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NONLINEAR FLAP-LAG-EXTENSIONAL VIBRATIONS OF ROTATING,

PRETWISTED, PRECONED BEAMS INCLUDING CORIOLIS EFFECTS

K.B. Subrahmanyam* and K.R.V. Kaza
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

The effects of pretwist, precone, setting angle, Coriolis forces and sec-
ond degree geometric nonlinearities on the natural frequencies, steady state
deflections and mode shapes of rotating, torsionally rigid, cantilevered beams
are studicd in this investigation. The governing coupled equations of flap-
lag-extensional motion are derived including the effects of large precone (a
component of sweep) and retaining geometric nonlinearities up to second degree.
The Galerkin method, with nonrotating normal modes, is used for the solution
of both steady state ncnlinear equations and 1inear perturbation equations.
Parametric results indicating the individual and collective effects of pre-
twist, precone, Coriolis forces and second degree geometric nonlinearities on
the steady state deflections, natural frequencies and mode shapes of rotating
blades are presented and discussed. The results indicate that the second
degree geometric nonlinear terms, which vanish for zerc precone, can produce
frequency changes of engineering significance (of the order of 20 percent on
the fundamental mode, and about +4 percent on the second mode). Further con-
firmation of the validity of including second degree nonlinearities in the
analysis ts achieved by comparisons of beam theory results to those generated
by MSC NASTRAN. The results further indicate that the 1ir-»r and nonlinear
Coriolls effects must be included in analyzing thick blads while these effects
can be neglected in analyzing thin hlades, typical of advanced turboprop blade
configurations. The Coriolis effects are significant on the first flatwise and
the first edgewise modes, but are insignificant on higher modes. For those
modes where the effect 1s significant, the 1inear and nonlinear Coriolis
effects oppose one another, the nonlinear effects generally being stronger.

INTRODUCTION

An important phase in the development of advanced turboprop blades, cur-
rently in progress at the Lewis Research Center, 45 the development of analyti-
cal blade models that can predict the vibration and flutter characteristics
with acceptable accuracy. The turboprop blades are of thin cross sections with
large, variable sweep, and are mounted on a rotating hub at a setting angle.
Moreover, the blades are subjected to considerable centrirugal loading which
causes steady state deflections that are large compared to the blade thickness.
1t 1s therefore necessary to include geometric nonlinearities of a sufficient
degree, together with other relevant blade complexities in the analysis of
turboprop blades.
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Several methods of solution making use of a beam, plate or shell theory
are availahle for the <nlution of ctratght, rotating, asvmmetrir cross <ection
blades (refs. 1 to 3). The coupled equatiors of motion of such blades based
on either linear theory (refs. 4 to 6), or geometric nonlinear theory allowing
for small precone (refs. 7 to 9, to mention a few) are available. However, the
cquations of motion including large variable sweep for blades of advanced
turboprop type configurations are not yet avatlabie. While finite-element
modeling of the turboprop blades appears to be the most appropriate method for
blades of such complex geometry, such studies with the existing codes at the
Lewis Research Center revealed that the predicted resuiis are satisfactory only
for the first few modes. Furthermore, the complicating effects included in the
finite element codes, and also in the plate and shell theories, make the under-
standing of the individual and coilective effects of the governing parameters
impossible. In order to conduct parametric studies to assess the various com-
plicating effects, and to acquire a physical understanding of the complex blade
dynamic problem, 1t 1s proposed to use a simpler beam theory to model the
rotating blade with the compliicating effects successively taken into account
to reveal the relative importance of the individual and collective effects. &2
preliminary study made by using a set of linear equations of motion of a
torsionally rigid, pretwisted, rotating blade including Coriolis effects was
reported in reference 10 wherein the effects of sweep on the dynamic behavior
were introduced by preconing the blade with respect to the plane of rotation.
The effects of linear pretwist, precone and 1inear Coriolis effects con the
vibration and stabilitity of rotating blades were discussed in reference 10, and
1t was pointed out that the Coriolis effects must be included in the analysis
of thick blades but could be disregarded in analyzing thin blades possessing
small pretwists. The position and width of an instability region was shown to
be dependent on the extent of pretwist, precone and whether or noi the Coriolis
effects were included in the analysis. Although the blade was considered to
be torsionally rigid, and hence the results somewhat restricted in generality,
considerable information on the various governing parameters was obtained. The
first objective of the present effort 1s to determine the effect of second
degree geometric nonlinearities on the natural frequencies, steady state
deflections and mode shapes of the blade cases considered in the previous
investigation (ref. 10). The second objective i1s to find the parameter l1imits
within which the second degree geometric nonlinearities are adequate to
properly represent the blade dynamic characteristics, by comparison of results
produced by beam theory to those produced by MSC NASTRAN. It may be noted here
that only the second degree geometric nonlinear effects are included in the
present beam theory together with Coriolis effects. Further, there 1s no
restriction on the degreec of nonlinearity in the MSC NASTRAN although the
Coriolis effects are not accounted by this finite element code. Thus, a fair
comparison of frequencies and steady state deflections produced by the present
beam theory to those from MSC NASTRAN (for such blade configurations that are
insensitive to both 1inear and nonlinear Coriolis forces) would establish the
validity of the restriction of the nonlinearities to only the the second
degree. Further complexities ¢f torsional, extensional, rotational and warp-
Ing couplings can then be addressed once the accuracies of the present
restricted beam model are properly validated.

In order to accompiish the stated objectives, the required equations of
motion are derived by using the theory presented in reference 9, and by retain-
ing geometric nonlinearities up to second degree. The Galerkin method, with
nonrotating normal modes, is employed ¥for the solution of both steady state
nonlinear equations and 1inearized perturbation equations. Parametric
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rations representative of piopelier blades and advanced turboprop blades.
formulation and solution procedures of the equations of motion are briefly
presented in what follows, together with the detailed parametric results and a
discussion.

studies are conducted to assess the effects of the various terms for configu-
Tha

e

EQUATIONS OF MOTION AND METHOD OF SOLUTION

The coupled flap-lag-extensional equations of motion of a rotating, tor-
sionally rigid, linearly pretwisted and preconed blade of uniform rectangular
cross section, shown in figure 1, including Coriolis effects and second degree
geometric nonlinearities but disregarding all other higher order effects, can
be derived by using the theory presented in references 9 and 11. Such equa-
tions are presented below (a 1ist of notation is given in appendix B):

Flatwise bending:
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Defining the following parameters,

w=wlL,V=v/l,n=x/L, t=0t R=R/, etc.,

assuming solutions are separable in time and space, and makirg note of the
following relations

d

d
v dt Qd'\’ etc.,

gl

1
dn dx ~ L

one can rewrite equations (1) to (3) in the following nondimensional forms:
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Before discussing the method of solution, i1t 1s worthwhiie to point out
the various important 1inear terms associated with precone, and also the non-
Tinear terms existing in the present equations. The linear terms associated
with precone are addressed first. Referring to equation (9), one can see that
a linear softening term, (-w sin? Bpc), appears in the flap equation. This
term vanishes for zero precone, but becomes an important term for suitably
large values of precone and rotational speeds, and contributes to the mechanism
of rotation induced instability. Next, the terms (2 sin BpcV) and (-2 sin
Bpc W) in equations (9) cnd (10) respectively are the linear Corlolis force
terms that arise due to the inclusion of precone. The effect of these terms
or the linear frequencies has been discussed in detail in reference 10. Con-
sidering equation (11), one observes that there is one linear term (W 59n Bp,
cos Bpc) which vanishes for zero precone, and that the linear Corlolis force
term (2 V cos Bp.) appears in this equation whether or not precone is present
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in the derivation of the equaztions. Since 1t will be shown that the inclusion
of extensicnal degree of freedom is not that important tor anaiyzing boii ithin
and thick blades, further discussion of the other nonlinear terms assoclated
with the extensional deformation will not be attempted in this section. Next
the important nonlinear terms existing in equations (9) and (10) are considered.
The nonlinear Coriolis force terms are shown by underl1ining them once, and
these terms will be present in the equatiens even when precone is absent. The
nonlinear terms which are shown by underscoring them twice in equations (9) and
(16) are the contributions from the tension terms (Tw')' and (Tv')', as are two
of the three nonlipear Coriolis terms just discussed. Howeve., the doubly
underlined terms vanish for zero precone. Finally, the term shown by broken
underlining is the effect of foreshortening of the blade. This term also van-
ishes for zero precone. It may also be mentioned here that for the 1imiting
case value of 90° precone, all nonlinear terms in equations (9) to (11) vanish
excepting those assoclated with extensional inertia (ii, Uf). Since the non-
1inear terms associated with extensional deformation are already noted to be
unimportant, the effect of geometric nonlinearities should become almost nea-
1igible at Bp. = 90°.

The flap-lag-extensional equations are solved by the Galerkin method by
assumirg that the dimensioniess bending and extensional defiections in terms
of a series of generalized coordinates and mode shape functions are as follows:

W = :%: (Hoj + ij(r))vj(n) (13)
vV = ZJ: (vOJ + AVJ(T))‘?J(n) (184)
U= 23: (UOJ + AUJ(T))QJ('\) (15)
where
WJ(n) = cush (Bj“) - coS (Bjn) - aj[sinh (Bj“) - sin (BJn)] (16)
Oj(n) = 2 sin (an) (17)
vy = *(d - ) (18)

Equations (16) to (18) are the nonrotating normal modes for a cantilevered beam
fixed at n = 0, and free at n = 1. Furthermore, the quantities woy, Vo3 and
uo4 in the generalized coordinates constitute the equilibrium quant1%1es

while awjy, Av) and Auy are the perturbation quantities.

By substituting only the steady state equilibrium quantities into the
nonlinear equations (9) to (11), assuming n-normal modes for each of the vari-
ables u, v, and W and carrying out the Galerkin process traditionaily, one
obtains a set of 3n nonlinear equations in terms of Wojy, Vo) and ugy. The
constants a4 and 8y are taken from reference 12, and the resulting
<quilibrium equations are solved by using a computer program based upon a
finite-difference Levenberg-Marquardt algorithm (ref. 13). Next,
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equations (13) to (15) are substituted into equations (2) to (1), the Galerkin
process is carried out again, the equilibrium equaituns are subtracted from the
result, and all nonlinear quantities in the perturbation parameters are dis-
carded to obtain tie linear perturbation equations (expressed in ternis of the
equilibrium generalized coordinates) that define the unsteady blade motion
about the equilibrium operating condition. The steady state equilibrium equa-
tions, and the linear perturbation equations are written in the following
matyix notations:

[LI{X,} + [NL]{Xg) = {B) (19)
(M1} + (1K} + (KIUKY = 0 (20)
where
Xo = Wg1s Wopr = -+ » Monr Vo1t Yo2r 7 7 Von' Yo1* Yo2' * v ¢
T
uon}. (21)
X = {Au1. Auz, e e ey Awn, Av]. sz, e ey Avn, Au], Au?. . e ey

T
du .1, (22)

with L and LN being respectively the 14near and nonlinear parts of the
equilibrium equations, and M, ¢. and K being the mass, Coriolis and stiff-
ness matrices respectively. Elements of these matrices are presented in
appendix A. Equation (20) 1s transformed into an eigenvalue problem, integra-
tions are performed using a Gaussian quadrature formula, and the steady state
deflections, eigenvalues and eigenvectors are determined for various cases of
rotating blades.

RESULTS AND DISCUSSION

The nonlinear steady state equations (19), and the eigenvalue problem that
results from the transformation of equation (20) were solved by using computer
programs developed in FORTRAN language. The general computer program developed
for the solution of equation (20) gives the natural frequencies per urnit rota-
tiona! speed, (p/Q). In the presence of Coriolis effects, the frequencies
will occur in pairs of purely imaginary quantities for a conservative system.
In the absence of Coriolis effects, the frequency equation (20) reduces to a
standard eigenvalue probiem, the eiyenvalues of which are real guantities of
(pz/Qz). Thus, specialized simple cases were solved by modifying the
general computer program. Typical thickness ratios which approximately repre-
sent advanced turboprop blades (d/b = 0.05) or propeller blades (d/b = 0.25)
were considered for aspect ratios of the order of 5 to 10. It may be noted
that the radius of the disc, R, is assumed to be zero for simplicity.




Convergence

The convergence of solutions produced by the Galerkin method for the
coupled flap-lag-extension equations, using various numbers of nonrotating
normal modes for the independent variables, 1s shown in table I. The blade
considered for this convergence study has a precone of 30° and a thickness
ratio of 0.5. The blade chord at the root is set perpendicular to the axis of
rotation (¢ = 0°) and the blade rotational speed is one half of the funda-
mental mode frequency of the same nonrotating blade (Q/wy = 0.7,. Natural
frequencies for this blade with zero pretwist are determined by varying the
number of nonrotating normal modes, n, used in the series solution assumed.

It can be seen from this table that a five-mode solution produces the frequen-
cles of the linear equations, and also those from a perturbatien solution of
the nonlinear equations, converged tc five significant figures. A further
comparison of the present flap-lag-extension frequencies, (p/ny), obtained
from the solution of the linear equations to those giver in references 10 and
14 shows an excellent agreement. Further results for various combinations of
pretwist, precone, setting angle and rotational speed are obtained by using a
five-mode Galerkin solution, and the individuai and collcctive effects of the
various parameters are discussed in the following sections. The validity of
restricting the geometric nonlinearities to second degree only is assessed by
comparison of the present beam theory results to those produced by MSC NASTRAN
for specialized cases of thin blades in the following section.

Comparison of Present Results

Comparison of the frequencies from the solution of the present 1linear
equations and those frem a perturbation solution of the nonlinear equatiors is
made to the frequencies produced by MSC NASTRAN using 250 CQUAD4 elemen’s in
tables II to IV for typical values of precone, rotational speed and thickness
ratio. The steady state equilibrium deflections produced by the present beam
theory and those produced by MSC NASTRAN are compared in figure 2. Considering
the results presented in table II corresponding to a thin blade posscs>ing zero
pretwist, zero precone and zero setting angle, one can see that the Towest six-
mode frequencies obtained from perturbation solution of the beam theory equa-
tions agree to within one half of 1 percent with those given by MSC NASTRAN,
for wide range of rotational speeds. It may be noted that the present flap-
lag-extensional equations cannot predict the torsional frequencies since this
degree of freedom ts not considered in this study. Next, a comparison of the
lowest three frequencies of the same blade considered earlier but with a 15°
precone are presented in table II1. A further comparison of linear and non-
1inear frequencies is also made in this table. Here also, the agreement
between the two sets of results is good. The effect of geometric nonlinear-
1ties on the lowest three flatwise modes is seen to be of a stiffening char-
acter, and the frequencies are found to increase with increasing rotational
speeds due to the nonlinearities. Table IV shows further comparison of results
for large values of precone, for both thin and thick blade cases, at various
rotational speeds. Considering the trend of results observed so far for thin
blades, 1t s evident that the first bendirg modes in both flatwise and edge-
wise directions are affected much more than higher modes. The percent dif-
ference between beam theory results and MSC NASTRAN results increases with
increasing precone for a given rotational speed, and for a given precone with
increasing rotational speeds. However, fcr practical rotor speeds of the order
of (Q/w)) <1, the difference between the two sets of results is not
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qreater than 5 percent. When a comparison of the results obtained for thick
blades (d/b = 0.25), is made, 1t appears that the percent error observed for
the second mode 1s quite large. In order to assess the effect of ignoring the
Coriolis effects, results for the thick blade cases are also cbtained from the
present beam theory by ignoring the Corlolils effects, and these results are
compared to the corresponding ones from MSC NASTRAN. These are also included
in table IV. From thi. compa. ison of results, it is evident that the results
frcm MSC NASTRAN are in closer agreement with the corresponding resulis from
the beam theory when the Coriolis effects are ignored in beam theory. It
should be noted here that the rather large difference observed for the second
mode frequency of thick blades, (which is the fundamental edgewise frequency),
may be partially attributed to the fact that the present slender beam approxi-
mation in the beam theory may be inadequate to predict the frequencies of
stubby blades in general and the stiff edgewise mode frequencies in particular.
Proper comparisons of these frequencies is only possible by including the
shear and rotary inertia effects in both beam theory and MSC NASTRAN.

Next, the steady state deflections for thin blades given by the present
beam theory are considered. For the untwisted blade cases considered in this
work for various precones and rotational speeds, 1t is observed that the flat-
wise deflection 1s the muct significant while the edgewise and extensional
deflections were almost insignificant. The extensional deformation was found
to be more significant than the edgewise deflection. However, for pretwisted
blades, both flatwise and edgewise steady state deflections became quite sig-
nificant, and the magnitudes of these deflections were found to be large in
comparison to the corresponding untwisted blade deflections. Thus, for the
untwisted, thin blade cases, the distribution of dimensionless flatwise
deflection, W, along the length of the blade obtained from the present beam
theory 1s compared to the corrcsponding one from MSC NASTRAN in figures 2(a)
to (d), for typical precones and rotational speeds. An examination of these
results indicates that the trends shown by both sets of results considered are
consistent. Furthermore, the agreement between the two sets of results is
extremely close for low rotational speeds. The difference between beam theory
resuits and MSC NASTRAN gradually increased from zero at the root section to
the maximum at the tip in general. For precones of the order of 45° and
rotational speed parameter value of up to (Q/wy) = (.0, the great st difference
between the two sets of results, (steady state deflections and frequencies up
to third mode), has been found to be of the order of 5 percent for thin blades.
It s interesting to note that the deflections given by the beam theory are
consistently greater than those produced by MSC NASTRAN.

From the foregoing discussion of results, it appears that the present beam
theory, inciuding geometric nonlinearities up to second degree only, predicts
the natural frequencies and steady state de lections to an acceptable degree
of accuracy in the case of thin blades having precones of up to 45° and for
blade rotational speeds that are practically encountered in their applications.
It 1s believed that the inclusion of the torsicnal degree of freedom, which is
necessary for calculation of stability boundartes for the blades, should not
alter this trend of agreement of results, since the torsional mode coupling may
affect the stability boundary but not the convergence of the first few modes
that are well separated from the basic torsional mode frequerncy. It may thus
be concluded that the second degree nonlinearities are adeguate for modeling
thin blades with large precone and for rotational speeds encountered in their
practical operational range.




IRDIVIDUAL AND COLLEC

In order to understand the individual and combined effects of , “cine,
1inear and nonlinear Coriolis forces, various nonlinear terms (seco 1 .ryiae
geometric nonlinearities) and pretwist on the frequencies of rotatin, >.3%es,
parametric studies were conducted for two typical thickness ratiecs of v " . . .
0.25 for various setting angles (collective pitch). These results are pre-
sented in tables V to IX. Figure 3 shows the effect of setting angle, pretwist
and precone variations on the fundamental mode frequency parameter, (p1/\y).

Effect of varying Precone

In order to determin: the effect of varying precone on the frequency par-
ameter ratios of untwisted blades with zero setting angle (¢ = 0), the flap-
lag-extension equations were solved for a typical rotational parameter value
of (Q/wy) = 1.0. The value of precone was changed from 10° to 50°, and the
1inear and nonlinear frequencies were determined which include the Coriolis
effect terms also. These frequencies are 1isted in table V together with the
percent frequency variation based upon the nonlinear frequency for each mode.
The follewing observations are made from the results presented in table V.

1. For a given rotational speed and thickness ratio, the flatwise mode
frequencies decrease with increasing precone in the case of both linear and
nonlinear theories. Tne first edgewise mode frequency, (refer the second mode
frequency of thick blade with d/b = 0.25), given by linear equations or non-
1inear equations shows an increasing trend with increasing precone.

2. The flatwise mode frequencies preduced from the perturbation solutiorn
of the nonlinear equations are higher than the corresponding frequencies
obtained from the 1inear set of equations. The fundamental edgewise frequency
given by the solution of nonlinear equations is lower than the corresponding
1inear solution value.

3. The effect of geometric nonlinearities, as could be seen from the per-
cent frequency vartation, increases with increasing precones of up to 50° con-
sidered here. The frequency change for flatwise modes 1s seen to be positive
(stiffening) while for edgewise modes it 1s negative (softening). However, 1t
should be noted that for 90° precone, the effect of geometric noniinearities
becomes almost zero as should be expected.

4. The fundamental mode frequency shows the strongest fregeency variation
(positive for flatwise mode and negative for edgewise mode) due to the presence
of nonlinearities, and this effect s segn to decrease as the mode number 1s
increased.

Effects of Pretwist, Coriolis Forces and Geometric Nonlinearities

The individual and combined effects of pretwist, precone, Coriolis forces
and thickness ratio on the frequencies of rotating blades in the absence of
geometric nonlinearities were presented and discussed in reference 10. How-
ever, the linear frequencies are presented again in all the following *ables
for the purpose of completeness, and also to provide an easy access fo
discussing all the results together. The slight differences (at the iourth
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significant figure) one mav find hetween the linear freauencies presented in
this paper and those in reference 10 are due to the fact that the extensional
degree of freedom was ignored in reference 10 while this degree of freedom is
included in this work, and also due to the fact that the methods of solution
used in these two works are different.

In order to ascertain the inrdividual ard combined effects of precone,
rotational speed, Coriolis forces and the various terms that arise in the
equat.ons due to the inclusion of second degree geometric nonlinearities,
several cases rotating blades were solved. These results are presented in
tables VI and YII for both untwisted and 30° pretwisted blades having zero
collective pitch (¢ = 0°). Typical rotational parameter values of (Q/wy) = 0.5,
0.8 and 1.0 were considered in this study since these vaiues generally encom-
pass the practical operational speeds of advanced turboprop blades. The fre-
quency parameter ratios (p/ay) obtained from the solution of the linear
equations, including or excluding the Coriolis effects, are presented first in
these tables. Next, the frequencies obtained from the perturbation solution
of the nonlinear equations are presented, starting with the frequencies of full
nonlinear equations followed by those obta‘tned by ignoring one key parameter
in the nonlinear equations at one time. Tnus, the frequency parameters under
the coclumn with A1Jk = 0 represent the frequencies obtained by ignoring the
foreshortening effects although all other effects are present, those under the
column with (D1jk = 0, E1Jk = 0) 11lustrate the effect of ignoring the nonlinear
terms arising from the centrifugal tension terms ((Tw')' and (Tv')'), while the
frequencies 1n the last column indicate the effect of ignoring the nonlinear
terms associated with the extensional deformation together with thcse from
centrifugal tensions. While the results presented in this form are useful for
future comparison, the individual effects will be clearer if percent variation
of the frequencies are calculated for each category based on full nonlinear
solutions. This is accomplished in tables VIII and IX. The following chserva-
tions can be made from the results presented in these tables:

1. The 1imiting values of precone of zero and 90° are considered first on
the vitrational characteristics. When Bpc = O, one can see from equations
(9) to (10) that the flap-lag equations are coupled through the nonlinear
Coriolis force terms together with the linear and nonlinear extensional
deformat*on coupling terms. Coupling due to the latter category of terms is
not that important however. Pretwist in the blade brings in the additional
important structural coupling between flap and lag deflections. Thus, for
untwisted and pretwictod blades, the effects of geometric nonlinearities
(excepting for the Coriolis terms which are important for thick blades) on the
natural frequencies is almost negligible when precone 1s zero. When the pre-
cone s 90°, the flap and the lag equations are coupled through linear Coriolis
force terms and extensional inertia even for the untwisted case, while the
extensional equaticn of motion is coupled through the inertia assoclated with
foreshortening. Since the right hand side for this case of 90° precone s zero
for all the coupled equations, the steady state deformations will be absent,
and the equations produce results that depend only on Coriolids effects. This
can be verified from the results presented in table VI(a) for 90° precone case.
The effects of geometric nonlinearities and linear and nonlinear Coriolis
forces are therefore important for precone angles other than these extremes.

2. Although the frequencies show both increasing and decreasing trends for
a given precone with an increase in rotational speed, (refer to table VI(a)),
the effect of geometric nonlinearities 1s seen to increase the frequencies of
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3. The effect of second degree geometric nonlinearities is the greatest
on the fundamental mode, and decreases as the mnde number 1s increased. The
effect of second degree geometr’ic nonlinearities increases a. the rotational
speed 1s increased. By referring to tables VII{a) and (b), i1t can also be seen
that an increase in precone from 15° to 45° increases the effect of the geo-
metric nenlinear terms considerably for a given rotatiocnal zpeed.

4, In tables VIII and IX, the percent frequency variation due to the
ahsence of 1inear or nonliiear Coriolis effect terms in the presence the other
and with second degree geometric nonlinearities is presented. These frequency
variations are calculated based upon full nonlinear frequencies. It can be
seen from these results that the nonlinear Coriolis effects are stronger than
the linear ones in affecting the frequencies of all modes for high rotational
speeds generally. Both hardening and softening characteristics are exhibited
by the linear and nonlinear Coriolis terms for a given mode with increas‘ng
rotational speed. This trend is to be attributed to the fact that even though
the 1inear {or nonlinear) Coriolis terms are ignored and nonlinear (or linear)
Coriolis terms are retained in the equations, the presence of other geometric
nonlinearities also affect the resulting frequencies which causes these mixed
trends. It emerges clearly, however, that both linear and nonlinear Coriolils
effects are important for high thickness ratio untwisted or pretwisted biadec,
and these effects are insignificant for low thickness ratio blades. For the
cases where the Coriolis effects are important, the 1*near Coriolis effects
oppose the nonlinear Coriolis effects. The influence of the 1inear and non-
11near Coriolis effects are the greatest on the first flatwise mode and on the
first cdgewise mode, and are Insignificant on other higher modes. These
effects are more pronounced for larger precones and higher rotational speeds.
One may thus conclude that both linear and nonlinear Coriolis effects can be
ignored in analyzing thin blades which are tynical of advanced turboprop blade
configurations.

5. The effects of ignoring either the foreshortening terms, or the
centrifugal tension coupling terms on the nonlinear frequencies are shown in
the last two columns of tabhles VIJI and IX. It can be seen from these results
that these twd effects produce the greatest vartations on the frequencies, and
that the first mode 1s affecced to the grzatest extent. It may also be noted
that these terms arise due to the presence of prerone, and the frequency
increases by nearly 20 percent due to the presence of the second degree geo-
metric nonlinear terms.

6. Tne onset of static instabidlity for various cases of preconed rotating
blades with and without pretwist was predicted by using the 1inear equatiors
in reference 10. It was shown that a 60° preconed blade with a thickness ratio
of 0.05 become. statically unstable for 1.48 < (Q/wy) < 1.49 if linear
equations including Coriolis effects were used for the prediction of the
instability. By using the present second degree geometric nonlinear equations
with Coriolis effects, this instability was found to occur for 1.13 < (Q/wy) <
1.14 for an untwisted blade, and for a 30° pretwisted blade. When the
untwisted thin blade with 60° precone was solved by using MSC NASTRAN, 1t was
observed that the pseudo-static configuration became unstable at (Q'wy) = 0.8.
Stnce the results from the analysis using MSC NASTRAN gave consistently good

12
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agreement of frequencies up to the Jowest three modes with the corresponding
ones from the present Deam theory inciuding cacond dearee geometric non-
Tinearities, it is believed that the torsional coupling (which is present in
MSC NASTRAN analysis but absent in beam theory) must have been responsible for
predicting a lower instability value. It thuc appears that the torsional
coupiing must be included in the beam theory for a fair prediction of
instability boundaries.

7. The effect of pretwist in coupling the modes of preconed rotating
blades was studied in reference 10. Similar conclusions are valid here also
since the seccnd degree geometric nonlinearities and the nonlinear Coriolis
effects have not affected the higher modes “o any great extent as to alter the
coupling trends for thin blades. The weli established coupling trend of
decreasing the lowei frequency (first edgewise mode frequency) and increasing
the higher frequency (second flatwise mode fragquency) of the two closer modes
of untwisted blade due to pretwisting is evident in the results presented in
tables VIII(a) and (b) for the thick blade case, for the precones and rota-
tional speeds considered. The effects of second degree geometric nonlinearit-
jes and Coriolis forces on the freguencies of pretwisted blades are similar to
those observed for untwisted blade cases.

8. Frequency parameter ratios for 90° setting angle were also determined
from the present 1inear and nonlinear equaticns. It was found that for a thin
blade (d/b = 0.05), having Bpc = 45° and (R/w) = 1.0, the nonlinear frequen-
cles of the lowest three modes were greater than the respective linear fre-
quencies by about 0.067, 0.005 and 0.002 percent. These frequency variations
for a thick blade (d/b = 0.25) were of the order of 1.979, -0.263 and 0.137
percent respectively. By comparing these results with those obtained for the
zero setting anlge case (¢ = 0%) presented in table VIII(b), one can conc lude
that the effects of geometric nonlinearities are far more severe for ¢ = 0°
than for ¢ = 90°. Results pertaining to ¢ = 90° for pretwisted blades

also show sim*iar trends to those observed for the untwisted case discussed
ahove. For brevity these results are not presented. Since it has been
established that the geometric nonlinearities and Coriolis forces affect the
fundamental mode most severely, 1t is felt desirable to present the variation
of the fundamental mode frequency parameter ratio with respect to the variation
of preccne for various combinations of setting angle and pretwist. This is
shown in figure 3. It can be seen from this figure that for a given rotational
speed and precone, the variation of pretwist changes the fundamental mode fre-
quency to an appreciable extent for setting angle ¢ of around 45°. While

the fundamental mode frequency js quite distinct and well separated for each
combination of setting angle and pretwist at zero degree precone, these fre-
quency values droop down to a small zone at 90° precone. Since for Bpc = 90°,
tr~ nreconed blade becomes a cantilevered shaft, the effect of setting angle
vanisnes, and the slight difference observed in the frequency values must be
attributed to the coupling effects arising from pretwist and the linear
Coriolis terms. Finally, resulis were obtained for the various cases discussed
earlier by ignoring the extensional deformation. The differences observed were
in the fourth or fifth significant figure as compared to the corresponding
flap-]ag-extens\onal equations' solution. For the geometric and physical par-
ameters considered in this work, the extensional degree of freedom can thus be
safely ignored. It 45 also observed that the mrde shapes calculated about the
deformed equilibrium position and obtained by using the present nonlinear
equations do not differ to any appreciabie extent from those obtained from the
Tinear theory.

13




CONCLUDING REMARKS

Coupled flap-lag-extensional equations of motion of rotating, pretwisted
cantilever blades of uniform rectangular cross section are derived including
large precone, Coriolis effects and second degree geometric nonlinearities.
parametric studies are conducted to assess the individual and combined
influence of the various complicating effects by solving the nonlinear
equations using a linear pertubation technique. The following major
conclusions have emerged from the present effort:

1. Inclusion of the geometric nonlinearities up through second degree
only in the flap-lag-extension equations appears to be adequate for the pre-
diction of steady-state deflections and the first few natural frequencies (1f
they are well separated from a basic torsional frequency) of thin blades hav-
ing precones of up to 45°, and rotating at speeds of the order of Q/wy = 1.0.

The second degree geometric nonlinearities show a stiffining effect on the
flatwise modes in general, and a softening effect on the first edgewise mode,
for precones of up to 50° and for all rotational speeds considered in this
work. The effect of geometric nonlinearities on higher modes is not signifi-
cant. The greatest effect is from those nonlinear terms which vanish for zero
precone. However, 1f precone is substantial, the second degree nonlinear terms
can produce frequency changes of engineering significance. The increase in
frequencies of first flatwise and first edgewise modes are typically of the
respective orders of +20 percent and -4 percent for blades with 45° preccne and
for a rotational speed parameter of Q/wy = 1.0.

2. The effect of nonlinear Coriolis forces is most severe on the first
flatwise and first edgewise modes, and insignificant on higher modes. The
effect of Coriolis forces is found to be significant for thick blade cases.

In general, the nonliinear Coriolis forces oppose the 1inear ones, the nonlinear
effect being stronger. Thus, both 1inear and nonlinear Coriolis effects can

be ignored in analyzing thin blades which are typical of advanced turboprop
blade configurations.

3. Preconing has significant influence on the first flatwise and edgewise
modes. An increase in precone at a given rotational speed shows a softening
effect on flatwise modes generally, and a stiffening effect on the first edge-
wise mode. However, the softening effect s much more pronounced than the
stiffening effect.

4. The coupling trends for pretwisted blades observed from the solution
of the present nonlinear equations, do not differ to any appreciable extent
from those obcerved from the 1inear theory. This may be attributed partially
to the fact that geometric nonlinearities do not significantly affect higher
modes for the present flap-lag-extensional equations.

14
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APPENDIX A: THE GALERKIN INTEGRALS AND MODEL EQUATIONS

The various integrals arising from the Galerkin process are defined

below, and these are used in representing the modal equations in matrix forms
subseguentiy:

1 |
J‘ ¢1WJ dn = J 9103 dn

0

13

1 ] [ LI _
L J vy § Wy (X, () dX dn
1 L[]
B1j = J "’I'WJO dﬂ

] '
Cyy =6" ¥y¥yS dn

] 0o L
D1Jk = J '”1"’3 ,! wk(x) dx dn
] "
E1Jk = 6‘- 'l’1‘|’J‘l’k d"l
A|

2
v 2 b 2
F1J = s '”1“’3 (cos o + ) sin 9) dn

0

] [ N]
6y =J ¥y¥y sin 20 dn

] L]
H‘J = 6[ qule coS 26 dn

1
iv
11‘1 = 6‘ "1"’.1 sin 20 dy

‘J "
‘]13 36‘ w1wj cos 20 dn

1 0
KU = ! "’1“’3 sin 26 dn
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NU = 6‘. ¥y¥y dn

1

) U U o
p1jk = 5 ek dn ,“ ‘Vﬂ'J dn - I ¢1Wj -‘-" Ok(x) dx dn
1 i
%k - J ¥y¥y0y dn

] n
Ry =6f 0,0, dn

1
51 =§ 91,‘ dn

1 N
T“Jk = 6“ 61 g "'j(x)wk(x) dx dn

1
u1 =J ¢1 sin 20 dn

1
Y =6{ ¥, cos 26 dn
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A

Aijk' 813, L1, etc.

b, d
d/b
(B}, {X}, {X )

[c]

E

nn’ IEE
1, 3, k
L

(L], [LN]

[M]

qu’ voj' woj

Auj ’ AVJ ’ AWJ

cross-sectional area of blade

modal integrals /see appendix A)

breadth (chord) and thickness of blade
thickness ratio

vectors

modal damping matrix (gyroscopic matrix)
Young's modulus

area moments of inertia about major and minor principal
centroidal axes, respectively

dummy indices
length of beam

Linear and nonlinear components of the matrix representing
steady state equilibrium equations

mass of blade per unit length
modal mass matrix

number of nonrotating modes for each of the flap bending,
lead-lag bending, and extensional deflections

natural radian frequency
radius of disc

blaae tension

time

displacements of the elastic axis in X, Y, Z directions,
respeciively

dimensionaless deflections

steady-state equilibrium deflections

perturbation quantities
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running coordinate along X-axis
centroidal principal axes of beam cross section

constants for assumed mode shapes

precone angle

total pretwist of the blade over its Tength
Kronecker delta

nondimensional rotational parameter, EI,./pAL4%2
nondimensional length coordinate, x/L

geometric pitch angle, ¢ + ¥n

frequency parameter,/El, /pAL*

mass density of blade material

setting angle (collective pitch)

nonrotating flap and lead-lag bending mode shapes
dimensionless time, Qt

exact fundamental mode frequency of straight, nonrotating
beam, 3.51602 Ay

rotor blade angular velocity, rad/sec

primes denote differentiation with respect to x or n

dot over a parameter represents differentiation with
respect to t or =«

21




REFERENCFS

. Rao, J.S.: Turbomachine Blade Vibration. Shock and Vibration Digest,
vol. 15, no. 5, May 1983, pp. 3-9.

. Leissa, A.: Vibrational Aspects of Rotating Turbomachinery Blades. Appl.
Mech. Rev., vol. 34, no. 5, May 1981, pp. 629-635.

. Friedmann, Peretz P.: Recent Developments in Rotary - Wing
Aeroelasticity. J. Aircr., vol. 14, no. 11, Nov. 1977, pp. 1027-1041.

. Houbolt, John C.; and Brooks, George W.: Differential Equations of Motion
for Combined flapwise Bending, Chordwise Bending, and Torsion of Twisted
Nonuniform Rotor Blades. NACA Report 1346, 1958.

. Carnegie, W.: A Note on the Application of the Variational Method to
Derive the Equations of ODynamic Motion of a Pretwisted Cantilever Blade
Mounted on the Periphery of a Rotating Disc Allowing for Shear Deflection,
Rotary Inertia and Torsion Bending. Bulletin Mechanical Engineering
Education, vol. 5, 1966, pp. 221-223.

. Subrahmanyam, K.B.; Kulkarni, S.V.; and Rav, J.S.: Application of the
Reissner Method to Derive the Coupled Bending-Torsion Equations of Dynamic
Motion of Rotating Pretwisted Cantilever Blading with Allowance for Shear
Deflection, Rotary Inertia, Warping and Thermal Effects. J. Sound Vibr.,
vol. 84, no. 2, Sept. 22, 1982, pp. 223-240.

. Hodges, D.H.; and Dowell, E.H.: Nonlinear Equations of Motion for the
Elastic Bending and Torsion of Twisted Nonuniform Rotor Blades. NASA
TN-D-7817, 1974.

. Rosen, A.; and Friedmann, P.P.: Norlinear Equations for Elastic
Helicopter or Wind Turbine Blades Undergoing Moderate Deformation.
University of California, Los Angeles, School of Engineering and Appiied
Science Report, UCLA-ENG-7718, Dec. 1978.

. Kaza, K.R.V.; and Kvaternik, R.G.: Nonlinear Aeroelastic Equations for
Combined Flapwise Bending, Chordwise Bending, Torsion and Extension of
Twisted Non-Uniform Rotor Blades in Forward Fiight. NASA TM-74059, 1977.

. Subrahmanyam, K.B.; and Kaza, K.R.V.: Vibration and Buckling of Rotating,
Pretwisted, Preconed Beams Including Coriolts Effects. NASA TM-87004,
1985. (To be presented at the 10th Biennial ASME Uesign Engineering
Conference and Exhibit on Mechanical vibration and Noise, Cincinnati, OH,
Sept. 10-13, 1985.)

. Kvaternik, R.G.; White, W.F.; and Kaza, K.R.V.: Nonlinear Flap-Lag-Axia)
Equations of a Rotating Beam with Arbitrary Precone Angle. AIAA Paper
7.-491, 1978.

. Chang, Tish-Chun.; and Craig, R.R., Jr.: On Normal Modes of Uniform
Beams. Engineering Mechanics Research Laboratory, University of Texas,
EMRL 1068, 1969.

22




e TR T TR ERRGT T T AT T

13. The International Mathematical and Statistical Library (IMSL). Houston,
TX, Edition 9, Revision, June 1, 1982.

14. Leissa, A.; and Co, C.: Coriolis Effects on the Vibration of Rotating
Beams and Plates. Proceedings of XII SECTAM Conference, Callaway Gardens,
Vol. II, Auburn University, AL, 1984, pp. 508-513.

23




I T

METHOD WITH NOKROTATING NORMAL MODES

[afwl = 0.5, 8pc = 30°, d/b = 0.5, L/d = 20
y=R=0.]

Coriolis effects

TABLE 1. — CONVERGENCE PATTERN OF FREQUENCY RATIOS (p/2g)
OF A PRECONED, ROTATING BEAM PRODUCED BY THE GALERKIN

,e~0,

(a) Freguencies from solution of linear eguations ignoring

Mode ne1 ne? nal n=24 n=5

1 3.788724 3.788037 | 3.787921 | 3.787906 3.787903
2 7.008871 7.008777 | 7.008761 | 7.008758 7.008758
3 108.883020 | 22.355387 |(22,355386 22.355314 |22.355303
4 | e 44.204056 |44,204056 |44.204047 44,204045
R 108.882980 |62.025490 |62.025447 62.025401
(b) Frequencies from solution of 1inear equations including

Cortiolis effects
1 3.625308 3.634662 | 3.634553 | 3.634539 3.634535
2 7.302023 7.301872 | 7.301851 | 7.301849 7.301848
3 108.92232 22.331668 |22.331666 |22.331595 22,331584
N 44.247993 |44,247881 |44.247870 44.247867
5 | —mem oo 108.92610 62.017091 |62.017048 62.017003
(¢) Frequencies from perturbation solution of nonlinear
equations: Coriolis effects ‘gnored

1 «—3.347417 7.846369 | 3.846218 | 3.846199 ‘ 3.846194
2 7.019543 7.019438 | 7.019422 | 7.019420 7.019419
3 109.47317 | 22.378138 |22.3780Y6 22.378012 |22.377999
4 ] —mmmme———e 44213271 [44.213273 |44,213263 44.,213262
5 | e 109.57995 [61.959160 {61.958438 61.958267

(d) Frequencies

equations: Coriolis effects included

from perturbation solution of nonlinear

S wrh -

3.742021
7.214380
109.51676

3.740674

7.214485

22,363212
44,242350
109.6265%

3.740498
7.214484
22,363188

3.7404

61.954879 |61.9541

7.214484
22.363103
44.241858 l44.2a1823

75 3,740470

7.214484
22.363090
44.241822
57 |61.953988

—_—

TABLE 11. - COMPARISON OF FREQUENCY PARAMETER RATIOS, (f = plx1

FROM BEAM THEORY AND MSC NASTRAN
(8pc =« = v = 0"y (d/b) = 0.05.]

ORIGINAL PAGE 18
OF POOR QUALITY

}, OF ROTATING BLADES

a_ | Mode MSC Beam Percent | a | Mode MsC Beam Percent
w) (a) NASTRAN theory frequency w) {a) NASTRAN theory frequency
(non- difference { non- difference
linear) 1inear)

0.5 F1 3.5463 3.6213 0.705 1.00 Fl 5.2142 5.1917 0.432
F2 22.1496 22.0390 0.499 F2 23.8828 | 23,7831 0.418
F3 61.9732 61.7017 0.438 F3 63.7103 | 63.4591 0.394
Tl 68.3947 | ~moemmmm | === 11 68.5803 |-mmm——em | =mmre-
Sl 69.9391 70.3203 -0.545 sl 69.9556 | 70.3359 -0.544
F4 [121.4804 | 120.9065 0.472 F4 |123.2737 |122.7303 0.441
F5 1201.0141 | 199.8640 0.572 F5 1202.8394 |201.7327 0.546
T2 [206.2487 T2 |206.5022 [mmoememm | =mmem-

0.50 Fl 4,0287 4,0049 0.591 1.20 Fl 5.7917 5.7694 0,385
F2 22,5920 22.4843 0.477 F2 24.6085 | 24.5132 G.387
F3 62.4092 62.1428 0.427 F3 64.4601 | 64.2176 0.376
11 68,4408 T! 68.6620 |-——-—--— ———
S1 69.9432 70.3242 -0.545 Sl 69.9629 | 70.3428 -0.543
¥4 |121.9282 | 121.3618 0.465 F4 |124.0553 |123.5262 0.427
FS [201.4689 | 200.3292 0.566 F5 1203.6387 |202.5524 0.534
T2 [206.3116 12 |206.6139 |=--mme=e | ====—-

0.80 Fl 4.6850 4.6621 0.489 1.50 Fl 6.7182 6.6958 0.333
F2 23.2721 23.1687 0.444 F2 25.8909 | 25.8031 0,339
F3 63.0895 62.8310 0.410 F3 65.8156 | 65.5890 0.344
Tl 68.5134 T 68.8120 | —mmmeme= | -me---
S1 69.9497 70.3303 -0.544 sl 69,9763 | 70.3555 -0.542
F4 |122.6299 | 122.0756 0.452 F4 |125.4796 [124.9769 0.401
F5 |202.1829 | 201.0600 0.555 F5 |205,1007 |204.0542 0.510
T2 |206.4108 12 1206.8193 |~mmemee= | oo=o=-

af1, F2,.. F5 are frequencies in flatwise direction; S1 is first edgewise frequency and
b T1 and TZ are the lowest two torsional mode frequencies respectively.
percent frequency difference » (fNASTRAN - fNon1inear ) x100/ fNASTRAN
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TABLE 111. - COMPARISON OF LINEAR AND PERTURBATION FREQUENCIES OF
PRECONFD BLADE AT VARIOUS ROTATIONAL SPEEDS
[Bpc = 15", ¢ » R = 0, Thickness ratio = 0.05.]

[ Mode Beam Theary Results MSC NASTRAN f - f i nayr] X100
1 (Coriolis Effects Included) Coriolifi effects [Nastran "ommedr]
neglected f
Linear | Nonlinear Percent Nastran
frequency
change

1 3.6776 3.6804 \ 0.076 3.7062 0.696

0.3 2 |22.1849 | 22.1860 0.005 22.2934 0.482

3 |61.8467 | 61.8475 0.001 62.1044 0.414

1 3.9476 | 3.9652 0.444 3.9950 0.746

0.5 2 | 22,4498 22.4572 0.033 22.5585 0.449
3 |62.1113 | 62.1169 0.009 62.3354 0.351 i

1 4,5356 | 4.6094 1.601 4.6451 0.769

0.8 2 123.0828 | 23.1182 0.153 23,2026 0.364

3 2.7514 | 62.7763 ‘ 0.397 62.8837 0.171

1 5.0138 | 5.1444 i 2.539 5.1781 0.551

1.0 2 123.6522(23.7203 | 0.287 23.7926 0.304

3 |63.3360 | 63.3821 0.073 63.4078 0.041

1 7.8855 | 8.3777 5.875 8.3385 -0.470

2.0 2 | 27.9477 28.3037 0.444 28.3445 0.144

3 |67.9947 | 68,0724 0.114 68.0883 L 0.023

apercent frequency change = (froniinear - fl1‘nem‘)xlOOlfm:mlinear.

TABLE IV. - FURTHER COMPARISON OF FREQUENCY PARAMETER RATIOS, (f = plll), FROM
MSC NASTRAN AND FROM BEAM THEORY FOR VARIOUS PRECONES, ROTATIONAL SPEEDS AND THICKNESS RATIOS

e —x

T,

e e itemmi § S

d/b | Bpe | 2 Mode | MSC Beam Percent d/b MSC Beam Percent
deg | W NASTRAN | theory frequency NASTRAN theory frequency
difference? difference?
J—|

1 4.7719 | 4.6937 1.639 3.6511 | 3.6066

30 0.9 | 2 |23.2410 | 23.2313 0.042 0.05 | 45 22.2438 | 22.2087

3 |62.4392 | 62.8783 -0.703 61.8224 | 61.8820
1 4.2769 | 4.1026 4.075 4.8337 | 4.6145 4,535
a5 |0.8 | 2 |22.6971 | 22.7218 -0.109 0.05 | 45 23.1064 | 23.2047 -0.425
3 |61.6110 | 62.3800 -1.248 61.4499 | 62.8250 -2.238
1 4.9615 | 4.7622 4,017 3.4708 3.3944 2.201
0.05| 45 |1.05| 2 |23.2508 | 23.3468 -0.413 0.05 | 60 22.2377 | 22.1264 0.501
3 |61.6563 | 62.9538 -2.104 62,0111 | 61.8150 0.316
1 4.2598 | 4.0236 5.545 4.8122 4.5128 6.222
b4.1058 b3,615 b4 6185 b4.025
o0.25| a5 |0.8 | 2 [12.8550 | 14.2623 -10.913 0.25 | 45 12.3085 | 14.2650 | -15.896
b13.9954 b_g.837 b13.9808 | P-13.587
3 | 22.6460 | 22.7315 -0.378 3 |23.0257 | 23.2460 -0.957
b22.7209 b.0.331 ~|b23.2040 | °-0.774

3percent frequency difference = (fNASYRAN - fnonlinear)"loo”NASTRAN‘

b{coriolis effects are included in heam theory in all cases except where marked and are absent in MSC NASTRAN
calculations) ¢ = v = 0
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TABLE V. — COMPARTSON OF LINEAR AND PURTURBATION FREQUENCIES OF ROTATING
BLADES AT VARIOUS PRECONE ANGLES (CORIOLIS EFFECTS INCLUDED):

2 fwy «=1.0,9 0", 8.0

fpe Mode ] Low thickness ratio, d/b = 0.05 High thickness ratio, d/b = 0.25
Lineag—_[—ﬁéz]}near -—hercent Linear |Nonlinear perce~t

frequency frequency

variation? variation?d
1 5.1124 5.1713 1.130 5.0912 5.1680 1.486
10 2 23.7242 23.7553 0.131 14.1663 14,1229 -0.307
3 63.4037 63.4246 0.033 23.7219 23.7606 0.163
1 4,8770 5.1043 4.453 4,8009 5.0865 5.615
20 2 23.5540 23.6709 0.494 14,2935 171313 -1.148
3 63.2440 63.3234 0.125 23.5450 23.6854 0.593
1 4.4930 4,9749 $.687 4.3492 4.,9316 11.810
20 2 23.2908 23.5282 1.009 14.477 14,1553 -2.273
3 62.9985 63.1612 0.258 23.2718 23.5526 1.192
1 3.9725 4.7¢10 16.562 3.7715 4.6814 19.437
40 2 22.9639 23,5266 1.555 14.6859 14,2072 -3.369
3 62.6960 | v2.9476 C.400 22.9229 23,3554 1.809
1 3.6659 4,6145 20.557 3.4464 4.5133 23.639
45 2 22.7880 23.2047 1.796 14.7907 14.2477 -3.811
3 62.5344 62.8250 0.463 22.7509 23.2316 2.069
1 3.3315% 4.4371 24.917 3.1023 4,3129 28.069

50 2 22.6109 23.0697 1.989 14.8916 14,3002 -4,136 |

3 62.3724 62.6942 0.513 22.5677 l 23.0910 2.266

apercent frequency variation = (wnonlinear - wlinear)*100/unonlinear.
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TABLE VI. - EFFECT OF LINEAR AND NONLIMEAR CORIOLIS FORCES, AND VARIOUS NOWLINEAR
TERMS OW THE FREQUENCY PARAMETER RATIOS FOR UNTWISTED THIN BLADES

(a) d/b = 0,05, 9 = 0", y=0°, R a0

spc]i e Mode | Solution of linear equatlons] Perturbation soiuticn of nonlinear equations
v
Coriolis | Coriolis Full Linear | Nonlinear |Ajjy = 02 Dijk = 0b Dijk = 0
forces | forces nonlinear |Coriolis | Corfolis Eijk = ob Eijk = 0 .
included | ignored equation | forces forces Pijk = o¢
ignored | ignored Qijk = 0¢
1 3.9476 3.9480 3.9652 3.9654 3.9650 3.9593 3.9535 3.9535
0.5 2 22.4498 | 22.4498 22.4572 [22.4572 22.4572 22.4563 22,4507 22.4507
3 62.1113 62.1114 62.1169 |62.1169 62.1173 62.1170 62.1115 62.1117 .
. 1 4.5356 4.5366 4.6094 4.6096 4,6087 4.5852 4.5608 4,5608
15 0.8 2 23.0828 | 23.0829 23.1182 123.1182 23.1185 23,1142 23.0873 23.0874
3 62.7514 62.7515 62.7763 |62.7763 62.7807 62.7792 62.7525 62.7531
1 5.0138 5.0155 5.1444 5.1443 5.1431 5.1021 5.0589 5.0589
1.0} 2 22,6522 23.6524 23.7203 | 23,7202 23.7210 23.7131 23.6611 23 %611
3 63.3360 | 63.3361 63.3821 |63.3820 63.3936 63.3909 63.3383 63.3594
1 3.5553 3.5576 3.6482 3.€ 98 3.6476 3.6180 3.5872 3.5672
0.5 2 22.2252 22.2256 22.2616 [22.2618 22.2616 22.2574 22.2299 22.2299
3 61.9077 61.9078 61.9351 |61.9352 61.9364 61.9350 61,9083 61,9094
. 1 3.6141 3.6199 4.1026 4.1050 4.0991 3.9591 3.7994 3.7994
45 0.8 2 22.5196 22.5206 22.7218 |22.7221 22.7230 22.7050 22.5476 22.5478
3 62.2344 62.2348 62.3800 |[62.3800 62.3976 62.3943 62.2388 €2.2448
1 3.6659 3.6751 4.6145 4.6164 4.6069 4.3631 4.0621 4.0621
1.0 | 2 22.7880 22.7895 23.20¢7 |23.2045 23.2080 23.1816 22 8500 22.8504
3 62.5344 62.5349 62.8250 {62.8246 62.87¢€1 62.8784 62.5451 62,5576
1 3.0412 3.0450 3.0412 3.0450 3.0412 3.0412 3.0412 3.0412
0.5 2 21.9636 | 21.9643 21.9636 |21.9643 21.9636 21.9636 21.9636 21,9636
3 61.6719 61.6722 61.6719 [61.6722 61.6719 61.6719 61.6719 61.6715
. 1 2.1029 2.1096 2.1029 2.1096 2.1029 2.1029 2.1029 2.1029
90 0.8 2 21.8524 21,8542 21.8524 |21.8542 21.8524 21.8524 21.8524 21.8524
3 61.6324 61.6331 61.6324 |61.6331 61.6324 61.6324 61.6324 61.6321
1 unstable | unstable unstable junstable unstable | unctable unstable unstable
1.0 2 BTl [P SSTRTR [ VRPOHPISPU A,
|3 - _
2Nonlinear terms due to foreshortening are ignored.
DNoniinear terms arising from (Tv')' and (Tw')' are ignored. '
CNonlinear terms associated with extentional detormation are ignored.

TABLE VI, - EFFECT OF LINEAR AND NONLINEAR CORIOLIS FORCES, AND VARIGUS NONLINEAR
COUPLING TERMS ON THE FREQUENCY PARAMETER RATIOS FOR PRETWISTED THIN BLADES

(b) d/b = 0.05, ¢ = 0", y « 30", R« 0

;c e Mode | Solution of linear equations Perturbation solution of nonlinear equations
¥l
Coriolis |Coriolis Full Linear [ Nonlinear [Ajj = 0 | Disy = 0 | Dygy = O
forces forces nonlinear |Coriolis Coriolis Ei}k -0 E(Jk =0
included | ignored equation | forces forces Pijk = 0
ignored ignored O3k = 0
1 3.9540 3.9551 3.9716 3.9772 3.9711 3.9657 3.9600 3.9599
0.5 2 20.0667 20.0621 20.0716 | 20.0688 20.0733 20.0715 20.0664 20,0664
3 59.0449 59.0442 59.0499 | 59,0497 59.0504 §9.0499 59.0449 §9.0450
. 1 4,5355 4.5388 4.6099 4.6107 4.6079 4.5855 4.5613 4.5613
15 0.8 2 20.6248 20.6132 20.6488 | 20.6460 20,6563 20,6477 20.6232 20.6232
3 59.6203 59.6184 §3.6442 | 59,6447 59.6470 59.6441 §9.6199 §9.6202
1 5.0092 5.0147 5.1416 5.1417 5.1374 5.0986 5.0557 5.0557
1.0 2 21.1262 21.1082 21,1731 21,1724 21.1869 21.1700 21.1225 21.1225
3 60.1438 60.1408 60.1903 |60.1922 60.1962 60.1904 60.1428 60.1434
1 3.55;5° 3.5672 3.6519 3.6578 3.6499 3.62)6 3.5913 3.5913
0.5 2 19,8932 19 o70a 19.9169 |19.8912 19,9252 19.9171 19.8922 19.8922
3 58.8671 Lo.0594 $8.8890 | 58.88%7 58.8915 58.8689 58.8647 58,8653
. 1 3.3066 3.6265 4.0952 4.1046 4,0841 3.9503 3.7928 3.7928
45 0.8 2 20.1907 20.1035 20.3266 | 20,2884 20,3700 20.3268 20.1820 20.1821
i k) 59.1652 $9.150% 59.2997 159,2983 59,3148 §9.3035 59.1620 §9.1654
1 3.6481 3.6791 4,6005 4.6089 4.5765 4,3454 4.0477 4,0477
1.0 2 20.4614 20.3265 20.7467 |20.7138 20.8328 20,7483 20,4387 20.4388
. . 3 §9.4402 59.4172 59.7200 |59.7250 59.7531 59.736) 59.4320 §9.4388
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FECT OF LINEAR AND NONLINEAR CORIOLIS FORCES, ANG VARIOUS NONLINEAR
i

8 TERMS ON THE TREQUINCY PARAMITER RATIOS FOR THICK BLADES

TABLE VII. - EF
v

ocnnng
(VIS

(a) d/b = 0.25, s 0°, y=0', R a0

8pc 2 Mode | Solution of linear equations Perturbation solution of nonlinear equations
“1
Coriolis | Coriolis Full Linear [ Nonlinear |Aj5 = 0 | Dyjx =0 | Djjx =0
forces forces nonlinear | Coriolis Coriolis Eijk =0 Eig =0
includec | ignored equation [ forces forces Pijk = 0
ignored ignored Qijk =0
1 3.9390 3.9480 3.9600 | 3.9650 3.9565 3.9527 3.9469 3.9468
0.5 2 14.1019 14,0765 14.0905 | 14.0793 14,1034 14,0964 14.0947 14.0948
3 22.4485 22.4498 22.4568 | 22.4575 22.4556 22.4550 22.4494 22.44y7
. 1 4.5097 4.5365 4.6011 4.6055 4.5831 4.5707 4.5464 4.5458
15 0.8 2 14.1628 14.0958 14.1117 | 14.1154 14.1702 14,1351 14.1268 14.1270
3 23.0795 23,0829 23.1215 | 23.1223 23.1142 23.1111 23.0842 23.0852
1 4.9684 5.0154 5.1351 5.1324 5.0977 5.0816 5.0388 5.0376
1.0 2 14.2210 14.1134 14,1258 | 14,1598 14,2358 14,1654 14.1486 14.1488
3 23.6470 | 23.6524 23.7297 | 23.7302 23.7146 23.7090 23.6570 23.6579
1 3.4993 3.5575 3.6057 3.6486 3.5900 3.5690 3.5387 3.5387
0.5 2 14.2495 14.0196 14,1940 | 14.0310 14,2570 14,2234 14,2150 14.215%
3 22.2162 22,2256 22.2544 | 22.2614 22.2499 22.2469 22.2194 22.2220
. 1 3.4722 3.6198 4.0238 | 4.0880 3.9369 3.8502 3.6990 3.6989
45 0.8 2 14,6337 13.9500 14.2520 | 14.0405 14,5808 14,3878 14,3300 14.3331
3 22.4961 22,5206 22.7230 | 22.7332 22.6865 22.6747 22.5167 22.5308
1 3.4464 2.6747 4.5133 | 4.5621 4.3263 4.2119 3.9309 3.9308
1.0 2 14,7907 13.8854 14.2478 | 14,1138 14.8973 14,4868 14,3435 14,3499
3 22.7509 22.7895 23.2316 | 23.2414 23.1473 23.1333 22.7998 22.8273
TABLE VII. - EFFECT OF LINEAR AND NONLINEAR CORIOLIS FORCES, AND VARIOUS NONLINEAR COUPLING TERMS
ON THE FREQUENCY PARAMETER RATIOS FOR PRETWISTED THICK BLADES
(b) d/b = 0.25, ¢ = 0°, R= 0y, = 30°
Bpe 8 Mode | Solution of linear equations Perturbation solution of nonlinear equations
@]

Coriolis | Coriolis Full Linear Nonlinear |A;jy = 0 Dijk = 0 Dijk = 0
forces forces nonlinear | Coriolis Coriolis Eijk =0 Ei5k = 0
included | ignored eouation | forces forces P,-3k =0
ignored | ignored Qijk = 0
1 3.9439 3.9538 3.9649 3.9705 3.9611 3.9576 3.9518 3.9517
0.5 2 13.2169 13.1901 13.2064 | 13,1937 13.2191 13.2120 13.2098 13.2099
3 24,0327 24,0341 24.0394 | 24.0408 24,0388 24,0381 24,0331 24,0335
. 1 4.5074 4.5369 4,5995 | 4.6048 4.5800 4.5687 4,5446 4.544]
15 0.8 2 13.3419 13.2712 13.2948 |13.2944 13,3524 13.3169 13.3061 13.3062
3 24,5895 24,5933 24,6244 | 24.6279 24,6198 24,6164 24.5923 24.5936
1 4.9606 5.0122 5.1294 5.1273 5.0888 5.0750 5.0325 5.0313
1.0 | 2 13.4530 13.3393 13,3642 | 13.3926 13.4734 13.4016 13,3805 13.3804
3 25.0954 25,1018 25.1659 |25.1711 25 1554 25,1492 25.1022 25.1037
1 3.5016 3.5658 3.6075 3.6553 3.5907 3.5708 3.5410 3.5410
0.5 2 13.3418 13.1097 13.2916 |13.1247 13,3530 13,3197 13.3084 13.3089
3 23.8329 23.8359 23,8630 | 23.8664 23.8616 23.8578 23.8337 23.8367
. 1 3.4631 3.6246 4.0136 | 4.0863 3.9205 3.8410 3.6897 3.6896
as 0.8 2 13.6592 13.0703 13.4067 |13.1819 13.7269 13.5344 13,4611 13.4639
3 24.0827 24,0918 24.2659 |24.2760 24,2461 24,2301 24.0899 24.1062
1 3.4281 3.6766 4.4952 | 4.5530 4.2956 4.1909 3.9127 3.912%
1.6 | 2 13.9447 13.0318 13.4582 |13.3039 14,0933 13,6823 13,5075 13.5130
3 24.3105 24,3268 24.7071 ]24.7230 24,6541 24.6313 24,3319 24,3640




TABLLD VIII. - EFTCCY OF LINCAR AND NONLINEAR CORIGLIS FORCES, ARD VARIGUS
NONLINEAR TERMS ON THE FREQUENCY PARAMETER RATIOS
[Presented as percent frequency variation based upon full nonlinear
equation solution, (fnoniinear - freference)*100/fnonlinear-]

(-‘)’Pc‘ls.n.'Y-O.oR'o

8_ | Mode| A1l nonlinear| Linear Coriolis| Nonlinear Coriolis| Ajjy = O Dyjx = 0
- terms ignored| forces ignored forces ignored Eijn = 0
i Thin blade: (d/b) = 0.05
0.51 1 0.4439 -0.0050 0.0050 0.1488 | 0.2951
0.8} 1 1.6011 -0.0043 0.0152 0.5250 | 1.0544
1.oj 1 2.5387 0.0019 0.0253 0.8222 | 1.6620
0.5 2 0.0330 0.0 0.0 0.0040 | 0.0289
0.8 2 32,1531 0.0 -0.0013 0.0173 | 0.1337
1.0 2 0.2871 0.0004 ~0.0030 0.0304 | 0.2496
0.5( 3 0.0090 0.0 -0.0026 -0.0001 | 0.0087
0.8 3 0,u397 0.0 -0.0070 -0.0046 | 0.0379
1.0l 3 0.0727 0.0002 -0.0181 -0.0139 | 0.0691
T Thick blade: (/o) = 0.25
0.6 1 0.5303 -0.1263 0.088a 0.1843 | 0.3308
0.8 1 1.9865 -0.0956 0.3812 0.6607 | 1.1889
1001 3.2463 0.0526 0.7283 1.0419 | 1.7783
0.5 2 -0,0809 0.0795 -0.0916 -0.0419 | -0.0298
0.8} 2 -0.3621 -0.0262 -0.4146 -0.1658 | -0.1070
1.0, 2 -0.6739 -0.2407 -0.7787 -0.2803 | -0.1614
0.5] 3 0.0370 -0.0031 0.0053 0.0080 | 0.0330
0.81 3 0.1817 -0.0035 0.0316 0.0450 0.1613
1.0 3 0.3485 -0.0021 0.0636 0.0872 | 0.3064
(b) Bpe =457, 9 = y = 0", R = 0.}
8_ | Mode | A1l nonlinear | Linear Coriolis | Nonlinear Coriolis| Ajj¢ = Of Dy = 0
“} terms ignored | forces ignored forces ignored Eijk =0
Thin blade: (d/b) = 0.05
0.51 1 2.5465 -0.0439 0.0165 0.8278 | 1.9188
0.8 1 11.9071 -0.0550 0.0853 3.4978 | 7.3904
Lo} 1 20,5569 -0.0412 0.1647 5.4480 | 11.9710
0.5 2 0.1635 -0.0009 0.0 0.0189 | 0.1424
0.81 2 0.8899 -0.0001 -0.0053 0.0739 | 0.7667
1.0 2 1.7958 0.0009 -0.0142 0.0996 | 1.5286
0.5 3 0.0442 -0.0002 -0.0021 0.0002 | 0.0433
0.8 1 3 0.2334 0.0 -0.0282 -0.0229 | 0.2264
.o 3 0.4626 0.0006 -0.0813 -0.0850 | 0.4455
Thick blade: (d/b) = 0.25
0.5} 1 2.9509 -1.1898 0.4354 1.1678 | 1.8582
0.8 1 13.7084 -1.5955 2,1597 4.,2646 | 8.0720
1.0 1 23,6390 -1.0813 4.1433 6.6780 | 12.9041
0.5 2 -0.3910 1.1484 ~0.4439 -0.2071 | -0.1480
0.8( ¢ -1.9766 1.4840 -2.3071 -0.9529 | -0.547°
1.0 2 -3.8104 0.9405 ~4.5586 -1.6775 | -0.6717
0.5] 3 0.1717 -0.0315 0.0202 0.0337 | 0.1573
0.8} 3 0,9986 -0.0449 0.1606 0.2126 | 0.9079
1.0 3 2.0692 2.0422 0.3629 0,4231 1.8587
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TABLE IX. - EFFECT OF LINEAR AND NONLINEAR CORIOLIS FORCES, AND VARIOUS
HONLINEAR TERMS ON THt FREQUENCY PARARETER RATIOS

[Presented as percent frequency variation based upon full nonlincar
equation solution.])

(a) 8pc = 15", » =0, Ra0, y=30

@_ | Mode | Ali nonlinear Tinear Coriolis| Noniinear Coriolis| Aqgx = 0 [Digk © 0
) terms igrored| forces fignored forces fgnored Eg - 0
Thin blade: (d/b) = 0.05
0.5 1 0.4432 -0.0151 0.0126 0.1486 0.2921
0.8 1 1.6139 -0.0174 0.0434 0.5293 1.0543
1.0 1 2.5751 -0.0019 0.0817 0.8363 1.6709
0.5 b4 0.0244 0.0140 -0.0085 0.0005 0.0259
0.8 2 0.1162 0.0136 -0.0363 0.0053 0.1240
1.0 2 0.2215 0.0033 -0.0652 0.0146 0.2390
0.5 3 0.0085 0.00063 -0.0009 0.0 0.000¢
0.8 3 0.0401 -0.0008 -0.0047 0.0002 0.0407
1.0 3 0.0773 -0.0032 -0.0098 -0.0002 0.0789
Thick blade: (d/b) = 0.25
0.5] 1 0.5297 -0.1412 0.0956 0.1841 | 0.3304
0.8 1 2.0024 -0.1152 0.4240 0.6696 1.1936
1.0 1 3.2908 0.0409 0.7915 1.0606 1.8891
0.5 e -0.079% 0.0962 -0.0962 -0.0424 |-0.0258
0.8 2 -0.3543 0.0036 -0.4333 -0.1662 |-0.0850
1.0 2 -0.6645 - -0.212% -0.8171 -0.2799 |-0.1220
0.5 3 0.0279 -0.0058 0.0025 0.0054 0.0262
0.8 3 0.0417 -0.0142 0.0187 0.0325 0.1304
1.0 3 0.2801 -0.0207 0.0417 0.0664 0.2531
(b) ch;as.l' '0.’R‘007'30.
a_ | Mode | A1l noniinear | Linear Coriolis| Nonlinear Coriolis| Aqsk = 0 |Djjx = 0
®] terms ignored | forces ignored forces ignored EUK =0
Thin blade: (d/b) = 0.05
0.5 1 2.5329 -0.1616 0.0548 0.8297 1.6594 }
0.8 1 11,9310 -0.2295 0.2711 3.5383 7.3843
1.0 1 20,7021 -0.1826 0.5217 5.5451 112.0161
0.5 2 0.1190 0.1290 -0.0417 -0.0010 | 0.1240
0.8 2 0.6686 0.1879 -0.2135 0.6010 0.7114
1.0 2 1.3752 0.1586 -0.4150 -0,0077 1.4846
0.5 3 0.0406 0.0056 -0.0043 0.0002 0.0413
0.8 3 0.2268 0.0024 -0.0255 -0.0064 0.2322
1.0} 3 0.4685 -0.0084 ~0,0554 -0.0270 0.4823
Thick blade:{(d/b) = 0.25
0.5 1 2.9356 -1.3250 0.4657 1.0173 1.8434
0.8 1 13.7159 -1.8113 2.3196 4,3004 8.0701
1.0 1 23.7387 -1.2858 4.,4403 6.7694 [12.9583
0.5 2 -0.3777 1.2587 -0.4620 -0.2114 |-0.1264
0.8| 2 ~1.8834 1.6768 -2.3884 -0,9525 (-0.4058
1.0 2 -3.6149 1.1485 -4,7191 1.6652 |-0.3663
0.5 3 0.1261 -0.0143 0.,0059 0.0218 0.1228
0.8 3 0.7550 -0.0416 0.0816 0.1475 0.7253
1.0 3 1.6052 -0.0644 0.2145 0.3068 1.5186
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Figure 1. - Blade coordinate system and definition of blade parameters,
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