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Chapter 1

INTRODUCTION

Modal analysis has emerged as a valuable tool in many phases

of the engineering design process. Complex vibration and acoustic

problems in new designs can often be remedied through use of the method.

Moreover, the technique has been used to enhance the conceptual under-

standing of structures by serving to verify analytical models.

In this thesis* a new modal parameter estimation procedure is

presented. The technique is applicable to linear, time-invariant

systems and accommodates multiple input excitations. In order to

provide a background for the derivation of the method, section (1.1)

briefly describes some modal parameter extraction procedures currently

in use. Section (1.2) elaborates upon key features implemented in the

new technique.

1.1 Extraction Methods

As better experimental measurement procedures and computation-

al resources have become available, a need has likewise developed for

more accurate and complete modal surveys. Quite sophisticated modal

parameter extraction algorithms have consequently evolved. These

methods include time and frequency domain analyses, and differ in the

number and types of excitation applied to the structure.

One principal category of extraction techniques recently

implemented in modal analysis is based upon representation of the

response of a system in terms of characteristic "complex exponentials."



In a general sense, the complex exponential techniques may be considered

to include the Ibrahim Time Domain (ITD) method, the Least Squares

Complex Exponential (LSCE) method, and the Polyreference method.[1] In

the ITD method, the free decay response of a structure is assumed to

take the form

2N At
x(t) - I A er (1.1)

In Eq. (1.1), x(t) is the response at N locations on the structure, <j>

are modal vectors, and X are the eigenvalues of the system. By collec-

ting the free decay response for several different initial conditions

and curve-fitting the collected data to the form in Eq. (1.1), estimates

of the modal parameters can be achieved.

In the LSCE method, experimentally derived frequency response

functions are fast Fourier transformed to impulse responses in the time

domain. Analytically, these impulse responses are assumed to be

expressible as

N At X t
h..(t) - F[H (w)] - I [A e r + A er] (1.2)

where F[ ] and ( ) denote Fourier transformation and complex conjuga-

tion. The quantities h (t), H (w) and A in Eq. (1.2) are the

impulse response, frequency response function, and rth complex residue

for the ith and jth locations on the structure. As in the ITD method,

estimates of the modal parameters are achieved by curve-fitting experi-

mental data to the form of the complex exponentials in Eq. (1.2).



Both the LSCE and ITD algorithms have proven capable of

generating accurate approximations of modal parameters. Yet, as with

any method, criticisms of the approaches have arisen. One potential

problem with the ITD method stems from the fact that it utilizes a

single input model. Single input refers in this case to the particular

initial condition selected in data acquisition. Reference [13] main-

tains that the ITD method cannot identify repeated modes.

In reference to the LSCE technique, the transformation of

frequency response functions back to the time domain may introduce

bias errors. Some difficulty has also been noted in determining an

estimate of the number of active modes in a particular frequency range.

[5]

Unfortunately, the ITD And LSCE methods share an additional

common disadvantage. While they both supply a consistent set of natural

frequencies, neither approach generates a consistent set of modal

vectors. [15] In this context, consistent means a unique set of

calculated parameters. The LSCE method, for example, can supply a

different set of modal vectors for data acquired using different exciter

locations in a single run. [5]

Techniques that generate a consistent set of eigenvalues and

eigenvectors have been developed. The Polyreference method, as

developed in (20), is one such approach. Two other procedures that

calculate consistent parameters are the Direct System Parameter

Identification (DSPI) method derived by Leuridan [15] and the

Simultaneous Frequency Domain technique of Coppolino. [7] The methods

are similar in that they both approximate dynamic system matrices.



The DSFI algorithm is a multiple input, frequency domain

parameter extraction technique. The approach may be formulated by

transforming the governing equations

[M]x(t) * [c]x(t) + [K]x(t) - f(t) (1.3)

into their frequency domain form shown in Eq. (1.4).

-w2[M]x(w) + Jw[C]x(w) + [K]x(w) - f(w) (1.4)

In Eqs. (1.3) and (1.4), fM], fC] and [K] are N x N mass, damping, and

stiffness matrices, respectively. The N-vectors x and f represent the

response and excitation at N measurement locations on the structure.

Because of the DSPI method seeks to estimate directly the entries in

[M], [C] and [K], Eq. (1.4) is expanded for discrete frequencies and

rearranged into a form suitable for calculation.

[T]u - [V] (1.5)

The matrix [T] in Eq. (1.5) is comprised of experimentally collected

response, while [V] contains force spectra. The vector u is composed of

the unknown elements in [M], [C] and [K]. By controlling the location

that the entries in Eq. (1.4) are indexed into the matrices in Eq.

(1.5), constraints such as bandwidth and symmetry may be imposed upon

the calculated [M], [C] and [K] matrices. Actual solution of Eq. (1.5)

proceeds using a least squares technique. Once the entries in the mass,

damping and stiffness matrices are available, a general eigenvalue

problem can be assembled and solved for the modal parameters.



While the DSPI method does provide a set of consistent modal

parameters, the Indexing scheme used In assembling Eq. (1.5) Is quite

complicated. Even more Importantly, If the number of measured responses

is large, the DSPI technique requires an Inordinate amount of computer

space. The method makes no provision for reducing the problem size.

The SFD technique is a single input method that assumes that the

response of 1 "independent" locations on a structure Is governed by the

set of differential equations

+ [Ĉ x̂ t) + » [D±]f(t) (1.6)

where

[C±]

[K±]

f(t) -

• i x 1 mass matrix

- 1 x 1 damping matrix

» i x 1 stiffness matrix

« i x 1 force distribution matrix

a single excitation time history

As is explained shortly, the number of independent coordinates, 1, may

be considerably less than the total number of measurement locations N.

When Eq. (1.6) is Fourier transformed, multiplied by fM.]~ , and

rearranged, the fundamental equation of the SFD method emerges

-f(w)

- 0
(1.7)



the new matrices [C .1, [K ] and [D ] are defined in Eqs. (1.8A), (1.8B)

and (1.8C).

[C±] - a.8A)

(1.8B)

ff\ 1 _ fw T ^ fr\ I /I Q/^\l"jJ l"j J 1"^ J Cl.oC;

If response spectra or frequency response functions are collected, Eq.

(1.7) can be expanded for each discrete frequency and solved for the
A A A

matrices [C. ], [K.] and [D.] in a least squares sense. Once these

matrices are obtained, a consistent set of eigenvalues and eigenvectors

can be calculated from the standard eigenvalue problem

[-1] [0]
- 0 (1.9)

If the number of responses, N, is quite large, the solution of

Eq. (1.7) for all measurements, 1 » N, may be cumbersome. The SFD

algorithm however, provides a means of reducing the problem size if

necessary. In the method, it is possible to choose the 1 independent

locations to be a reasonably sized subset of the total N measurement

locations. The remaining d - N - i locations are termed "dependent"

coordinates. Solution of Eq. (1.7) using only the independent coordi-

nates is then feasible. Because 1 < N, the eigenvectors calculated in

Eq. (1.9) for the reduced problem are of a smaller dimension than full

system eigenvectors. The entries of the full eigenvectors corresponding

to dependent coordinates are calculated in a least squares sense from



the measured response spectra, or frequency response functions, and the

eigenvectors for the independent coordinates.

To better identify closely spaced modes, a version of the SFD

algorithm has been derived that utilizes multiple excitation locations.

Blair [3] has shown that minor modifications can result in significant

improvement in the method's ability to resolve closely spaced modes.

Essentially, the single excitation history f(t) in Eq. (1.6) is replaced

with an N -vector of excitation time histories f(t), where N is the
P P

number of exciters. As a result, Eq. (1.7) becomes

x(w).1 u -»

-f(w)

x(w) 0 (1.10)

where [D.] is now i x N . The solution of Eq. (1.10) for the matrices
i P

A A.

[C.] and [K.], and ultimately the calculation of system eigenvalues and

eigenvectors, proceeds identically as in the SFD method.

Selecting the independent coordinates used in model reduction

poses a source of difficulty in the SFD technique and Blair's version of

the method. In both cases, user judgment is required. In addition,

each method uses the normal equations solution procedure, prone to

numerical instabilities for poorly conditioned data. As a final point,

the theoretical development of the SFD algorithm and Blair's version of

the approach assumes that the system damping is proportional, a very

limiting restriction.
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1.2 Features of the Newly-developed Method

Considering the relative merits of the techniques considered

in section (1.1), the approach derived in this thesis is based upon

Blair's modification of the SFD algorithm. The current study extends

the work of Blair by Investigating automatic procedures to reduce the

effective problem size. It has been a primary Intent of the research to

evaluate means of decreasing the user interaction required in generating

a reduced-order model. Two reduction strategies are outlined in the

thesis.

Furthermore, derivation of the parameter extraction equations

proceeds without assumptions regarding the form of damping expected in

the physical system. In contrast to the methods of Blair and Coppolino,

a theoretical framework is presented that can admit skew-symmetric or

non-proportional damping matrices.

Lastly, the technique developed herein utilizes more stable

solution procedures than those of Blair and Coppolino. A frequency

response function synthesis technique Is also described to facilitate

modal parameter verification.

The presentation of the new method begins in Chapter 2 with

the description of the theoretical basis and computational organization

of the technique. A method of verifying the calculated modal parameters

is reviewed in Chapter 3. Chapter 4 examines transformations used in

reducing large, Impractical problems to a reasonable size. Least

squares solution procedures and applications to component mode synthesis

are topics elaborated upon in Chapters 5 and 6, respectively. Both



analytical and experimental example problems are discussed in Chapter 7.

The final chapter of the thesis contains conclusions and recommendations

for further work.



Chapter 2

DEVELOPMENT OF THE PARAMETER EXTRACTION METHOD

In developing a modal parameter estimation method for linear,

time-invariant dynamic systems, it is assumed that there exists a

discrete analytical model, identical to that in Eq. (1.3), that

accurately represents the dynamics of the structure.

[M]x(t) + [c]x(t) + [K]x(t) - f(t) (2.1)

.
As in Chapter 1, x(t), x(t) and x(t) are the acceleration, velocity and

displacement time histories at N discrete locations on the structure.

Similarly, [M], [C] and [K] are of N * N order and commonly referred to

as the mass, damping, and stiffness matrices, respectively. The

N-vector f(t) contains input excitation functions, one for each of the N

degrees of freedom.

When dealing with such general systems, it is often more

convenient to analyze the set of equations in Eq. (2.1) when they are

organized in a different manner. In particular, a state vector

formulation is frequently utilized which introduces a 2N-vector of

unknowns X(t).

X(t)
x(t)

(2.2)
x(t)

A close inspection of the alternate system

[A]X(t) + [BlX(t) = F(t) (2.3)

10
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where

[A]

[B]

F(t)

[0] [M]

[M] [C]
»

-[M] [0]

TO] [K]
•

0

f(t)

(2.4)

(2.5)

(2.6)

reveals that Eqs. (2.1) and (2.3) are equivalent. The matrices [A] and

[B] are of 2N x 2N order, while F(t) is a 2N-vector.

2.1 Model Reduction

It has been noted in Chapter 1 that some methods are ill-

equipped to handle the numerous measurements that can result from

practical experimental analyses. An analytical model such as Eqs. (2.1)

or (2.3) that is large enough to represent all these experimental

degrees of freedom may be difficult, or even impossible, to generate due

to limited computer resources. Thus, the need to be able to reduce the

size of the dynamic model becomes apparent.

A common method used in analytical dynamics to approximate a

large system of differential equations, as in Eq. (2.1), by a smaller

system is Ritz analysis. [2, 8} Essentially, the solution x(t) is

approximated by a linear combination of M Ritz basis vectors, #., such

that
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M
x(t) s E Y.,(t)<l>., (2.7)

where M < N. Because the approximation of x(t) is restricted to the

subspace spanned by the Ritz vectors ty . , the accuracy of Eq. (2.7)

depends upon the Ritz vectors chosen. Reasonable accuracy is achieved

only if the Ritz vectors span a significant portion of the "motion

space" of the system in Eq. (2.1).

The fact that Ritz analysis can indeed decrease the dimension of a

system of equations is apparent when Eq. (2.7) is written in matrix form

x(t) s [ $ ... t)]Y(t) - toMt) (2.8)

In Eq. (2.8), [t|i.] is an N x M matrix, and the original N-vector x(t) is

approximated using a smaller order M-vector y(.t").

Ritz analysis may also be likened to another transformation

method encountered in time series analysis. [4] The approach seeks to

replace an unwieldy, large set of unknowns by a smaller, statistically

similar set. For example, the technique may be applied in signal

processing when it is necessary to transmit several signals over a

smaller set of channels. To compensate for the limited number of

channels, only a subset, or a reduced combination, of the original set

are transmitted. The full, original set is then approximated upon

reception of the subset of signals. [4]

This process of reducing, and later reconstructing, a set of

time histories is embodied in Eqs. (2.9), (2.10A) and (2.10B).

Y<t) - [<Plx(t) (2.9)



13

x(t) = t*R]Y(t) (2.10A)

+ e(t) (2.10B)

In equation (2.9), the original response N-vector x(t) is "condensed"

via an M x N transformation matrix [ty ] to the reduced M-vector y(t).
t* v

The condensed vector is assumed more convenient for processing, such as

computation or transmission, than the original vector x(t). When

processing of y(O is complete, the original N-vector x(t) may be

estimated from the M-vector y(O using the N x M matrix [tp ] in Eq.
<• K.

(2.10A). Equation (2.10B) simply identifies the error incurred in Eq.

(2.10A) as an N-vector e(t). The notation in Eq. (2.10B) is convenient

in later discussion of transformation methods.

Comparison of Eqs. (2.8) and (2.10A) reveals that the recon-

structing transformation is identical in form to a Ritz analysis trans-

formation. As in the Ritz analysis, the accuracy of Eq. (2.10A) depends

upon the selection of [tyr] and [tpD]. This selection process is dis-
(•# tx

cussed in Chapter 4.

The above transformations can now be used to produce a reduced-

order model. Substituting Eq. (2.10) into Eq. (2.1), and premultiplying

^7 [$r] yields a smaller set of governing equations in the new variable(/

Y(t).

(2.11)
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Neglecting the error terms and introducing a more compact notation

results in the reduced system

fM*]y(t) + [C*]y(t) + [K*ly(t) s [* ]f(t) (2.12A)
* w -. V» *.

with

[M*] - [*,,][M][i|i.J (2.12B)

[<:*] - [*cl[c][*R] (2.120

[K*] ** [tf»c][K][t|»R] ' (2.12D)

where [M*], [C*], and [K*] are M * M mass, damping and stiffness matri-

ces. Because of the omission of error terms, the equality in Eq.

(2.12A) is necessarily approximate. However, further equations derived

from Eq. (2.12A) are expressed as strict equalities. Lastly, it is

worth noting that if [$„] - [i|>_] , then [M*], [C*], and fK*] are identi-
\« K

cal to the matrices obtained in a standard Ritz analysis reduction.

[2, 8]

2.2 Frequency Domain Model

With the advent of digital Fourier analyzers, frequency-domain

analysis in structural dynamics has flourished. [22] These instruments

provide a quick means of generating the frequency spectrum of a time-

domain signal and may also directly compute frequency response func-

tions. Because experimental frequency domain data is commonly available

and may be easily transformed to represent accelerations, velocities or

displacements, a frequency-domain equivalent of the reduced model in Eq.
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(2.12) is sought. To this end, it is now necessary to Fourier transform

Eq. (2.12).

[M*]Y(w) + [C*]Y(w) + [K*]Y(w) a [<J>c]f(w) (2.13)

With f ] denoting a Fourier transform, the previous notation tr.ay be

defined

Y(w) - F[Y(t)] (2.14A)

Y(w) - F[Y(t)J (2.14B)

Y(w) - FtY(t)] (2.14C)

In practice, experimental acceleration spectra are more prevalent than

velocity or displacement spectra. Using the property of Fourier

transforms [10], ff(n)(t)] - (jw)nf(w), Eq. (2.13) can be written in

terms of acceleration spectra alone.

[M*]Y(w) + [C*] -rrY(w) + [K*] -̂ - Y(W) - r*c]f(w) (2.15)
J -w ~

Normally, a physical system undergoing multi-shaker modal

testing has only a few points of excitation and many nodes. In this

case, the full N-vector of nodal excitations, f(t), can be represented

by

f(t) - [D]p(t) (2.16)

If N is the number of actual exciters, with N « N, then [D] is an
P P

N x N force distribution matrix and p(t) is an N -vector of excitationp p
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functions. When Eq. (2.16) is Fourier-transformed and substituted Into

Eq. (2.15), a new system results,

[M*]Y(w) + [C*] TY(w) + [K*] -Y(w) - [D*]p(w) (2.17)
-w "

where [D*] = OJ[D] is an M x N matrix. Premul tip lying by [M*!*1C p

produces the desired reduced-order frequency-domain analytical model for

the system described originally by Eq. (2.1).

Y(w) + [C] -̂  Y(W) + [K] -̂  Y(w) - [D]p(w) (2.18)
J -w

A

In this expression, [D] is an M x N matrix.

2.3 Organization of Computations

While the transformation scheme outlined in Eqs. (2.9) and

(2.10) is defined for continuous, analytic functions, the approach is

equally applicable to discrete data. In particular, the contracting

transformation [i|>_] can be used to generate a condensed set of discrete

experimental data for the reduced-order model in Eq. (2.18). If [x(w )]

represents N measured vectors of response spectra,w

Fx(w )] - [x(w ) x(w ) ... x(w )] (2.19)
' - A - •* ' N N x N

w w

then a reduced experimental set of spectra may be obtained via a form of

Eq. (2.9) expanded for discrete measurements.

[Y(w.)J - [Y(wJ Y(wJ ... Y(w )] - [*r][x(w.)] (2.20)
- 1 , L , i - N L . I

MxN w MxN NxN
w w
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A quick Inspection of Eqs. (2.9) and (2.10) reveals that results similar

to Eqs. (2.19) and (2.20) may be written for the derivatives of x(t).

Thus,

(2.21)
MxN MxN NxNw w

To accommodate the condensed experimental acceleration spectra

obtained in Eq. (2.21), Eq. (2.18) must be expanded and rearranged for

N discrete frequencies.

KG] [K] [D]J

Mx(2M+IT)
P

-w. MxNw

'(2M+N

Four new matrices are newly defined in Eq. (2.22).

1 1j— YM(WI) ... jj
w MXNw

(2.22)

(2.23A)
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w.

1

w

1
r Y i ( w )

W2 Nv
w

"N

w,Nw MxNw

(2.23B)

M x Nw

(2.23C)

-P2(wN

•PN (V ••• -pN (WN >
P p w N x Np w

(2.23D)
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If [̂ P] is given, the only unknown quantities in Eq. (2.22) are the
\s

A A A

entries in [C], [K] and [D], These matrices implicitly represent the

dynamic properties of the reduced physical system. A standard least-

squares solution for [C], [K] and [D] may be formulated by transposing

and separating the real and imaginary parts of Eq. (2.22).

RE I

IM

2N x(2M+Nw

ro

Ti
RE I

*[ -!<"i'
(2M+N )xM 2N XM

w

(2.24)

Equation (2.24) may now be solved for [C], [K] and [D] by any one of

several methods, two of which are described in Chapter 5.

Because the matrices [K], [C] and [D] are real "and constant,

the time-domain equivalent of Eq. (2.18) is expressed

Y(t) + [C]y(t) + [K]y(t) [D]p(t) (2.25)

In a manner analogous to that done for the full system, the state vector

formulation for the reduced system in Eq. (2.25) may be written

(2.26)
" [I] [0] "

[0] [I]
» •

'Y(t) "
**

Y(t)

•f
" [ci m "
[-i] roi

"-y(t) "
*

Y(t)
k •

m
' [D] p(t) '

0

or more concisely,

[A] F(t) + [B] F(t) - F(t) (2.27A)
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where

r(t) -
Y(t)

Y(t)
(2.27B)

Although [A] is a 2M x 2M identity matrix, the present notation is

retained to simplify discussion of synthesis in Chapter 3.

A standard eigenproblera may be formulated for the eigenvalues

and right eigenvectors of Eq. (2.27). If the time dependence of F(t) is

" At
given by r(t) - Xe , then the eigenproblem corresponding to Eq. (2.27)

can be written

X X + [B]X
r.r l J.

(2.28)

Equation (2.28) introduces a notational convention maintained throughout

this thesis. All eigenvectors and static responses in the derivations

that follow may be distinguished from other vectors in that they are

expressed without an argument denoting time or frequency dependence.
A A

From Eq. (2.28), 2M eigenvalues X and 2M reduced eigenvectors, X of

length 2M may be extracted. The eigenvalues may be used directly as

approximations to the eigenvalues X of the original system (2.3).

The reduced eigenvectors in Eq. (2.28) may be employed to

achieve an approximation to the eigenvectors of the full system in Eq.

(2.3). Recalling both the form of X(t) in Eq. (2.2) and the

transformation in Eq. (2.10), we have

X(t)
x(t)

x(t)
(2.29)
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x(t) (2.30)

It is immediately apparent that

X(t) s
[*1

r(O (2.31)

Equation (2.31) defines the state vector form of the reconstructing

2N x 2M matrix _ .
K

x(t) s

[fR] - [0

(2.32)

(2.33)

Finally, the transformation in Eq. (2.32) may be used to approximately

reconstruct the full system eigenvectors from the reduced system

eigenvectors.

Xr s (2<34)



Chapter 3

FREQUENCY RESPONSE FUNCTION SYNTHESIS

Often in experimental modal analysis, it is necessary to

verify that the set of modal parameters obtained is both accurate and

complete over the frequency range of interest. A common means of

validation is to generate an analytical set of frequency response

functions, or FRF's, from the estimated modal parameters. The

analytical FRF's may then be visually compared to experimentally

collected FRF's. In this manner, spurious modes may be rejected from a

set of calculated modal parameters.

3.1 Preliminaries

The derivation of frequency response synthesis formulas has

been described in numerous publications. [5, 22, 23] Many synthesis

formulas consider the N-dlinenslonal dynamic system of Eq. (2.1)

[M]x(t) + [c]x(t) + [K]x(t) - f(t) (3.1)

subject to assumptions concerning the form of the damping matrix [C].

Perhaps the most familiar simplification stipulates that the damping

matrix may be expressed as a linear combination of [M] and [K]. This

proportional damping assumption enables the classical expression for

complex frequency response functions H.. (w) to be written [8]

x (w) N * <1>*_(J)Hii(w) " rra- ** z ^i£ (3-2)J ijV*/ . Wj r 1 V1 -

22
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The N-vectors <J> and parameters w are the normal modes and undamped

natural frequencies calculated from the eigenvalue problem

{[K] - w*[M]Hr - 0 (3.3)

The scalars K and £ are defined In Eqs. (3.4A) and (3.4B).

Kr " *r[Kl*r (3'4A)

(3. AC)

A less restrictive assertion that Is frequently encountered

maintains that the damping matrix fC] is symmetric. Based on this

supposition, reference \2Q] derives

x (w) 2N X (j+N)X (i+N)

vw) - f '
Equation (3.5) is based upon the state vector form of Eq. (3.1) given in

Eqs. (2.3), (2.4), (2.5) and (2.6). The 2N vectors XT of length 2N are

the right eigenvectors, and the 2N scalars X are the eigenvalues

associated with Eq. (2.3), i.e.,

Ur[A] + [B]}Xr - 0 (3.6)

The parameter a is the right eigenvector contraction of the matrix [A].

T

(3.7)
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Using no simplifications regarding the form of the damping

matrix [C], references [5] and [23] present a frequency response

synthesis formula suitable for general linear, time-invariant systems.

2N A.
- E (3.8)

r-1 jw -

The above representation of H. . (w) stems from the Laplace transform of

Eq. (3.1),

(s2[M] + s[C] + [K]} x(s) - f(s) (3.9A)

x(s) - (s2[M] + s[C] + [K]}~1f(s) - [H(s)]f(s) (3.9B)

When a partial fraction expansion is carried out for each term in the

matrix [H(s)], the form given in Eq. (3.8) results. For application in

this thesis, however, it will be more convenient to represent FRF's for

linear, time-invariant systems in terms of an eigenvector expansion

similar to Eqs. (3.2) or (3.5).

3.2 Synthesis for Linear, Time-Invariant Systems

A frequency response synthesis formula applicable to general

linear, time-invariant systems and expressed in terms of system eigen-

vectors can be achieved by starting with the state vector form of

the governing equations in Eq. (2.3).

[A]X(t) + [B]X(t) - F(t) (3.10)

The right and left eigenproblems associated with Eq. (3.10) are shown in

[12] to be
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- 0 (3.11A)

Ur[A] - 0 (3.11B)

Moreover, It Is also proven that these system eigenvectors are

bi-orthogonal with respect to the matrices [A] and [B].

j if J - i

0 if j * i
C3.12A)

if J - i

if j * i
(3.12B)

This attribute of X and Y can be used to uncouple the system in Eq.

(3.10). The solution X(t) may be expressed as a superposition of the

right eigenvectors.

2N
X(t) - Z X a (t) - [X ]q(t)

-r r -r -
(3.13)

The right eigenvectors X comprise the columns of the 2N * 2N matrix

[X ] and q(t) is a 2N-vector. When Eq. (3.13) is substituted into Eq.

(3.10), and the resulting system is premultiplied by

(3.14)

N
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Eqs. (3.12A) and (3.12B) assure that the resulting system is

diagonalized.

["â Jq(t) + |>r-Jq(t) - [Yr]
TF(t) (3.15)

When Eq. (3.15) is Fourier transformed, a set of algebraic equations

result.

(3.16)

Each equation in the 2N rows of Eq. (3.16) may now be solved

individually. The kth unknown q (w) becomes

YTF(w)

The original solution X(w) is recovered when Eqs. (3.17) and (3.13) are

combined.

2N X Y*F(w)
X(W> - * £ ^ b (3

r-1 J r r

Equation (3.18) assumes a more familiar form when X(w) is

expressed in terms of the system eivenvalues A . Premultiplication of

the rth right eigenproblem Eq. (3.11A) by the rth left eigenvector

generates the identity

A Y*[A]X + Ŷ [B]X - 0 (3.19)
r j^r v« ^* ^^

or using (3.12A) and (3.12B),
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Xrar * br " ° (3>20)

Substitution of Eq. (3.20) into Eq. (3.18) produces a fonn explicit in

the eigenvalues X .

2N X YTF(w)
X(W) - E

r-1

The expansion in Eq. (3.21) provides the desired frequency

synthesis formula, expressed in terms of eigenvectors, for any linear,

time-invariant system. A comparison of Eqs. (3.21) and (3.8) shows that

each FRF implied in Eq. (3.21) is given by

x.(w) 2N A..w) - = E (3-22)

where the complex residue A., is defined in Eq. (3.23).

X (i+N)Y (J+N)
Aljr --E -I (3.23)

3.3 Synthesis for the Reduced System

The parameter extraction scheme outlined in Chapter 2 provides

approximations for the right eigenvectors X and eigenvalues X of the

original system. Direct implementation of Eqs. (3.22) and (3.23) would

additionally require the estimation of 7 and a . However, frequency

response function synthesis can also be accomplished by considering

only reduced system parameters.
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Following exactly the same steps in section (3.2) for the

reduced system model in Eq. (2.27),

[A]f(t) + [B]T(t) - F(t) (3.24)

an Identity similar to Eq. (3.21) may be cited for the reduced frequency

response

A AMI A

2M X Y F(w)

ar(jw -
(3.25)

The quantities comprising Eq. (3.25) are analogous to those comprising

Eq. (3.21), but hold for the reduced system in Eq. (3.24) instead of Eq.
A A A

(3.10). X , Y , and X are the right eigenvectors, left eigenvectors,

and eigenvalues of the reduced system.

Ur[A] + [B]}Xr = 0 (3.26A)

A m A

[B]T}Yr - 0 (3.26B)

The scalar a is the rth left /right eigenvector condensation of the
A

matrix [A] .

(3.27)

Because all of the constituents in Eq. (3.25) can be defined from the

parameter extraction procedure in Chapter 2, it can serve as the basis

for generating frequency response functions.
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Before Eq. (3.25) can be utilized to render a frequency domain

solution to the original system of Eq. (2.3), the reconstructing

transformation in Eq. (2.32) must be Fourier transformed.

X(w) -

m •

x(w)

x(w)
m •

s
[*R] to]

[0] [«/R]

Y(w)

Y(w)
T(w) (3.28)

Inserting Eq. (3.25) into Eq. (3.28), the full 2N x 1 frequency response

X(w) is approximately reconstructed from the reduced 2M >• 1 response

x(w)
2M
r —

ar(jw
(3.29)

When the definition of F(t) supplied in Eq. (2.27) Is inserted in Eq.

(3.29), a relationship among response and excitation spectra emerges.

2M
X(w) s [T ] E

R

[D]
[0] p(w)

- Xr)
(3.30A)

X(w) s [H(w)]p(w) (3.30B)

The new 2N * N matrix [H(w)] may be partitioned into N x N matrices
P P

A A

[H_(w)] and [H_(w)] corresponding to the velocity and displacement

portions of the vector X(w).

X(w) -
x(w)

x(w)
p(w) (3.31)
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If the lower partition associated with the displacement degrees of

freedom is extracted from Eq. (3.31), we have

x(w) - [H(w)]p(w) (3.32)

It is evident that N entries in each of the N columns of [H_(w)]

approximate the FRF's corresponding to a given exciter location.

Although it would be more desirable to obtain all N x N

possible FRF's, instead of only N x N , Eq. (3.32) is sufficient for

purposes of verification. Currently, digital Fourier analyzers natural-

ly provide FRF's between monitored response and input locations. Thus,

at most N x N experimental FRF's should be available for validation.
P



Chapter 4

SELECTION OF TRANSFORMATIONS

It has been noted in section (2.1) that the accuracy achieved

in modal parameters for a particular reduced model hinges upon the

selection of [ij/,,] and [i|>D]. Two specific reduction techniques are
L K

considered in this chapter. Both methods attempt to automate the

process of model reduction.

4.1 Independent Coordinate Method

A widely used reduction technique common in both component

mode synthesis [8] and experimental modal analysis F3, 7] assumes that a

subset of coordinates may be expressed as a linear combination of the

remaining coordinates.

x.(t) " O..]x (t) (4.1)

In Eq. (4.1) x,(t) is a d-vector of dependent coordinates, x.(t) is an

i-vector of independent coordinates, and 1$..] is a d x 1 matrix. Todl

simplify notation, let x.(t) reside in the upper partition of the full,

original response N-vector.

l"xjl(t)
x(t) -

x,(t)
. -«

(4.2)

Because it is assumed that only the independent coordinates

need be Included In the analysis, x.(t) may be immediately identified as

y(t) in Eq. (2.9).

31
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x±(t) = (4.3)

As a consequence, [<J)_] In Eq. (4.3) may be written

[*cl - [[I] [0]] (4.4)
i x N

In Eq. (4.4), [I] is an i x i matrix and [0] is an i x d null matrix.

The reconstructing transformation in equation Eq. (2.10) is

also of a particularly simple form. For convenience, recall Eq.

(2.10B).

x(t) - [<|»_Mt) + e(t) (4.5)

Using Eq. (4.1) and the fact that y(t) « x.(t) produces

e(t)

m "•

x t(t)

xd(t)
a

[I]

_ [*di'

Comparing Eqs. (4.5) and (4.6) suggests that

(4.6)

[I]
(4.7)

where [I] is of i x i order.

The only as of yet undefined quantity in [iji_] or f < f r _ ] is the
C K

submatrix [il>,. ]. This matrix is calculated In a least-squares sensedl

from measured acceleration spectra. By differentiating Eq. (4.1) twice,

Fourier-transforming and expanding for N discrete frequencies, it is

possible to write
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where

[x (w.)] « [x. (w.) x (w ) ... x. (w )]
.IK .1 i .1 i -1

(4.8A)

(4.8B)
1 x Nw

and

xd(w2) ... (4.8C)
w d x

When Eq. (4.8) is transposed and separated into real and imaginary

parts, a standard least-squares formulation emerges for [iK.1.dl

IM N(.>1L -1 k J
i x d

N

RE
vvT" (4.9)

N x d
w

Upon solution of Eq. (4.9) for [̂ A/\> Eqs. (4.4) and (4.7) completely

determine the condensing and reconstructing transformations.

While Blair [3] and Coppolino [7]- advocate reduction methods

employing a subset of the original coordinates, they rely on the judg-

ment of the analyst to select the Independent and dependent coordinate

groups. However, automatic selection procedures exist. [16] A

procedure slightly more rigorous than manual selection is used in this

thesis. It performs Gaussian elimination with row and column pivoting

to select the dependent coordinate group.

Essentially, the method permutes the rows and columns of the

sample spectra matrix



w

(4.10A)

as It drives It to the form

x x x x x x x x
X X X X X X X

X X X X X X

X X X X X

X X X X

X X X
X X

ETC. (4.10B)

In so doing, nearly-linearly-dependent rows are driven to the bottom d

positions shown in Eq. (4.10B). Row permutation vectors record which of

the original rows, or variables, have been shifted to these positions.

These variables are selected as the dependent group. This method of

selecting the transformations will be referred to as the "independent

coordinate method."

When the aforementioned coordinate transformation is utilized,

the extraction equations in section (2.3) assume a noteworthy form.

Because the generalized, reduced coordinates are simply a subset, x.(t),

of the original coordinates, Eq. (2.22) may be written
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['[C] [K]
Mx(2M+N

t-Y(w.)]
*

(4.11)
MXNw

(2M+N )xN
p w

The reduced system equation, Eq. (2.27), and eigenvector problem, Eq.

(2.28), may also be expressed in terms of a truncated set of the

original response degrees of freedom.

[A] * FB] - F(t) (4.12)

[B] - 0 (4.13)

Equations (4.11), (4.12) and (4.13) are precisely those utilized in the

method of Blair and Craig. [3]

4.2 Principal Component Method

One distinct advantage of the method outlined in the previous

section is that it may be Interpreted intuitively. The process of

reducing the problem size may be likened to simply picking fewer

coordinates. Yet, many mathematically well-defined and robust reduction

methods have been developed in the field of statistics.

Principal component analysis is one specific reduction

technique suggested in time series analysis literature. Fundamentally,
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the procedure seeks to minimize in a statistical sense the error e(t)

incurred in the reconstructed signals in Eq. (2.10B).

Once again, development of the method starts with Eqs. (2.9)

and (2.10).

Y(t) -

x(t)
A. «.

e(t)

(4.14)

(4.15)

Principal component analysis seeks the transformations Fiji,,] and ft|/R]

such that the expectation of the inner product of the error in Eq.

(4.15),

E{ei(t)e(t)}

is minimized. For a zero mean original signal, E{x(t)} • 0, the

transformations [t|>_] and [i|>_] are shown in [4] to be

(4.16)

[*CJ -

• •

T
fl

^2

£

(4.17)

and

(4.18)

and [(/»_] are the M eigenvectors
K

The vectors W. comprising [
«.!

corresponding to the largest M eigenvalues of the variance matrix for

x(t). The bar over [tyr] in Eq. (4.18) denotes conjugation.
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In the analysis at hand, complex acceleration spectra are

available. If Eqs. (4.14) and (4.15) are differentiated twice, the

development of the principal component method outlined in Eqs. C4.16),

(4.17) and (4.18) is unchanged. The variance matrix \S ] for the

complex acceleration spectra may be approximated by the product

[x(w.)Hx(w.)]T

[Sv] s ̂-J: Ĵ: (4.19)

where

[x(Wl)] - [x(Wj) x(w2) ... X(WN )] (4.20)
" *" " v

Because [S ] Is a Hermitlan matrix, it has real eigenvalues and complex

eigenvectors. Consequently, [<J>_] and [i|>D] are complex when formed using
L» K

principal component analysis. The matrices fiju] and [jfr.,] are now
C* K

completely defined in Eqs. (4.17), (4.18) and (4.19).

Besides having a sound mathematical basis, principal component

analysis has another attractive feature. The error measure expressed in

Eq. (4.16) is directly related to the magnitude of the eigenvalues u.

associated with the eigenvectors not retained in fifr.,1 or [t|»_].
L» K

min E{eT(t)E(t)} - E y. (4.21)
k-M+1 K

Equation (4.21) implies that inspecting the eigenvalues of u, of the

variance matrix of the acceleration spectra can indicate an appropriate

order for the reduced model. If a distinct drop in magnitude occurs in

the (M + l)st eigenvalue, then the first M eigenvectors of the variance

matrix should be used in [t|» ] and [#„]. This ability to estimate the
w lx

number of active modes in a frequency range has no parallel in the

independent coordinate method.



Chapter 5

SOLUTION OF LEAST SQUARES PROBLEMS

Least-squares analysis is becoming more prevalent in litera-

ture dealing with modal parameter identification. The methods of Blair

[3], Coppolino [7], and Leuridan [15] are a few examples of new methods

that use a least squares, or pseudoinverse, solution procedure. This

thesis requires use of the method in two instances: the solution for
A A A

the reduced system matrices [C], [K], [Dl and the definition of O..] in
dl

the independent coordinate transformation.

The current chapter describes the essential features of the

least-squares solution. A brief background is provided, as well as

descriptions of two computational techniques.

5.1 Preliminaries

The need for a least-squares analysis can arise in the

solution of the linear set of equations

[Aly - b (5.1)

The coefficient matrix fA] of the above linear system is M x N, the

unknown vector y is N x i, and b is M x 1. In perhaps the most common

case, and also the problem at hand, there are more equations in Eq.

(5.1) than there are unknowns. The overdetermined system, with M > N,

generally need not be consistent.

Because an exact solution might not be available, the

classical formulation of a least-squares solution seeks to minimize the

38
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L_ norm of the residual r - b - [A]y. As will be seen, the set of

vectors, {y} that minimize the norm of the residual may contain a single

vector, or several vectors, depending upon the specific overdetermined

system.

(y> - (y £ IRN, y min | [A]y - b |} (5.2)

There exist other forms of least-squares analysis based on minimization

of L. and L̂  norms. [9]

An important trait of least-squares solutions is that the

residual r is orthogonal to the range of [A]. [14] The matrix

formulation of this property leads to the normal equations

[A]T(b - [A]y) - 0 (5.3A)

or

[A]T[A]y - [A]Tb (5.3B)

TWhen [A] Is of full column rank, the coefficient matrix [A] [A] is

positive definite and may be inverted to obtain y In Eq. (5.3B).

A serious drawback to the normal equations method is that it

is not as accurate for a fixed hardware word length as other methods.

Its computational cost may be compared to other methods in terms of

flops. A flop Is the effort required to perform a floating point add, a

multiply and some variable indexing. The normal equations method

requires about MN2/2 + N3/6 flops. [9]

In more sophisticated approaches, orthogonal matrices play a

central role in the solution for {y} in Eq. (5.2). By definition, the

Inverse of an orthogonal matrix [Q] is its transpose.
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[Q]TfQ] - [I] (5.AA)

Another useful property of orthogonal matrices is that they preserve

Euclidean length. [21]

||rojx||2 = (rQ]x)T[0>) = xT[0]T[Q]x = xTx - |JsJ2 (5.4B)

With this property, the norm in Eq. (5.2) may be replaced by an

equivalent norm.

||r|| = ||rA]y-b|| - ||[Q]T[A]y - [0]Tb|| (5.5)

TA Judicious choice of [Q] in Eq. (5.5) can lead to a more simplified

expression for the norm ||r||. One way to characterize the different

least squares techniques that follow is by the particular orthogonal

Tmatrix [Q] they employ.

5.2 Singular Value Decomposition

One possible choice for [Q] in Eq. (5.5) Is suggested by the

singular value decomposition of fA] . Any M x N matrix [A] may be

expressed as the product

[A] - [U][E][V]T (5.6)

where

[U] « an M x M orthogonal matrix

[ E] - an M x N diagonal matrix

[V] » an N x N orthogonal matrix

The diagonal entries in [ Z] , or singular values , are non-negative by

definition and may be arranged in a nonincreasing order. Substituting
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the singular value decomposition into Eq. (5.5) and choosing [Q] • [U]'

yields

||r|| - ||[Z:]MTy - [U]Tb|| (5.7)

A good deal of useful information can be extracted from Eq.

(5.7) if the following notations are introduced:

0

[0]

[0] [0]
(5.8A)

[V]Ty

T
[U]Tb -

!K - g

(5.8B)

(5.8C)

Particular attention should be paid to the form of [£]. Only K £ N < M

of the singular values are nonzero, which allows for N - K linearly

dependent columns in FA]. When Eqs. (5.8A), (5.8B) and (5.8C) are

entered into Eq. (5.7), the original norm becomes

t,J,' - !K

. !M-K .

2
!!K - !K

!M-K
(5.9)



A straightforward application of the definition of an L_ norm can

simplify Eq. (5.9). If a is any vector that is partitioned into

sub-vectors,

!i

' a l
*2

.V

a2 -
V

\
then the square of the L. norm of a is given by

2 2 2 2 v

(5.10A)

(5.10B)

I2 - (a2 + a2 *â, T a. f ... (5.IOC)

INI' (5.10D)

When the trivial property shown in Eq. (5.10D) is applied to Eq. (5.9),

the norm of the residual may be expressed as a sum.

f* f\ ty

J (5.11)

Now, one must carefully consider the rightmost term in Eq.

(5.11). The vector g^ is defined in Eq. (5.8C) to be the last M - K

Tentries in the product [U] b » g. However, [U] is uniquely defined in

the singular value decomposition in Eq. (5.6) and depends solely upon

Tthe matrix [A]. Consequently, the product FU] b - g is fixed for a
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given problem, i.e., a given choice of [A] and b. The selection of y

has no affect upon

Because ||gM_J| is Invariant with respect to any solution
A

vector y, the condition for minimization of the norm in Eq. (5.11) must

be
.. •>

- 0 (5.12)

From its definition, the norm of a vector is zero if and only if the

vector itself is the zero vector

-
or

- !K

(5.13A)

(5.13B)

Combining Eqs. (5.13B) and (5.8B) provides the least-squares solution

sought.

y - [V] (5.14A)

K v ub
-J-J-

J-l

N
I v h

J-K+1 -J J
(5.14B)

Two important conclusions can be drawn from this analysis.

The first holds only when [A] is not of full column rank, or K < N. In

this case, the choice of h.. _ in Eq. (5.14) has no effect upon ||r|| in
«N~K -

Eq. (5.9). As a result, y In Eq. (5.14B) is not unique. Any choice of

h» .. results in the same residual ||r||. In practice, K, is set equal

to 0.
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The second conclusion pertains when [A] is of full column

rank, or K - N. In this event, h« K does not exist. No ambiguity then
A

remains in Eq. (5.14B). The least-square solution y is unique.

Equation (5.14B) defines the least squares solution explicitly

in terms of the matrices obtained in a singular value decomposition cf

[A]. The actual numerical technique that produces the decomposition is

quite lengthy. It Involves application of several transformations to

drive [A] to bidiagonal form, then uses an iterative technique to

achieve the final diagonal singular values. A more efficient form of

singular value decomposition for solving least squares problems does not

T 2 3form [U] and [V] explicitly. It requires approximately 2MN + 4N

flops. [9]

5.3 Householder Transformations

If it is known beforehand that [Al is of full column rank,

Householder's method may be used instead of a computationally expensive

singular value decomposition. In Householder's method, the norm

IHI - ||[Q]T[A]y - [Q]Tb|| (5.15)

is simplified by choosing [Q] to be defined from the QR decomposition

of [A].

[A] - [Q][R] (5.16)

In Eq. (5.16), [Q] is an M x M orthogonal matrix and [Rl is an M x N

upper triangular matrix.
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[R]

X X X X X X X

X X X X X X

X X X X X

X X X X

X X X

X X

X

[0]

ro] (5.17)

All M x N matrices [A] may be factored as shown in Eqs. (5.16) and

(5.17). The matrix [R 1 is the M x M upper triangular part of [R]. The

assumption that [A] is of full column rank insures that none of the

pivot values, or diagonal entries, of [R ] are zero.

Substitution of (5.16) into (5.15) and introduction of the

notation

T
[Q]Tb -

IN

. !M-N
(5.18)

generates a norm quite similar to that encountered in section (5.2).

[R ]yu i

0
- *TN 2

?M-N

(5.19)

(5.20)

Following the same reasoning used in section (5.2), the condition for

minimization of the norm in Eqs. (5.19) and (5.20) is seen to be

(5.21)

Solution of Eq. (5.21) is particularly easy as it corresponds to the

backsubstitutlon phase of an LU factorization. Equations (5.16),



(5.18) and (5.21) completely determine the solution of a least-squares

problem via the Householder method. Because the matrix (Al is assumed

to be full rank, the solution In Eq. (5.21) is always unique.

The factorization in Eq. (5.16) is never carried out

Texplicitly. Instead, a sequence of Householder transformations, [C.] ,

are applied to [A] to drive it to upper triangular form. A Householder

transformation is any matrix of the form

- [I] - 2VV (5.22)

Twhere V V » 1. Matrices of this type have the property that given any

T
two vectors x and y of equal length, a matrix [Q,.]" can be found such

that

(5.23)

The desired [Q.] is calculated using (5.22) and

V - (x - (5.24)

The diagonalization of [A] is achieved by applying a

Householder transformation to [A] and b for each of the N columns of

[Aj. In the first transformation, x is chosen to be the first column of

[A] and y is selected to be

1
0
0 (5.25)
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When [Q.] corresponding to the above choice of x and y is applied to

[A] and b, the first column of [A] is put in upper diagonal form. In

the Kth subsequent step, x is chosen to be the Kth column of [A], and y

is selected to be

r a'K

K-1

(5.26)

0

Application of [Q.] , calculated from the above x and y, to [Al and b

puts the Kth column of [A] in upper triangular form, while leaving the

previous K - 1 columns unchanged. The entire product of individual

Ttransformations form the matrix [Q] in Eq. (5.15).

[R] (5.27)

[Q1

The computational cost of a Householder solution of the least

squares problem is significantly less than that of singular value

decomposition. The flop count for Householder orthogonalization is

2 1 3
MN - — N . Both singular value decomposition and Householder

orthogonalization are of comparable stability and yield roughly twice

as many precise digits for a given hardware word length as the normal

equations method. [14]



Chapter 6

APPLICATIONS TO COMPONENT MODE SYNTHESIS

6.1 Preliminaries

Often in computational dynamics, it is necessary to achieve a

solution to the analytical model in Eq. (2.1) for a system that has many

degrees of freedom N.

fM]x(t) + [c]x(t) + [K]x(t) - f(t) (6.1)

One class of solution technique applicable to Eq. (6.1) involves inte-

gration of the set of equations in a time-stepping procedure [2, 8].

However, the direct integration of Eq. (6.1) for very large N can be

computationally expensive.

An alternative to integration of the full system of equations

in Eq. (6.1) is the component mode synthesis method. In addition to

extremely large problems, this approach is also well suited to systems

composed of a set of natural components. In the technique, the full

system is first subdivided into substructures. Each component then

undergoes a dynamic analysis to determine its "component modes."

Originally, component modes were simply the free vibration

mode shapes of the substructure, calculated with the component bound-

aries to other components either fixed or free. In current variants of

component mode synthesis, the component modes have come to include other

fundamental component shapes. The deformation pattern associated with a

unit static displacement is known as a constraint mode, while that shape

43
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resulting from a unit statically applied force Is known as an attachment

mode.

The final step in component mode synthesis involves using a

reduced number of the component modes as Ritz vectors In a reduction

scheme similar to Eq. (2.9). A reduced order systec sodsl is cccesblsd

and solved using the Ritz approximations for each component.

In reference [24], Rubin insists that the most worthwhile

component mode synthesis techniques should make possible the incorpora-

tion of experimental substructure test results. The experimental

parameter extraction scheme developed in this thesis can complement the

component mode synthesis methods described in Howsman [12] or Chung [6].

These particular techniques employ free-interface modes of vibration and

a form of attachment modes as substructure Ritz vectors.

The remainder of Chapter 6 describes how the present formula-

tion of parameter extraction can be used to obtain experimental compo-

nent modes to supplement, replace or simply verify analytically-

determined free Interface mode shapes and attachment modes. Section 6.2

briefly outlines the component mode synthesis procedure of Howsman [12],

while section 6.3 describes the analytic formulation of the substructure

Ritz vectors. The calculation of the appropriate Ritz vectors from

experimental data is summarized in section 6.4.

6.2 Component Mode Synthesis for Linear, Time-Invariant Systems

If the system of Eq. (6.1) is comprised of two subsystems, the

dynamics of each component may be represented In the form
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[MaJxa(t) (6.2A)

[Cg]xg(t) = fg(t) (6.2B)

where the a-matrices are of N * N and the B-matrices are of ordera a

N0 * N0. Generally, the component mass, damping and stiffness matrices
P P

are obtained analytically, perhaps using finite element analysis.

Although only two components, a and 6, are described above, extension of

the following procedure to an arbitrary number of substructures is

straightforward. In keeping with the philosophy of accommodating the

most general structures, Eqs. (6.2A) and (6.2B) may also be written

using a state vector formulation

(6.3A)

[Ag]X6(t) - FB(t) (6.3B)

X (t) and X0(t) are of length 2N and 2N0, respectively. The state for-
*GL _p Q P

mulation matrices fA ] and [B ] are of 2N x 2N order and partitioned

as

[AQ] -

and

[BJ -

[0]
(6.4A)

[0]

[0]
(6.4B)

The 2N. x 2N. matrices [A0] and [BJ are similarly organized.P P p p



51

The components in Eqs. (6.2A) and (6.2B) must be coupled

together to insure that they act as a system. Conceptually, this

condition is equivalent to requiring that the boundary response of

component a be identical to the adjacent boundary response of component

3. The actual enforcement of displacement or velocity constraints is

achieved with a locator matrix [E] that consists only of zeroes and

ones. The matrix [E] selects and orders interface degrees of freedom in

X(t) for each component so that

([ElX(t))n - ([E]X(t))fl - 0 (6.5)
- O „ D

completely defines compatibility between a and 8. An additional

constraint is that the forces exerted on substructure a by substructure

B must be equal and opposite to forces exerted on 8 and a.

Howsman [12] and Hale [11] achieve a systematic implementation

of these constraints by using a variational principal. The details are

quite lengthy, but a noteworthy consequence of the variational

formulation is that the adjoint, or co-state, equations corresponding to

Eqs. (6.3A) and (6.3B) are considered in the theory.

•[VTla(t) * [Ba]TIa(t) " !l(t) (6>6A)

-[AB]
TY0(t) + [B0]

TY0(t) - F*(t) (6.6B)

The feature of component mode synthesis that permits the

formulation of a reduced-order system model is the introduction of Ritz

vectors. Unlike most other methods, however, references [11] and [12]
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suggest Ritz approximations for the standard differential equations, Eq.

(6.3), and the adjoint differential equation, Eq. (6.6).

NX
x(t) s s (O • fO <6-7A)

K™ 1

NY
Y(t) s S r(t) " t*]r_(t) (6.7B)

The vectors I" (t) and T (t) are N * 1 and N x 1. Equations (6.7A) and
*»<& WJL A X

(6.7B) represent reductions in order when N and Nv are chosen such thatX T

NX « NC (6.8A)

N « N (6.8B)

where N_ is the number of degrees of freedom for a component.\f

The fact that not all coordinates in the collective set

r__(t) » {r_ (t) , r_0(t) } are independent becomes apparent when the Ritz
_AO Ad AC5

approximation, Eq. (6.7A) is substituted into Eq. (6.5).

- o (6.9)

If N_ is the number of displacement and velocity constraints In Eq.

(6.9), then N_ of the coordinates in re(t) are redundant. The over-
ly

abundance of coordinates is remedied by requiring the user to select

N +• N0 - N_ independent coordinates from r_0(t). The set of
Q p D '

coordinates r_e(t) is then expressible as a combination of the
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independent coordinate vector IV,(t) of length N + N - N .
_Al O p U

rxs(t) (6.10)

The N -vector
D

represents the dependent coordinates in rvo(t).

The form of the (N + Na) x (N + N - N_) matrix [Cv] in Eq. (6.10) isa P a 3 " "

derived to be

[cx] -
[I]

(6.11)

A completely analogous argument may be used to define a similar matrix

[C_] corresponding to redundant coordinates in rys(t).

With the transformations defined in Eqs. (6.7A), (6.76) and

(6.11), the variational formulation suggested in [12] yields the final

reduced order system model.

- !s(t)

where

T

T
I"R 1 m 1C 1
*• S Y

f*Y ]a °

. ° [*/e.

" [*rl. °
0 f ^ l g

' [Aa] 0

0 [AB]

"[B a] 0

o FB ]

"jf 1W^A C»

%,"

(6.12)

(6.13A)

(6.13B)



F_(t) - [C_]T

5 I

[}T10 o Fa(t)

Fg(t)
(6.13C)

As in any Ritz approximation, the accuracy of the reduced-order model of

Eq. (6.12) depends upon the selection of Ritz vectors in [tji ] and [t|» ]
•» A «.*!.

in Eqs. (6.13A), (6.13B) and (6.13C).

6.3 Analytical Ritz Vectors

Two types of Ritz vectors are used in the component mode

synthesis method described in section (6.2). These are the so-called

free-interface substructure modes and attachment modes. Strictly

speaking, Eqs. (6.7A) and (6.7B) suggest that two different sets of Ritz

vectors must be specified for each component. However, references [11]

and [12] advocate choosing the sets to be identical to save

computational

costs.

i|>x - *v (6.14)

Free-interface substructure modes are quite common and are

calculated from the elgenproblem for each component a and 6. The

columns of the matrices ftji_] and [tfi_l corresponding to substructure
-A „!

modes are denoted as X in Eq. (6.15).

U/A] * [B]}Xr = 0 (6.15)

Implicit in Eq. (6.15) is that the substructure boundaries are free to

displace. If the component eigenproblems are of sufficiently low order,

it may be feasible to calculate ftp ] and [ipv] separately. In this case,
^ A. «, A
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the column vectors of [t̂ J corresponding to substructure modes are

derived from Y in the left elgenproblem

Ur[A]T + fB]T}Yr - 0 (6.16)

In their most fundamental form, the attachment modea uiay be

defined as the displacement shapes resulting from a statically applied

unit force at a single degree of freedom. Reference [12] generalizes

this definition somewhat by expressing the attachment modes in a state

vector form. The generalized pseudostatic response of the components a

and 6 is of the form

[B]X - F (6.17)

The attachment modes in the state vector formulation are then the set of

Ritz vectors [$.] that satisfy

IB]
'1 (6.18)

[I.] is an identity matrix defining unit forces at several displacement

degrees of freedom. From Eq. (6.18) it is obvious that standard

attachment modes are simply columns of [B]

When a set of Ritz vectors is composed of both substructure

modes, Eqs. (6.15) or (6.16), and attachment modes, Eqs. (6.18), some

redundancy results. The standard attachment modes may be expressed as a

linear combination of the substructure modes. If K is the number of

substructure modes kept 98 Ritz vectors and N is the number of

component degrees of freedom,
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. K X Y 2N X Y
[B]'1 - Z -=£=£- + EC -̂ f- (6.19)

r-1 ~ r r-K+1 " r

provides an explanation of attachment modes, or columns of [B] , in

terms of substructure modes. It is implicitly assumed in Eq. (6.19)
•P

that the product a » Y^AJX is normalized to unity. The rightmost
IT *.1T «»].

term in Eq. (6.19) represents the contribution to the attachment modes

of higher substructure modes that are not retained in the Ritz basis.

A modification of standard attachment modes has been designed

to represent the effects of the discarded higher modes. These "residual

attachment modes" may be written

2N X Y
fV1 " Z ~^r- (6.20A)
-** r-K+1 ' r

or

K X Y
- [B]'1 - Z^1^ (6.20B)

~

It is important to note that the residual attachment modes may be

calculated from (6. 206) without explicit knowledge of the deleted modes,

X and Y for i - K + 1 to 2N_.
.r ,r C

6.4 Experimental Ritz Vectors

Experimental analogs of the analytical free interface

substructure modes in Eq. (6.15) have already been derived in Chapter 2.

Right eigenvectors of order 2N for each component may be
\s
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approximated from the experimental reduced model eigenvectors of order

2MC x l.

- [T.JX,. (6.21)
n. L̂

The transformation [T_] is 2N x 2! in this case.
R C C

A derivation of experimental standard attachment modes can be

carried out by considering the pseudostatic response of the reduced

experimental model.

[B]r
[D]

[0]
(6.22)

The elements of [B] have been completely defined in the solution of the

least squares problem In Eq. (2.24). Assuming the inverse of [Bl

exists, the pseudostatic response of the reduced system to unit forces

at N exciter locations is given in Eq. (6.23).

(6.23)

Approximations of the standard attachment modes for the original system

can be reconstructed from Eq. (6.23).

[D]

[0]
(6.24)

Residual attachment modes may also be estimated from the

pseudostatic response of the reduced system. The vector T in Eq. (6.22)

may be expressed as a superposition of the reduced right eigenvectors.
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* - 2M
Z X q + Z X q (6.25)

-r r r-k-H -r r

The first summation in Eq. (6.25) Includes modes estimated accurately in

the extraction procedure. These modes are analogous to the kept modes

in Eq. (6.19). The last summation in Eq. (6.25) represents discarded,

higher frequency modes.

When Eq. (6.25) is substituted into Eq. (6.22) and premulti-

plied by the rth left eigenvector Y , all terms vanish except

A*P A A ^T A

Y fU 1V *• » V T T f £ *>£ A \l B J X < ! * i r i. o. ZoA;îr r̂ IT r̂ ̂

b q - YTF (6.26B)

A A

With the introduction of b » -x a from Eq. (3.30), Eq. (6.26) can be

recombined with Eq. (6.25).

A A*P AA*P A A A*!* A

K X Y F 2M X Y F
r - r -*L̂  + z

c _44=. (6.27)

As in Eq. (6.19), the left and right terms in Eq. (6.27) can be

identified as the contribution to the reduced pseudostatic response of

kept and deleted reduced system modes. Residual attachment modes of the

original system relative to N exciter locations can be approximated

from Eq. (6.27) by introducing the estimate to r In Eq. (6.23) and the

reconstructing transformation !"¥,,]K

A A*?1

- -1 K Vr-r-r
[D]

(6.28)
0



Chapter 7

VERIFICATION OP THE METHOD

This chapter outlines two studies conducted to validate the

parameter extraction method Introduced in this thesis. Two characteris-

tics of the approach are emphasized in the verification process.

Section (7.1) focuses upon the convergence and stability properties of

the technique in the presence of noise when either of the transforma-

tions discussed in Chapter 4 is utilized. In section (7.2), the

performance of the method in resolving closely-spaced modes is compared

to other methods.

7.1 Stability Example

In the first example, the 8-DOF finite element model of the

beam-rotor assembly shown in Figure (7.1) is considered. As apparent in

the illustration, the model makes provision for discrete damping at all

degrees of freedom. Moreover, the two rotors in the assembly lead to

Corlolis damping, which manifests itself in a skew-symmetric damping

matrix. As a result, the system modes are complex. The system mass,

damping and stiffness matrices are listed in Tables (7.1), (7.2) and

(7.3).

Using the aforementioned analytic model, simulated experimen-

tal response spectra have been generated and later analyzed by the

parameter estimation method. By comparing the resulting approximate

modal parameters to those obtained directly from the analytic model, the

accuracy of the technique may be gauged.

59
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Actual measurements all contain some level of noise. Inasmuch

as it is desirable to simulate physically realizable systems, random

noise has been added to the simulated signals in proportion to the RMS

response signal level. If (x (w.)x (w ) ... } represents the accelera-

tion spectrum of the jth degree of freedom, then

"RMS
Zx.

N
(7.1)

is the RMS response signal level used In noise calibration. Specifi-

cally, the noise added to the Lth frequency point of the response

spectrum for the 1th degree of freedom is calculated from

N Sx™8 W (7.2)

where
••

N.(w ) » the complex noise added to x.(w )
j L j L,

S » a user input nolse-to-signal ratio

W » a random, uniform (0,1) weighting factor

N - number of frequency points in the spectrum

An extensive set of runs has been carried out for the

analytic model. The parameters comprising the mass, stiffness and

damping matrices in Tables (7.1), (7.2) and (7.3) have been selected

such that two moderately damped complex modes reside in the frequency

range from 256 to 512 rad/sec.

MODE 1

MODE 2

DAMPED FREQUENCY

309.2 (RAD/SEC)

420.6 (RAD/SEC)

DAMPING RATIO

.08231

.05444

(7.3A)

(7.3B)



61

In the simulation, 512 frequency points are used, with a frequency

resolution of Aw » 0.3516 rad/sec.

Table (7.4) depicts in matrix form the particular cases

considered in the verification. Each entry in the matrix denotes the

actual number of runs executed for a particular set cf ccrulitlcr.s.

MODEL

ORDER

8

7

6

NOISE-TO-SIGNAL RATIO

0%

10

10

10

2%

10

10

10

4%

10

10

10

6%

10

10

10

8%

10

10

10

10%

10

10

10

TABLE (7.4)

Each test condition is executed 10 times because random excitation has

been simulated in all studies. As shown in the table, the noise-to-

signal ratio Is Increased from 0% to 10% in 2% increments for models

comprised of 6th to 8th order matrices. Because two reduction methods

have been suggested in Chapter 4, the entire matrix In Table (7.4) is

repeated for both the independent coordinate and the principal component

transformations.

Figures (7.2) through (7.9) summarize the error Incurred In

estimating the modal parameters for the various noise levels, model

orders and transformation types. Each point in the figures represents

the medlar of the 10 runs conducted for every case in Table (7.4). The

noise-to-signal ratio described in Eq. (7.2) is plotted along the

abscissa in all the graphs. The normalized error for a particular type

of modal parameter is charted along each ordlnate. Equations (7.4A),
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(7.4B) and (7.4C) define the normalized error computed for damped

frequencies, decay rates and the ith complex mode, respectively.

Ew '
V — Wwd d

wd
(7.4A)

E - S-I-2. (7.4B)
o I a '

(X - X )T(X - X )
(7.4C)

In Eqs. (7.4A) through (7.4B), the quantities w., <j» X are the

approximated damped frequency, decay rate and complex modes, while w,, a

and X are exact values calculated from the analytic model.

As suggested in previous studies [3], estimates of the damped

frequency are the most accurate of the approximated modal parameters.

Figures (7.2) through (7.5) depict the damped frequency normalized error

at different noise levels for the modes at 309 rad/sec and 420 rad/sec.

Each line on the graphs indicates the error level for a specific model

order. For example, Figure (7.2) shows that the 6th and 7th order model

have less error in the frequency estimates than the full order model for

high noise levels.

Both independent coordinate and principal component transfor-

mations yield excellent frequency estimates. Inspection of Figures

(7.2) through (7.5) shows that the damped frequency at 309 rad/sec has

been estimated using an independent coordinate transformation with a

median error less than 0.482 for all noise levels. Likewise, the
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principal component approximation of the same mode has a median error

less than 0.80%. Similar results hold for the mode at 420 rad/sec.

When an independent coordinate reduction is employed, the 420 rad/sec

damped frequency is estimated with a maximum median error of 0.40%. A

median error less than 1.8% is achieved vhen approximating tha 32=2 -rrds

using a principal component transformation.

In the current analysis, approximations to the decay rate and

mode shape for the 309 rad/sec mode are typical of the method's perfor-

mance for all estimated modes. Figures (7.6) and (7.7) indicate that

the maximum median error in decay rate is from 12% to 15% for both the

independent coordinate and principal component reduction strategies.

However, in both cases the error in decay rate is considerably less over

much of the noise range considered. When independent coordinates are

used in Figure (7.6), the decay rate actually improves in accuracy (4%

to 6%) as the noise level is increased. All but three data points

reside below the 7% median error level in Figure (7.7), where principal

components have been used.

Figures (7.8) and (7.9) depict the normalized modal vector

error incurred in estimating the 309 rad/sec mode. In the case in which

independent coordinates have been selected, the maximum median error is

roughly 2.80% and occurs at the 10% noise-to-signal level. The princi-

pal component study Illustrated in Figure (7.9) has a maximum normalized

modal error 8.0%. Again, the error in estimating the modes is much less

over the majority of the investigated noise range.

In reviewing the performance of the technique, both transfor-

mation methods yield accurate parameter estimates, despite the
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introduction of relatively high noise levels. Damped frequency

approximations are particularly good, though the examples suggest that

the principal component estimates typically approach the exact values

from above. The use of an independent coordinate reduction has

generated slightly more precise approximations chan chose obcaineu using

principal components. This comparison emphasizes an important attribute

of the principal component reduction strategy; the accuracy of the

approach depends upon the accuracy of the estimated variance matrix in

Eq. (4.19). Moreover, the precision of the variance matrix is reliant

upon the sample record size N in Eq. (4.20). [4]

In the test cases executed in this chapter, a record length of

512 points has been used. Preliminary studies with even fewer frequency

points, N - 256, have resulted in still higher error levels for the

principal component reduction strategy. Evidently, a tradeoff exists.

The principal component reduction method is desirable in that it can

provide an estimate of the number of active modes in a frequency range.

Yet, for a small sample size, the accuracy of the method may suffer.

7.2 Mode Resolution Example

Section (7.1) has given an example in which the current method

is shown to be stable in the presence of significant random noise

levels. While such a demonstration is certainly necessary, a major

motivation for the use of any multi-shaker method is its ability to

extract closely-spaced modes. [13] The remainder of this section

compares the performance of the current method to that of other

multiple-DOF techniques in resolving closely-spaced modes.
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Towards this goal, an experimental nodal analysis of the

dual beams shown in Figure (7.10) has been carried out using the

current technique, the Polyreference method, and the complex exponen-

tial method. The beams in Figure (7.10) are designed such that the

natural frequencies of the system occur in clcsely-spac^u pairs.

Uncorrelated, random excitation has been applied simultaneously at

stations 4Z+ and 5Z+, and acceleration responses have been measured at

locations 1Z+ to 8Z+. A frequency range of 0 to 256 Hz and a sampling

rate of 1024 samples/second have been used in data acquisition. All

pertinent dimensions and location labels are shown in Figure (7.10), and

Figures (7.11A) and (7.1IB) show photographs of the actual experimental

setup. Tables (7.5A) and (7.5B) list the equipment and channel config-

uration used in the experiment. A synopsis of the data acquisition

conditions is provided in Table (7.6).

The only difference between the data acquisition conditions

used in the current method and that used in the Polyreference or

complex exponential techniques is the ensemble size. As evidenced in

Table (7.6), 10 records of time history data are collected in the runs

using the Polyreference and complex exponential algorithms. Only one

record is collected for use in the method Introduced in this thesis.

The primary reason for the additional records in the Polyreference and

complex exponential methods is that they utilize frequency response

functions in their estimation processes. To achieve FRF's sufficiently

smooth for parameter extraction, 10 records are used. Because the

current method uses raw spectra, only 1 record of time history data is

required.
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Tables (7.7A) and (7.7B) summarize the damped frequency and

damping level for two of the modes estimated in the analyses. Four

runs using an independent coordinate reduction strategy are listed, as

well as four runs using a principal component reduction scheme.

Similarly, the results of two runs are tabulated for each of the

Polyreference and complex exponential techniques.

The first table gives the approximations of the lower of the

two highly coupled modes. The damped frequencies obtained in the

Polyreference and complex exponential techniques vary from 118.4 to

120.5 hz. When independent coordinates have been generated, the

damped frequency estimates range from 118.6 to 119.9 hz, in close

agreement with the other methods. Two of the estimates achieved with

the use of principal components are 120.2 and 120.9 hz, again in close

correlation with the other methods. As noted in the analytical

example problem, the damped frequencies for the principal component

reduction strategy seem to approach the actual values from above.

As might be expected from other studies [3], the damping

values for all techniques are more varied. In the Polyreference and

complex exponential algorithms, damping values range from .00255 to

.02595. Similarly, the damping levels estimated using independent

coordinate and principal component transformations range from .00300

to .00535, and from .00143 to .0101, respectively.

In Table (7.7B), approximations to the higher of the two

closely spaced modes are listed. Correlation between the Poly-

reference method and the current technique is again quite good. The

complex exponential algorithm, however, yields uniformly high
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estimates of the damped frequency and damping level. This tendency may

be attributed in part to the relatively modest number of frames in the

ensemble. Other runs using the complex exponential method with fever

frames of data have shown even higher estimates of the modal para-

meters.

As a final observation, both Householder's technique and

singular value decomposition have performed comparably in terms of

accuracy and stability in these experimental example runs. The

singular value decomposition algorithm has required slightly more user

input to execute. In practical analyses, extremely small computed

singular values may degrade accuracy and should be set equal to zero.

Selection of the threshold value below which to zero singular values

seems to require a significant amount of intuition. For this reason,

Householder's method can be especially well suited for those unfamil-

iar with least squares solution procedures.
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[C]

-U2-J2)n2
 C8

cl ' • • C8 Discrete Damping

Transverse Inertia of Rotor

V J2 Axial Inertia of Rotor

Rotor Angular Frequency

TABLE (7.3)
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FIGURE (7.3)
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FIGURE (7.6)
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FIGURE (7.7)
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FIGURE (7.8)
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FIGURE (7.9)
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FIGURE (7.11A) Dual beams with shakers at 4Z+ and 5Z+.

FIGURE (7.11B) Closeup of dual beams, Ling amplifiers,

GENRAD 2515 and HP recorder.



TABLE (7.5A)

DATA ACQUISITION EQUIPMENT

DESCRIPTION:

GENRAD 2515 Computer Aided Test System 1

GENRAD 16-Channel Expansion 1

PCB Signal Conditioner, Model 483A17 1

LING 200 Series Vibrator 2

LING Power Amplifier, Model TPO 25 2

PCB Accelerometers, 303A SERIES 8

PCB Force Transducers,208B SERIES 2

HP 3900 Tape Recorder 1

TABLE (7.5B)

CHANNEL CONFIGURATION

CHANNEL SIGNAL
NO. TYPE

1 Force

2 Force

3 Accel.

4 Accel .

5 Accel.

6 Accel.

7 Accel.

8 Accel.

9 Accel.

10 Accel.

COOR-
DINATE

4Z+

5Z+

1Z+

2Z+

3Z+

4Z+

5Z+

6Z+

7Z+

8Z+

VOLTAGE
RANGE

-8.0,

-8.0,

-.125

-.125

-.125

-.125

-.125

-.125

-.125

-.125

8.0

8.0

, .125

, .125

, .125

, .125

, .125

, .125

, .125

, .125

CALIBRATION
SCALE

1.85185E-3

1.84502E-3

0.10061

0.10204

9.31099E-2

0.10152

9.78474E-2

9.31099E-2

0.10741

ACCELEROMETER
SERIAL NO.

Ib/mv

Ib/mv

g/mv

g/mv

g/mv

g/mv

g/mv

g/mv

g/mv

SN 3967

SN 3965

SN 5915

SN 4743

SN 4344

SN 5937

SN 5916

SN 4520

SN 4613
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TABLE (7,6)

DATA ACQUISITION CONDITIONS

PROPOSED METHOD;

Sampling Frequency (f ** I/At) 1024

Frequency Range 0-256 HZ

Excitation Random

References 2, uncorrelated

Responses 8

Ensemble Size 1

Record Size 2048 PTS

POLYREFERENCE/COMPLEX EXPONENTIAL;

Sampling Frequency (f = I/ t) 1024

Frequency Range ..... 0-256 HZ

Excitation Random/Banning Window

References 2, uncorrelated

Responses 8

Ensemble Size ..... 10

Record Size 2048 PTS
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Chapter 8

CONCLUSIONS

A modal parameter estimation procedure applicable to linear,

time-invariant systems has been presented in this thesis. In the

technique, multiple non-coherent input excitations may be applied to the

structure. A consistent set of modal parameters is generated in the

algorithm.

The technique is formulated such that no assumptions concern-

ing the damping matrix [C] are made. Despite relatively high noise

levels, accurate damped frequencies, decay rates and complex modes have

been calculated in Chapter 7 for a system with both skew-symmetric and

non-proportional damping terms.

As with Blair's modification of the SFD algorithm, the

current method has been shown to accurately resolve closely spaced

modes. An experimental comparison has shown that the parameters ob-

tained in the current method are comparable to those achieved with the

Polyreference and complex exponential algorithms.

Two solution procedures noted for their stability, the singu-

lar value decomposition technique and Householder's method, have been

evaluated in conjunction with numerous verification runs of the method.

In practical experimental analyses, both methods have been shown to be

accurate and stable. Householder's method has been found more favorable

due to its faster execution time and ease of use.
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Since many practical modal analyses Involve numerous measure-

ment locations, two different transformations are investigated to reduce

the size of the actual problem to be solved. Both approaches attempt to

minimize the amount of required user interaction. The independent

coordinate reduction method is shown to he more accurate for a small

sample size in several example runs. The principal component reduction

algorithm can provide an estimate of the number of modes active in a

given frequency range.

Further development is needed in several areas related to this

thesis. As an example, the procedures suggested in Chapter 6 to calcu-

late standard and residual attachment modes from experimental data

should undergo numerical study. Another potential application of the

method might investigate the use of the experimental reduced systems

matrices directly in a substructure coupling procedure.

Modifications of the method itself may also be considered.

Some of the statistical methods mentioned In [16] could be incorporated

into the model reduction process. Another Improvement might be to

modify the least squares problem for the reduced system matrices in Eq.

(2.24) such that frequency response functions are used Instead of

spectra. In the present form, increasing the size of the experimental

samples to achieve greater accuracy necessarily creates a larger least

squares problem for the system matrices. If frequency response func-

tions are used, they could be smoothed by increasing the number of

averages, or ensemble size, used in their acquisition. The least

squares problem for reduced system matrices could then use frequency
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response functions smoothed by averaging, Instead of increasing the

number of frequency points in the raw spectra.

Finally, additional work on the development of accurate and

easily calculable modal confidence factors for the present method should

be pursued. A procedure that automatically rejects the most obvious

spurious modes would be most desirable.
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