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A FORMULATION AND ANALYSIS OF COMBAT GAMES

Michael Heymann,* Mark D. Ardema, and Narayanaswami RaJant

Ames Research Center

SUMMARY

Most investigations which use the theory of differential games to analyze

combat problems have focused on deterministic, two-person, zero-sum, perfect-

information pursuit-evasion games. This framework is quite suitable when the
pursuer-evader roles are well defined by the nature of the problem and the evader

has no offensive capability with which to threaten the pursuer to affect the
outcome. The formulation is, however, inadequate to model combat between two (or
more) opponents when both (or all} have offensive capabilities and objectives. An

obvious example of such a situation is air-to-air combat. The few attempts to
analyze this more general combat problem have used either concepts of role-

determination or, more recently, that of a two-target differential game. Neither of
these approaches, however, has led to a complete and consistent conceptual defini-

tion and corresponding mathematical theory of combat games. It is our purpose in
this paper to formulate and illustrate such a theory.

We begin with a discussion of the qualitative features of combat games between

two aggressive opponents; this discussion indicates the rich variety of behavior
present in such games and makes clear the inadequacy of the pursuit-evasion assump-
tion, with or without role determination, for modeling combat. We then propose a
mathematical formulation of deterministic combat games between two opponents with

offensive capabilities and offensive objectives. Resolution of the combat essen-

tially involves solving two differential games with state constraints. Depending on
the game dynamics and parameters, the combat can terminate in one of four ways:
(I) the first player wins, (2) the second player wins, (3) a draw (neither wins}, or

(4) joint capture. In the first two cases, the optimal strategies of the two
players are determined from suitable zero-sum games; whereas, in the latter two
cases, the relevant game is nonzero-sum. Next, to avoid certain technical difficul-

ties, the concept of a 6-combat game is introduced.

To illustrate the definition, formulation, and solution of combat games, an

example, called the turret game, is analyzed in detail. This game may be thought of
as a highly simplified model of air combat, yet it is sufficiently complex to
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exhibit a rich variety of combat behavior, much of which is not found in pure
pursuit-evasion games.

I. INTRODUCTION

By a game of combat we intuitively refer to an encounter between two hostile

adversaries, or players, each of whom wishes to destroy or capture the other, while,
if possible, ensuring his own survival. A player who succeeds in capturing his

opponent is said to wi___qnthe game; if he can win, he will try to win with as little

cost to himself as possible. If he is unable to do so, he will try to make his
opponent's win as difficult or as costly as possible.

A conspicuous example, and one of the main incentives for investigating games
of combat, is the aerial combat problem in which there is a duel between two (or

even more) maneuvering aircraft. Various situations can be visualized; for example,
a missile in pursuit of a plane, a fighter in pursuit of a bomber, a duel between
two fighter aircraft.

In the simplest manifestation of a combat game, one of the players has no
offensive capabilities so that he can never win in the above sense. Thus, the

offensive player becomes the pursuer, and the inoffensive opponent becomes the

evader. The resultant pursuit-evasion problem becomes what is sometimes called a

game of survival (see e.g., ref. I). The evader attempts to avoid capture or, if
this is not possible, to maximize the pursuer's cost of attaining his goal; the
pursuer endeavors to capture, and at minimum cost. The special (but important) case
in which the cost functional is the time to capture, has sometimes been referred to
as a game of pursuit-evasion (ref. I).

The early studies of combat problems focused almost entirely on the above-
mentioned framework in which the two players have the clearly defined (and oppos-
ing) roles of pursuer and evader, or minimizer and maximizer. Immediate applica-

tions of those studies are in such problems as missile versus aircraft or fighter
versus bomber.

The generally accepted mathematical framework for formulating and solving

pursuit-evasion problems is the theory of differential games according to Isaacs
(ref. 2). Specifically, the game consists of a dynamical system whose state transi-

tion is governed by a set of n ordinary differential equations

dx
dt - f(t,x,u,v) , (I)

where x = x(t) e _n is the state, u = u(t) e Uc_ m and v = v(t) e Vc_ p are

the two players' controls, and x(to) = xo is the initial state. Associated with
the game is a cost functional

P

J(u,V,Xo,to) = g[x(t),t] + J_ h[t,x(t),u(t),v(t)]dt , (2)
b

o
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where _(<_) is a free or fixed termination time. Typically, player u, the pur-

suer, attempts to minimize the cost J, whereas v, the evader, tries to maximize
it. (Throughout the paper we do not make a notational distinction between the

players and their controls, the meaning being clear from the context.) Various
additional assumptions and constraints can be imposed on the problem to suit spe-

cific requirements.

In games of survival and of pursuit-evasion, the termination time is free and

is determined by a capture condition; that is, a state constraint that is imposed on
the problem as follows:

x(t) _ _c_ n V t _ t < _ (3)O

and

e . (4)

Here _ is the target or capture set and _, defined through equations (3) and (4),
is the capture time. The game of pursuit-evasion is thus the special case of the
above framework in which g = 0 and h = I, with the cost being the time to cap-

ture, (t - t ). It is then natural to refer to the minimizing player u as theO
pursuer and to the maximizing player v as the evader.

Much research has been done on games of survival and games of pursuit-evasion

within the general framework of differential game theory (see, e.g.,
refs. I, 3-5). The early use of differential games in the modeling and analysis of
aerial combat problems is reviewed in reference 6; a more recent review may be found

in chapter 8 of reference 7. Although highly idealized, widely investigated models

for pursuit-evasion analysis are the homicidal chauffeur game (refs. 2,8,9), and its
generalization, the game of two cars. The latter was used as a model for aerial

combat analysis in a variety of studies; see, for example, references 10-15 as well
as the general survey article, reference 16. More recently, various generalizations

of the game of two cars were used for analysis of aerial pursuit-evasion to accommo-
date variable speed and other aircraft capabilities (refs. 17-20). Also, special

techniques were developed and examined to facilitate computation and to alleviate
some of the difficulties associated with high dimensionality.

It was realized even in the early stages (ref. 6), however, that the pursuer-

evader model is inadequate for a situation such as fighter versus fighter combat, in

which there is no justification for an arbitrary a priori role assignment of pursuer
and evader. This difficulty led to much confusion in efforts to reconcile the

differential game methodology with intuition, based on the perceived experiences in
actual combat situations. For example, it was stated in reference 6 that a multiple

criterion may be required to formulate these aerial combat encounters correctly and
that role reversals during a given encounter typically occur. In other studies, the

idea was promoted that the central issue is that of role determination
(refs. 7,13,21); that is, deciding which of the two players should assume the role

of pursuer and which that of evader. While various approaches to the role



determination problem were proposed, it was generally believed that the winning
player should always assume the role of pursuer while his opponent should assume
that of evader.

Realizing that the existing approaches for determining the potential winner of

a combat game were unsatisfactory, Getz and Pachter (refs. 22 and 23) adopted the

concept of a two target game that was introduced earlier to the differential game
literature by Blaquiere et al. (ref. 24) and Getz and Leitmann (ref. 25). In this
setting, each player has a target set and attempts to drive the state into his

target set without being first driven to the target set of his opponent. A further

recent study that combines the role assignment point of view with the two-target
idea has been reported in reference 26.

The work of Getz and Pachter, just as in most past studies of pursuit-evasion

differential games, has been confined to the problem of capturability; that is, to
the "game of kind" (in Isaac's terminology}. The approach in such studies has been

based on Isaac's technique of investigating certain semipermeable surfaces to deter-
mine barriers and other singular surfaces (ref. 2). This approach has contributed a

great deal to the understanding of differential games; however, it has two serious

limitations for application to combat problems. First, although a barrier analysis
is plausible in very low dimensional problems, it becomes rapidly infeasible as the

dimensionality increases, especially in the two-target case where added complexity
arises. Indeed, Getz and Pachter made some major simplifications in their target-

set geometries to overcome essential difficulties with dimensionality and render the
analysis tractable in their investigations of the two-target homicidal chauffeur
game (ref. 22) and the two-target game of two cars (ref. 23). The second limitation

of barrier analysis is that it does not address the fundamental problem of deter-

mination of strategies; in fact, the player's actual optimal (or, at least, winning)
strategies in combat situations remain obscure and unexplored.

In the present paper, we formulate and examine the combat problem for an arbi-
trary dynamical system from a strategy-analysis point of view.

2. QUALITATIVE FEATURES OF COMBAT GAMES

In an ordinary pursuit-evasion problem, the termination of the game (i.e.,
capture) is determined, as we have seen earlier, by the capture condition specified
by equations (3) and (4) (which can also be stated in terms of equality or inequal-

ity constraints). The capturability issue constitutes the "game of kind" (ref. 2),

and for a given initial state the problem is whether the pursuer can actually force
capture or termination. The question of strategy (that is, how to accomplish cap-
ture when possible or how to prevent or delay it) constitutes the game of degree
(ref. 2).

In the two-target combat model with targets, say, gu and _v, the termination
condition is



v t (5)x(t) = u o

and

e (6)

where _u is the target associated with player u, and _v is the target associ-

ated with v. If x(t) e _u but x(t) _ _v for all t _ t _ t, we say that- <t<t,
player u wins the game; whereas, if x(t) e _v and x_t) _ _u for tO _ _

we say that v wins. If _u n _v _ _ and

x<t) e _U N _V ' (7)

we say that the game ends in joint capture. Finally, if T*(>to) is the maximum
t < T*, weallowable termination time of the game, and if x(t) e _ for all to _

say that the game ends in a tie or draw.

In the pursuit-evasion game, the pursuing player wishes to lead the game to
termination and, if he can, do so as quickly as possible. The evading player

attempts to prevent termination or to delay it if prevention is impossible. In

contrast, in the two-target problem the players' objectives are more complicated.
In principle, both want to terminate the game but in different parts of g.

Player u wants it to terminate in _/_v (i.e., in _ excluding _v ), and player

v wants it to terminate in _/_u"

To see how these conflicting objectives affect the players' strategies and to

gain some insight into the actual situation, let us examine, qualitatively, a number

of possible cases. Suppose that the capability of each player to evade his oppo-
nent's target is independent of, and decoupled from, his capability to pursue his
opponent. (Air combat between two aircraft with actively guided air-to-air missiles
is an example.) Each player would then play two simultaneous and independent

pursuit-evasion games: one is an offensive game in which he would try to capture

his opponent, the other a defensive game in which he would try to evade his oppo-
nent's weapons. The pursuit-evasion game that terminates first would determine the
winner.

Suppose now that with each of the above mentioned pursuit-evasion games we
associate a cost functional

Ji = gi[x(_i)'_i ] + hi[t,x(t),u(t),v(t)]dt i = u,v ,

0

where _. is the termination time of game i. In game u, player u wishes to1
minimize, and player v wishes to maximize Ju; in game v, player v is the
minimizer and u the maximizer. Suppose that, if the co_petition between the two
games is ignored, it develops that t is greater than t as optimal termination
times. By this optimality criterion _t would be coneluded_ quite possibly erro-

neously, that player v is the winner of the combat. Thus, even in this elementary



example, we are forced to add a constraint to each of the two games to account for

the existence of the other, that is, for i = u,v, x(t) _ _/_i for all t _ t < t.O I

(where _i denotes the target set of the game i). This constraint introduces a
coupling between the two competing games that affects the players' strategies. A

particularly interesting and important cost criterion is obtained when gi = 0
and hi = _, i = u,v; that is, when both games assume a time-optimality criterion.
Let J_ = t i = u,v be the optimal times obtained in the two pursuit games where,l i'
in each game, the pursuer is the minimizer and the evader is the maximizer.

Clearly, if t < t then in game v the constraint x(t) _ _/_v for all.U

t _ t < t is violated and the constrained game v has no feasible solutions.

O_viously Vu is the winning player.

In the more general case, the players cannot perform their evasive maneuvers,
that is, they cannot stay out of range of their opponents' weapon envelopes (capture

sets), independently of their offensive maneuvers to capture the opponent. Indeed,

typically, there is a trade-off between the two objectives of survival and capture
of the opponent, and the players have to play their strategies accordingly.

To illustrate the situations that might occur, consider two vehicles maneuver-
ing in a horizontal plane (fig. I). The arrows describe the vehicles' instantaneous
headings, the cones the instantaneous envelopes of their weapons (fixed with respect

to their headings) and the vertices of the cones are their instantaneous

positions. We assume the typical situation that each player's maximum turn rate and
speed are mutually dependent; specifically, the faster they move the slower they are

able to turn, and conversely.

Suppose that player v initially is in a vulnerable position (see fig. I) such
that by a slight turn of player u, v might enter u's weapon envelope, and

Figure I.- Maneuvering vehicles.
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further suppose that v is more maneuverable in terms of turn rate and speed than
u. If v adopts a pure evasive maneuver and u pursues, two outcomes are pos-

sible: either v gets captured quickly or he evades successfully. If he can avoid

capture initially, then in due time presumably he can capture u by virtue of his

superior maneuverability. In the other case, even though v cannot avoid initial

capture by u if he adopts pure (inoffensive) evasion, he may still be able to win
the game by performing the offensive maneuver of turning his own target at u,
thereby capturing u before u captures him. More generally, v may have to

perform a composite (offensive-defensive) maneuver, wherein he turns his target at
u while moving away from u's target just enough to avoid being captured him-
self. Thus, player v might be able to win the game by a composite strategy even

though he would lose it by playing pure evasion.

It is also of interest to examine the optimal play of player u under the

assumption that v can win with an optimal composite strategy. In spite of his
eventual capture, u should adopt an offensive behavior because when u turns his

weapon at v, v's offensive move is slowed down in order to survive u's threat.
At least, thereby, u's capture is delayed. In this situation, roles of pursuer and
evader cannot usefully be assigned to the two players.

Thus it is easy to understand that, in general, analysis of pure pursuit-

evasion problems, with or without role-determination analyses, reveals little, if

any, information about the possible outcomes and optimal strategies of a combat

game. In fact, it may be expected that misleading conclusions frequently will be
drawn. It is clear that a new and fundamentally different approach to the problem

is required.

3. FORMULATION OF COMBAT GAMES

Consider a system described by a set of n ordinary differential equations,

dx f(t,x,u,v) , (8)dt -

with initial time to and initial state x(to) = xo. The controls of the two
players are measurable functions taking values in compact subsets U c _m and
V c _P, respectively.

Associated with the combat problem are two subsets _ and _ in _n+1, theU

(extended) targets or (extended) capture sets of the players, weVwill assume that
and _ are the closures of some open subsets in _n+1 and that there exists a

t_me T'V> tO such that for all x e_n and all t _ T*, (t,x) E _u A _v"

Combat starts at t = to and continues as long as

[t,x(t)] _ int

7



where _: = _ u _ is the combat's (extended terminal set and where int(.)

denotes interlor. Vwe shall say that the combat terminates at time t where

_: = inf{t > tol[t,x(t)] e int _} . (9)

If _ = T*, we say that the combat ends in a draw. If _ < T*, we say that player

u (respectively± player v) wins the combat if there exists an € > 0 such that
[t,x(t)] e int _ (respectively, [t,x(t)] e int_ ) for all t > t satisfying

t - t _ _. If b_th players win the combat we speakVof _, or simultaneous,

capture. Thus, the combat can terminate in one 6f the following four ways: (I) a
win for player u; (2) a win for player v; (3) a draw; and (4) a joint capture.

To obtain a consistent formulation of the combat problem, it is necessary first

to resolve its decidability question. That is, each initial event (to, xo) must be
uniquely and unambiguously classifiable into one of the four termination categories
(I)-(4) above, thus partitioning the event space _×_n into mutually exclusive

regions _u, _v, _uVv, and #uAv' respectively.

To this end we define the players' termination preferences as follows.

Play@[.,_ ranks his preferences in order of priority as (I), (3), (4), (2), and

player v ranks his preferences as (2), (3), (4), and (I).

Remark I- This ranking is consistent with the intuitive notion that each player
wishes to capture his opponent while not being captured himself. It also resolves
the ambiguity that might occur in deciding between outcomes (3) and (4) when (I) and

(2) cannot be forced by either of the players. This last point becomes clear if we
observe that outcomes (3) and (4) can occur essentially in one of two ways: the

players may be "locked into joint capture," in the sense that a unilateral attempt

by one of the players to postpone termination will enable his opponent to win; on
the other hand, if a player cannot force a win but has control over the time at

which joint capture will occur, he will select the latest such time and, if pos-
sible, set it at T* (i.e., a draw). []

It is readily noted that by definition, the regions _u' _v' #uVv' and #uAv
are invariant in the sense that there exist strategies for the players that maintain

the resultant trajectory in its initial region until combat termination. Moreover,
any sensible or, as we shall say, consistent strategies by the players will satisfy
this invariance. Indeed, a trajectory will leave its initial region only if at

least one of the players makes a fatal strategy error, in which case we say that the
game strategies are inconsistent.

Remark 2- It is important to emphasize that, in properly formulated and cor-

rectly played combat, the winning capability of a player depends only on the problem
data (including the initial state). No reversals of the winning capability (or
"role") occur unless a fundamental error has been made by a player who relinquishes

an advantage to his opponent. []

8



We now associate with the combat problem a pair of differential games, one from

the point of view of playe_ u, or the u-game, and one from the point of view of
player v, or the v-game.

The u-game Gu is defined as follows. Given is a cost functional

Ju : gu[X(t_)'tu ] + hu[t,x(t),u(t),v(t)]dt , (10)

O

with player u defined as the minimizer and player v as the maximizer. The
terminal time _ is specified byu

_u = inf{t > toi[t,x(t)] E int _} , (11)

subject to the event constraint

< t < _ (12)
[t,x(t)] _ int_ V to - - u

The v-game Gv is defined as follows. Given is a cost functional

(vJv : gv[X(gv)'_v] + hv[t,x(t),u(t),v(t)]dt , (13)

O

with player v defined as the minimizer and player u as the maximizer. The
terminal time _ is specified byV

_v = inf{t > toi[t,x(t)] e int _v} ' (14)

subject to the event constraint

V t < t S t . (15)[t,x(t)] e int_ u o - v

We examine now the role of the two differential games in the formulation_of the

combat problem. First, note that if (to,Xo) e _u u Cv exactly one of the games Has
feasible solutions (satisfying the terminal condition and event constraint) so that

only the game of the winning player (the one with feasible solutions) can be
played. The winning player will then choose his strategy to minimize his own cost

functional (subject to the terminal and event constraints of the game); his oppo-

nent, realizing that he has no alternatives (having no feasible solutions to his own
game), will play to maximize his opponent's cost. Thus a zero-sum game results with
the winning player the minimizer and his opponent the maximizer.

In case (to±Xo) e _uVv u _uAv' both games have feasible strategies, and the
terminal times t and t coincide (to the least time in which each player can

force capture of His vopponent or a draw; see also Remark I). In this case each

player will _hoose to minimize his own cost functional (while ignoring his

9



opponent's). The resultant game is a nonzero-sum game with event and terminal
constraints.

In summary, each player will choose his strategy to minimize the cost func-

tional of his own game,unlessfor thegiveninitialconditionshis gamehas no
feasible solution (that is, he is forced to lose the combat). In that case he will

choose his strategy to maximize the cost of his opponent.

Definition I- A combat problem formulated with the aid of dual differential

games, and with strategy selections as described in table I, is called a combat
game.[]

TABLE I.- STRATEGY SELECTION RULES
IN COMBAT GAMES

Region #u #v #uVv u _uAv

Strategy of u min Ju max Jv min Ju

Strategy of v max Ju min Jv min Jv

Remark 3- Within the dual differential games framework proposed in the present
paper, rules for strategy selections other than the one described above may be

chosen. For example, we might have decided to select the players' strategies to
maximize their opponents' costs instead of minimizing their own costs when

(to,Xo) E #uVv u #uAv" Although this is logically consistent, we prefer the setup
as proposed above since we find it more in line with expected intuitive response.

From a purely mathematical standpoint it makes no essential difference what strategy
selection rule is chosen so long as it is consistent and decidable. []

In games of combat in general, the terminal time is strongly influenced by the

competing nature of the two differential games Gu and Gv. When (to,Xo) e #uAv' the
terminal time is forced to be the least time in which the players can, respectively,
secure termination of their game, and the times for the two games coincide. Conse-

quently, a case of special interest and simplicity (in terms of strategy selection),

and one that is also of practical importance, is when gu = gv = O and
hu = hv = I; that is, the cost functionals of both games are the durations of the

games. Thus in the time-optimal case, for (to,Xo) e _uVv u _uAv essentially every
feasible strategy is optimal.

4. FORMULATION OF _-COMBAT GAMES

With certain types of cost functionals, the combat game as formulated in sec-
tion 3 may not have optimal strategies because the space of admissible trajectoriesm

is not closed. Specifically, because the target sets _u and _v are closed, their

10



(nonempty) intersection _ n _ is also closed. Hence, the set-- U V

_*: = _ /(_ n _ ), the complement of _u n _ in _ , and the set _* (similarlyU U V U V
defined_, are vnot closed. As a result, a convergent sequence of winning trajec-

tories for one of the players, say for player u, that terminates in _* need notu
converge to a trajectory that terminates at a point in _* but, rather, inm _ U

_r n _v" However, then the limiting trajectory ends in joint capture and not in a
wln for u.

We now turn to reformulate the combat game to avoid the technical difficulties
referred to above. To this end we introduce the concept of a 6-safety margin and a

6-combat game.

Let 6 be a positive number and let _ _ (6): = S^(_ A _ ) denote the open-- -- HA 6 U V

6-neighborhood of _ N _ ; that is, the set o_ all points _: : (t,x) e_ n+1 whoseU V....

(Euclidean) distance d(_,_u A _v ) from _u N _v is less than _. Let

_(6): : _ /_uAv(6) denote the points of _ that are not in _Av(6). Similarly
define _v_6). u

The 6-combat starts at time t : to and continues as long as

[t,x(t)] _ int[_u _Av(6)]

We shall say that combat terminates at time t : _ where

_: : inf[t > tol[t,x(t)] e int[_ u _uAv(6)]} (16)

The winning conditions of the 6-combat differ, however, from those of the "ordinary"
combat as follows.

We say that the _-combat ends in a _-draw if _ : T* - 6. However, if
< T* - 6 we distinguish between the following outcomes. We say that player u

wins if

[_,x(t)] • _u(6) , (17)

that v wins if

• v(6), (18)

and that the combat ends in joint 6-capture if both players win.

The 6-combat, similarly to ordinary combat, can end (I) by u winning,

(2) by v winning, (3) in a 6-draw, or (4) in joint 6-capture. The players'
termination preferences are now defined as follows: Player u ranks his prefer-

ences in order of priority as (I) u wins, (2) a 6-draw or joint _-capture, and
(3) v wins. Player v ranks his preferences in reversed order. As discussed in

some more detail below, no prior preference distinction is made between _-draw and
joint 6-capture.

11



Given the above termination preferences it is clear that for an initial event

(to,Xo), one of the players, say player u, can win the e-combat game if, and only

if, he can select a strategy with which he will win the game against every possible

strategy of his opponent. We shall then say that (to,Xo) is in u's e-winning
zone, denoted _u(_). Similarly we can define _v(6), the e-winning zone of v.

The fundamental difference between the ordinary combat problem and the

e-combat problem is that in the latter case the winning terminal sets _u(6) and
_(_) are closed and _(_)N _(6) : €. Thus u winning and v winning cannot
occur simultaneously, and in formulating the e-combat game we have to proceed
somewhat differently than for an ordinary combat problem.

To obtain optimal strategies, we associate with the f-combat problem a pair of

cost functionals Ju, the cost for player u, and Jv' the cost for player v.
These are defined by

P

= gu[X(t),t] + J. hu[t,x(t),u(t),v(t)]dt (19)
Ju

o

and

P

= gv[x(t)'t] + I hv[t'x(t)'u(t)'v(t)]dt (20)Jv

o

where gu, gv, hu, and hv are suitably defined smooth real functions.

If the initial event [to,Xo] e Cu(_), that is, player u has winning strate-
gies, he will choose his strategy to minimize Ju subject to the termination con-
straint (17) and to the event constraint

[t,x(t)] _ int[_Av(_)U _v] V to _ _

Player v, having no feasible (winning) strategies, will play to maximize player

u's cost functional Ju" The resultant game is a zero-sum event-constrained dif-
ferential game with player u minimizing, and player v maximizing, the cost func-

tional Ju" The responsibility of satisfying the event constraint rests with
player u, while v tries to violate it.

Conversely, if [to,Xo] e _v(_), the roles of players u and v are reversed.
The relevant cost functional becomes (20) and the event constraint is

[t,x(t)] _ int[_uAv(_) U 0_u] V to _ t _ t .

There remains the case when the initial event [to,Xo] is neither in _u(_) nor
in _v(6). Clearly no winning strategies exist for either player in this case (in
respect to the e-combat game). However, it is still possible that for some smaller

> O, (to,Xo) e _u(_) u Cv(_). In that case winning strategies can be selected for

12



the players just as before but in respect to the i-game instead of the 6-game.

If, on the other hand, (to,Xo) _ _u(6') u $v(6') for all 6' > O, then it follows

that (to,Xo) E _uVv u SUAV where SuVv is the draw region and SuAv is the joint
capture region of the game as defined earlier. In this case we adopt the preference

ordering between a draw and a joint capture as established earlier for (ordinary)
combat games; that is, the players prefer a draw to joint capture. In either case

the players choose their strategies so as to minimize their own cost functionals
resulting in a nonzero-sum game.

5. EXAMPLE OF A COMBAT GAME: THE TURRET GAME

Formulation

To illustrate the theory just developed we consider a combat game (the turret

game) that represents a simplified version of the air combat situation discussed
qualitatively in section 2.

Player u moves in a plane with arbitrary velocity relative to a fixed refer-
ence frame (X,Y), and can turn a ray weapon relative to a fixed direction at a

bounded angular rate _ (see fig. 2). Player v moves so that he is always at a
distance R from u, and he can traverse this circle at an angular speed relative
to a fixed direction at a bounded rate _. Player v also has a ray weapon that he

can turn relative to the line of sight between the two players at a bounded rate $.

LINE-OF-SIGHT

Xt

Y

=,.X

Figure 2.- Turret game in fixed reference frame.
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For convenience we represent the problem in a relative reference frame with

origin at u's position and the y-axis along u's weapon (fig. 3). Letting

xI = B - _, x2 = _, u = _, vI = _, and v2 = -_, the kinematical equations of motion
are

I : Vl - u , x1(O): x_ (21)

x2 : -v2 ' x2(O): x_ (22)

with xI and x2 being computed modulo 27, and where we take to : 0 since the
system is autonomous. In view of the circular symmetry of the problem, it is easily

seen that the playing space of interest is

P : {(Xl,X2)IxI e [O,_],x2 e [0,_]} (23)

Y

×I

x

Figure 3.- Turret game in relative reference frame.

The admissible controls are specified within the bounds

0 _ u _ _ (24)

14



and

(vI,v2) e Vc_2+ ' (25)

where _2 is the positive quadrant of _2.+

Next, we choose T*, the maximum allowed time duration of the combat. The
extended targets are then given by

u = {(t'x1'x2) e _x eleither (xI _<€I and t < e*) or (t _>T*)}

and

_v = {(t'x1'x2) e _x eleither (x2 _ _2 and t < T*) or (t _ T*)}

where _iR and _2R are the radii of the vulnerability regionsor capture sets of
the two players (fig. 3). The extended joint capture region _uA _ is given by

u n _v = {(t,x1,x2) e _x Pleither (xI -<_I and x2 -<_2' if t < T*)

or (t_ T*)}.
In the ensuing discussion we shall, for the most part, assume that T* is

sufficiently large so that we can ignore the t dimension of the target. Thus we
shall refer to the (ordinary) target sets (see fig. 4)

_u= {(x1'x2)_ Plxl_ _I}

_v : {(x1'x2) e elx2s _2}

*un*v= {(x1'x2)_ Plxl__I'x2__2}"

Upon specifying the safety margin 6 > O, we obtain _the 6-winning zones as

depicted in figure 5. The 6-combat terminates at time t < T* - 6 with one of the
players winning if t is the first time the state intercepts the set _u(6) u _v(6)

with an inward velocity._ The 6-capture of v by u occurs (if it occurs at all)
if at termination with t < T* - 6,

w1(t) = _I'X2(_) _ _2 + 6 and ½1(_) < 0 . (26)

Similarly, 6-capture of u by v occurs if at termination with _ < T* - 6,

x1(_) _ _I + _'x2(_) = _2 and x2(_) < 0 . (27)

Alternatively, combat terminates either in joint 6-capture or in a _-draw.

Next we will analyze this game for different cases (linear and circular control
constraints) and for different cost functionals (quadratic and time-optimal).

15



x2

:r.n%

×1
e 1 _r

Figure 4.- Ordinary target sets.

Figure 5.- 6-capture sets.
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Linear Control Constraint

Let V (fig. 6) be given by

vI v2
--+--__ I , (28)v1_-O, v2-_O, _ _
v I v2

v. and v2 are preselected positive bounds. (This case may be viewed as awhere J
convexiflcation and approximation of the typical situation in which v's motion is

limited by a lateral acceleration constraint specified by VlV2 __k I and by

bounds vI __k2 and v2 __k3, the dashed lines on figure 6).

v2

Figure 6.- Linear control constraint.

The cost functionals are chosen as

Ju = -Cix21 + C2 I dt , (29)
o

17



and

!: I + C2 dt , (30)
Jv -C1Xl t "o

where C I and C2 are positive constants. These cost functionals reflect the com-
bined (weighted) objective of the winning player, that of minimizing the termination

time while securing maximum safety (i.e., the maximum final distance from the oppo-
nent's target set), and the converse objective for the losing player.

Before beginning the detailed analysis of optimal strategies, we examine the
implications of the termination conditions (26) and (27). First, note that v can

always win from suitable initial conditions because, from equations (22) and (28),

he can always satisfy the third condition of equation (27). On the other hand,
for u to win he must be able to force the third condition of equation (26),

x1(t) < O; this implies, using (21), (24), and (28), that

> _I (31)
I

must hold. Thus, the relative magnitudes of u and vI are of key importance and we
begin by studying the game with (31) holding.

First, consider u's winning _-game. In this game u wishes to minimize

and v to maximize Ju in equation (29). In order to employ the standard neces-
sary conditions, the Hamiltonian is defined by

H : koC2 + _i(vI - u) - _2v2 . (32)

We may set _o = I (since ko = 0 adds no new candidates for optimal control) and

_I and _2 are constants (because H does not depend on xI or x2). If u*, v_,

and v_ are optimal controls, then

u*,v_,v_ = arg( min_ max H) , (33)
O_u_u Vl,V2eV

and

: o . (34)

The termination condition is

Xl : x1(_) = _I (35)

The state constraint is x(t) _ int[_vU _uAv(_)]V t e [0,_], or

18



2
x2 a _2 + - (Xl - _I _I < Xl < _I + V t _ [O,t] (36)

> _ +_<x
2 - s2' I - I

From equation (29), the transversality conditions give _2 as

= X2(_) = 8Ju/aX2 = -2C1x2(t) < 0 . (37)k2

Therefore, we may write equation (32) as

H : C2 + X1(v I - u) + 2C1x2v2 , (38)

where x2 : x2(_)'

To determine the optimal controls from equations (33) and (34), the sign of

kl is needed. If kl < O, then from equations (33) and (38) v_ = O, v_ = v_
and u* = O; therefore, H is the Sum of two positive terms, violating c_ndi-_'

tion (34). Similarly, kl = 0 leads to violation of (34) and thus

> 0 (39)I

It follows that the optimal control for u is

u* : u (40)

and the optimal controls for v are

Vl,V2. * = arg[ max (_ivi + 2C1x2v2)] (41)
Vl,V2_V

The optimal solution of this simple linear programming problem will always lie on
the constraint

m

V2 _
V2 = - -- VI + V2 , 0 _ VI _ VI (42)

VI

SO that equation (41) becomes

v_ : arg[ max_ (_I - 2ClX2V2/V1)V1] (43)
O_v1_v I
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There are three possibilities:

kl > 2C1x2v2/v1 _ v_ = vI , v_ = 0 , (44a)

Xl < 2C1XRV2/V1 _ v_ = 0 , v_ = v2 , (44b)

kl = 2C1x2v2/v1 _ Vl,V2. * singular (44c)

Next, consider v's winning 6-game with condition (31) holding. Now, u
wishes to maximize and v to minimize equation (30) subject to the termination
condition

x2 = x2(_) = _2 (45)

and the state constraint

Xl _ _1 . '/_' - (x2 - _2 )2' €2 < x2 < E2 . V t e [0,_] (46)

> _I _2 + 6 < x2I - '

Proceeding as before, we conclude that Xl = -2CIX1' u* = u, k > O, and v's
possible optimal controls are as given by (44a), (44b), and (4_c); however, in this
case only the choice (44b) satisfies (34).

We are now in a position to delineate the winning regions _u(6) (u wins) and
¢v(6) (v wins). Player u's winning 6-game will be feasible if, and only if, he
is able to satisfy equations (35) and (36) for all of player v's admissible con-

trols. At the boundary of _u(6), v will just be able to make (36) an equality
with controls (44b). With this choice of controls, (35) and (36) give

"_"- ×_ - _:1 x;__- s2 - ,5-<

u v2

that is,

B

x_ - _2 - 6 v2
-- = :Y2 ' (47)

x_ - _I u

which defines €u(6).

Similarly, v's winning 6-game will be feasible if, and only if, (45) and (46)

are satisfied. At the boundary of _v(6), v can just achieve (45) with (46) an
equality at t = _ and his controls thus will be (44b) here. Integrating (21) and
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(22) with this control choice and using (46), the specification of the region _v(_)
is obtained as

x_ - _2
< Y2 (48)

x_ - _I - 6 -

The curves defined by equalities in (47) and (48) divide the playing space into

regions of different outcomes and, therefore, following Isaacs (ref. 2), may be
termed _-barriers.

We now determine v's_ optimal controls in region €u(6). First, suppose (44a)

holds; substituting v_ = v I and v_ = 0 in (38) and invoking (34) gives

C2
X - (49)I -

u -

Putting (49) in (44a) then gives

_ C2YI
x2 < _ (50)

2Ci¥2u(I - y1)

where YI: = Vl/U" From (22) the extremal trajectories in this _e are parallel to
the xl-axis and this, together with (50), defines the region _ I(6) in
figure 7(a). Next suppose (44b) holds; substituting v_ = 0 any v_ = v2 in (38)
and invoking (34) results in

m

C2 + 2C1x2v2
11 : _ (51)

u

and putting this in (44b) then gives

C2YI
_2 > r " (52)

2CiYaU(1 - ¥I) ......

In this case, from (21) and (22) the trajectories are parallel to the bounding line

of _u(6) as defined by (47) with equality; this, along with (52), defines

€(2)(_). The last possibility is (44c) for which the controls need satisfy onlyU

(42), and
w

2C1x2v2
x - (53)

1
v 1
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Substituting (53) into (38) and using (34) and (42), we arrive at

- C2YI
x2 = := x2 (54)

2CiY2_(I - y1)

Therefore, all optimal trajectories in the remaining region, _(3)(6), terminate at

(€i,x2). Because of the linearity of (21), (22), and (28), a_l paths using any

sequence of controls satisfying (42) and reaching _,_2) without violating theconstraint will take the same time and hence have same cost; thus the optimal

controls and paths are not unique in this case. The region €u(6) is then given by

3

¢U(6) : U #u(i)(6)
i=I

We can now completely specify the optimal strategies in t_)winning regions
_.(6) and € (6) for the two players for the case (31). In _ (6), v plays
(_) until Termination and in _2)(6) he plays (44b) until _ermination, In

_'(6), v plays any sequence satisfying (42) giving termination at (_i,_2). In
the region €v(6), v plays (44b). Player u plays u in all winning regions.
The partition of the playing space is described in figure 7(a) for the case

C2YI
E2+ 6 < _ < _ •

2CiY2u(1 - YI)

Player v's winning region is denoted _(I)(6) in this figure for reasons which

will become apparent subsequently. This _igure also shows example optimal trajec-
tories in each winning region.

For initial states satisfying neither (47) nor (48) [i.e., for

(x_,xo) _ € (6) u € (6)], but satisfying one of these conditions for some _ < 6
the preceding analysis applies with 6 replacing 6.

It remains to resolve the combat for initial states satisfying neither (47) nor
(48) for all positive _ no matter how small. These states lie on a line of

slope Y2 passing through the point (_i,_2), given by the dashed line in
figure ?(a), and for points on this line we must have _x0 x0) • _ . u

" I' 2 uvv_ _uAv"
Further, since under condition (31) there can never be a draw (u wll± a±ways

eventually win with u* = u unless v does so first), we have in fact joint

capture, or (x_,x_) • _uAv" The unique strategies that give this outcome are (40)
and (44b) and any unilateral deviation from these strategies will result in the

capture of the deviating player. The locus of points (Xl,X2) e _uAv is therefore a
"barrier" in Isaac's terminology (ref. 2), and could have been determined as the

semipermeable surface emanating from the intersection of _u and _v"
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c2 '71
Q x0 = ,72(xO-el) +

2cI 3'2 G(1 - '71)

(_ x7 = 3,2 (xO-el - (5)+e2

(_ x0 = ,72(xO-el )+e 2+_

c2 '71

x2 (_ x0 = 2cI _2_-_-,71 )

2 /

I

*u (1) (_)! / / /

!_-!t/I// / (I)v(1) (_i)

e2+_" /_ /

eI + 6 _'"_ xl

(a) Y1 < I.

Figure 7.- Regions and optimal trajectories in the playing space; turret
game with linear control constraint and quadratic cost.

Next, we consider the case

u = vI (55)

In this case, v can always prevent the third condition of (26) from being satisfied
and thus u can never win (from initial states outside the target's interior).

Therefore, only v's winning game need be considered. Reasoning exactly as before,

the region _(I)(6) is defined by (48) and the optimal controls in this region are
(40) and (44b_.
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x2

///

/// _v(1) (a)

,'Y /
,< /

_-x I

(b) YI : I.

Figure 7.- Continued.

From initial states in the region complementary to _(I)(6) consisting ofV

points (x_, x_) satisfying

x_ - E2
> Y2 '

a simple calculation using (21), (22), (42), and (55), shows that neither player can
win the game with a 6-margin. Hence, the game will end either in a 6-draw or in

joint _-capture.

Letting 6 become vanishingly small, the boundary line of #(I)(6) converges

to the dashed line emanating f_ the point (_i,^_2) in figure 7(b_. All points

below this line are thus in #_-'(_) for some 6 > O. It is readily seen that
from all points above the dashed line, both players can secure at least a draw; for
example, by using strategies (40) and (44a) for all t < T* - 6, although draw

strategies are nonunique for both players. Thus, points in this region are in

_uVv"

From points on the dashed line u must play strategy (40), otherwise v will

have winning strategies. On the other hand, if v uses strategies satisfying (42),
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c2'72 + e2
x2 (_ x20= (xO+ _')'72- c1_'('71 - 1)

• v(2) (5)

(1) (5)

®

• v(3) (5)

(c) YI > I.

Figure 7.- Concluded.

with u playing (40), the outcome will be either draw or joint capture. By the
preference order established for ordinary combat, v chooses a draw. An example of

a draw strategy for v is to play (44a) for all t _ T* - 8, but draw strategies
are not unique for v.

The regions with (55) holding are shown in figure 7(b), along with example

optimal trajectories.

The last case to consider is

< _I " (56)

From (21), (22), (26), and (27), it is obvious that now v can capture u from any

position in the playing space P that is not in the interior of u's target, and

therefore _v(8) = P/int _u(6). The necessary conditions again give (40) as u's
optimal control and show that v's optimal controls will lie on (42). In this

case, however, the necessary conditions do not establish the sign of X2; further,
the optimal controls of v are frequently nonunique, and the optimal trajectories

are frequently on the boundaries of the playing space. This means that the neces-
sary conditions are of little use in determining v's optimal controls and we use
direct comparison of cost functionals instead.
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The minimum time-to-capture from an arbitrary point (x_,x_) in the region (48)
is obtained from using controls (44b) in (21) and (22); the'result is

t' = (x_ - c2)/v2

At this time,

: - .
and thus from (30),

J'v: -CI[X_ - (x_ - _2)/Y2]2 + C2(x_ - E2)/_2

At t', v has the option of forcing penetration immediately or of playing controls

(44a) and forcing penetration of his target at some later point x_ at an addi-
tional time increment t". Again from (21),

x_ : (Vl - u)t" + x_

and the cost is

j,,

v [v2 el_ ]
But this function will have a minimum with respect to x? E [xi,_] at either

x_ = x_] or x_ = 7. Thus, we need to compare the cost 157) for x_ = x[ with that
_hefor x_ = _. result is that the minimum-time path will be optimal

x_ - _2 C2

x_ + _ Y2 < _ (58)
C1u(Y I - I)

and the path ending at (_,_2) will be optimal when inequality (58) is reversed.
Note that because of the linearity of (21), (22), and (42), all paths using any

sequence of controls satisfying (42) and reaching (_,€2) without violating the
constraints will take the same time. Thus the optimal controls and paths are not
unique in this case.

The line separating the two regions (obtained by replacing the inequality by

equality in (58)) has slope Y2 and is thus pa[allel to the minimum time paths.

This surface intercepts v's target at C2/[C1u(Y1 - I)] - 7.

The regions and example trajectories are shown in figure 7(c) for the case (56)

_ the condition _I + 6 < C2/[C1u(Y I - I)] - _ < _. The optimal paths in region
)(_) are nonunique (only the two extreme pg_s are shown), and all end at

(_I + 6, _ ) in min" time; the paths in _ "(_) are unique, and minimum time;
and the paths in #_( 6) are nonunique, and _ii end at (_, €2). Ifv
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C2/[CIU(Y I - I)] - _ < _1 + 6, all optimal trajectories end at (_, _2) and if

C2/[CI_(y I - I)] > 2_ all trajectories are minimum time.

A special case of these results is time-optimality (CI = 0 and C2 = I). In
this case, the regions in which the optimal trajectories are not time-optimal vanish

(specifically, $(2)(6) $(3)(6) and $(3)(6) in figs. 7(a) 7(b) and 7(c) Also,U ' U 9 V ' 9 "

in region (48) u's control is not defined since it has no effect on the outcome of

the game. These results are summarized in figures 8(a), 8(b), and 8(c); the optimal
_trategies in each region are apparent.

x21
i1"-

I _'-'-----'_0_///_ _V(1) ($)

X'
i,h

_ xI

(a) YI < I.

Figure 8.- Regions and optimal trajectories in the playing space; turret
game with linear control constraint and time-optimality.

Circular Control Constraint

Now let V (fig. 9) be given by

-2 (59)el > O, v2 >_0 , v_ + v2 _<v ,

where v is a preselected positive bound, and choose both costs as time-to-capture
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x2

// _v (1) (a)

,_/ / J

._x 1

(b) Y1 = I.

x2

,_v(1) (_)

qlr

xI

(c) Y1 > I.

Figure 8.- Concluded.
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v2

V

_ =- v1
v

Figure 9.- Circular control constraint.

= J = l _ dt . (60)Ju v
o

As before, inspection of (22) and (27) shows that v can always force termina-
tion (i.e. x (_) < O) and is therefore always capable of winning; whereas from' 2
(21), (26), and (59), u can win only if

u > v . (61)

We begin by investigating the game with this condition holding and first consider

u's winning game; that is, u minimizes and v maximizes (60) subject to (21),
(22), (24), (35), (36), and (59). The Hamiltonian is

H : 1 + Xl(V 1 - u) - X2v2 + _(_2 _ v# - v_) , (62)

where the (ordinary) multiplier _ satisfies

4+4 =
and XI and X2 are constants. The optimal controls for v must satisfy
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.o_I_I _-kl -_2_VI ==001

(64)

_L_-vv2 -k2 2_v2

Since _ = 0 violates the condition H = O, required for optimal controls, (63)
implies that vPs optimal controls satisfy

2 2 -2
v I + v2 : v (65)

Further, H = 0 and conditions (64) imply that

_I > 0 and _2 _ 0 (66)

so that

B

u* : u (67)

If (36) is satisfied with strict inequality at t = t, the transversality conditions
give _2 = O, and from (64) and (65), for this case,

m

: v, : 0 . (68)

To determine the boundary of u's winning region, note that v desires to

choose controls (subject to (65)) to make this region as small as possible. Assum-

ing constant controls and using (65), (21) and (22) may be integrated to give

_I : x_ + (vI - u)t (69)

and

x2 : x_ - (v2 - Vl)I/2_ (70)

Evaluating (36) at t = t and using (69) and (70) gives

2 I/2 x_ - sI
x_ - s2 - 6 a (_2 _ Vl) _ (71)

u - vI

2-
Therefore, u's winning region will be smallest when vI = y u, where y = v/u;
putting this value in (71) gives the specification of region Cu(8) as

x_ - _2 - 6 _ (x_ - Sl)/(I/y2 - I)I/2 . (72)

The optimal strategies in this region are (67) and (68).
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Next, consider v's winning E-game for (61) holding; now u maximizes and

v minimizes (60), subject to (59). The Hamiltonian is (62) as before, but now
_ O in (63). Proceeding as before, if (46) is satisfied with strict inequality

XI = O, then v's optimal controls are

:0, = (73)
and u's control is indeterminate. For (46) satisfied with equality at t = _,

u's optimal control is given by (67) and v's optimal controls are constants

satisfying (65). Integrating (21) and (22) with these controls gives

< _ = (x_ - _2)/(_2 - v_)I/2 } (74)eI + _ : (vI - u)(x_ - _2)/(_2 - v_) I/2 + x_

Solving the latter equation for Vl,

- I - n[y2(1 + n2) - I]I/2
vI = u 2 (75)1+n

where

x_ - el - _ (76)
n : x_ - _2 "

This control will be used in the region in which (75) will have real solutions

satisfying (65); that is,

(I/y2 - I)I/2 _ n _ I/y (77)

Note that the controls corresponding to the lower and upper bounds in (77) are

Vl = y2_ and vI = O, respectively.

We have now determined the regions and optimal controls for the case t_tl _
In _u(8), defined by (72), the optimal controls are (67) and (68). In _v )'
defined by

n > I/y , (78)

the controls are (73) with u indeterminate. In _(2)(6), defined by (77), thev

optimal controls are given by (65), (67), and (75).

To resolve the combat in the remaining region, that is, the region which satis-

fies neither (72) nor (I/y2 - I)1/2 _ n, we proceed as in the linear constraint

case. Initial states not satisfying these in_qualit_ for all positive 6, no
matter how small, lie on a line of slope (I/y_ - I)-''_ passing through (_I, _2)"
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This line, the dashed line in figure 10(a), is a locu_ of joint capture ini_i_ 2
states for which the unique controls are (67),-v*1--"vu, and v*p--.u,Iv-C _ .v,_ .
The various regions and example optimal trajectories are shown Tn figure 10(a).

® xO_,1_o1+e2+8
V/_",/2 - 1

0 xOxO_o,_= + e2.-.
_/1/3,2 -1 t'.:.t'

x2 (_) x0 = '7(xO-el-8)+e 2
1"1"

/,,/

//

e2+ _

.?

Xl :_'/i' '
e1+8 .. _ ,, _..

(a) y < 1. •

Figure 10.- Regions and optimal:trajectories in the playing space; turret
game with circular contro_ _constraint and time-optimality.

The cases u = v and u < v may be easily inferred from the results for the

case (61). As y . I from below, the slopes of the boundary lines labeled (I)

and (2) in figure 10(a) become infinite. Therefore, $u(6) vanishes and the upper
boundary of $v(6) now depends on the prespecified value of T_ To find this_:

boundary, we integrate (21) and (22) using (65) and (67) backward from (_I :_[6, _2)
o_ an interval of time T* - 6. The result is that initial conditions in region
$_='(6) must satisfy
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x2 = F(x0- el - _) [2u (T* - _) - x0+ el+ _] + e2

/ = X0-el-8+e2./
/

//_ ,_v_1_€_

,.- x I

(o) y > 1.

Figure I0.- Concluded.
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(x_ - €2)2 _ (x_ - EI - 6)[2_(T*- 6) - x_ + _I + _] (79)

Regions #(I)(6)vand _2)(_) are shown in figure 10(b),and the controls in these
regionsare as previouslybut with y = I.

From initialstates in the region complementaryto (79), neither player can win
the 6-game. Letting 6 become vanishinglysmall, the boundary line associated
with (79)becomes the dashed line shown in figure 10(b). Pointsbelow this line are

in _(2)(_) for some _ > O, and from points above this line both players canv
securea draw. As before,draw strategiesare not unique. From initialstates on
the boundaryline itself,v has the option of draw or joint capture at t = T*; by
the preferenceorder for ordinarycombat,he choosesdraw.

Finally,for u < v (fig. I0(c),¢v(6) is the entire playingspace, again

composedof regions _(I)(_)and €(2)(_).v v

6. DISCUSSION

Althoughthe turret game is a very simple and idealizedproblem,analysis of
this game has revealeda rich varietyof combat phenomena. First, note that the
solutionto this game exhibitsmany featurescommonlyfound in differentialgames,
such as the existenceof barriersand "singular"surfaces. An exampleof a singular
surfaceis given by (58) with the inequalitybeing replacedby equality;this is a
singularsurfaceof type (p, u, -) in Isaacs'terminology(ref. 2).

The optimal strategiesalso exhibitfeaturescommon in differentialgame solu-
tions. In most regionsof the state/parameterspace, the optimalcontrols of both
playersare unique and constant. There are regions,however, in which the controls

are nonunique(_(3)(_)"in fig. 7(a) and _(2)(6)and _t3)(_)"in fig. 7(c)) WeU ' V "

note that in many cases the opti_ strategYesare obvious;for example, from ini-
tial conditionsin the region _'-'(6) in figure 7, player v can capture u
(beforebeing himself captured){y simply "standing"and turninghis turret at the
maximum rate.

The turretgame solution,however,shows that combat problemshave featuresnot
encounteredin games of survivaland pursuit-evasion. One of these features is the
existenceof a manifold on which both playersare locked into mutual destructionat
the earliestpossible time, in the sense that any deviationfrom this policy by one
of the playerswill result in his unilateralcaptureby the other. This situation
is mentionedin reference7, and has been found to occur also in nonoptimal air
combat simulations(ref. 27). Another featureis a manifoldon which one of the
playershas the unilateralchoice betweena draw and mutual destructionat a time of
his choosing.

The idea of _-combatgames, introducedto solve technicalproblems concerned
with closurepropertiesof the target sets, also has importantpractical
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implications. In the turret game, 6 is closest that the winning player is allowed
to approach his opponent's target at termination. Thus, the winning player can

choose _ to specify to what degree he is willing to accept the risk of his own
capture.

Because of past emphasis on pursuit-evasion problems, it is of interest to

examine the turret game from a pursuit-evasion standpoint. First consider the
(time-optimal) pursuit-evasion game with u as the pursuer and v as the evader

(u/v) subject to (24) and (28). The necessary conditions give the optimal strate-

gies as u* = _, v_ = _ , and v_ = 0 for _I < _' and capture occurs if

vI < u. For v/u, the optimal controls are v_ = O, v_ = v2, and u* undefined,
and capture always occurs.

Now suppose we (naively) attempt to construct the combat results from the

pursuit-evasion results by assuming that whichever pursuit-evasion game ends in the

least time will be the one played. Then, for vI _ u, the v/u game will be played
everywhere. For < u, the times of the two games must be compared. Integrating
(21) and (22) with the two sets of controls shows that the u/v game will be played
if

x_ - _2 Y2
> , (80)

x_ - _I I - YI

and conversely for the v/u game. These results are shown in the playing space in

figure 11 for 6 vanishingly small. Note that the slope of the boundary line (80)
is greater than the slope of the boundary lines (47) and (48).

Comparing figures 8 and 11, we see that in the regions (*) on figure 11 the two

analyses give the same solutions, but that in the other regions the solutions are
dramatically different. In all these other regions, the pursuit-evasion solution

indicates that v will win, v's optimal strategy is (0, v2) , and u's strategy is
immaterial. In region (I) on figure 11(a), however, the combat game results show
that if u plays u, then u will win. Moreover, u will win in minimum time,

if v persists in playing his pursuit-evasion-derived strategy. In (2) on
figure 11(b), the combat results show that the best v can achieve is a draw, and

that he must play (vl, O)to do this; if v plays his pursuit-evasion strategy, u
will win. And in (31 on figure 11(c), v can in fact win but he must recognize and

avoid u's target to do so.

Thus from v's standpoint, the pursuit-evasion results frequently tell him he

can win when he cannot. Moreover, use of the pursuit-evasion strategies frequently
will cause v to be captured when capture is avoidable, or lead him to be captured

in minimum time when capture cannot be avoided. From u's standpoint, the pursuit-
evasion results frequently tell him that he will be captured and that his strategy

selection is of no consequence, when in fact he has winning or draw strategies.
Thus, the serious fallacy of using pursuit-evasion methods to "solve" combat prob-
lems (i.e., differential games between opponents with offensive capabilities and

offensive objectives) is clear.
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Figure 11.- Results for turret game based on minimum-time pursuit-evasion games.
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As a final point in our discussion, we wish to reemphasize the role of threat

for optimal strategy selection in suitably formulated combat games. We have clearly
seen above that both players combine offensive and defensive behavior in their

optimal strategies. The winning player, during his offense, takes defensive mea-

sures to avoid being captured himself. At the same time, the losing player, usually
thought of as defensive, applies a threat to the winner. That is, he also imple-

ments his offensive capability in order to prevent his opponent from using the most
damaging strategies (in terms of the formulated game's cost). In a properly formu-
lated combat game, just as in actual combat, both players combine a suitable blend
of offensive and defensive maneuvering.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, California 94035, December 20, 1984
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