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AN INTERNALLYCONSISTENTGAMMARAY BURSTTIME HISTORY PHENOMENOLOGY

T. L. Cline
NASA/Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.

ABSTRACT

A phenomenology for gammaray burst time histories is
outlined. Order of their generally chaotic appearance is
attempted, based on the speculation that any one burst event
can be represented above 150 keV as a superposition of
similarly shaped increases of varying intensity. The
increases can generally overlap, however, confusing the
picture, but a given event must at least exhibit its own
limiting characteristic rise and decay times if the
measurements are made with instruments having adequate
temporal resolution. Most catalogued observations may be of
doubtful or marginal utility to test this hypothesis, but
some time histories from Helios-2, Pioneer Venus Orbiter and
other instruments having one-to several-millisecond
capabilities appear to provide consistency. Also, recent
studies of temporally resolved Solar Maximum Mission burst
energy spectra are entirely compatible with this picture.
The phenomenology suggested here, if correct, may assist as
an analytic tool for modelling of burst processes and
possibly in the definition of burst source populations.

I. Introduction. The gammaray burst phenomenon continues to be a
fascinating and unsolved puzzle. Although clues exist that point to a
mechanism or to mechanisms with neutron-star origin, it has become clear
that measurements resulting from a new generation of instruments will be
necessary to resolve the apparent contradictions that result from the
limitations of the existing data. Source fields contain no identifiable
source objects*, although they have been found to contain archived
optical transients. All attempts to study the event size spectrum show
deficiencies in the number of smaller events relative to the expected
-l.5-index power law, yet there is no source distribution directional
anisotropy that must accompany a real departure from that spectral
form. Characterizations of the spectral and temporal qualities of
individual burst events are best described as instrumentally subjective,
yet, burst event spectra can be obligingly fitted to almost any
theoretically conjectured fancy.

Resoluton of these issues awaits the era of results from the high-
sensitivity burst monitor and from the improved-resolution burst
spectrometer on the GammaRay Observatory, from the next interplanetary
burst sensor network incorporating Solar Polar Mission, and from the
real-time optical transient telescopes. Meanwhile, scrutiny of the
existing storehouse of data leads_one to speculate as to the possibility
that not all its clues may be exhausted.

* Considerations of the 1979 March 5 event are excluded from these
generalizations.
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2. Overview. Gammaray burst time histories are sufficiently diverse
and chaotic in character as to exhibit few, perhaps no, redeeming
features*. Although occasional quasi-periodicities can be inferred or
imagined, the evidence remains as essentially consistent with overall
randomicity: i.e., the supposed periodicities are rare enough as to be
a necessity of chance. Whether another characterizing aspect of time
histories (such as number of peaks, clustering of, or intervals between
spikes) can be investigated as a research tool appears equally
unpromising. Since the data have not been subjected to this sort of
analysis, the possibility should not be discounted; X-ray shot noise
from a black-hole-candidate source is a possible analog.

Characterizing burst time histories either as brief (or of a
single-spike nature) or as lengthy (or of a complex or compound nature)
is a temptation many of us could not resist (1,2,3,4). Whether any such
separation into two populations is a valid concept or is merely a
semantic device remains to be seen. It is, of course, not inconsistent
with the speculation put forth here, that complex bursts may be
characterized as a superposition of a similarly shaped, or prototypical,
single spikes. One detector, on the International Sun-Earth Explorer 3,
happened to respond preferentially to fast, spike-like events (4),
strengthening the argument that single-spike events exist as a
separately identifiable population. However, it is pointed out in a
recent study of the Toulouse data from the Venera spacecraft (5), that
brief (or rapidly rising, or singly peaked events), may simply be the
tips of the iceberg of an entirely random pattern of event shapes,
buried in the various instrumental backgrounds. Taken as a separate
group, brief gamma ray bursts were found, in that study, to have rise
times and decay times each varying over several orders of magnitude.
The ratios of rise time to decay time per event were found, however, to
vary smoothly and by less than i order of magnitude, such as to indicate
the hint of a relationship, rather than a random scatter. If this is
more than a selection effect, it leads naturally into the suggestion
that complex events may be constructed of a multiplicity of single
spikes that can, in turn, be speculated to have the same shape per
event.

3. Background. A proper study of burst time histories can be made only .
_ith observations having continuous high temporal resolution. The early
Vela measurements were made with instrumentation having a geometrically
expanding time base, thus indicating only that event shapes varied
dramatically and often possessed fine time structures at least at the
onset. Data collected in the mid-1970's with instruments such as
Helios-2 indicated that indeed fine time structure could persist
throughout burst events. The Los Alamos observations from Solrad-llA
and lIB (6) showed continuing structure in one event on time bases down
to about I0 msec and yet indicated that continuing structure in another
extended event did not exist on a similar time base, thus fitting a
structure cutoff on a qualitatively longer time scale. The instrument
sensitivity was insufficient to have found structures much finer than 10
msec, however, leaving the question open as to whether the more rapidly
varying event also1_ossessed a temporal cutoff. These results also lead
quite naturally to the suggestion that all burst events have perhaps not
only a limiting time scale but, in fact, a generally characteristic
fluctuation time near that limit.
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Fig. 1. Three features in the
1978 Nov. 19 event (7).
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5. Discussion. Given the reasonability of the hypothesis that a
comp-l-ex burst event is made of a clustering of prototypes, the question
of the similarity of the (event-peculiar) prototypes remains. Figure I
illustrates the narrowest and most intense single fluctuations that had
been selected for interplanetary timing purposes from the complex time
history of the 1978 November 19 event (9). In all, the results from 7
different instruments are consistent, within statistics, with similar
temporal behavior. Since these _ 0.12 second wide peaks are the fastest
clearly resolved fluctuations in that 20-second event, one can speculate
that this shape can be identified as prototypical for that event. The
1978 November 19 burst, however, is one of the very most intense on
record. Presently collected data probably do not permit the
identification of event-peculiar prototype shapes for very many complex
events. A detailed exploration of the utility of this concept may
require observations of the quality that will not exist before the
launch of the GammaRay Observatory (i0,II).

6. Conclusion. It is speculated that any gamma ray burst can be
Usef_ly pictured as having a temporal structure that is made of super-
positions of simple increases of a prototypical shape; these peaks have
similar rise times, decay times, and spectral evolution within that
event. The family of prototypical shape parameters may continue on to
the existing (5), single-peak parameter plot. The concept suggested
here may assist in the modelling of burst processes. This pheno-
menology, if borne out in future data analyses, may also provide some
way to delineate burst populations. Finally, it may be possible to
statistically define the peak prototypical intensity in each complex
event, thus replacing the measured peak intensity as a parameter for
size spectral analyses.
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