
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19850025425 2020-03-20T17:56:00+00:00Z

NASA Contractor Report 175319

A Strategy Planner for NASA
Robotics Applications

S. Brodd
Science Applicadons Research
Lanham, Maryland

(NASA-CR- 175319) A STRATEGY PLANNER FOR	 N85-33738
NASA ROBOTICS APPLICATIONS (Science
Applications Research) 52 p HC A04/MF A01

CSCL 09D	 Unclas
G3/63 22060

i

'	 prepared for

National Aeronautics and Space Administration
under Contract NAS5.28200

NA
National Aeronautics
and Space Administration

Goddard Space Flight Center

1985

vh

a^

i	 n

j
;I

a

,'	 NASA Contractor Report 175319

A Strategy Planner for NASA
'	 Robotics Applications

S. Brodd

CONTRACT NAS5.28200
JULY 1985

t

f

NASA

j

Acknowledgements

The work described in this report was performed for Science
Applications Research under contract NAS5-28200 to NASA
Goddard Space Flight Center. The assistance of Goddard
employees Timothy Premack and Lloyd R. Purves is gratefully
acknowledged. in addition, the inspiration of Edwin P.
Cutler, former SAR employee, is recalled with appreciation.

{

Ii,,i

ii

Table of Contents

Acknowledgements	 . 	 i

Introduction	 . 	 1

Background and Related Work .	 2

Strategy P..annor	 . 	 4

Knowledge Representation 4

Context-Free Grammar Representation 4

Initial Graphics Exchange Specification 8

Software	 . 10

Ingest	 . 10

Search Procedure	 12

Heuristics	 . 15

Algorithms of Feasibility 20

Algorithms of Manipulation 22

Conclusions and Future Work . 23

Appendix A: Blocks Model Example 28

Appendix B: IGES and Context-Free Grammar Part Specifications . . 31

Appendix C: Strategy Planner Output 34

Appendix D: Sample Prolog-Code 40

List of References	 . 46
G

A Strategy Planner for NASA Robotics Applications

Introduction

A strategy planner is under development at Goddard Space Flight

Center to automatically produce robot plans for the assembly,

disassembly, or repair of spacecraft. The input to the planner is a

geometric description of the assembly produced by a computer-aided	 k

design (CAD) system.	 Using	 this	 description,	 together	 with	
d

information about the capabilities of the robot to be used and its own 	 g

knowledge of the conditions and restraints of the problem, the

strategy planner executes a search through the field of possible

manipulations of the parts of the spacecraft for each	 part's

installation or removal, as required. Individual sequences are

synthesized into an overall plan for the requested operation on the

spacecraft.

Important features of the strategy planner include the use of a

tree-structured knowledge representation for space-filling, geometric

parts, the use of several heuristics based on given and inferred

geometric data to limit the planner's search procedure, and the use of

several generic algorithms to manipulate and extend, by adding new

logical information, the geometric description of the spacecraft under

consideration.

.ti

The entirety of the strategy planner is written in the Prolog

language, which has proven to be an efficient and well-structured tool

for this type of application. (Clocksin and Mellish, 1982).

Knowledge from the several disciplines • of mechanical engineering,

mathematical geometry,	 and	 artificial	 intelligence	 has	 been
•	 i

synthesized in the design and implementation of the strategy planner.

Background and Related Work

Automatic plan generation (and	 subsequent	 execution)	 for
1
I

real-world robotics is a topic of considerable current research, and

has traditionally been of interest to the artificial intelligence

community. Typically, industrial robots must be programmed by a human

for each task they perform, be it welding automobile frames or

	

painting refrigerators. Minor modifications in task descriptions can 	
E
Irequire major modifications in programming. 	 Further, for precise 	

k

	

manufacturing tasks, program specifications may be complicated and 	 p

difficult to determine. Automatic planning seeks to generate these

	

programs by computer, and so to employ the advantages of speed and 	 ^;y

accuracy when faced with new tasks, as well as to free human labor for

design and creative use.

The goal of automatic planning in artificial intelligence is the

generation of a sequence of instructions that will transform the

initial state or set of initial states of some well-defined

environment into a desired final state (or any one of a set of final

states). The set of allowable instructions at any given point is

2
Nh

restricted by whatever conditions or constraints have been placed on

the problem and by the particular configuration of the environment at

that point.

Historically, this type of planning has dealt with blocks world

kinds of applications, in which the various objects in an environment

and their relationships to each othor could be described by English
	

I ^

words or sentences. (Nilsson, 1980), We are seeking to augment this

body of work by greatly increasing the complexity of both objects and

rslationship .s, and so to be able to operate on real NASA hardware.

A considerable amount of research related to the area of

automated strategy planning has been published. An overview touching

on the topics of world modeling, task specification, symbolic spatial

relationships, and grasp planning may be found in Robot Motion (Brady,

et al., eds., 1983). The problem of knowledge representation schemes

for solid objects has been addressed by Requicha (1980), and

Lozano- Perez (1979, 1983) has written on the problem of planning

motions through obstructed sp p.ce.	 Boyse (1979) has investigated

interference detection in a geometric modeling environment. An

interesting system similar to the present project but with its

principal emphasis on graphics simulation is described in Developments

in Robotics 1983 (Bonney, M . C. et al., 1983). The strategy planner
	 .'

is part of and an extension to the work previously published by

Premack, et al. (1984).

3

strategy Planner

The design of the strategy planner incorporates two basic areas:

a knowledge representation for the data -p	 - geometric descriptions of

space-filling, three-dimensional parts of spacecraft; and a software

e system to perform the plan generation.

Knowledge Representation

	

Key to the success of the strategy planner is the method of 	 j

j	 storing	 the large amount of geometrical, spatial, and logical

i	 knowledge available about the spacecraft under consideration.

i
Context-Free Grammar Representation

Many schemes have been developed for representing and storing

information about mechanical parts, including detailed drawings with

annotations of dimension, material, and the like to the databases of

various computer-aided design systems, with their capabilities for

graphics display and calculation of physical characteristics.

has proven to

planner.	 The

3 objects as a

The primitives

parts can be

the method of

We have developed a knowledge representation that

have a number of . advantages 'for the strategy

representation defines three-dimensional, space-fillip,

set of primitive shapes combined in a tree structure.

are the simple building blocks with which complicated

constructed,	 and	 the	 tree	 structure	 defines

construction.

4 C

t th

5

M-

one basic type of primitive solid is represented, that of an

arbitrary	 planar area swept along a path.	 From this general

representation, we have chosen two subcases:	 solids of linear

extrusion (or "lexsolids"), and solids of revolution (or "revso].ids").

A lexsolid is defined	 by	 a	 two-dimensional	 curve	 and	 a

three-dimensional vector. The curve, which must be closed, bounded,

planar, convex and non-self-intersecting, is moved from its original

position along the direction of and for the extent specified by the

vector. The result is a space-filling shape; cylinders and cones are

examples. See Figure 1 for an example of a].exsolid.

Similarly, a revsolid is defined by a curve, a line, and two

angles. The curve, which in addition to the above restrictions must

be coplanar with the line, is revolved about the axis defined by the

line from the first angle (the starting position) to the second angle

(the ending position). 	 Again, a space-filling shape is defined;

cones and toruses are examples.	 (Note that a cylinder could be

defined as either a lexsolid or a revsolid).	 See Figure 2 for an

example of a revsolid.

We allow two types of two-dimensional curves in defining these

primitives: polygons composed of an arbitrary number of straight

lines; and conic arcs (of which circles are the most common special

case).

i

IN	 ,

l
a

V r i

Polygons are defined as a list of coplanar lines, and each line

is defined by two three-dimensional vectors, the first its starting

point and the second its ending point. The lines are arranged in

order so that the starting point of one line is coincidental with the

ending point of the preceding.

Conic arcs are defined

parabola, or hyperbola, and

the curve. The location of

the "locus". since circl

been adapted that gives the

by a type, which is one of ellipse,

six coefficients which define the shape of 	 d
1

the curve is defined by a vector called

3s are so commonly used, a special form has
r'

center and radius of the circle directly.

	

The shapes defined by the primitives are combined into the 	 E'

required part through the use of Boolean operators in a binary tree.
E

	At each level of the tree, two "subparts" are related by the	

ioperations of union, intersection, or difference. In the first two

cases, either or both subparts may themselves be complicated objects

defined by trees. The union comprises all points in either subpart or

	

common to both; the intersection comprises only those points common 	 .y
i

to both subparts. In the case of difference, the first subpart may be

a tree but the second must be a primitive within the first.	 The	 II11
r

defined object consists of all points in the first subpart except

those within the second. See Figure 3 for examples of union and

difference operations.

Y

6	 ^"

The entire knowledge representation can be listed in the form of

a context •-free grammar.	 The productions for this grammar are given

below. Terminal symbols are underlined; capital letters represent

angular dimensions in radians and small letters represent real-valued

dimensions. A complete "partlist" designates all those parts in a

single assembly.

partlist --> part,partlist; part

part --> boolean(part,part); difference (part,subpart);

subpart i

subpart --> lexsolid(curve , x,y,z); revsolid(line,curve,A,B)
u

curve --> circarc(center. (x,y,z),radius(r)); 	 j
t

conicarc(type (type),coefficients (a,b,c,d,e,f),

locus (•x,y,z));
(

polygon(linelist)
I

linelist --> line , linelisf-; line

line --> line (start(a,b,c),end (d,e,f))	 q

boolean -- > union; intersection

type -- > ellipse; parabola; hyperbola

a

(A,B) --> (real angles in radians;

7	 ^^ ?,

3.

(a,b,c,d,e, k, x,y,z) --> (real dimensions)

Figure 4 shows some examples from the Prolog implementation of

the above context - free grammar.

This form of knowledge representation allows the specification of

a large universe of complex geometries from a few simple primitives.

The bulk of the information is logical rather than mathematical, and

this means that executions of computAtionally time-consuming

mathematical algorithms may be kept to a minimum in favor of faster

logical algorithms. In addition, these Prolog data structure

definition formats lend themselves well to the type of recursive

search we use to perform strategy planning, and provide a database

that, in contrast to that of many CAD systems, is easily readable and

editable by a human.

Initial Graphics Exchange Specification
	

i

The input to the strategy planner may in general come from any

computer-aided design (CAD) system;	 the particular input we have
	

^y

chosen to use is in the IGES format. The Initial Graphics Exchange

Specification	 is	 a	 widely	 used	 digital	 representation for	 ,

communication of product definition data. (Smith, 1983). The intent

of the representation is to provide a uniform means f .)r transforming

data directly from one CAD system to another, without having to

manually	 reenter information from blueprints and other printed

documentation. The original IGES representation has been extended to

8
+,.

. UP

i

incorporate additional means for describing solid shapes in the IGES

Experimental Solids Proposal. (Smith, 1984).

Both the original representation

extension contain a large number

constructs, providing for geometrical

virtually any three-dimensional de

annotation data, dimensions, leader

relations.

and the solids specification

of "entities" or informational

constructs capable of describing

sign, as well as such things as

lines, and various sorts of
	

d
r

a

We have found it useful to choose a subset of these many entities

and to require that each IGES database input to the strategy planner

contain only these entities. This subset of entities conveys purely

geomGt?', information, and corresponds closely to parts of our

knowledge representation. Transmission of special information about

particular parts of a spacecraft is also possible.

Specifically, the entities are: circular arc, composite curve,

conic arc, line, transformation matrix, Boolean, solid of linear

extrusion, and solid of revolution.

With the use of the IGES representation as the input medium to

the strategy planner, we have gained the advantage of access to the

databases of many CAD systems,	 at the relatively small cost of

translating the IGES database into a format more immediately

well-suited to the task at hand. See Appendix B for an example of the

IGES definition format.

9

1t^0

r. ,..

software

The software system in the strategy planner comprises algorithms

which perform the following operations:	 +

• ingest the CAn geometric descriptions and translate these

descriptions into the new knowledge representation

• execute the search procedure to find the disassembly or
I

assembly sequence

• limit the search with the use of heuristics

• ^.etermine the feasibility of suggested operations on the

database of part descriptions

• manipulate this database as the search progresses

	

Two examplez of strategy planner Prolog code are given in 	
f

Appendix D.	 In addition, see Appendix A for an example of the

software's - operation.	 r

Ingest

The first part of the strategy planner software translates the

incoming IGES database description of the assembly into the

context—free grammar construction that will be used by subsequent

procedures.

10
I^

The code to "ingest" the IGES data is fairly complex, as a number

of conceptual changes must be made. As seen by the strategy planner,

a subject spacecraft exists in a single Cartesian frame of reference,

with each of its constituent parts defined by solid primitives

connected by Boolean operators as described above. All, parts are

explicitly described, so that the database is straightforward, and

operations on it as a whole or in part are simple to implement and

record. In IGES, on the other hand, the requirements of ease in entry

prevail, so that each solid primitiv< and each defining planar curve

are in general located within their own frames of reference.

Connections between them are recorded in transformation matrices,

describing the manipulations required to locate each entity within the

overall design. Once defined, entities may be called repeatedly and

situated with different transformation matrices. Also, Boolean

connectives are defined in reverse Polis". notation and are not

integrated into the descriptions.

The operations of the ingest software are:

1. to translate each curve and solid primitive from the IGES

representation to the context-free grammar representation

2. to explicitly define each primitive and complex part

3. to apply all the (possibly accumulated) scalings, rotations,

and	 translations	 contained in the IGES transformation

matrices to locate the entire spacecraft in one frame of

reference

:

j

4, tc incorporate the Boolean logical data in the intrinsic

fashion of the context-free grammar representation

See Appendix B for an example IGES to context-free grammar

transformation.

Once the IGES data has been ingested, the strategy planner may

begin its search procedure.

Search Procedure

Given the completely specified description of the assembled

spacecraft, the strategy planner has the task of producing a sequence

of robot instructions for assembling, disassembling, or repairing

(involving partial disassembly and reassembly) the spacecraft, as

required. If we ex:;lude the possiblity of "irreversible" operations

(that is, those caused by a force unknown to the robot, such as the

expansion of a spring or an unexpected change in position of one or

more parts due to g-ravity), then an assembly sequence may be thought

of as the reverse of a disassembly sequence. This is the approach we

have chosen; its advantages may be seen from the following rationale.

If the assembly task is approached directly, then the search's

start state must be an arbitrary selection from an infinity of

possible start states (all configurations of parts in which the

spacecraft is disassembled), and the search must result in only one

final state, that of completed assembly. The steps of the search are

not guided by any obvious constraints; furthermore, the final state

12
	

I e'

^W ._Y^3..• . ,1:d.1^.^A.1.`.^'l^^ "`tJ Clu ^. ^--. ... r .. 	 .	 T	 ..-.	 _.	 ..-.^<.r... ...

may not be reachable from all possible start states, so that the

completion of .:he search is not guaranteed.	 The situation is

different when the disassembly task is considered. Here the start

state is the assembled configuration, and each step of the search

(individual part manipulations) is highly constrained. Although there

are now an infinite number of final states (configurations of total

disassembly) they may be linked by this criterion: determine an

enclosing boundary (such as a cube) for the entire assembly; when all

parts have been removed to positions outside this boundary, then an

allowable final state has been reached. With the use of exhaustive

depth-first search in the tree (modeled naturally by the Prolog

backtracking construct) a solution is guaranteed to be found if it

exists.

The method of the strategy planner, then, is to determine a

partial or complete disassembly sequence, and reverse it if required.

To make the search both possible and efficient, the algorithms

mentioned above have been written. They are underlined in the

following description of the execution of the search procedure, and

are later described in detail.

1. Choose a direction for approach of the robot to the

spacecraft based on principal axes, determine the rotation

needed so that the chosen direction points to the conceptual

front, and store the rotation information for later use in

determining a reversed assembly list, if required.

13
	 S

2. Find the envelopes for each part remaining in the assembly

based on the current direction of approach.

3. Determine the visibility of all parts from this direction, 	 i

and try to remove those which are visible, frontmost first,

using information stored as previous experience.

4. Find a gripping position on the first part whose removal is

to be attempted using the appropriate tool, and determine

whether a trajectory for the robot and tool from outside the

enclosing boundary of the spacecraft to that position can be

accomplished. Using the interference algorithm, treat the

sections of tool and robot that will enter the houndary using

the determined trajectory as a new "part", and verify that

the tool and robot can approach and grip the part.

5. To determine whether or nct the chosen part can be removed

along the chosen trajectory, first use the extrusion

algorithm and then the interference algorithm to see which,

if any, of the other parts in the assembly will prevent this

part's removal.

6. If the part can be removed successfully, perform the movement

of the part to a position outside the boundary of the

assembly and perform a conceptual removal of the part by

retracting all references to it in the database. Continue by

attempting to remove the next part.

14
	

t

7. If the part cannot be removed, store the reason for failure

as previous experience and decide whether to attempt to

remove the same part along a different trajectory, or to

attempt to remove another part first.

8. Continue in this fashion until total disassembly is achieved,

at .which time reverse the procedure for disassembly to

produce a procedure for assembly, if required.

U
It may be noted that the above search procedure is really a

recursive search, since after each part removal, a new, smaller

spacecraft remains to be disassembled. Ths end of the search occurs

when the list of parts remaining to be removed is empty. The search

is not purely recursive, however, because one of the heuristics

involves recalling experience gained previous to the current search

step.

Heuristics

Four heuristic algorithms are employed to guide and limit the

search:

Principal Axes

Envelopes

Visibility

Previous Experience

15

These algorithms help to make each choice in the search procedure

a good or at least reasonable one, since at many points an infinity of

possibilities is present.

The principal axes of a part are those vectors that form

significant direction lines in the part and along which it is likely

to be possible to remove the part from the entire spacecraft. For

example, a bolt represented as a cylinder has as its principal axis

the vector down the renter of the cylinder, and is most likely to be

removed along the trajectory that is this vector. This heuristic is

also used to choose directions along which the robot should approach

the spacecraft; a direction that is one of the principal axes of many

parts is better than one of only a few.

Principal axes are determined for each part by the following

procedure:

1. get the vector of extrusion for each solid of linear

extrusion, get the axis of revolution for each solid of

revolution, get the lines of a polygon, and get the bisecting

line(s) of an ellipse, parabola, or hyperbola

2. order the resulting list of axes by length (longest first and

most likely) and number (most axes in the same direction; a

plate with many bolt holes will have many axes in the

direction of the cyliodrica:. holes and will most likely be

removed along that direction)

I^.y

16

The procedure results in at least one axis for each part, but it

does not mean that removal is possible along that axis. If necessary,

axes may also be determined from the envelope of a part.

Part envelopes are simply rectangular boxes that completely

enclose each part and are always oriented along the current Cartesian

coordinates. The collection of envelopes thus becomes a rough "blocks

world" approximation of the spacecraft. since computations with

envelopes are much simpler and faster than computations with the

original parts, the envelopes are very useful in determining first

approximations to part choices and removal strategies, and in limiting

the number of interactions that must be investigated between actual

parts.

Envelopes are stored for each part as the greatest and least

extent in each of the three Cartesian coordinates. They are

calculated by the following algorithm:

1. If the part is the union of two subparts, get the envelope of

each subpart and take, for each coordinate, the greatest of

the greater and the least of the lesser value.

2. If the part is the intersection of two subparts, get the

envelope of each subpart and take, for each coordinate, the

least of the greater and the greatest of the lesser value.

n

17
	

S
^k

18

3. if the part is the difference of a subpart and a primitive,

get the envelope of each and determine the correct overall

envelope based on the relative positioning of the primitive

within the subpart (usually the envelope is the same as the

subpart's).

4. For a solid of linear extrusion, first translate the solid so
I

that a convenient point in the planar curve is located on the

origin of a Cartesian coordinate system. 	 Now rotate the
ti

solid so that the vector of extrusion is collinear with the
j

X-axis. Determine the envelope by taking the dimensions of a I
rectangle circumscribed around the planar curve in the Yz

)
plane and the length of the vector of extrusion. Now rotate

the envelope back to the original orientation of the part and

determine the new maximal and minimal values for each of the

three coordinates. Finally, reverse the first translation

and the envelope has been calculated.

5. For a solid of revolution, first translate the solid so that

the axis of revolution intersects the origin of a Cartesian

coordinate system. Second, rotate the solid so that the axis

of revolution is collinear with the X-axis. Third, translate

the solid again so that a convenient point of the planar

curve is on the Z-axis. Determine maximal and minimal points

of intersection on the z and X axes (the Y axis is the same
I

as the Z) and as above, relocate the envelope to the original

part position.

once envelopes have been calculated for all parts, the visibility

heuristic may be determined. If a human were given the task of

attempting to remove parts from a given face of an assembly, he would

	

of course use vision to decide which parts were accessible for 	
f

touching, and which of these were closest to him and therefore good

candidates	 for removal.	 The visibility heuristic mimics these
a

attributes of vision by determining which part envelopes are not
I

obstructed by other part envelopes from a given direction. The

algorithm works as follows:

1. order the envelopes based on greatest extent in the chosen

direction (so that the frontmost envelope is first).

2. starting with the frontmost envelope, 	 determine	 which

envelope	 faces	 are	 completely obstructed, and hence,

invisible. If an envelope face is only partially obstructed,

divide	 the remainder into rectangles and continue the

process.

3. The result is a list of part envelopes with visible faces, 	 ,.

ordered from the front.

1	 I

	The last heuristic used in the search procedure is that of 	 1 ,i

previous experience.	 If a chosen part cannot be removed along a

	

chosen trajectory, the precise reason for the failure (as determined 	 ^I a

by the interference algorithm) is marked in the database. If another

search step should be tried involving this part, the information

stored will be used again to limit the search.

19
	

t

^h

^,	 a
1	 a

For example, consider a simple peg composed of two cylinders in a

j	 block with a hole. If an at_empt is made to move the peg sideways,

the lower cylinder will interfere with the block., A notation is made

of this result, such as "subpart —4 block-1 (0.15E+0110.0,0.0)"

indicating that interference occurred between two primitives when the

first was moved along a particular trajectory. This information can

be used in a number of ways: this particular combination should not

ba tried again unless one or both parts have first been moved in other

I	 ways; shorter trajectories in the same direction are probably not as

I
^ good candidates as are trajectories in other directions; any

manipulation of higher-level parts of which these primitives are

subparts should investigate the interaction of these subparts first,

j	 as they are known to have caused interference before.

Algorithms of Feasibility

These are the algorithms that decide whether or not a given

search step can be successfully executed. There are numerous problems

that may be encountered if an arbitrary part is proposed for removal

along an arbitrary trajectory, The geometry of the part itself may 	 +

prevent removal in this fashion, other parts may need to be removed

first (such as is the case with a bolted plate), or one or more other

parts may be in the path of the proposed trajectory.

To treat all of these cases we use a combination of two

algorithms	 -	 extrusion	 and	 interference.	 When	 a proposed

part-trajectory pair has been chosen, the 	 extrusion	 algorithm

4
20
	

ylr

1J

calculates the greatest cross-sectional area of the part along the

axis defined by the trajectory vector. This area now becomes a planar

curve and the trajectory vector an extrusion vector in the creation of

a new conceptual solid of linear extrusion. This new "part" contains

all of the three-dimensional points that will be uccupied by the

actual part as it passes along the removal trajectory -- the entire

volume swept during removal.

After the new solid defining the extruded original part has been

determined, the interference algorithm operates. This algorithm

decides whether or not the new solid "interferes" with any actual part

in the geometric database; interference oG:urs when two solids occupy

the same space. If any interference is encountered, then the chosen

part cannot be removed along the proposed trajectory, as it would run

into another part during the process.

As a first check, the interference algorithm is run on the

enclosing envelopes of the parts to determine which, if any, parts

need to be more closely investigated. Following this, the algorithm

takes the description of each actual part in turn and compares it to

the description of the new extruded "part". If an interference is

found, the proposed removal is deemed unsuccessful, and the reason for

failure is stored in the database.

The interference algorithm operates at its basic level with

solids of linear extrusion formed from convex curves. Because these

space-filling objects axe also convex, it is possible to determine

whether	 or	 not they have any points in common (they cannot

d

i

j
f
i

I	 1

s

i
i

i

!I
N

21
	

1.6

ff
♦
yy,

,.. OV

"intertwine" or be " hidden" within each other). The tree structure o:

Boolean operators combines these primitives to form complex parts.

The interference algorithm decomposes them as follows:

1. if the parts are buth primitives, compare them for common

points.

2. I£ one or both parts are defined by the union operator, make

comparisons between each pair of subparts. 	 A case of

interference in either, defining subparL will also indicate an

interference with the union.

Algorithms of Manipulation

There are three of these algorithms; they are needed to effect

changes to tl'— geometric database as the search proceeds and as parts

are removed:

Rotation

Movement

Removal

I

I

For simplicity in calculations, removal trajectories are always

assumed to be on the line from the current front face of the

spacecraft towards the robot, and the robot arm is assumed to be fixed

in this location. (This need not actual),y be the case; it is only

assur.!,9 for convenience). This means that the strategy planner must

be able to rotate its view of the database and so be able to approach

22 S
^h

^N

it from any angle in space. The rotation algorithm accomplishs this

task. Starting from the top of the tree structure in the database

(the "partlist"), it rotates each part, subpart, and planar defining

curve in turn.

When a successful part-trajectory removal pair has been

determined, the movement algorithm calculates the actual path of

mrtion for the part from its assembled location to its new location

outside the boundary of the spacecraft. The conceptual removal of the

part from the database is performed by the removal algorithm which,

beginning from the top of the part definition, retracts all references 	
a

to it and its constituent defining entities, together with any	 w
I

notations that may have been made about it as previous experience. 	 I }

Conclusions and Future Work

The strategy planner described in this report has been designed

and partially implemented in Prolog with the goal of automatically

producing plans of robot commands for the assembly, disassembly, or

repair of NASA spacecraft hardware. Successful results have been

obtained for assembly and disassembly sequences for several test

cases, including the blocks model with nonnecting bolts described in

Appendix A. The chosen knowledge representation has shown itself to

be well-suited to the task, and the fundamental algorithms have proven

to be useful and efficient.
A

Y

23

^h

;F.

Future work on the strategy planner will involve extbnding

existing Prolog code hn cover the universe of options already

designed, including the following specific objectives:

• operate on solids of revolution

• allow the use of conic arcs in planar curve definitions

• incorporate robot and tool information to include the

calculation of tool placement and robot motion trajectories

to the basic part trajectories

• allow curved and multi-path part trajectories

• extend the interference algorithm to operate correctly with

the Boolean intersection and difference operators

• provide an algorithm to automatically decompose composite,

concave planar curves into simple, convex curves

• incorporate lists of part attributes as special knowledge to

further aid the search procedure

• develop a more sophisticated visibility heuristic
	

that

operates on actual parts rather than on envelopes

l

24

Figures

7/ ff
lexsolid (curve 1,1.0 , 1.0 1 1 0)

curve l (polygon (jline T,line 2,line 3,line A]))
ling_1(start (1.0,0.U,0 . 0),Fnd (0.0,—O.O,O.'d))

Figure 1

This figure displays a picture of a solid of linear
extrusion (lexsolid) together with the actual Prolog
code which defines it in the database. (Only line-1 is
shown; the other lines are defined similarly).

i

revsolid(line_5,curve 2,0.0,0.0)

Figure 2

A cone defined as a solid of revolution (revsolid).
Equal starting and ending angles indicate that one
complete revolution is desired.

i

quif ff =21
block l(difference (subblock l,hole 1)')

block_2 (union(subblock_2,subblock 3))

Figure 3

Two parts defined as primitives connecte? by Boolean
operators. Note that each of these parts could in turn
become subparts within other definitions.

25

.1

^h

partlist([lbolt_l,base,sbolt_2 1).

base(difference(subpart 1,bolthole1),
envelope(1.0,3.Y,4.0,6.0,3_ 2,6.0),
attributes(...)).

bolthole l(revsolid(line l,curve 2,1.0,3.0),	 j

envelope(-11.0,2.0,3.0,-1.0,5.0,6.0)). 	 t
f^

subpart_l(lexsolid(curve 111.0,1.0,3.0),
envelope(1.0,2.0,1.0,3.0,4.0,3.0)).

curve 2(circarc(center(0.0,0.0,0.0),radius(5.0))).

curve- 1(polygon([line_2,line_3,line_4))).	 j

line l(start(1.0,0.0,0.0),end(5.0,1.0,0.0)).

MI

Figure 4	 1

A sample implementation of the context-free grammar representation for
space-filling objects. Note the use of Boolean operators in a tree
structure, the use of unique names for each entity, and the inclusion
of envelopes for parts and subparts and attributes for parts.

26
	 3

I	 I
I	 I

I
I	 I

I	 I
I	 I

L--i
I

I	 II
LJ

`J

N------ sbolt 5

I	 I	 '
1

I	 ^yl
I

I	 II	 I
1

1	 1 '	

I

^sbolt 4^sb'olt 3

F-7 overhang

base

rlbolt_1 ^lbolt_2

l► I I^i► I
I

	

sbolt - 1	 I	
(Isbo t_2

	

—	 ^	 1	 I

l	 topblock	 I	 I

I	 I	 I	 I	 I	 I
I

L_J

sidebloc-

inbl ck
I

Figure 5

Mechanical Drawing of Blocks Model

27

1

!^ y
-ti

u

9

l

1

28 S
yh

.d

Appendix A: Blocks Model Example

^I

As an example of the actual use of the strategy planner, we

present some of the internal data generated during operation on a

blocks model designed for the purpose of testing the strategy planner.
i

Appendix C presents the actual output from the strategy planner for

the entire model.

Figure 5 shows four different views of

labels each piece with the name used b

distinguish parts. The primitives used are

extrusion; bolts are composed of the union

blocks are created from the difference of

cylinders representing the bolt holes.

the blocks model, and

Y the strategy planner to

all solids of linear

of two cylinders and the

rectangular solids and

Following the descriptions of the search procedure together with 	 E

associated algorithms given above, the strategy planner works in this

manner:

1. A determination of principal axes of each part is made; 	 an	 4.j

analysis of the length and relative numbers of these axes

indicates that the top of the model will be a promising face

to first approach with the robot.

2. The rotation needed to bring the top of the model to the

front is calculated and stored.

3. The visibility algorithm is run (using envelopes), resulting

in a list of visible parts from the front ordered by

proximity to the robot:	 (lbolt_1,	 lbolt_2,	 overhang,

sbolt_2,	 topblock,	 base,	 sideblock, sbolt_3, sbolt_4,

sbolt 5). Note that "inblock" and "sbolt_1" do not appear.

'i

4. The first part in this list is chosen as a good candidate for

removal. Thus "lbolt 1" is extruded along its principal axis	 t

(towards the front) and the interference algorithm is run	 1,

with the new extruded part and neighboring parts. 	 i!!

^I

5. Having determined that "lbolt_1" can in fact be removed, all

references to it in the database are retracted by the removal

algorithm, and the removal trajectory is calculated and

stored.

6. The strategy planner corkinues in this fashion, removing

successfully in turn 11 1bolt_2 11 , "overhang", and "sbolt 2".

Note that after each removal the visibility algorithm is run

again, so that when."overhang" is gone, 11 sbolt_1" will become 	 ;.

visible and hence a candidate for removal.

7. After the planner has exhausted the possibilities from the

first direction of approach (it will have unsuccessfully	 i

attempted to remove "sideblock" and "sbolt 3,	 sbolt 4,

sbolt_5") it goes to the next best principal axis, rotates,

and begins again.	
II

29
,ry

m

8. When all parts have been removed, the information stored

during execution is concatenated into a disassembly list. If

required, this list is reversed step by step into an assembly 	 i

list.

I

30
	

^h

Appendix B: IGES and Context-Free Graimnar Part Specifications

This example displays first the IGES and then the context-free

grammar representation for the part labeled "sideblock" in the blocks

model of Figure 5.

The IGES representation is divided into two parts: the directory

section, with entries labeled "D"; and the parameter section, with

entries labeled "P". Directory entries serve as pointers into the

parameter section, where numerical values are stored. Parameter

entries are coded by number: 408 is an instance of an entity

described under 308; 124 is a transformation matrix which may rotate

and translate an entity in space; 180 is the entry storing Boolean

operator information; the other entries store geometric entities.

124 1 1 1 0 0 0 D 1
124 0 0 2 0 0 0 D 2
164 3 1 1 0 0 1 D 3 i'I
169 0 0 1 0 0 0 D 4
124 1 1 0 0 0 D 5
124 0 2 0 0 0 D 6
100 6 1 1 0 0 5 D 7
100 0 0 1 0 0 0 D 8 ''^ yl
308 7 1 1 0 0 0 D 9 5
308 0 0 1 0 0 0 D 10
124 69 1 1 0 0 0 D 103 1

124 0 0 2 0 0 0 D 104
164 71 1 1 0 0 103 D 105
164 0 0 1 0 0 0 D 106
102 72 1 1 0 0 0 D 107
102 0 0 1 0 0 0 D 108
110 73 1 1 0 0 0 D 109
110 0 0 1 0 0 0 D 110
110 74 1 1 0 0 0 D 111
110 0 0 1 0 0 0 D 112
110 75 1 1 0 0 0 D 113
110 0 0 1 0 0 0 D 114
110 76 1 1 0 0 0 D 115
110 0 0 1 0 0 0 D 116

31

124	 77	 1	 1	 0 0	 0 D 117
124	 0	 0	 2	 0 0	 0 D 118
408	 79	 1	 1	 0 0	 117 D 119
408	 0	 0	 1	 0 0	 0 D 120
124	 80	 1	 1	 0 0	 0 D 121
124	 0	 0	 2	 0 0	 0 D 122
408	 82	 1	 1	 0 0	 121 D 123
408	 0	 0	 1	 0 0	 0 D 124
180	 83	 1	 1	 0 0	 0 D 125
180	 0	 0	 1	 0 0	 0 D 126
308	 84	 1	 1	 0 0	 0 D 127
308	 0	 0	 1	 0 0	 0 D 128
124	 160	 1	 1	 0 0	 0 D 255
124	 0	 0	 2	 0 0	 0 D 256
408	 162	 1	 1	 0 0	 255 D 257
408	 0	 0	 1	 0 0	 0 D 258

124,1.000,0.0,0.0,0.0 1 0.0,1.000,0.0,0.0,0.0,0.0,1.000, 1P 1
0.0,0 0 0; 1P 2
164,7 1 0.0,-1.000,0.0,0,0; 3P 3
124,1.000,0.0,0.0,0.0,0.0,0.0,1.000,0.0,0.0, 5P 4
-1.000,0.0,0.0,0,0; 5P 5
100,0.0,0.0,0.0,0.2500,0.0,0.2500,0.0,0,0; 7P 6
308,O,BHOLE1,1,3,0,0; 9P 7
124 1 1.000 1 0.0,0.0,0.0,0.0,1.000,0.0,0.0,0.0,0.0,1.000, 103P 69
0.0,0,0; 103P 70
164,107,0.0,0.0,2.000,0,0; 105P 71
102,4,109,111,113,115,0,0; 107P 72
110,0.0,0.0,0.0,5.000,0.0,0.0,0,0; 109P .73
110,5.000,0.0,0.0,5.000,1.000,0.0,0,0; 111P 74
110,5.000,1.000,0.0,0.0,1.000,0.0,0,0; 113P 75
110,0.0,1.000,0.0,0.0,0.0,0.0,0,0; 115P 76
124,1.000,0.0,0.0,0.0,0.0,1.000,0.0,0.0,0.0,0.0,1.000, 116P 77
0.0,0,0; 116P 78
408,9,1.000,1.000,1.000,1.000,0,0; 119P 79
124,1.000,0.0,0.0,0.0,0.0,1.000,0.0,0.0,0.0,0.0,1.000, 120P 80
0.0,0,0; 120P 81
408,9,4.000,1.000,1.000,1.000,0,0; 123P 82
180,2,3,2,5,2,3,105,119,123,0,0; 125P 83
308,1,SBLOCK,4,105,119,123,125 1 0,0; 127P 84
124,1.000,0.0,0.0,0.0,0.0,0.0,-1.000,0.0,0.0, 254P 160
1.000,0.0,0.0,0,0; 254P 161
408,127,0.0,3.000,4.000,1.000,0,0; 257P 162

32

;;b

The context -free grammar representation explicitly names each

entity in the part description. Note that the Boolean data is

intrinsically incorporated.

sblock_l(difference(subpart_10,bholel 9)).

subpart_10 (dif£erence (subpart_9 , bholel_8)).

subpart9(lexsolid(curve_10,0.00E+00,-(0.20E+01),
—0.00E+00)).

curve_10(polygon([line_9,line_10,line_ll,line_121)).

line_9(start(O.00E+0000.3OE+01,0.40E+01),
end(0.50E+01,0.30E+01,0.40E+01)).

line_10(start(0.50E+01,0.30E+01,0.40E+01),
end(0.50E+01,0.30E+01 , 0.50E+01)).

line_11(start(0.50E+01,0.30E+U1,0.50E+01),
end(O.00E+00,0.30E+01,0,50E+01)).

line_12(start(O.00E+00,0.30E+01,0.50E+01),
.end(O.00E+00,0.30E+01,0.40E+01)).

bholel 8(lexsolid(curve_11,0.00E+00,0.00E+00,
(O.l0E+01))).

curve_11(circarc(center(0.10E+01,0.20E+01,0.50E+01),
radius(0.25E+00))).

bholel_9(lexsolid(curve 12,0.00E+00,0.00E+00,
-(0.10E+01))).

curve 12(circarc(center(0.40E+01,0.20E+01,0.50E+01),
radius(0.25E+00))).

33
	

^n

Appendix C: Strategy Planner Output

Listed is the output of the strategy planner when run on the

blocks model of Figure 5 and Appendix A.

The requested operation was assembly; for each individual part,

a vector and part description are given. The description locates the

kart at its initial position. When moved along the preceding vector,

the part will be correctly assembled into the device.

(-(0.525E+01)10.00E+00,0.00E+00)

base 1(difference(subpart_8,ninblock 1)).
subpart 8(difference(subpart_7,bholeT_7)).
subpart7(difference(subpart_6,bholel6)).
subpart__6(difference(subpart5,bholel_ 5)).
subpart_5(difference(subpart_ 4,bholel-4)).
subpart_ 4(difference(subpart 3,bholel-3)).
subpart 3(difference(subpart_2,bholel-2)).
subpart— 2(difference(subpart l,btiolel -1)).	 `P
subpart_l(lexsolid(curve_1 1 0-00E+00,0..00E+00,	 !

0.40E+01)).
curve 1(polygon([line l,line 2,line 3,line 41)).)
line_1(start(0.525E+OT,O.00E+00,0.00E+00),—

end(0.1025E+02,0.00E+00,0.00E+00)).
line_2(start(0.1025L+02,0.00E+0010.00E+00),

end(0.1025E+02,0.50E+01,0.00E+00)).
line_3(start(0.1025E+02,0.50E+01 10.00E+00),'` v

end(0.525E+01,0.50E+01,0.00E+00)).	 1

line_4(start(0.525E+01,0.50E+01,0.00E+00),
end(0.525E+01,0.00E+00,0.00E+00)).

bholel_l(lexsolid(curve_2,C.00E+00,-(0.10E+01),
O.00E+00)).

curve_2(circarc(6enter(0.625E+01,0.50E+01,0.10E+01)1
radius(0.25E+00))).

bholel_2(lexsolid(curve_3,0.00E+001-(O.10E+01),
0.00E+00)).

curve_3(circarc(center(0.625E+01,0.50E+01,0.30E+01),
radius(0.25E+00))).

bholel_3(le:csolid(curve_4,0.00E+00,-(0.10E+01),
0.00E+00)).

curve_4(circarc(center(0.925E+01,0.50E+01,0.10E+01),
radius(0.25E+00))).

bholel 4(lexsolid(curve 5,0.00E+00,-(0.10E+01),

34
^h

O.00EI•00)) ,
curve_5(circarc(center(0.925E+01,0.50E+01,0,30E+01),

radius(0.25E+00))).
bholol_5(lexsolid(curve 6,0.00E+00,0.00E+001

-(O,IOR+O1))).
curve 6(circarc (center (0,6258+01,0.20E+01,0,40E+01),

radius(0.25E4,00))).
bholel_6(lexsolid (curve 7,0.00E+00,0.00E+00,

-(0.10E+01))).
curve 7(circarc (center (0.925E+01 , 0.20E+01,0.40E+01),

radius(0.25E+00))).
bholel 7(lexsolid(curve_8,-(O.l0E+O1),O,OOE+00,

O.00E+00)).
curve 8(circarc(center (0.925E+01,0 . 20E+01,0,20E+01),

radius(0.25E+00))).
ninblock l(lexsolid(curve 9,0,00E+00,-(0.20E+01),

0,00E+00)).
curve 9(polygon((line 5,line 6,line 7,line 81)).
line '' (start(0.925E+OT,0 . 30E+01,0.3UE+01),

end(0.925E+01,0.30E+01,0.10E+01)).
line_6 (start(0.925E+01,0 . 30E+01,0.10E+01),

end(0.1025E+02,0.30E+01,0.10E+01)).
1'ne 7 (start (0.1025E+02,0.30E+01,0.10E+01),

end(0.1025E+02,0.30E+01 , 0.30E+01)).
line 8 (start(0.1025E+02 , 0.30E+01,0.30E+01),

end(0.925E+01,0.30E+01,0.30E+01)).

(-(0,125EE+01),O.00E+00rO,OOE+00)

inblock l(difference(subpart_ll,bholel 10)).
subpart_11(lexsolid(curve 13,0,00E+00,-(0,20E+01),

0.00E+00)),	 -
curve 13(polygon((line 13,line 14,line 15,line 16))),
line_T3(start(0.525E+OT,0,30E+01,0.30E+01),

end(0.525E+01,0.30E+01,0.10E+01)).
line_14(start(0.525E+01,0.30E+01,0.108+01),

end(0.625E+01,0.30E+01,0,10E+01)).
line_15(start(0,625E+01,0.30E+01,0.10E+01),

end(0.625E+01,0.30E+01,0.30E+01)).
line_16(start(0.625E+01,0.30E+01,0.30E+01),

end(0.525E+01,0.30E+01,0.30E+01)).
bholel 10(lexsolid(curve 14,-(0.10E+01),O,00E+00,

0.00E+00)).	 -
curve_14(circarc(center(0.625E+01,0,20E+01,0.20E+01),

radius(0,25E+00))).

(-(0.225E+01),O.00E+OO,O,00E+00)

sbolt 5(union(subpart_29,subpart 30)).
subpart_29(lexsolid(curve_34,0.2*^E+00,0,00E+00,

35	
ti
N,.

0,00E+00)).
curve 34(circarc(center(0.725E+01,0.20E+01,0.20E*O1),

radius(0.375E+00))).
subpart 30(loxsolid(curve 35,-(0.20E+01),O.00E+00,

—0.00E+00)).
curve 35(circarc(center(0.725E+01,0.20E+01,0.20E+01),

radius(0.25E+00))).

(0.00E+00,0.00E+00,-(0.125E+01))

sblock l(difference(subpart_l0,bholel 9)).
subpart 10(difference(subpart9,bholeT 8)).
subpart_9(lexsolid(curve 10,0_.0"3+00,-T0.20E+01),

0.00E+00)).
curve 10(polygon((line 9,line lu,line ll,line_12))).
line 9(start(O.00E+00,U.30E+OT,0.525E+01),

end(0.50E+01,0.30E+01,0.525E+01)).
line 10(start(0.50E+01,0.30E+01,0.525E+01),

end(0.50E+01,0.30E+01,0.625E+01)).
lino 11(start(0.50E+01,0.30E+01,0.625E+01),

end(O.00E+00,0.30E+01,0.625E+01)).
line_12(start(O.00E+00,0.30E+01,0.625E+01),

end(O.00E+00,0.30E+01,0.525E+01)).
bholel_ 8(lexsolid(curve 11,0.00E+00,0.00E+00,

-(0.10E+01))).
curve 11(circarc(center(O.10E+01,0.20E+01,0.625E+01)

radius(0.25E+00))).
bholel_9(lexsolid(curve 12,0.00E+00,0.00E+00,

-(0.10E+01))).
curve_12(circarc(center(0.40E+01,0.20E+01,0.625E+01)

radius(0.25E+00))).

(0.00E+0010.00E+00,-(0.225E+01))

sbolt 4(union(subpart 27,subpart 28)).
subparh__27(lexsolid(curve 32,O.OU1E+00,0.00E+00,

0.25E+00)).
cti.irve_32(circarc(center(0.40E+01,0.20E+01,0.725E+01)

radius(0.375E+00))).
subpart 28(lexsolid(curve 33,0.00E+00,0.00E+00,

--(0.20E+01))).
curve_33(circarc(center(0..40E+01,0.20E+01,0.725E+01)

radius(0.25E+00))).

(0.00E+00,0.00E+00,-(0.225E+01))
sbolt 3(union(subpart 25,subpart 26)).
subpart_25,lexsolid(curve 30,0.00E+00,0.00E+00,

0.25E+00)).
curve_30(circarc(center(0.10E+01,0.20E+01,0.725E+01),

A
N

36

^I

radius(0.375E+00))).
subpart — 26(lexsolid (curve 31,0 . 00E+00,0.00E+001

-(0.20E+01))).
curve_31(circarc (canter (0.10E+01,0.20E+01 , 0.725E+01)

radius(0.25E+00))).

(0.00E+001-(0.325E+01),O.00E+00)

topblock. l(di.fference(subpart 13,bholel 12)).
subpart T3(difference(subpart 12,bholel-11)).
subpart 12(lexaolid(curve_l5,U.20E+01,0700F+00,

0.00E+00)).
curve 15(polygon((line 17,line 18, line 19,line_201)).
line_T7(start(0.30E+01;0.825E+UI ,0.40E+01),

end(0.30E+01,0.825E+01,0.00E+00)).
line_18(start(0.30E+01,0.825E+01,0.00E-r00),

end(0.30E+0110.925E+0110.00E+00)).
line_19(start(0.30E+01,0.925E+01,0.00E+00),

end(0.30E+01,0.925E+01,0.40E+01)).
line_20(start(0.30E+01,0.925E+01,0.40E+01),

end(0.30E+01,0.825E+01,0.1,0E+01)).
bholel_11(lexsolid(curve_16,0.00E+00,-(0.10E+01),

0.00E+00)).
curvy 16(circarc(center(0.40E+01,0.925E+01,0.30E+01),

radius(0.25E+00))).
bholel_12(lexsolid(curve_17,0.00,E+00,-(O.10E+01),

0.00E+00)).
curve_17(circarc(center(0,40E+01,0.925E+01,0.10E+01),

radius(0.25E+00))).

(0.00E+00,-(0.425E+J1),O.00E+00)

sbolt l(union(subpart 21, subpart 22)).
subpart 21(l p xsolid(curve 26,0.0'UE+00,0.25E+00,

—O.(IJE+00)).
curve_26(circarc(center(0.40E+01,0.1025E+02,0.10E+01),

radius(0.375E+00))).
subpart_22(lexsolid(curve_27,0.00E+00,-(0.20E+01),

0.00E+00)).
curve_27(circarc(center(0.40E+01,0.1025E+02,0.10E+01)1

radius(0.25E+00))).

(0.00E+00,-(0.425E+01),O.00E+00)

sbolt 2(union(subpart 23, subpart 24)).
subpart_23(lexsolid(curve_28,0.00E+0,0.25E+0C,

0.00E+00)).
curve_28(circarc(center(0.40E+0110.1025E+02,0.30E+01),

radius(0.375E+00))).

37	
^h

subpart_24(loxsolid(curve 29,0.00E+00,-(0.20E+01),
0.00E+00)).

curve_29(circarc(center(0.40E+01,0.1025E+0210.30E+01),
i radius(0.25E+00))).

(O.00EF001-(0.325E+01),O.00E+00)
overhang i(difference(subpart 16,ohholel 2)).
subpart T6(difference(subpart 15,ohholel-l)).
subpart_ 15(union(subpart_

_

14,oTiil 1)).
subpart_14(1)xsolid(curve 18,O.b0E+00,-(0.30E+01),

0.00E+00)).
curve 18(polygon((line 21,line 22, line 23, line _24])).
line_21(start(0.00E+00,0.1125E+̀ 02,0 ,40E+01),

end(0.00E+00,0.1125F+02,0.00E+00)).
line 22(start(O.00E+00,0.1125E+02,0.00E+00),

end(0.20E+01,0.1125E+0210.00E+00)).
line 23(start(0.20E+01,0.1125E+02,0.00E+00),

end(0.20E+01,0.1125E+02,0.40E+01)).
line_24(start(0.20E+01,0.1125E+02,0.40E+01),

end(0.00E+00,0.1125E+02,0.40E+01)).
ohl l(lexsolid(curve 19,0.00E+00,-(0.10C+01),_	

O.00E+00)). -
curve 19(polygon((line 25 1 1ine 26,line 27,line 28))).
line_25(start(0.20E+01,0.1125E^02,0.d0E+01),

end(0.20E+01,0.1125E+02,0.20E+01)).
line 26(start(0.20E+01,0.1125E+02,0.20E+01),

end(0.50E+01,0.1125E+02,0.20E+01)).
line 27(start(0.50E+01,0.1125E+02,0.20E+01),

end(0.50E+01,0.1125E+02,0.40E+01)).
line_28(stare.(0.50E1•01,0.1125E+02,0.40E+01),

end(0.20E+Ci3O.1125E+02,0.40F+01)).
ohholel l(lexsolid(curve_20,0.00E+00,0.30E+01,

0.00E+00)).
curve 20(circarc(center(0.10E+01,0.825E+01,0.30E+01),

radius(0.25E+00))).
ohholel 2(lexsolid(curve 21,0.00E+00,0.30F+01,

-O.00E+0.00).
curve_21(circarc(center(0.10E+01,0.825E+01,0.1.0x+01),

radius(0.25E+00))).

(O.00E•H00,-(0.425E+01),O.00E+00)

lbolt 2(union(subpart 19,subpart_20)).
subpart_19(lexsolid(curve_24,0.00E+00,0.25E+00,

0.00E+00)).
curve 24(circarc(center(0.10E+01,0.1225E+02,0.30E+01),

radius (0.375E+00))).
subpart_20(lexsolid(curve^25,0.00E+00,-(0.40E+01),

0.00E+00)).
curve 25(circarc(center(0.10E+01,0.1225E+02,0.30E+01),

38
	

.ti

39 S
^F

R^(!"4 '^y"" ^' '+ter a- r

radius(0.25E+00))).

(0.00E+001-(0.425E+01),O.00E+00)

lbolt 1(union(subpart_17,subpart_18)).
subpart_17(lexsolid(curve_22,0.00E+00,0.25E+00,

O.00E+00)).
curve 22(circarc(center(0.10E+01,0.1225E+02,O.10E+01),

radius(0.375E+00))).
subpart_18(lexsolid(curve_23,0.00E+00,-(0.40E+01),

0.00E+00)).
curve_23(circarc(center(O.lOF+O1,0.1225E+02,0.10E+01),

radius(0.25E+00))).

k

A

Appendix D: Sample Prolog Code

	

We give two examples of strategy planner algorithms implemented 	 I

in Prolog.

The first is for part or device rotation in space. The input

arguments are a direction and a notation for forward or backward

rotation (referring to the order of application of the three angular

rotations about the three Cartesian coordinates). Note that the rules
I

successively decompose each part into its constituent entities and
s

	rotate each by removing the old description from the database and 	 I

inserting the new, rotated version. 	 j

rotate_ device((X,0.0,0.01,_)
X>=0.0,
partlist(Parts),
rotate_part(Parts,(]).

rotate_device(Dir,forward)
Dir=[X,Y,21,
get rot_mat(X,Y,Z,Rot mat),
make trans mat(Rot_mat,[],Trans_mat),
partTist(Parts),
tell(rotation),
rotate_part(Parts,Trans_mat), 	 j
told.	 1

rotate device(Dir,backward)
Dir= X,Y,Z1,
get rot mat(X,Y,Z,Rot mat),
transpose rot mat(Rot mat,New mat),
make trans mat(New_mat,[1,Trans mat),
partlist(Parts),
tell(rotation),
rotate_part(Parts,Trans mat),
told.	 -

rotate part([],).

rotate_part([PartIPartlistl,[])
Part des=..[Part,Des,Envl,

40

y^i ..'. vYi•	
^'i 4.^	 Yom,..	 ^	 :.

Y'^+. •"^^'^` An
d ^	 ^	 {	 {	 ♦.: ^ ^'^	 ,. 't2\ i=_-

retract(Part des),
Newm artdes=..[Part,Des1,
assert(Newm artdes),
rotatemart(Partlist,[]).

rotatemart(_, []).
rotatem art([PartIPartlist] I Trans mat) :-

Part des=..[Part,Des,Env1,
retract(Part des),
rotate entity(Des,New des,Trans_mat),
New_partdes=..[Par.t,New_des],
assert(Newmartdes),
write(' '),write(Newm artdes),
write('.'),nl,nl,
rotatem art(Partlist,Trans mat).

rotatem art([PartIPartlist] I Trans_mat) :-
Part des=..[Part,Des1,
retract(Part des),
rotate entity(Des,New des,Trans mat),
Newm artdes= ..[Part,New des],
assert (laewmartdes) ,
write(' '),write(Newm artdes),
write('.'),nl,nl,
rotatem art(Partlist,Trans mat).

rotate_entity(union(Ent 1,Ent_2),union(Nent_1,Nent_2),
Trans mat) -

rotate entityTEnt 1,Nent 1,Trans_mat),
rotate_entity(Ent_2,Nent_2,Trans—mat).

rotate_entity(intersection(Ent 1,Ent 2),
intersection(Nent_1,Nent_2),
Trans mat) -

rotate entityTEnt_1,Nent 1,Trans_mat),
rotate_entity(Ent_2,Nent_2,Trans_mat).

rotate_entity(difference(Ent 1,Ent 2),
difference(Nent_1,Nent_2),
Trans mat) -

rotate entityTEnt_l,Nent 1,Trans mat),
rotate_entity(Ent_2,Nent_2,Trans mat).

rotate_entity(lexsolid(Curve,X,Y,Z),lexsolid(Curve,NX,NY,NZ),
Trans mat) .-

rotate entity(Curve, ,Trans mat),
rotatescale vector(Trans mat,X,Y,Z,NX,NY,NZ).

rotate_entity(circarc(center(X,Y,Z),R),
circarc(center(NewX,NewY,NewZ),R),
Trans mat) .-

41

;4,

d

rotatescale_vector(Trans mat,X,Y,Z,NewX,NewY,NewZ).

rotate_entity(polygon(Linelist),polygon(Linelist),Trans mat) :-
rotate entity(Linelist, ,Trans mar).

rotate_entity(start(X,Y,Z),start(NeWX,NeWY,Newz),Trans mat) :-
rotatescale_vector(Trans mat,X,Y,Z,NewX,NewY,NewZ).

rotate_entity(end(X,Y,Z),end(NewX,NewY,NewZ),Trans mat) :-
rotatescale_vector(Trans mat,X,Y,Z,NewX,NewY,NewZ).

rotate entity([],_,_).

rotate_entity([LinelLinelist), ,Trans mat) :-
rotate entity(Line, ,Trans mat),
rotate_entity(r,inelist,_,Trans mat).

rotate_entity(Entity, Entity ,Trans_mat) :-
Ent des=..[Entity,Des),
retract(Ent des),
rotate entity(Des,New des,Trans_mat),
New entdes=..[Entity,Rew_des],
assert(New entdes),
write(' ')—write(New_entdes),write('.'),nl,nl.

rotate_entity(Line,Line,Trans mat) :-
Line des=..[Line,Start,End1,
retract(Line des),
rotate_entity(Start,New start,Trans mat),
rotate entity(End,New end,Trans mat),
New linedes=..[Line,New_start,New_end],
assert(New linedes),
write(' ') —write(New linedes),writ-e('.'),nl,nl.

The visibility algorithm returns a list of all parts visible from

the angle at which the entire device is being viewed.

It operates on the previously calculated enclosing spatial parr

envelopes.

visibility(List) :-
partlist(Parts),
order parts(Part:s,Result),
visible parts([],	 ,Pesult,List).

order parts([],[]).

u'

42 lh

I^

order parts([PartIPartlistl,List)
Part des=.. [Part , Des,Env1,
callTPart des),
Env= ..[envelope,[,XeLY,MY,LZ,MZ11,
order_parts(Partlist,Newlist),
update vislist(Newlist,Part,X,[LY,MY,LZ,M7.1,List).

update_vislist([] , Part,X,Rect, [Part , X,Rect]).

update_vislist([Part vis,X vis,Rect visjList],Part,X,Rect,
(Part,X,Rect,Part_vis,X_vis,Rect_visIList])

X> =X vis.

update_vislist([Part vis,X vis,Rect visju st],Part,X,Rect,
[Part	 vis,X vis,Rect visINewlist])	 :-

update_vislist (List,Part,X,ROCt,Newlist).

visible_parts([] ,_,_, (] , []).
r

it

visible_parts(I_^_1 ,_,_, [1 , (1) • j	 it

visible_parts((1,_,	 .[Part,X,RectILiStl,[PartINewlist])	 :- 1I
visible_parts([Rect],X,(],List,Newlist). f±

visible_parts(Rectlist,PrecX,Preclist,(Part,X;RectIListl,
i;

Newlist)	 :-
X=PrecX,
is obliterated(Rect,Preclist),
visible_parts(Rectlist,X,Preclist,List,Newlist).

i

visiblePrecX,Preclist,[Part,X,RectIList],_parts(Rectlist, f`
(PartINewlist])	 :-

X=PrecX,)
visible parts([RectIRectlist],X,Preclist,List,Newlist).

visible_parts(Rectlist.	 ,	 .[Part,X,RectjList],Newlist)
is obliterated(Rect,Rectlist),
visible_yarts(Rectlist,X,Rectlist,List,Newlist).

visible_parts(Rectlist,_,	 ,[Part,X,RectIListl,[PartINewlist])	 :-
visible_parts((fectIRectlist],X,Rectlist,List,Newlist).

a

is_obliterated(Rect,Rectlist)	 :-
^f

obliterated(Rect.,Rectlist,Ans),

Ans=yes.

obliterated([[R1,R2,R3,R41INewlist],Rectlist,Ans)	 :-
obliterated([Rl,R2,R3,R4],Rectlist,Newans),
continue(Newlist,Rectlist,Newans,Ans).

obliterated(Rect,[],no).

43

'"y

44

obliterated((],_,yes).

ob literated([RLY,RMY,RLZ,RMZI,((OLY,OMY,OLZ,OMZIIRectlist),Ans) :-
(RLY>=OMY; OLY'^=RMY;
RLZ> =OMZ; OLZ>=RMZ),
obliterated([RLY,RMY,RLZ,RMZI,Rectlist,Ans).

obliterated((RLY,RMY,RLZ,RMZ],[[OLY,OMY,OLZ,OMZII_I,yes) :-
RLY> =OLY, RMY=<OMY,
RLZ> =OLZ, RMZ=<OMZ.

obliterated(Rect,[OrectIRectlist],Ans) :-
divide rect(Rect,Orect,Newrectlist),
obliterated(Newrectlist,Rectlist,Ans).

divide_rect((RLY,RMY,RLZ,RMZ),[OLY,OMY,OLZ,JMZ],Rectlist) .-
RLY= <OLY, RMY=<OMY,
check rect((RLY,OLY,RLZ,RMZ],R1),
check rect([OLY,RMY,RLZ,OLZI,R2),
check rect([OLY,RMY,OMZ,RMZ],R3),
make_rect_list([Rl,R2,R3],Rectlist).

divide_rect((RLY,RMY,RLZ,RMZI,[OLY,OMY,OLZ,OMZ],Rectlist) .-
RLY= <OLY, OMY=<RMY,
check rect(iRLY,OLY,RLZ,RMZ],Rl),
check rect([OLY,OMY,RLZ,OLZ],R2),
check rect([OLY,OMY,OMZ,RMZ],R3),
check rect([OMY,RMY,RLZ,RMZ],R4),
make_sect_list([Rl,R2,R3,R4],Rectlist).

divide_rect([RLY,RMY,RLZ,RMZ],[OLY,OMY,OLZ,OMZ],Rect.list) .-
OLY= <RLY, RMY=<OMY,
check_ rect([RLY,RMY,RLZ,OLZ],R1),
check rect([RLY,RMY,OMZ,RMZ],R2),
make sect list([Rl,R2],Rectlist).

divide_rect([RLY,RMY,RLZ,RMZ],(OLY,OMY,OLZ,OMZ],Rectlist) .-
OLY= <RLY, OMY=<RMY,
check rect([RLY,OMY,RLZ,OLZI,Rl),
check rect([OMY,RMY,RLZ,RMZI,R2),
check rect([RLY,OMY,OMZ,RMZI,R3),
make_rect_list([R1,R2,R3],Rectlist).

check rect([X,X, ,],[]).

check rect([, ,X,XI,[]).

check_rect([A,B, — , —],[])	 :-
B<A.

check_rect([, ,A,B),[]) :-
B<A.— —

check rect(Rect,Rect),

make rect list([1,[1).

make_rect list(((1lRest],List) :-
make_rect list(Rest,List).

make_rect list((RectjRest1,[RectjList1) :-
make rect list(Rest,List).

continue(A,B,no,no).

continue(A,B,yes,Ans) :-
obliterated(A,B,Ans).

a

t
45	 'p

n.^

4

List of References

Bonney, M.C. et al. "Verifying Robot Programs for Collision Free
Tasks." Developments in Robotics 1983. IFS Publications, Ltd.:
Bedford, Engla-- nd. I^J83.

Boyse, John W. "Interference Detection Among Solids and Surfaces."
Communications of the ACM. 	 Vol. 22, No. 1. January, 1979.
3-9.

Brady, et al., eds.	 Robot Motion.	 The MIT Press:	 Cambridge,
Massachusetts. 1983.473-498.

Clocksin, W. F.	 and	 Mellish,	 C.S.	 Programming	 in	 Proloq.
Springer-Verlag: New York, New York. 1982.

Lozano-Perez, T. "Spatial Planning: A Configuration Space Approach."
IEEE Transactions on Computers. Vol. C-32, No. 2. February,
159 ^. 108- MT.—

Lozano-Perez, T.	 and Wesley, M.A.	 "An Algorithm for Planning
Collision-Free Paths Among Polyhedral Obstacles." Communications
of the ACM. Vol. 22, No. 10. October, 1979. 56 -	 .

Nilsson, Nils J.	 Principles of Artificial Intelligence. 	 Tioga
Publishing Company: Palo Alto, California. 7980.

Premack, T. et al. "Design and Implementation of a Compliant Robot
with	 Force-Feedback and Strategy Planning Software".	 NASA
Technical Memorandum 86111.	 National Aeronautics and Space
Admmin-istration	 -- Goddard Space Flight Center: 	 Greenbelt,
Maryland. 1984.

Requicha, A.A.G. "Representations for Rigid Solids: Theory, Methods,
and Systems." Computing Surveys. Vol. 12, No. 4. December,
1980. 437-464.

Smith, Bradford M., et al. 	 IGES Experimental Solids Proposal.
Unpublished report from the Fa onal Bureau of Standards. 1984.

Smith, Bradford M., et al. Initial Graphics Exchange Specification
(IGES) Version 2.0. U.S. National Bureau of Standards:
Washington, D.C. 198.

46	 ^h

BIBLIOGRAPHIC DATA SHEET

1, Report No. 2, Government Accession No. 3. Recipient's Catalog No.
CR 175319

4. Title and Subtitle S. Report Date
A Strategy Planner for NASA July 24, 1985

6, Performing Organization CodaRobotics Applications

7. Author(s) B. Performing Organization Report No,
Steven S. Brodd 85B0504

9, Performing Organization Name and Address 10. Work Unit No.
Science Applications Research

11, Contract or Grant No.4400 Forbes Boulevard
Lanham, MD	 20706 NAS5-28200

13. Type of Report and Period Covered
Contractor Report12, Sponsoring Agency Name and Address

Code 731.4
Mechanical Engineering Branch
National Aeronautics & Space Administration 14. Sponsoring Agency Code
Greenbelt, MID 	 20771

15. Supplementary Notes

16, Abstract

Automatic strategy or task planning is an important element of robotics
systems.	 A strategy planner under development at Goddard Space Flight
Center automatically produces robot plans for assembly, disassembly, or
repair of NASA spacecraft from computer —aided design descriptions of the
individual parts of the spacecraft.

17. Key Words (Selected by Author;s)) 18. Distribution Statement
Robotics, Knowledge Engineering,
Artificial Intelligence, Spatial
Reasoning, Prolog, Automatic Task
Planning

Unlimited
Unclassified
Category 63

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price"

Unclassified Unclassified 48

- ror Sala Dy ins National I ernnmaI Intormanon 50 Nice, SpringtleIa, VIrginla 	
221 61

	GSFC 25 .44 (10177)

4

i

I

li	 *•	 s

^h

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf

