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INTRODUCTION

An important and difficult problem of rotor aerodynamics is the
three-dimensional viscous flow field occurring in the vicinity of the
rotor tip. The tip region contains a complex three-dimensional viscous
flow field which results from the unequal pressures on the upper and lower
surfaces on a lifting airfoil. Since at the rotor tip a pressure
discontinuity is not possible, the pressure difference across the blade is
gradually relieved towards the tip until the pressures on both sides are
equal at the tip. Associated with this pressure field is a secondary flow
field outward on the pressure surface, around the tip, and inward on the
suction surface. This secondary flow convects low momentum fluid from the
pressure side around the tip to the suction side. The low momentum fluid
accumulates on the suction side of the tip, rolls up and forms the tip
vortex which then is convected downstream by the streamwise velocity.

The details of the flow in the tip region can have a major effect 1in
determining the generated rotor noise and can significantly affect the
performance and dynamic loading of the rotor blade. In addition, the tip
vortex generated by a given blade may interact with the following blade
significantly modifying the oncoming flow encountered by the following
blade, thus affecting the following blade's performance. Although the
motivation of the present study is the helicoptor rotor tip vortex
problem, this is not the only important physical flow situation in which
the tip vortex plays a prominent role. The tip vortex also plays a
prominent role in flow about wing tips of large aircraft which can
affect cruise efficlency and can cause hazardous conditions for following
aircraft encountering the tip vortex wake. The leading edge vortex plays
a major role in determining the performance of delta wings. Other
applications for tip vortex analysis occur in hydrodynamic flow
situations. Typical examples can be found associated with ship or
submarine propellers and the submarine sail.

To date, most efforts which have focused upon the tip flow field
problem have been either experimental investigations primarily confined to
regions downstream of the blade, or analytic efforts primarily confined to

inviscid analyses. For example Scheiman, Megrail and Shivers (Ref. 1)



utilized a tuft grid technique to 1lnvestigate the vortex downstream of a
fixed airfoil. Although their investigation showed the problem to have a
definite Reynolds number effect on core size, they were not able to define
a functional relationship between core size and lift, drag or induced
drag. Thompson (Ref. 2) used a tow tank and hydrogen bubble technique to
study axial flow in wing tip vortices downstream of the airfoil trailing
edge. Spivey and Morehouse (Ref. 3) compared the performance of swept tip
and square tip shapes in both wind tunnels and whirl stand environments
through flow visualization tests and surface pressure measurements in

the blade tip region. Francis and Kennedy (Ref. 4) obtained hot wire
measurements in the tip region, and Chigier and Corsiglia (Refs. 5 and 6)
also using hot wire probes measured tip region velocities both upstream
and downstream of the airfoil trailing edge. Finally, Geissler (Ref. 7)
and Shivanada, McMahon and Gray (Ref. 8) measured tip pressure
distributions. In regard to ship propeller studies a survey of literature
has been made by Platzer and Souders (Ref. 9), and experiments have been
carried out by Souders and Platzer (Ref. 18) as well as Jessup (Ref. 11).
Although not directly related to the helicopter rotor blade problem,
numerous other studies have focused upon far field wake-vortex
characteristics (e.g., Ref. 12). As may be discerned from the previous
discussion, most experimental efforts in this area have concentrated upon
the flow downstream of the airfoil trailing edge. Some surface pressure
data has been taken on the airfoil itself (e.g., Refs. 3, 5, and 8), and
some flow field data has been taken upstream of the airfoil trailing

edge (Refs. 4-6). However, the flow region usually investigated is in
that region aft of the airfoil.

A review of the analytic approaches to this problem shows that for
the most part these are based upon inviscid formulations. For example,
Kandil, Mook and Nayfeh (Refs. 13 and 14) and Rehbach (Ref. 15) have
applied vortex lattice methods to predict vortex roll-up in the region
over both rectangular and delta wings. Similar lifting surface-type
analysis have been presented by Maskew (Ref. 16) for the helicopter
applications and by Kerwin and Lee (Ref. 17), Greeley and Kerwin (Ref. 18)
and Brockett (Ref. 19) for ship propeller applications.

Although vortex lattice methods are useful in predicting overall flow

properties such as lift coefficients, the methods contain some inherent




properties which preclude their applicability to the more detailed aspects
of the tip vortex problem. Since they are inviscid, the vortex lattice
methods do not model the physical mechanisms of viscous generation of
vorticity at no-slip flow boundaries and the subsequent combined
convection, diffusion and dissipation of wall generated vorticity. Also
variations in details of tip shape which may effect vortex generation are
difficult to represent properly in a vortex-lattice analysis.

The limitations which are inherent in vortex lattice or other
inviscid methods have motivated the development of alternate calculation
procedures for the tip vortex problem. One such possible procedure would
be a solution of the full Navier-Stokes equations. Upon hypothesis of a
suitable turbulence model, the Navier-Stokes equations contain all the
required mechanisms present in the tip vortex flow field and the
compressible Navier-Stokes equations have been used to predict complex
two~ and three-dimensional flows (e.g., Refs. 20 and 21). However,
solution of the three-dimensional viscous flow problem in the airfoil tip
region via the Navier-Stokes equations would require a large number of
grid points to resolve the required physical scales. This would lead to
computer run times which at present are not practical on a routine basis.
Hence, an alternative and more economical three-dimensional viscous flow
approach was adopted for the present 1nvestigation.

Over the past few years, several investigators have suggested methods
aimed at obtailning a physically realistic and numerically sound forward
marching procedure for three-dimensional viscous flows. In general, these
methods utilize an extended boundary layer approach based on approximate
governing equations which suppress streamwise elliptic effects requiring
downstream boundary conditions. Motivated by these same goals, Briley and
McDonald (Ref 22) have developed a new viscous primary/secondary flow
analysis for the prediction of a wide class of subsonic flows at high
Reynolds number in straight or smoothly curved flow geometries.

More recently this approach has been refined and modified to remove
some of the assumptions previously required to obtain a viable forward
marching procedure (Ref. 23). The approach is applicable to flows which
have a predominant primary flow direction with transverse secondary flow,
and synthesizes concepts from inviscid flow theory, secondary flow theory,

and "extended" three-dimensional boundary layer theory. The analysis



utilizes a set of viscous flow equations and 1mposes no-slip boundary
conditions on solid boundaries. The analysis also does not require small
cross—flows and in fact allows cross flows of the magnitude of the primary
flow. The analysis is expected to obtain a flow field calculation in a
run time at least an order of magnitude faster than a Navier-Stokes
solution using the same number of grid points, thus presenting a
significant run time advantage. As will be shown subsequently in the case
of the tip vortex, the analysis calculates the vortex formation from cross
flow separation of the boundary layer as it 1s carried around the blade
tip. As discussed in Ref. 4, this is clearly the physical mechanism of
tip vortex formation and, therefore, the basic physics of the flow are
modelled in the equations. In Refs. 22 and 23, Briley and McDonald
applied this analysis to three—dimensional flow in curved passages and
predicted the development of the passage flow field including the
formation and development of passage and corner vortices. This same
approach has been applied at SRA to the problems of flow in circular ducts
with curved centerlines (Ref. 24), lobe mixer flows (Ref. 25), and further
passage studies (Ref. 26). Under the present contract this approach has
been further developed with a view toward the tip vortex problem.
Interim reports on this effort are given in Ref. 27,and an application to
the ship propeller problem is demonstrated in Ref. 28.

The present report details the effort under the subject contract.
It contains both material from Ref. 27 and new results obtained since that
report. The following sections discuss analysis, numerical methods,
boundary conditions, etc. and gives results for a variety of laminar and

turbulent test cases.




LIST OF SYMBOLS
primary velocity
secondary vorticity
secondary velocity
scalar surface potential
vector surface potential
density
reference density
total velocity
static pressure
gas constant
temperature
stagnation temperature
heat capacity
streamwise direction
vertical direction
spanwise direction
length of chord
free stream velocity
laminar viscosity
turbulent viscosity
boundary layer thickness
Reynolds number = pugC/u
Mach number = ug/a

sound velocity



ANALYSIS

General

The analysis of three—-dimensional viscous flow fields such as that
in the airfoil tip region presents a very difficult task for the
computational fluid dynamicist. One possible mode of attack would solve
the full three-dimensional Navier-Stokes equations. Although successful
calculations of the compressible three-—dimensional Navier-Stokes equations
have been made for complex flow situations (e.g., Ref. 21), these
solutions of necessity require both relatively large computer storage and
relatively long run times. Although they have reached the point where
they can be used to analyze flow fields, they are most attractive when no
suitable alternative exists. In the airfoil tip flow field problem a
three-dimensional Navier-Stokes analysis would require a large enough
number of grid points to determine the pressure distribution as well as to
calculate and suitably resolve the thin viscous flow regions in the
immediate vicinity of the airfoil surface. With present computers the
number of grid points required for such a task would require large
quantities of computer run time. Thus, an alternative and more economical
calculation procedure 1is desired.

One promising method would be a three-dimensional viscous flow
foward-marching analysis. Such techniques have been developed for steady
flows which satisfy two requirements; (i) they must have an approximate
primary flow direction which can be specified a priori and (ii) flow
derivatives in this approximate primary direction must be considerably
smaller than flow derivatives normal to this direction. Obviously, the
tip flow field satisfies these requirements aft of the leading edge and,
therefore, is a candidate for a three-dimensional viscous forward marching
approach. The approach used in the present effort is based upon the work
of Briley and McDonald (Ref. 22)., This procedure has proven very
successful in the calculation of three-dimensional viscous internal flows
containing strong streamwise vorticity. Calculations giving detailed
comparison with experimental data for a variety of passage flows are given
by Levy, Briley and McDonald in Ref. 24. The present section details this

analysis with particular attention paid to the tip vortex generation

process.




The governing equations which are used in the analysis are derived from
the time averaged Navier-Stokes equation through approximations made relative
to a curvilinear coordinate system fitted to and aligned with the flow
geometry under consideration. The coordinate system is chosen such that the
streamwise or marching coordinate either coincides with or is at least
approximately aligned with a known inviscid primary flow direction as
determined, for example, by a potential flow for the given geometry.
Transverse coordinate surfaces must be approximately perpendicular to solid
walls or bounding surfaces, since diffusion is permitted only in these
transverse coordinate surfaces.

Equations governing primary flow velocity Up, and a secondary
vorticity, £,, normal to transverse coordinate surfaces are derived
utilizing approximations which permit solution of the equations as an
initial-value problem, provided reversal of the composite streamwise velocity
does not occur. Calculations can be continued through regions of limited
separation by neglecting streamwise convective terms in the reversed flow
region. Terms representing diffusion normal to transverse coordinate
surfaces (in the streamwise direction) are neglected. Secondary flow
velocities are determined from scalar and vector surface potential
calculations in transverse coordinate surfaces, once the primary velocity and

secondary vorticity are known.
Primary-Secondary Velocity Decomposition
In the discussion which follows, vectors are denoted by an overbar, and

unit vectors by a caret. The analysis is based on decomposition of the

overall velocity vector field U into a primary flow velocity ﬁp and a




secondary flow velocity ﬁs. The overall or composite velocity is

determined from the superposition

U=U +U (1)
P S

The primary flow velocity is represented as

i =ui (2)
where Ep is a known inviscid primary flow direction determined for example
from an a priori potential flow solution for the geometry under
consideration. In many cases, a streamwise coordinate direction from a body
fitted coordinate system is an adequate approximation to this potential flow
direction., The primary velocity ﬁp is determined from solution of a
primary flow momentum equation. The secondary flow velocity ﬁs is derived
from scalar and vector surface potential denoted ¢ and VY, respectively. If
;n denotes the unit vector normal to transverse coordinate surfaces, if p

is density, and if p, is an arbitrary constant reference density, then ﬁs
is defined by

U =V ¢+ (o _/p)¥xi ¥ (3)
where Vg is the surface gradient operator defined by

v_z v - (i) (4)

It follows that since ;n * Ug = 0, then Ug lies entirely within

transverse coordinate surfaces. Equation (3) is a general form permitting
both rotational and irrotational secondary flows and will lead to governing
equations which may be solved as an initial-boundary value problem. Based

upon Eqs. (2) and (3), the overall velocity decomposition (1) can be written

- prp + vs¢ + (po/p)innw (5)

cl




Surface Potential Equatioms

Equations relating ¢ and ¥ with Up, P, and the secondary vorticity

component £, can be derived using Eq. (5) as follows: From continuity,
Vv-pl = 0 =V-pU i + V-pV ¢ + p V-Vxi 6
prp pv_¢ P, sznw (6)

and from the definition of the vorticity based on the secondary flow within

the transverse surfaces, Qp

; -UxUZQ =i -Ux Ui +3 -V ux 1 i-
i 0 o pip * 1, x(p _/p) x AW+ -V xV ¢ (7)

Since the last term in each of Eqs. (6 and 7) is zero by vector identity,

Eqs. (6 and 7) can be written as

V-pvV ¢ = —V-pU'£ 8
< op (8)

I v T e T . -
LV (po/p) Vxip =90 -i -Vx Up:.P (9)

Note that the last term in Eq. (9) is identically zero in a coordinate system
for which i, and ip have the same direction. Given a knowledge of Up,

2, and p, the surface potentials ¢ and ¢ can be determined by a
two-dimensional elliptic calculation in transverse coordinate surfaces at
each streamwise location. 1In turn, ﬁs can be computed from Eq. (3), and

the composite velocity U will satisfy continuity. Equations for Up and

8, are obtained from the equations governing momentum and vorticity,
respectively.

The streamwise momentum equation is given by

ip-[ (U:-v)U + (vP)/p] =£p-f o

+
PN
s

(10)



where P is pressure, oF is force due to viscous stress and terms in F
representing streamwise diffusion are neglected. PR is the additional force
due to a rotating coordinate system; where R=-20x U - (o x ;), w is the
angular velocity of the coordinate system and r is the radius vector from the
rotation axis. For the present rotational effects have not been included

in the cases considered although they have been included in the work of

Ref. 28. The pressure term in the streamwise momentum equation (10) can be
taken from a simpler analysis such as a potential flow analysis, and within
the present analysis must be obtained from an external source. While this
results in a set of equations which can be solved by forward marching, the
surface pressures which are due to the pressure field imposed upon the flow
are the potential flow pressures. Since the actual surface pressures are
often of primary interest, a revised computation of the actual surface
pressure which includes viscous and secondary flow effects can be obtained
from the resulting velocity field in the following manner.

The momentum equations in the transverse surfaces are:

-

il- [(pﬁ -9) U + VP - pF - pR] = 0
;Z-I(pﬁ-V)ﬁ-*-VP—pP—'—oE]-O (11)

Equation (11) represents components of the momentum vector in the transverse

surfaces:

11 (11'[(OU «V) U+ VP - pF - pR])

(12)

+A22 (;2"[(03.-V) U + VP - pF - pR})

The divergence of this vector can be written as a Poisson equation for the

pressure P at each transverse surface:

2 2 3 n — - —_ _
v'Pp=v (P, +P )= — (i, -[(pU-V) U - pF ~ pR))
s s I c axl 1 (13)
_a N - — — —
T ax, (1, - [(pU- 9) U - oF - pR))

10




where Py is the imposed pressure, obtained from an independent source
such as an inviscid analysis, P, is a viscous correction to the

pressure field and x] and X9 are coordinates in the il and 52
directions, respectively. Equation (13) can be solved for the pressure
correction, P., at each computational station using Neuman boundary
conditions derived from Eq. (12). The use of Neuman boundary conditions
requires an additional parameter which is only a function of the normal
direction, Py(x3), in order to set the level of the pressure field. For
internal flows Py(x3) would be set to ensure that an integral mass flux

condition is satisfied

/A in-pU dA = CONSTANT (14)

For external flows Py(x3) is set to match the imposed pressure at an
appropriate far field location. It should be noted that in a recent effort
(Ref. 23) Briley and McDonald have modified this analysis so as to obtain the
pressure field on the primary flow velocity as part of the solution

procedure.

Secondary Vorticity

A

The equation governing &, is obtained from the normal (i) component
of the curl of the vector momentum equation. The elimination of the pressure
results in a single equation for the transport of the vorticity normal to the
transverse surface. This equation has the form

U-v2 -0 -VW =G +C+1 .(V® (15)
n n n n

where G, is the normal component of
G=VxF (16)

and C is a collection of curvature terms arising from changes in orientation

of the transverse surfaces as a function of streamwise coordinate.

11



The Gas Law Equation

For incompressible flow density is a constant value and the Eqs. (8),
(9), (10), (13) and (16) form the required governing set. TFor compressible
flow an additional equation relating the density to the other flow variables

is required. Such an equation is obtained fom the perfect gas law
p = pRT an

Assuming constant total temperature, Eq. (17) can be written as
o U0
p=PRAT "¢ (18)
P

which relates density, pressure and velocity. If the total temperature
assumption is inadequate an energy equation can be added to the system and

solved coupled with the streamwise momentum equation.
Governing System of Equations

A complete system of five coupled equations governing Up» Qs ¢
and P is given by Eqs. (8), (9), (10), (13 and 15). Ancillary relations are
given by Eq. (5) for composite velocity. In reference 29, these equations
are given in general orthogonal coordinates and in reference 24 in

nonorthogonal coordinates.
Boundary Conditions

Although boundary conditions have been discussed briefly in the previous
subsections, it is advantageous to review and expand the discussion here. 1In
regard to boundary conditions, three types of boundaries are present; these
are the solid wall boundary at the airfoil, the free stream boundary and the
inboard boundaries. Considering first the solid wall, this is a no-slip,
no-through flow boundary. The primary velocity component is specified to be
zero at the wall. The continuity equation is solved with 3¢/dn = O which

12




gives zero normal velocity and a non-zero wall slip velocity equal to Vi.
Finally, the coupled stream function - vorticity set is solved subject to
zero normal velocity and a tangential velocity specified as -V¢ thus giving
a composite no-slip, no-through flow condition. At the freestream boundary
the primary velocity is extrapolated from interior points. The scalar
potential is set to a constant so that the tangential component of the
irrotational velocity is zero. This condition allows outflow through the
boundary due to the displacement effect of the boundary layer on the blade.
The angle of attack of the flow specifies a component of the transverse
velocity on the boundary. The vector potential is obtained by integrating
this component of the transverse velocity along the boundary. The streamwise
vorticity is set to zero. Finally, at inboard boundaries the spanwise
derivative of the streamwise velocity is set to zero. The scalar potential
is treated by setting its spanwise derivative to zero. The vector potential
is set to a constant, and the streamwise vorticity set to zero. This
corresponds to a two—-dimensional flow situation at the inboard boundary.

A more recent treatment of this inboard boundary condition is now
available where the two-dimensional assumption is replaced by computation of
a velocity field indued by the entire rotor. This treatment permits the
inboard boundary to be placed closer to the tip. Under this portion of the
effort the inboard boundary conditions were reformulated to represent the
influence of the inboard sections on the wing tip flow field. Thus, the
specification of the inboard boundary conditions should be related to the
velocity field of the wing which contains the influence of the 1lift
distribution and the trailing vortex sheet of the entire wing. With these
considerations in mind, a revised inboard boundary condition was formulated.
In this approach a spanwise velocity distribution along the inboard
boundaries compatible with the viscous flow equations is obtained from
solution of the coupled vector potential-vorticity equations along the
inboard boundaries utilizing the inviscid spanwise velocity as an outer
boundary condition. Neglecting spanwise variations, the coupled vector
potential-vorticity equations are solved as a two-point boundary value
problem along the inboard boundaries. Boundary conditions are specified
from the no-slip and no through-flow velocity conditions on the wing surface
(at B = C of Fig. 22), and the inviscid spanwise velocity and zero streamwise

vorticity at the outer boundary (at A - D of Fig. 22). The solution to

13



the vector potential is used as the inboard boundary condition for the
coupled vector potential-vorticity equations for the interior tip flow
field. When an inviscid velocity field about the wing is available, the
spanwise velocity boundary condition is derived from this flow field as
outlined. If an inviscid flow field is not available, the required inviscid
flow information can be approximated from the induced velocity field derived
from an assumed spanwise 1lift distribution.

Most of the calculations presented in this report were performed using
the two-dimensionality assumption on the inboard boundary except those
calculations presented at the end of the results section. The results of
calculations performed using the revised boundary condition formulation are

presented in the section entitled Inboard Boundary Condition Study.

Numerical Method

Since techniques for obtaining the basic potential flow solution used to
obtain the imposed pressure required in Eq. (10) are well known and numerous,
they are not discussed here. 1In this regard it should be noted that the
basic tip vortex formation process can be obtained in the absence of any
imposed pressure as was demonstrated by Govindan, Levy and Shamroth
(Ref. 28). The present development concentrates on describing the numerical
method used to solve the viscous primary/secondary equations. Streamwise
derivative terms in the governing equations have a form such as ujd( )/9x),
and because the streamwise velocity u) is very small in the viscous dominated
region near no-slip walls, it is essential to use implicit algorithms which
are not subject to stringent stability restrictions unrelated to accuracy
requirements. Although it is possible to devise algorithms for the solution
of the governing equations as a fully coupled implicit system, such
algorithms would require considerable iteration for the system of equations
treated here, and this would detract from the overall efficiency. The
present method partitions the system of correction equations into subsystems
which govern the primary flow, the secondary flow, and the turbulence model.
This technique reduces the amount of iteration required and yet avoids the
more severe stability restrictions of explicit algorithms. The primary-flow
subset of equations contains the streamwise momentum equation. The

secondary-flow subset of equations contains the secondary vorticity equation,

14




the scalar and vector potential equations and the pressure equation. These
subsystems are decoupled using an ad hoc linearization in which secondary
velocity components and turbulent viscosity are lagged and are solved

sequentially during each axial step.
Summary of Algorithm

Physical approximations are made to the time-averaged Navier-Stokes
equations to permit solution by a forward-marching algorithm. These
approximations include specifying a nominal primary flow direction, neglect
of diffusion in this specified direction, and the specification of the
pressure gradient in the specified direction. The pressure gradient is taken
from a potential flow solution for the flow. The resulting governing
equations are rewritten with a change of variable resulting from the velocity
decomposition of Eq. (5).

In the governing equations derivatives are replaced by finite-difference
approximations. Three—point central difference formulas are used for all
transverse spatial derivatives. Analytical coordinate transformations are
employed as a means of introducing a nonuniform grid in each transverse
coordinate direction, as appropriate, to concentrate grid points in the wall
boundary layer regions. Second-order accuracy for the transverse directions
is rigorously maintained. Two-point backward_difference approximations are
used for streamwise derivatives, although this is not essential.

As a first step in the procedure, a scalar ADI scheme is used for
the momentum equation, Eq. (10). Given the solution for the primary flow,
the secondary flow subsystem can be solved. First, the scalar potential
equation (continuity), Eq. (8), is solved using a scalar iterative ADI
scheme. Next, the secondary vorticity and vector potential equations,

Eqs. (15) and (19) are written as a fully implicit coupled system and solved
using an iterative linearized block implicit (LBI) scheme (cf. Briley and
McDonald (30)). 1In selecting boundary conditions for the secondary flow
subsystem, care must be taken to ensure that the final secondary velocity
satisfies the no-slip condition accurately. Zero normal derivatives of ¢ are
specified in the scalar potential equation, and this boundary condition
corresponds to zero normal velocity. It is not possible to simultaneously

specify the tangential velocity, however, and thus the ¢—contribution to the

15



secondary velocity will have a nonzero tangential (slip) component, denoted
ve, at solid boundaries. In the coupled vorticity and vector-potential
equations, both normal and tangential velocity components can be specified as
boundary conditions, since these equations are solved as a coupled system.
By choosing (a) zero normal velocity, and (b) -vy as the Y-contribution to
the tangential velocity, the slip velocity vy arising from the ¢
calculation is cancelled, and the composite secondary flow velocity including
both ¢ and ¥ contributions will satisfy the no-slip condition exactly. The
pressure equation (13) is solved using a scalar iterative ADI scheme.

A summary of the overall algorithm used to advance the solution a single
axial step follows. It is assumed that the solution is known at the n-level

xM and is desired at x0*l,

(1) The imposed streamwise pressure gradient distribution is determined

from an a priori inviscid potential flow.
(2) The momentum equation is solved to determine uf*l,

(3) Using values now available for p"*l and un*l, the scalar
potential equation (8) 1s solved using an iterative scalar ADI
scheme, to obtain ¢"*l, This ensures that the continuity

equation 1s satisfied.

(4) The equations for vorticity (15) and vector potential (9) form a
coupled system for Q%1 and ¢+l which is solved as a coupled

system using an iterative LBI scheme.

(5) Values for the transverse velocities vg and wg are computed

from Eq. (3).

(6) The pressure is computed from Eq. (13).

16




RESULTS

Although the analysis previously described represents that which is
currently used, the present effort was initiated prior to its full
development. During early parts of the effort, a more approximate method was
used. The major difference was use of an approximate no-slip condition in
the secondary flow velocity components since at this stage of the development
the coupled vorticity-stream function solver was not available. In this
early work at any streamwise station the solution to the equations yielded a
secondary flow slip velocity and the no-slip coundition was obtained through a
semi-empirical correction. Details of this as well as other items such as
boundary conditions are given in Ref. 27. 1In this report calculations
presented in Figs. 4-8 contain the semi-empirical correction to approximate
the secondary flow no-slip condition. Figures 9-22, and the
Concluding Remarks section of this report are based on calculations which use

the rigorous no-slip condition at the rotor surface.
Initial Results Demonstrating Feasibility of this Approach

The initial portion of the program has been reported in Ref. 27 and for
completeness is reviewed here. The results considered a constant thickness
slab airfoil of rectangular planform immersed in a free stream at incidence
of 6°. The Reynolds number 1is 106 based on chord. Although the
configuration is an approximation, it represented a viable test case for an
initial assessment of the procedure without the added complexity of
body-fitted coordinates fitting the contoured airfoil. The pressure
distribution used was obtained from calculations of Maskew (Ref. 16) and
furnished by NASA Langley Research Center. The initial effort focused upon
two problem areas; these were an analysis of the detailed tip vortex
generation process and a qualitative comparison of the computed results with
experimental data. A sketch indicating the coordinate system used is given

in Figs. 1 and 2.
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Figure 1. - Sketch of coordinate system.
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Figure 2. - Grid boundaries
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Computational Grid

The computational grid in the cross flow plane was obtained via Roberts'
transformations (Ref. 31) in both the transverse, y, direction and the
spanwise, z, direction. The line defined by y = 0, z = 0 (the x-axis) was
taken to lie at the intersection of the x-y plane coinciding with the airfoil
tip location and the x-z plane coinciding with the airfoil centerplane
location as shown in Figs. 1 and 2. The Roberts' transformation was
performed so as to concentrate x-y planes in the vicinity of the airfoil tip
and x-z planes in the vicinity of the airfoil surface. The cross-sectional
computational plane was constructed as a 19 x 19 grid with points located at

the following locations.

TABLE I. - Secondary Plane Grid Point Locations

Pt. No. 1 2 3 4 5 6 7
y/c or z/c -.25 -.193 -.141 -.098 -.065 -.041 -.024
Pt. No. 8 9 10 11 12 13 14
y/c or z/c | -.012 -.005 0 .005 .012 .024 .041
Pt. No. 15 16 17 18 19
y/c or z/c .065 .098 .141 .193 .25

The wing thickness was taken to be 0.0lc; i.e., the wing was taken to be
three grid points thick. 1In the streamwise direction a nonuniform grid which
concentrated points in the airfoil leading edge region was used. The

streamwise grid points were located as follows:
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TABLE II. - Streamwise Grid Point Locations

Pt. No. 1 2 3 4 5 6 7
x/c . -0.1 ~0.05 0.01 0.02 0.03 0.04 0.05
Pt. No. 8 9 10 11 12 13 14
x/c 0.07 0.09 .11 0.13 0.15 0.19 0.23
Pt. No. 15 16 17 18 19 20 21
x/c 0.28 0.33 0.38 0.43 0.48 0.54 0.60
Pt. No. 22 - 23 24 25 26 27 28
x/c 0.65 0.70 0.75 0.80 0.85 0.90 0.95

where x/c = 0 is the location of the airfoil leading edge. The secondary
flow plane grid points in the vicinity of the tip are shown in Fig. 3.

The calculation was initiated at x/c = -0.1 which is upstream of the
airfoil leading edge. At the initial plane the streamwise velocity was set
equal to the velocity predicted by the vortex lattice method and the
streamwise vorticity was set equal to zero. Upon reaching the airfoil,
no-slip conditions at the airfoil surface were applied to the streamwise
momentum equation and this sudden application of the no-slip boundary did not
lead to any numerical problems. In contrast, however, a special technique
was required for the vorticity transport equation upon reaching the airfoil.

At the 1initial plane upstream of the airfoil, the vorticity was taken
to be zero, and no vorticity is generated until the airfoill is reached.
Rather than solve the vorticity transport equation at the first station at
which the airfoil is encountered, the vorticity was assumed to be zero at
this location. The stream function equation was solved, leading to a
prediction of an irrotational secondary flow field which has a significant
spanwise slip velocity. A boundary layer correction was applied to this
secondary flow which decreased the spanwise velocity to zero at the airfoil
surface and generated streamwise vorticity. The streamwise vorticity
generated in this manner was taken as the vorticity at the first streamwise

plane containing the airfoil; at subsequent streamwise locations the
vorticity is determined from the vorticity conservation equation.
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The calculation was initiated as a constant viscosity flow with the
viscosity being equal to the expected wall region eddy viscosity and
transition to the usual simple eddy viscosity was assumed to occur at

x/c = 0.19. Downstream of x/c = 0.19 a simple eddy viscosity model was used.

Turbulence Model

Since most airfoil flows of practical interest are in the turbulent
regime, it is appropriate to include a turbulence model in the formulation.
The eddy viscosity model used in the present effort assumes an eddy viscosity
distribution throughout the boundary layer of approximately parabolic form
with the maximum eddy viscosity being set as a function of the displacement
thickness Reynolds number as suggested by Clauser (Ref. 32). According to

Clauser, the maximum value of eddy viscosity is given by

u 8"
€ max e
el 0.016 " (19)

The distribution within the boundary layer is taken as the following function

of y/8 where § is the boundary layer thickness.

)
n

€ axly’d) y/8<0.2

€ " € ax 0.2 <y/8<0.5

(20)
€ Cux[l-y/8]/0.5  052y/8<1.0

€e=0 y/8 2 1.0

It should be noted that with this eddy viscosity model, turbulent
viscosity is limited to regions in which the streamwise boundary layer is
present. This is clearly a simplification and, as is commented upon

subsequently, will give low values of vorticity diffusion. It should be
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noted that the three-dimensional forward marching procedure has been used in
conjunction with a two-equation turbulence model in Ref. 25, and such a model

could be incorporated in the tip vortex version of this computer code.

The Predicted Tip Vortex Generation Mechanism

The results reported in Ref. 27 fall into two categories; (i) detailed
numerical predictions and (ii) a qualitative understanding of the tip vortex
generation mechanism. Since an understanding of the generation mechanism may
aid the reader in understanding the detailed results for the cases which
follow, this generation mechanism, as calculated by the analysis, is
discussed first. Upon encountering the wing at incidence, the inviscid
potential flow generates a pressure field leading to high pressures below and
low pressures above the airfoil. Obviously, as the tip itself is approached,
the pressures on the upper and lower sides must become equal. The pressure
imbalance, thus generated, drives an irrotational flow in the secondary flow
plane from the pressure side outboard, around the tip and finally inboard on
the suction side. This secondary flow pattern is required to obey the
no~slip condition at the airfoil surface and this no-slip condition generates
positive vorticity on both the upper and lower surfaces. Due to the
secondary flow pattern, the vorticity generated on the pressure surface is
convected outboard and the vorticity generated on the suction surface is
convected inboard.

As the flow proceeds downstream, the vorticity generated on the pressure
surface is convected to the tip, shed off the tip and convected and diffused
in a general upward and inboard direction. At some streamwise location the
amount of positive vorticity appearing above the suction surface is
sufficient to create a counterclockwise, circular, secondary flow velocity
pattern above the suction surface; such that the spanwise velocity in the
immediate vicinity of the airfoil suction surface is then directed outboard.
However, since the no-slip condition must be satisfied, a region of negative
vorticity appears adjoining the tip suction surface.

At approximately the same streamwise location, the positive vorticity
which as been shed from the pressure surface and convected upward forms a
"tongue-like" region of free vorticity above the suction surface and clearly

distinct from the cross flow boundary layer, As is shown subsequently in
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the present slab airfoil calculation, the appearance of this free vorticity
occurred following the appearance of the negative vorticity region.
These results are in qualitative agreement with the experimental evidence of

Francis and Kennedy (Ref. 4) for the tip vortex generation process.

Detailed Results

The results of the calculation procedure are shown in Figs. 4-8. Due to
the scarcity of experimental data, it is difficult to make a definitive
assessment of the prediction at the present time; however, the data of
Chigier and Corsiglia (Ref. 6) and Francis and Kennedy (Ref. 4) can be used
for guidance. The data of Ref. 6 were taken for a NACA 0015 airfoil,
immersed in a fluid at chord Reynolds number of 9.5 x 105, and at an
incidence angle of 12°, The data of Ref. 4 were taken for a 46009 square
tip, rectangular, untwisted airfoil section at 4° incidence. Although these
conditions obviously differ from those of the case considered here, both
cases represent high Reynolds number airfoils with rectangular planform tip
shapes and both cases are for flows below the stall condition. Thus, the
data of Refs. 4 and 6 can serve as a suitable qualitative guide for assessing
the predicted results.

A summary of the computed results is presented in Fig. 4 which shows the
vortex location and the maximum free vorticity magnitude. As is shown in
Fig. 5, the streamwise vorticity consists of two parts; one portion is
clearly associated with vorticity in the cross-flow boundary layers on both
the suction and pressure airfoil surfaces. The second portion lies outside
the cross flow boundary layers and results from vorticity shed at the airfoil
tip; this is termed the free vorticity. Figure 4 shows the location of the
center of the free vorticity as a function of streamwise distance; this
location has been taken from Figs. 5.

As shown in the upper portion of Fig. 4, no definite free vortex appears
until x/c > 0.3; upstream of this location, the vorticity appears to be
concentrated in the boundary layers. After its appearance the core moves
away from the airfoil surface and inboard. At the last station considered,
the core is located at y/c¢ = -0.06 and z/c = -0.01. The data of Ref. 6 for
the NACA 0015 airfoil at 12° incidence show a vortex to appear first at
x/c = 0.25; while that of Ref. 4 showed the vortex first to appear at
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Figure 4. - Computed vortex .development.
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x/c = 0.60; these results are in reasonable agreement with the current
prediction. The data then show the core to move away from the surface to a
location y/c = -0.09, and inboard to a location z/c = -0.05. Although this
data shows differences with the present prediction, particularly insofar as
spanwise location is concerned, good qualitative agreement exists between
the data of Ref. 6 and the predictions of the current analysis in terms of
vortex location. Furthermore, in regard to the data of Ref. 6 since higher
incidence angle will be accompanied by a stronger pressure differential from
the pressure to the suction side of the airfoil, it is expected that higher
incidence will produce a stronger flow around the airfoil tip;

i.e., a secondary flow having both larger normal and spanwise velocity
components. This stronger secondary flow would be expected to convect the
shed vorticity both further above the airfoil and further inboard from the
airfoil tip. Thus, the difference between the current prediction and the
data of Ref. 4 is qualitatively as expected.

The lower portion of Fig. 4 shows the magnitude of the maximum vorticity
appearing in the free vortex. As can be seen, this continuously decreases
due to viscous effects which tend both to diffuse vorticity from regions of
high to low vorticity concentration and to decrease the total amount of
vorticity in the field. It should be noted that with the present turbulence
model, the turbulent viscosity in the vortex core is underestimated and,
hence, the diffusion of vorticity in the core region is also underestimated.
The vorticity has been normalized by ue/c where uew is the u component of
velocity at upstream infinity and c¢ is the chord.

Vorticity contours at selected streamwise stations are shown in
Figs. 5. At x/c = 0.11 the streamwise vorticity is associated almost
entirely with the cross flow boundary layers on the upper and lower airfoil
surfaces and at the tip. The free stream 1s basically an irrotational flow
fields The last laminar station is at x/c = 0.19. At this location there
appears to be a concentration of positive vorticity in the tip region with
some vorticity in the free stream and a small area of negative vorticity
appears just above the airfoil surface for the first time. This appearance
is explained as follows. The positive vorticity collecting above the suction
surface in the tip region causes the free stream in this region to be
rotational. This rotational free stream leads to a counterclockwise rotating

fluid pattern above the suction surface. However, the fluid must obey the
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no-slip condition on the airfoil surface and imposition of the no-slip
condition to the secondary flow generates negative vorticity at the airfoil
surface which then diffuses into the flow field. The net result is a flow
pattern in which the spanwise flow is outboard below the airfoil. Above the
airfoil the flow is inboard except in the immediate vicinity of the airfoil
where it 1is outboard. The result is general convection of fluid around the
tip from pressure to suction surface upon which is imposed a "circular" type
of flow pattern above the airfoil and in the vicinity of the tip region.

It should be noted that this negative vorticity 1is in a region of outward
spanwise flow, and the possibility of the counter-rotating vorticity being
carried outboard of the tip exists. Such a phenomenon has been observed
experimentally as a secondary vortex.

The streamwise location x/c = 0.19 is the first location at which this
"circular" flow pattern is evident, and this may be considered the location
at which the vortex first appears. However, a more striking example of free
vorticity is shown at x/c = 0.33. At this location, areas of strong
vorticity are clearly being convected from the tip region above the airfoil
and inboard. The general picture of the generation process being presented
is the convection of the pressure surface cross flow boundary layer off the
tip region, upward and then inboard. The pattern continues as the flow
progresses to x/c = 0.75. From this location to the trailing edge the major
effect appears to be the dissipation of vorticity and continued upward
convecttion.

The possibility of the appearance of a secondary counter-rotating vortex
has been mentioned previously and an examination of results at x/c = 0.90
shows appearance of such a region. As seen in this figure, a small region of
negative vorticity has migrated via convection and diffusion processes to the
immediate vicinity of the airfoil tip and may indicate the incipient
formation of secondary vortex.

Contours of streamwise velocity are presented in Fig. 6. In general,
these figures show the growth of the streamwise boundary layers. At inboard
locations, the pressure surface boundary layers are thicker than the suction
surface boundary layers; this result is consistent with the imposed pressure
distribution obtained from the vortex lattice calculation and the
two-dimensional boundary layers. However, in the tip region where the flow
is strongly three-dimensional, the viscous region on the suction surface 1s

thicker than that on the pressure surface.
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As the flow proceeds downstream to x/c¢ = 0.33, the major development is
the expected thickening of the viscous layers. However, at x/c = 0.48
a new development appears. In the vicinity of the tip suction surface a
thickening of the outer portion of the boundary layer appears. Although the
contour with constant velocity 0.4 moves towards the airfoil surface
indicating a thinning of the inner part of the boundary layer, the contour
with constant velocity 0.9 moves away from the airfoil indicating a
thickening on this part of the airfoil. This clearly shows a behavior not
observed in usual two-dimensional boundary layers.

A set of plots showing secondary flow patterns predicted by the
calculation is presented in Fig. 7. 1In these figures the secondary
velocities are the spanwise velocity, w, and the velocity normal to the
free flow stream velocity rather than the velocity normal to the airfoil.
Thus, in the absence of no-slip effects, the value of v far from the
surface would be approximately u sin a. (See the sketch on the figure).

At x/c = 0.11, the vortex has not yet formed as the secondary flow pattern
simply shows flow around the tip from the suction surface to the pressure
surface. The next plot shows the vortex beginning to form at x/c = 0.19;
this result is consistent with the vorticity plots and the core defined by
the velocity plots at this station, if one exists, appears to be very close
to the suction surface corner point. The remaining plots show the further
development of the secondary flow vortex as well as the upward movement of
core as defined by the velocity plots. At these latter stations the
secondary flow shows a definite circular flow pattern; at x/c = 0.90 the
secondary flow has an average circumferential velocity of approximately 0.06
Uoe The measurements of Ref. 6 at the airfoil trailing edge show a
tangential velocity of approximately 0.2 ue, however, the Ref. 6 data is
for a higher angle of incidence (12° vs. 6°) and thus the generation of a
stronger vortex in this case is to be expected.

Results indicating the predicted circumferential velocity profiles
through the vortex core are presented in Fig. 8. 1In each case, the vortex
core location was estimated from the velocity plots of Fig. 7 and the
velocity distribution on a spanwise line through the core center was used to
obtain the results. Since the present case is not for the same conditions as
the data of Ref. 6 (the major discrepancy being 6° incidence angle in the

present case and 12° incidence angle in Ref. 4), a quantative comparison
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between predictions and data cannot be made. Nevertheless, qualitative
similarity between the two sets of results is apparent. In both cases, the
vortex increases in size and the maximum tangertial velocity decreases in
magnitude as the flow progresses downstream. The data of Chigier and
Corsiglia (Ref. 6) shows the core increasing from re = 0.02 at x/c = 0.5 to
ro./c = 0.09 at x/c = 1.0. The present results show an approximate factor
of 2 increase in the size of the vortex core from mid-chord to the trailing

edge.
Thin Slab No-Slip Secondary Flow Cases

Although the previous calculations clearly showed the basic tip vortex
generation mechanism via three-dimensional viscous flow calculations,
they did not generate zero-slip secondary flows from the basic equations.

In these early calculations the zero-slip secondary flow relation was
obtained via a correction procedure (Ref. 27). A new solution procedure
which satisfies the no-slip condition on secondary flow was developed and the
remaining calculations were done with this rigorous no-slip condition
satisfied.

The first of these calculations were thin slab calculations for both
laminar and turbulent flow. The cases considered were for 5° incidence at
Mach numbers of 0.01, and Reynolds numbers of 2 x 103 and 106,
respectively, Since the laminar case and turbulent calculations showed
basically the same physical processes only the turbulent case is included in
this final report.

The potential flow field for this case was obtained from NASA Langley
Research Center from implementation of the procedure due to
Maskew (Ref. 16). A 59 by 49 cross section grid with a sinh transformation
to concentrate grid points in the vicinity of wall and tip regiomns is used.
There are 20 streamwise stations in the streamwise direction. The viscous
calculation was started downstream of the leading edge of the wing at
x/c = 0.05 where x is the streamwise coordinate measured from the leading
edge and ¢ is the wing chord. The initial boundary layer thickness for this
demonstration case was taken as 8/¢c = 0.07. Figure 9 presents the streamwise
vorticity at the 11% chord location. At this station the vorticity is
contained deep within the streamwise boundary layer. The region pf high

vorticity at the wing tip is the result of the flow from the pressure surface
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to the suction surface. Further downstream, the vorticity from below the
wing tip 1is convected above the wing as shown progressively in Fig. 9.

As the region of positive vorticity moves above the wing tip a large scale
vortex pattern of secondary flow is established. The flow from this vortex
is outward along the upper surface of the wing. Bringing this secondary flow
to no-slip at the wing results in a region of negative vorticity along the
upper wing surface. The region of negative vorticity is defined by the 2 = 0
contour in Fig. 9, and is shown to get progressively larger as the secondary
flow becomes stronger. Figure 10 shows the secondary flow velocity pattern
at stations x/c = 0.31 and x/c = 0.91.

As can be seen, the generation process with the revised formulation
which specifically sets zero no-slip on the wing 1s qualitatively similar to
that previously obtained. The formation of the vortex above the surface and
its migration slightly inboard as noted in Fig. 9 is in qualitative agreement
with the previously obtained results, and the generated secondary flow

pattern can be clearly seen in Fig. 10.

Constant Thickness Rounded Tip

The next case considered focused upon a constant slab wing with a
rounded tip. The coordinate system for this calculation is a body-fitted
curvilinear wing tip coordinate system developed by Thames (Ref. 33).

This calculation represents a significant increase in complexity from the
square tip calculations discussed previously. The coordinates used are
general nonorthogonal rather than Cartesian and, therefore, the case
demonstrates a much more general coordinate capability. A second item
concerns the rounded tip. 1In the previous calculations, secondary flow
separation is triggered by the sharp corners at the tip of the airfoil
cross-section. In the present calculations, the secondary flow can separate
any place on the rounded tip. Since this new case represented considerable
additional complexity, a sample calculation for a constant thickness wing was
chosen as a demonstration calculation.

The case presented here is for laminar flow over a thin wing with
rounded tip and constant thickness at 5° angle of attack. The Reynolds
number based on chord is 2000 and Mach number is 0.0l. The initial boundary
layer thickness is 6/c = 0.07. The body-fitted curvilinear wing tip
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coordinate system was developed for a NACA 0012 airfoil. For the present
constant thickness wing case, the cross—sectional grid was obtained from one
cross—-section of general three—dimensional grid and this was held the same in
the downstream direction. There is 30 x 33 grid points in the cross section,
and 20 grid points in the streamwise direction. The potential flow pressure
field was provided by NASA Langley Research Center and was obtained from the
calculation procedure of Maskew (Ref. 16).

Figure 11 presents the contours of streamwise velocity. Note that in
Figs. 11-21 the suction surface is pictured on the right side of the blade
and the pressure surface on the left. Although the initial statiom
streamwise velocity is two-dimensional (except near the tip), the streamwise
velocity is progressively distorted and shows strong three-dimensional
features as the flow progresses downstream. Figure 12 shows the streamwise
vorticity at the 25% chord location. At this station the vorticity is
contained within the streamwise boundary layer. The region of high vorticity
at the wing tip is the result of the flow from the pressure surface to the
suction surface. Further downstream, the vorticity from below the wing tip
is convected above the wing and the region of significant streamwise
vorticity becomes larger, as shown in Figs. 12. However, the maximum
vorticity magnitude becomes smaller due to viscous effects. Figures 13 show
the secondary flow patterns at stations x/c = 25%, 397 64% and 89%. These
results clearly show the development of the tip vortex, and the distinct
secondary flow pattern. The general development appears to be qualitatively

similar to that obtained for the square tip.

Wing with an NACA 0012 Airfoil Section

Following the rounded tip calculation, the effort focused upon the case
of flow in the tip region of wing with an NACA 0012 airfoil section with a
half-rounded tip. The geometric grid was generated using the procedure of
Thames (Ref. 33). An example of the grid distribution is shown in Figs. 14
and 15. Figure 14 shows the grid distribution on the surface; Fig. 15 shows
the distribution normal to the surface.

The first case considered was for laminar flow at 5° incidence.
The Reynolds number based upon chord was 2000, and the calculation was

initiated with 8/c = .07. The pressure distribution used was that for
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a square tip, and was obtained via the Maskew procedure [Ref. 16].
There are 30 by 33 grid points in the cross section and 20 in the
streamwise direction.

It should be noted in the present case that the wing thickness changes
with chordline location, and that the wing tip is rounded. Figure 16
presents the contours of streamwise velocity. The streamwise velocity in the
tip region is progressively distorted, and shows three-dimensional features
as the flow progresses downstream. Figure 17(a) shows the streamwise
vorticity at the 19% chord location. At this station, the vorticity is
contained within the streamwise boundary layer. The region of high vorticity
at the wing tip is the result of the flow from the pressure surface to the
suction surface. Further downstream, the vorticity from below the wing tip
is convected above the wing and the region of significant streamwise
vorticity becomes larger, as shown in Fig. 17. The calculation gave
streamwise separation at a location x/c = 0.75, and was terminated at this
location.

The final calculation considered the wing with an NACA 0012 airfoil
section in a turbulent flow environment with a Reynolds number based upon a
chord of 106. The turbulence model used was the simple eddy viscosity model,
Egqs. (19) and (20)., The grid system at a typical cross—sectional station is
given in Fig. 18, The grid is highly stretched so as to resolve the viscous
sublayer with the first point being 9 x 10"5 chords from the surface. There
are 30 x 33 grid points in cross section and 20 in the streamwise direction.
Initial conditions in the present calculation include specification of the
streamwise velocity at the first calculation cross plane. The secondary flow
velocity is zero initially. 'Contours of streamwise velocity, streamwise
vorticity and secondary flow are presented in Figs. 19-21.

Figures 19-21 show the contours of streamwise velocity, vorticity and
secondary flow velocity at stations x/c = 0.18, 0.3, 0.45, 0.6, 0.71 from the
calculated results. The process of secondary flow development and vortex
roll-up seen in the computations again are in general qualitative agreement
with experimental results of Chigier and Corsiglia (Ref. 5), Gray, McMahon,
Shenoy and Hammer (Ref. 34), and Francis and Kennedy (Ref. 6). As the flow
goes downstream, the pressure imbalance between the high pressure below and
low pressures above the airfoil drives an irrotational flow in the secondary

flow plane from the pressure side outboard, around the tip and finally
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inboard on the suction side. This secondary flow pattern is required to obey
the no-slip condition at the airfoil surace, and this no-slip condition
generates negative vorticity on both the upper and lower surfaces. This
physical process is shown clearly in Figs. 20-21.

Contours of streamwise velocity are presented in Fig. 19. 1In general,
these figures show the growth of the streamwise boundary layers. At inboard
locations, where the flow is expected to behave two~dimensionally, the
streamwise velocity is independent of spanwise coordinate and the pressure
surface boundary layers are thinner than the suction surface boundary layer.
In the tip region, the flow is strongly three-dimensional due to distortion
and skewing of secondary flows as the flow progresses downstream.

As the flow proceeds downstream, the vorticity generated on the pressure
surface is convected by the cross flow to the tip, moved around the tip and
convected and diffused in a general upward and inboard direction due to
continual pressure imbalance. Cross flow separation occurs in the tip
region. Above the suction surface a clockwise vortex motion is established
which changes the direction of the secondary flow to outward at the wing
upper surface. The outward cross flow combined with the no-slip condition
results in positive vorticity along the upper surface in the immediate
vicinity of the wing. As shown in Fig. 20 the vorticity is beginning to
extend outside the streamwise boundary layer at x/c = .30. Figure 20 shows
the vorticity contour at stations x/c = 45%, 60%, and 71%. It shows the
continuous upward and inboard movement due to continual pressure imbalance
between the high pressure below and low pressure above. Also with persistent
cross flow separation, the region with positive vorticity in the immediate
vicinity of the tip suction surface becomes thicker and larger. This picture
of development of the secondary flow pattern is in general agreement of
experimental observation by Francis and Kennedy (Ref. 4) and Hoffman and
Velkoff (Ref. 35).

Figure 21 shows the vector plot of secondary flow patterns at stations
x/c = 18%, 30%, 45%, 59% and 71% with the velocity projected in a plane which
is normal to the free streamwise velocity for upstream of the wing rather
than the velocity normal to the airfoil. At x/c = 0.18, the cross flow
separation has not occurred as the secondary flow pattern simply shows flow
around the tip from the pressure surface to the suction surface.

The spanwise velocity is directed outward below the pressure surface and
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inward above the suction surface. The vertical velocity is directed upward
everywhere. Near the tip region in the pressure surface, there has been
small flow reversal driven by the input inviscid pressure field.

The inviscid pressure obtained from Maskew (Ref. 16) was only approximate for
the present case. The next plot shows the cross flow separation beginning to
form at x/c = 0.3. The spanwise velocity is directed outward below the
pressure surface and outward near the suction surface and inward far from the
suction surface. This result is consistent with the vorticity plot. The
next plots show the further development of the secondary flow. As the region
of cross flow separation enlarges and thickens, the secondary flow shows a
definite circular flow pattern and moves upward. Note that these plots
present only a fraction of the grid points used in the flow calculation.

In Figs. 21(b)-21(e) the velocity vectors near the suction surface are shown
penetrating the wing surface. This represents relatively large normal
velocities near the wall, At the wing surface the velocity is zero.

The results shown in Figs. 19-21 clearly show the tip vortex generation
process for a NACA 0012 airfoil with rectangular planform and rounded tip.
This represents a calculation for an actual geometric configuration of
interest at a relevant Reynolds number. In particular, it should be noted
that with the rounded tip the center of the vortex appears slightly outboard
of the tip in contrast to the square tip where the vortex set up inboard of
the tip. This is in agreement with the experimental data of Ref. 34. In
regard to quantitative comparisons, the previous comments regarding the
square tip still apply and the results appear consistent with those of
Chigier and Corsiglia (Ref. 6).

Inboard Boundary Condition Study

The final item considered in the present study focuses upon the
sensitivity of the flow to the inboard boundary condition. As previously
discussed, the boundary condition along the solid surface satisfied zero
streamwise, transverse and spanwise velocity. On the far field boundary
streamwise velocity was extrapolated from the interior, scalar potential was
set to zero, vector potential was obtained by integrating the component of
transverse velocity along the boundary and streamwise vorticity was set to

zero. In the calculations done previously, the spanwise velocity was set to

56




zero at the inboard boundaries and the spanwise velocity derivative was set
to zero.

Under this portion of the effort the inboard boundary conditions were
reconsidered. They represent the influence of the inboard sections on the
wing tip flow field. Thus, the specifications of the inboard boundary
conditions should be related to the velocity field of the wing which contains
the influence of the lift distribution and the trailing vortex sheet of the
entire wing. With these considerations in mind, a revised inboard boundary
condition was formulated. In this approach a spanwise velocity distribution
along the inboard boundaries compatible with the viscous flow equations is
obtained from solution of the coupled vector potential-vorticity equations
along the inboard boundaries utilizing the inviscid spanwise velocity as an
outer boundary condition. Neglecting spanwise variations, the coupled vector
potential-vorticity equations are solved as a two—point boundary value
problem along the inboard boundaries. Boundary conditions are specified
from the no-slip and no through-flow velocity conditions on the wing surface
(at B - C of Fig. 22), and the inviscid spanwise velocity and zero streamwise
vorticity at the outer boundary (at A - D). The solution to the vector
potential is used as the inboard boundary condition for the coupled vector
potential-vorticity equations for the interior tip flow field. When .an
inviscid velocity field about the wing is available, the spanwise velocity
boundary condition is derived from this flow field as outlined in the
following paragraphs. If an inviscid flow field is not available, the
required inviscid flow information can be approximated from the induced
velocity field derived from an assumed spanwise 1lift distribution as will
also be discussed shortly.

For the purposes of a computation demonstrating application of this new
boundary condition formulation, the tip flow field for a slab wing with a
rounded tip at a geometric angle of attack of 6° were computed. The flow was
laminar with a Reynolds number of 1000.0 based on the thickness (t) of the
wing section or 20,000 based on chord.

The inviscid transverse velocities were assumed to be composed of the
potential flow due to the geometric angle of attack and the induced velocity
field due to the trailing vortex sheet. The induced velocities were computed
from the simple Prandtl lifting line theory of finite wings. The inviscid

spanwise velocities at the inboard boundaries for the two point boundary
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value problem were also computed from the trailing vortex sheet. A linear
1lift distribution was assumed on the wing resulting in a trailing vortex
sheet of constant strength,

Figure 23 shows a vector plot of the transverse velocity field at
x/t = 20.0. The induced velocities in this first calculation were set to
zero assuming no flow penetration of the inboard boundaries. The strong tip
vortex is evident. Figure 23 also shows the computed transverse velocity
field at x/t = 20.0 with the induced velocities computed for wings with
aspect ratio 20.0, 10.0, 7.5, and 5.0, respectively. The strength of the tip
vortex decreases corresponding to larger induced velocities from the trailing
vortex sheet. It should be noted that induced velocity increases as the
aspect ratio decreases. The spanwise velocities at the inboard boundaries
are small in all the cases, being largest at the aspect ratio of 5. The
dominant effect of the induced velocities on the tip vortex is from the
normal component of the induced velocity which reduces the effective angle of
attack on the wing. General conclusions about the effect of aspect ratio on
the tip vortex cannot be drawn from these demonstration computations due to
the approximations in the computation of the induced velocity field and the
difference in 1lift of the wings. However, the computations do demonstrate a
newly developed method of specifying boundary conditions on the inboard
boundaries that relate the tip flow field with the overall inviscid flow on

the winge.
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CONCLUDING REMARKS

The present effort has developed a three~dimensional viscous flow
forward marching analysis for the tip vortex generation problem. In contrast
to other more approximate analyses which model the process with inviscid
equations, and rely upon a semi-empirical model to determine the shed
vorticity, the present procedure calculates shed vorticity from the basic
cross—-flow separation mechanism and the subsequent convection of this
vorticity downstream. The analysis is based upon solution of a streamwise
momentum equation, a streamwise vorticity equation, a secondary flow stream
function equation and the continuity equation. High near wall resolution is
obtained in the process and no-slip conditions for all components of velocity
are enforced at the airfoil surface. 1In its present form, the analysis
requires an estimate of the inviscid streamwise pressure gradient which must
be obtained from an external source such as a vortex lattice method or a
panel method with 1lift.

The procedure has been applied to a constant thickness slab wing with a
square tip, a constant thickness slab wing with a half round tip and a
NACA 0012 wing with a rounded tip. 1In the latter case, the coordinate system
used was a body fitted nonorthogonal system developed by Thames.

The analysis has been applied to both laminar flow and turbulent flow with a
simple eddy viscosity model being used to represent the turbulent shear.

The turbulent high Reynolds number calculation required a highly stretched
grid to obtain the required wall resolution.

The effort has concentrated upon two items: (i) the tip vortex
generation process and (ii) quantitative results. As far as the generation
process is concerned, the basic mechanism shown in the calculations is in
good agreement with experimental data. When a wing is immersed in a flow at
non-zero incidence, a pressure differential develops between the upper and
lower surfaces. As the tip is approached, this differential decreases since
outboard of the tip no pressure discontinuity can exist. The pressure
imbalance causes flow outward on the pressure surface, upward at the tip and
inward on the suction surface. This secondary flow must obey the wall
no-slip condition thus generating streamwise vorticity in the form of a cross
flow boundary layer which is convected from the pressure surface to the tip

where it separates and forms the tip vortex. The present predictions of
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vortex appearance, path, strength and secondary flow field are reasonable
when compared with existing experimental data. However, detailed comparisons
with high quality experimental measurements are needed to validate the

quantitative flow predictions of the analysis.
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