solved in each step and thus reduces the computational

labor.

In addition, the viscous terms in the present formulation include a

number of spatial cross-derivative terms. Although it is possible to

treat cross-derivative terms implicitly within the ADI treatment which

follows, it is not at all convenient to do so; and consequently, all

cross-derivative terms are evaluated explicitly at tn. For a scalar

model equation representing combined convection and diffusion, it has been

shown by Beam and Warming [77] that the explicit treatment of

cross-derivative terms does not degrade the unconditional stability of the

present algorithm. To preserve notational simplicity, it is understood
that all cross-derivative terms appearing in Ln are neglected but are
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retained in Dn. It is important to note that neglecting terms in Ln

has no effect on steady solutions of Eq. (8), since inil - in _ O,

and thus Eq. (8) reduces to the steady form of the equations:

Dn + Sn = 0. Aside from stability considerations, the only effort

of neglecting terms in Ln is to introduce an 0 (At) truncation

error.

Consistent Splitting of the LBI Scheme

To obtain an efficient algorithm, the linearized system (8) is split

using ADI techniques. To obtain the split scheme, the multidimensional

operator L is rewritten as the sum of three "one-dimenslonal"

sub-operators Li (i = I, 2, 3) each of which contains all terms having

derivatives with respect to the i-th coordinate. The split form of

Eq. (8) can be derived either as in [29, 56] by following the procedure

described by Douglas and Gunn [57] in their generalization and unification

of scalar ADI schemes, or using approximate factorization. For the

present system of equations, the split algorithm is given by

(A - BAtL_) (i - in) = At (Dn + Sn) (lOa)

(i**n
- in) = A (i* - in) (lOb)(A - 8AtL2)

(t n+l i n)(A - BAtL_) - = A (i - in) (lOc)

where i* and i** are consistent intermediate solutions. If spatial

derivatives appearing in Li and D are replace by three-point difference

formulas, as indicated previously, then each step in Eqs. (IOa-c) can be

solveby a block-tridiagonal elimination.

Combining Eqs. (10a-c) gives (ii)

(A - BAtL_) A-I (A - BAtL_) A-I (A - BAtL_) (inil - in ) = At (Dn + Sn)

which approximates the unsplit scheme (8) to 0 (At2). Since the

intermediate steps are also consistent approximations for Eq. (8),

physical boundary conditions can be used for i* and i** [29, 56].

Finally, since the Li are homogeneous operators, it follows from

Eqs. (10a-c) that steady solutions have the property that

inil = i* = i** = in and satisfy Dn + sn = 0 (12)

The steady solution thus depends only on the spatial difference

approximations used for (12), and does not depend on the solution

algorithm itself.
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Figure 2 - Pressure coefficient for airfoil in ramp motion.
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Figure 3 - Location of separation points for,airfoil in ramp motion.
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Figure 4 - Pressure distribution for 19° airfoil after cessation of

airfoil motion (airfoil motion ceases at T=].83).
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Figure 5 - Pressure distribution for 19° airfoil after cessation of
airfoil motion (airfoil motion ceases at T=1.83).
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airfoil motion (airfoil motion ceases at T=1.83).



O Data of Young, Meyers, and Hoad
(NASA Technical Paper 1266
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Figure 7 - Development of backflow velocity zone for
airfoil at 19°.
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Figure 8 - Experimentally measured velocity field, e = 19°.
(Data of Young, Meyers and Hoad)
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Figure 9 - Computed velocity vector field, e = 19 °, t = tI.



Figurel0 - Computed velocity vector field, e = 19 °, t = tI + At, At = 1.0.



Figurell - Vorticity contours, e= 19 °, t = tI.



Figurel2 - Vorticity contours, _= 19°, t = tI + At, At = 1.0.



Figure 13 - Velocity vector plot, detail of suction surface, e = 19°•



Figure 14 - Velocity vector plot, detail of leading edge region, e = 19 °
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Figure 15 - Computed velocity vector field, _ = 19 °, MR = .5.



Figure 16 - Computed velocity vector f_e]d, a = 19 °, M_ = .5.
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Figure 17 - Vorticity contours, e = 19 °, M_ = .5.
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Figure 18 - Static pressure coefficient contours• _ = 19 ° M_ = .5
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Figure 19 - Lift vs. incidence curve for NACA 0012 airfoil in pitch, k = 0.25.



Figure 20 - Velocity field, _ = 5°, @ > 0.



Figure 21 - Velocity field, e = i0°, _ > 0.



Figure 22 - Velocity field, _ = 5°, & < O.



Figure 23 - Velocity field, e = 5°, _ > 0°
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Figure 24 - Velocity field, _ = i0°, _ > 0.
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Figure 25 - Velocity field, _ = 5 °, _ < 0.
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Figure26- Predictionof surfacepressuredistributionfor NACA 4412 airfoilat incidence.
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Figure 28 - Boundary layer and wake streamwise velocity profiles for NACA 4412 airfoil.
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Figure 29 - Boundary layer and wake transverse velocity profiles for NACA 4412 airfoil.



Figure 30 - Vector plot NACA 4412 airfoil, _ = 13.7 °.
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Figure 31- U-Velocity coefficient, NACA 4412 airfoil, a = 13.7 °
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Figure 32- W-Velocity profile, NACA 4412 airfoil, a = 13.7 °.
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Figure 33- Pressure coefficient, NACA 4412 airfoil, _ = 13.7 °.
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Figure 34 - Vector plot, NACA 4412 airfoil, m = 13.7 °"

86



Figure 35- U-Velocity, NACA 4412 airfoil, m = 13.7 ° .
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Figure 36- W-Velocity contours, NACA 4412 airfoil, c = 13.7 °.
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Figure 37-- Pressure coefficient, NACA 4412 airfoil, a = 13.7 °.
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Figure 38- Effect of dissipationparameteron surfacepressure coefficientfor NACA 4412 airfoil.
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Figure 39- Grid resolution study. NACA 4412 airfoil
at 12.3 degrees incidence.
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Figure 40- Comparison of calculated and measured pressure distribution, NACA 0012, c = 4o.
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Figure 41 - Lift coefficient - NACA 0012 airfoil.
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Figure 42 - Moment coefficient - NACA 0012 airfoil.
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Figure 45- Pressure coefficient comparison - NACA 0012 airfoil.
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Figure 46- Pressure coefficient comparison - NACA 0012 airfoil.
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Figure 47- Pressure coefficient comparisons - NACA 0012 airfoil.
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Figure 50- Pressure coefficient comparison - NACA 0012 airfoil.
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a = 19.9 ° a > 0

a = 18.3 °, & < 0

Figure 51 - Velocity vector plot - NACA 0012 airfoil.
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a = 9.5 °, _ < 0

Figure 52 - Velocity vector plot - NACA 0012 airfoil.
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Figure 53 - Vorticity contours - NACA 0012 airfoil.
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Figure 54 - Vorticity contours - NACA 0012 airfoil.
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