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useful, general purpose tool. It can be used effectively by 

progammers havIng only a knowledge of grammars and no training at 
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1. INTRODUCTION 

In the last decade there has been a great deal of research 1n 

the area known as software eng1neering. Two goals of this work 

have been the improvement 1n qual1ty of the programs written and a 

ga1n ln programmer productivity (however measured). Much of the 

resultlng research has concentrated on better programming 

methodologles. 

In the commerclal area a galn 1n both programmer product1vlty 

and program quallty has been achieved by the use of so-called 4th 

generation languages, such as Mantis, Nomad, etc. These languages 

are largely nonprocedural ln nature and succeed because they 

restrlct themselves to a falrly restrlcted and well understood 

domaln. Other examples of successful appllcatlon 

1nclude screen generators, statistical packages, 

packages, etc. 

generators 

spreadsheet 

It 1S our thes1s that parser generators are another useful, yet 

often neglected, application generator. In the last ten years 

parser generators have become generally available on a large 

number of computers. A partlal llSt of these would include BOBSW 

[Berger 1978), Llla, LR [Wetherell 1981), LRParse, MetaWare (Tm) 

[DeRemer 1981), Mystro [Coll1ns 1980), and YACC [Johnson 1979). 

We lntend to show a number of appllcatlons of table-drlven 
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parsers, exclud1ng compilers. These applications 

espec1ally novel, but do not appear to be w1dely known. 

to show that table-driven parsers can prof1tably 

are not 

We hope 

be used by 

programmers with only a cursory understanding of the underlY1ng 

theory. We do assume that the reader is fam1l1ar w1th 

context-free (BNF) grammars, or equivalently, syntax charts. 
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2. BASIC NOTIONS OF PARSING 

The prlmary use of parsers has tradltiona11y been ln the 

so-called "front-end" of complIers, in WhlCh the parser lS 

responslble for recognizing the basic constructs of the language, 

lncludlng statements, expresslons, etc. Baslc complIer theory, 

lncluding pars1ng, 1S well covered in the texts [Aho 1977], 

[Barrett 1979], and [Wa1te 1983], whl1e an introductlon to just 

(LR) parslng lS glven in [Aho 1974]. However, for our purposes 

the reader need only understand the baslc grammar and parsing 

material in these references, and not the detalls of parser 

constructlon (for example, sectlons 1-3 of [Aho 1974]). 

A dlctlonary definltion of the verb "parse" lS: 

To resolve lnto ltS elements, as a sentence, pOlnting 

out the several parts of speech and thelr 

lnterrelatlon; to analyze and describe grammatlca11y, 

as a word. 

For our purposes a parser lS merely a grammar-based pattern 

recognlzer. 

Cons1der the following BNF 

express10ns in 

assoclatlvity: 

"-" , 
grammar 

wlth 

for 

the 

comput1ng arithmet1c 

usual precedence and 
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<calc> ::= <expr> <end> 

<expr> ::= <expr> + <term> 

<expr> ::= <term> 

<term> ::= <term> * <factor> 

<term> ::= <factor> 

<factor> ::= ( <expr> 

<factor> ::= <number> 

The term1nal symbol <end> denotes the end of the expression, wh1le 

the term1nal symbol <number> denotes an arb1trary number. 

Grammars are useful not Just for def1ning what sentences or 

str1ngs are legal 1n a language, but more 1mportantly because a 

der1vat1on or parse tree 1mposes a def1n1te structure on legal 

str1ngs. In a parse tree each nonterm1nal serves as the root of a 

subtree, where the subtree 1S der1ved from one of the product1ons 

or rules for that nonterm1nal. A glven str1ng 1S a legal sentence 

of the language 1f 1t has at least one tree der1vable from the 

goal or start symbol. The grammar 1S amb1guous 1f there exists 

some str1ng w1th two dist1nct parse trees. 

Cons1der the str1ng "5 + 4 * 3". The only parse tree for th1S 

str1ng accord1ng to the above grammar 1S: 
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<calc> 
I 

<expr> 
I 

+--------+------------+ 
I I I 

<expr> + <term> 
I I 
I +------+------+ 

<term> I I I 
I <term> * <factor> 

<factor> I I 
I <factor> <number> 

<number> I =3 
=5 <number> 

=4 

In bottom up or LR pars1ng, the input 1S recogn1zed from 

left-to-right and the tree constructed from the bottom to the top. 

Thus, f1rst, the <number> 5 1S reduced to <factor>, then the 

<factor> reduced to a <term>, etc. After the seventh reduction 

<term> ::= <term> * <factor> 

the tree would appear as: 

<expr> 
I 
I 

<term> 
I 

<factor> 
I 

<number> 
=5 

+ <term> 
I 

+------+------+ 
I I I 

<term> * <factor> 
I I 

<factor> <number> 
I =3 

<number> 
=4 

In order to be able to use an LR parser, one need not be 

famlilar with the underlY1ng theory. It is important to know only 
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the order In WhlCh the reductlons or rules wlil be applled In 

recognlzing the lnput. In uSlng an automatlcally generated 

parser, lt lS usually a slmple matter to construct a sample lnput 

and to have the parser print out the order In WhlCh symbols are 

recognlzed and rules applled. Addltlonally, of course, a 

programmer must have some famlilarlty wlth grammars and have a 

parser generator avallable. 

In addltlon, a programmer must know that the front end of a 

complIer is dlvlded 1nto three phases [Aho 1977]: scanner, 

parser, and semantlcs phase. The scanner 1S responslble for 

readlng the lnput and coalescing characters into tokens, lncludlng 

keywords, 1dentlflers, numbers, etc. Tokens are passed In a 

stream to the parser, WhlCh 1n turn constructs a parse tree of the 

1nput. As the end of a rule is recogn1zed, the parser 1nvokes the 

semant1cs rout1ne, passing as arguments the number of the rule 

recognlzed and the "semantlcs" assoclated w1th each symbol In the 

rlght hand slde of the rule. 

In our un1verslty, parser-based programs are commonly bUllt by 

students who have had ne1ther a course 1n complIer constructlon 

nor even a course ln programmlng languages (CS15 and CS8, 

respect1vely, 1n Curr1culum 78 [Aust1ng 1979]). Such programs 

1nclude construct1ng an 

slmulator 1n computer 

database systems, etc. 

assembler 1n computer organlzatlon, a 

arch1tecture, a database query language 1n 
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More generally, table-driven parsers have been used in: 

1. Compilers 

a. Parse phase 

b. Code opt~mization 

c. Code generat~on [Glanville 1978: Ganapath~ 1982] 

2. Other translators 

3. Command languages [Campbell 1984] 

4. Editors 

a. Trad~t~onal [Noonan 1985] 

b. Language-based [F~scher 1984] 

5. Query languages 

6. Language-based tools 

7. Software des~gn tools 

8. Miscellaneous 

In the sect~ons wh~ch follow, we show some typ~cal examples 

from these areas, beginn~ng w~th query languages. For the sake of 

concreteness, we w~ll show the grammars and assoc~ated semant~cs 

as they would be ~nput to the Mystro system [Coll~ns 1980: Noonan 

1984]. All of these examples were adapted from larger, production 

appllcat~ons. Most of them could eas~ly be adapted to another 

parser generator. 
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3. QUERY LANGUAGES 

One of the slmplest and most popular uses of parsers is 1n the 

development of interact1ve, query languages. One example of th1s 

m1ght be a desk calculator program based on an expanded version of 

the grammar g~ven ~n the prev~ous section. An added advantage to 

using a grammar 1S that 1t forces the developer to expl1c~tly 

specify the user ~nterface, often leading to a simpler and more 

cons1stent 1nterface. 

However, before proceed1ng with developing the desk calculator, 

we must expla1n some of the convent1ons used. Grammars will be 

given 1n standard BNF. Each production or grammar rule may be 

followed by zero or more lines of semantics in Pascal [Jensen 

1975], each of wh~ch w~11 be ~ndented s1~ght1y. These semant~c 

l~nes may refer d~rect1y 

adapted from [Aho 1977]; 

to grammar symbols, using notation 

Mystro provldes for the translatlon of 

these references to references to a runtime semantics stack. 

Our completed desk calculator program with appropr~ate Pascal 

semant~cs is shown ln Flgure 1. Three of the rules have no 

semantlcs, namely, the fourth, sixth, and last rules; thlS 

results from the fact that the nonterminal on the left w~ll 

automat~cally lnher1t any value or mean1ng assoc1ated wlth a 

slngle symbol on the right (whether terminal or nontermlnal). To 

get a running appl~catlon, the desk calculator grammar need only 
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be ~nput to Mystro and the result~ng parser compiled and linked. 

Mystro requires as additional input a skeletal program or 

skeleton into which is inserted certain generated constants, 

types, Pascal code, etc. These programs are called skeletons 

because they need to be enhanced with applicat~on dependent code. 

Over the years a number of distinct skeletons for var~ous 

appl~cat~on areas have been developed. When used with a grammar 

w~th no semant~cs, they result in a program that can be comp~led 

and run without modificat~on. Such programs are useful in 

debugg~ng the grammar, determining the order in wh~ch rules will 

be appl~ed, creat~ng a set of val~dation tests, etc. 

Table-driven parsers are commonly used as interfaces to 

applicat~on programs with complex ~nput command languages, such as 

database query languages. More recently, parser generators have 

been used for the construction of menu-based systems. 
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<calc> ::= <expr> <end> 

wrlteln ('= I, <expr>.val)l 

<expr> ::= <expr> + <term> 

<expr>.val := <expr>.val + <term>.vall 

<expr> ::= <term> 

1 (* <expr> inherits <term>'s val automatlcally *) 

<term> ::= <term> * <factor> 

<term>.val := <term>.val * <factor>.vall 

<term> ::= <factor> 

<factor> ::= ( <expr> 

<factor>.va1 := <expr>.va11 

<factor> ::= <number> 

1 (* the scanner must provide for <number>.val *) 

Figure 1: Desk Calculator 
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4. MENU-BASED SYSTEMS 

In recent years many 1nteract1ve systems have used menus rather 

than a more tradit10nal command language. Here again a grammar 

can be used to both spec1fy such an 1nterface, and to implement it 

[Noonan 1985]. In some cases the user interface 1S a very small 

part of the total system and 1S used partially to hide a very 

large and complex system. In other cases the grammar and 

assoc1ated semantic code constitute the entire applicat10n. 

An example of the latter type occurs when one computer is used 

to generate batch Jobs for another. A menu interface can be used 

to h1de the id10syncracies of the command language of the batch 

computer. In one such system a DEC VAX computer is used to 

generate Jobs for a CDC VPS-32 supercomputer; complicat1ng the 

sltuat10n 1S the fact that a CDC Cyber computer is used as a 

front-end to the VPS. Of course, the VAX, Cyber, and VPS all have 

d1stlnct command languages. Thus, SClentlsts on the VAX (who are 

primarlly mathematlcians) wanting to use the VPS must know three 

command languages! 

In th1S partlcular 1nstance, the VAX is used to generate a Job 

on the Cyber, which in turn generates a batch Job on the VPS. 

Unfortunately, to save output on the Cyber or return lt to the 

VAX, the VPS must 1n turn generate a batch job for the Cyber. 

Thus, a typical Job stream contalns three batch jobs 1n two 
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commands. 
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command languages, consisting of three pages of 

In order to m1nimize this complexity as much as possible, a 

menu-based program was developed, based on a BNF grammar and its 

support1ng LR parser. The skeleton used is novel in that it does 

not contain a scanner. Instead the notions of lazy input [Kaye 

1980] and syntact1c error recovery are combined. The parser does 

not request any input unt1l 1t reaches a state in which a token 1S 

requ1red. At th1s p01nt, the -error recovery" routine l1sts on 

the term1nal the set of legal input tokens (menu opt1ons) and 

reads the user's response. If the user selects a valid menu 

choice, then the error recovery rout1ne returns w1th the token 

chosen; otherwise the user 1S reprompted for 1nput. (Th1s 

approach requires the use of "default" reductions [Anderson 1973] 

1n the parser tables; fortunately, this is a widely used space 

opt1rn1zat1on technique in parser generators.) 

In this part1cular app11cat1on, for example, program data can 

eX1st on the VAX, the Cyber, or the VPS. Usually, the data 1S 

kept on the VAX if the program 1S (relat1vely) fixed and the data 

changes from one run to another. Conversely, the data 1S usually 

kept on the Cyber 1f it 1S large in size and 1nfrequently changed. 

Data 1S only rarely kept on the VPS due to the lim1ted disk space 

ava1lable and the inab1l1ty to edit VPS files directly. The 

grammar rules defin1ng the data menu appear below: 
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C(yber <cyber_data> <get_un1t> <data_menu> 

I(case <1case_data> <get_unit> <data_menu> 

N(o-more 

In thls part1cular implementatlon, the f1rst letter of each menu 

option is used to select the option; enter1ng a "C· or "c" 

selects the Cyber option. Unfortunately, both VPS and VAX start 

w1th the same letter, so the location of the VAX machine (ICASE) 

was used 1nstead. The nonterminals <cyber_data>, <icase_data>, 

and <vps_data> are used to prompt for the permanent f1lename of 

the data file and generate the approprlate batch commands, wh1le 

the nonterminal <get_unit> is used to prompt for the local VPS 

filename or Fortran unlt number of the file. Right recurS10n 1S 

used in the flrst three rules to provide a loop. The "N(o-more" 

optlon is used to eX1t from this loop. 

A sImilar, but more compl1cated structure is used for program 

output flIes. Each such f1le can be pr1nted, mailed (vla 

electronic mall), or saved. If not ma1led, the file can be 

prlnted or saved on any of the three mach1nes. The grammar rules 

deflning these menus appear as follows: 

<output_menu> ::= P(r1nt <what_file> <print_menu> <output_menu> 

<output_menu> ::= M(ail <what_file> <mall_f1Ie> <output_menu> 



<output_menu> 

<output_menu> 

.. -.. -
· .-· .-

· .-· .-
· ... -
: : = 
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: : = 

: : = 
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S(ave <what_file> <save_menu> <output~enu> 

N(o-more 

C(yber <pr~nt_cyber> 

I(case <print_icase> 

E(x~t 

C(yber <save_cyber> 

I(case <save_icase> 

V(ps <save_vps> 

E(x~t 

In th~s ~nstance, the "E(X1t" 1S prov1ded so that a choice can be 

undone, 1f des1red. As before, the <what_f1le> nonterm1nal 

prompts for the local f1lename or Fortran un1t number of the 

output fl.le. The "pr1nt" nonterml.nals (exclud1ng <print_menu» 

generate the appropr1ate batch commands. The "save" nonterml.nals 

(excludl.ng <save_menu» prompt for permanent fl.lenames and 

generate the appropr1ate batch commands. 

The grammar for th1s appl1cat10n 1S about half the Slze of a 

grammar for Pascal, counting the number of terminal symbols, 

nontermlnal symbols, grammar rules, and parser states. A 

prototype was developed rapidly and enhanced as the developers 

better understood the batch command languages and the users 



-15-

requested more options. 

Such menu-based interfaces are merely spec1al cases of systems 

Wh1Ch 1mplement a transit10n diagram. One interest1ng example 1S 

the development of an intell1gent COCkP1t aid for aircraft 

[Coll1ns 1985]. For such applications a translator program named 

TD Converter was constructed which permits stylized natural 

language in descr1blng the transltlon dlagram, which 1S then 

converted automatlcally to a grammar. TD converter was, of 

course, built uSlng a grammar-based parser. 
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s. TRANSLATORS 

Another common applicat~on of parser generators is to build 

translators of 

students at our 

various kinds, including comp~lers. For example, 

university often are requ~red to bu~ld an 

assembler ~n a course on computer organ~zat~on. The only exposure 

of these students to grammars or syntax charts is l~mited to 

learning Pascal; desp~te this, they use a parser generator to 

construct their assemblers. We have found th~s approach to be 

super~or to both the manual construct~on of assemblers and to the 

use of meta-assemblers [Coll~ns 1983]. 

Assembly languages are qu~te dlstlnct ln structure from hlgh 

level languages, and thus, pose dist~nct, but eas~ly solved 

problems. F1rst, assembly languages tYP1cally have a slngle 

statement per llne, wlth expl~c~t continuation convent1ons. Th1S 

problem 1S eas1ly solved by hav1ng the grammar represent the 

structure of only a slngle statement rather than the ent~re 

program, w1th the parser be~ng called once per statement. One 

advantage of th1S approach is that it simplifies syntact1c error 

recovery. Expl1Cit continuatlon of statements across llne 

boundarles 1S eas1ly handled ~n the scanner. 

A second problem 1S that assembly languages are tYP1cally f~xed 

format, with the following general form: 
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<label> <opcode> <operands> <comment> 

Somet1mes the opcode, operands, and optional comment are 

constralned to start in fixed columns. However, this problem is 

aga1n eas1ly handled 1n the scanner. 

A problem with several d1stlnct solutions is that trad1t1onal 

assembly languages have no reserved words, yet knowledge of the 

spec1f1c opcode 1S often crucial to further processing of the 

statement. One approach often used 1n PL/I grammars is to allow 

opcode names to appear expl1c1tly in the grammar, and also to map 

the nonterminal <name> 1nto both the term1nal symbol <ldent>, as 

well as any otherwise "reserved" names: 

<operand> ::= <name> 

• • • 

<name> ::= <ldent> 

<name> ::= LOAD 

<name> ::= STORE 

• • • 

An alternatlve approach 1S to map the opcodes and pseudo ops into 

angled term1nals ln the scanner: 
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<opcode> ::= <MACRO> 

<opcode> ::= <LOAD> 

<opcode> ::= <STORE> 

••• 

Yet another approach ~s to map the opcodes into classes in the 

scanner based on the number and type of operands it requ~res. 

Although all these approaches will work, we prefer the last one 

since it results in a significantly smaller grammar and 

corresponding parse tables. 

The last problem ~s that the number and type of operands depend 

on the opcode. For example, IBM 370 ~nstructlons [Struble 1975] 

are dlvlded lnto storage classes, called register-reglster (RR), 

reglster-storage (RX) , another reglster-storage (RS), 

storage-immedlate (SI), and storage-storage (S5). The 

opcode-operand formats for each of these classes ~s as follows: 

<~nstr> ::= < RILop > <reg~ster> , <reg~ster> 
<~nstr> · .-· .- < RX_op > <reg~ster> , <storage> 

<instr> · .-· .- <R5_op> <register> , <reg~ster> , <storage> 

<l.nstr> · .- <5I_Op> <storage> <immediate> · .- , 
<instr> · .- <55_op> <storage> <storage> .. - , 

We can combine all of these not~ons to produce a grammar for (a 

part of) the assembly language for the IBM 370, as shown ~n FIgure 
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2. To this grammar we have added some simple semantics to update 

the program counter, to define labels in pass 1, to generate code 

in pass 2, etc. One of the advantages we have found to this 

approach ~s that grammars are lnherently structured and modular. 

Thus, ~t is a slmple matter to start with a subset grammar, 

val~date lt on a subset of the test cases, and then expand either 

the grammar or the semant~cs to ~nclude more and more of the 

language being translated. 

Other translators that have been developed us~ng a parser 

generator ~nclude a code generator language [Donegan 1979), the 

UNIX (Tm) make ut~l~ty [Feldman 1979), a database machlne 

~nterface [F~shwick 1983), a ut~l~ty for typesetting mathemat~cs 

[Kern~ghan 1975], etc. 



<bal> ::= <stmt> <eoln> 

pc := NewPC; 

<stmt> ::= <comment> 

<stmt> ::= <label> <~nstr> 

if pass = 1 then 

beg~n 
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NewSymbol (symbol, pc, <label>.idname); 

DefineSymbol (symbol); 

end; 

<stmt> ::= <~nstr> 

<~nstr> ::= <RR-op> <register> , <reg1ster> 

begln 

NewPC := pc + 2; 

If pass = 2 then 

GenerateRR «RR_op>.opcode, <register-l>.reg1ster, 

<reg~ster-2>.register); 

end; (* RR *) 

<1nstr> ::= <RX_op> <reg1ster> , <storage> 

beg~n 

NewPC := pc + 4; 

~f pass = 2 then 

GenerateRX (pc, <RX_op>.opcode, <register>.reg1ster, 

<storage>.1ndex, <storage>.base, 

<storage>.address); 

end; (* RX *) 
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<lnstr> ::= <RS_op> <reglster> , <reglster> , <storage> 

begln 

NewPC := pc + 4; 

If pass = 2 then 

GenerateRS (pc, <RS_op>.opcode, <reglster-I>.reglster, 

<reglster-2>.reglster, 

<storage>.base, <storage>.address); 

end; (* RS *) 

<lnstr> ::= <S1_op> <storage> , <lmmedlate> 

begln 

NewPC := pc + 4; 

If pass = 2 then 

GenerateS1 (pc, <S1_op>.opcode, <lmmedlate>.val, 

<storage>.base, <storage>.address); 

end; (* S1 *) 

<lnstr> ::= <SS_op> <storage> , <storage> 

begln 

NewPC := pc + 6; 

If pass = 2 then 

GenerateSS (pc, <SS_op>.opcode, <storage-I>.length, 

<storage-I>.base, <storage-I>.address, 

<storage-2>.base, <storage-2>.address); 

end; (* SS *) 

<lnstr> ::= <unknown_op> 

error (1llegalOpcode, <unknown_op>.ldname); 

<reglster> ::= <number> 
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if pass = 2 then 

<reglster>.reglster := <number>.val; 

<storage> ::= <ldent> 

If pass = 2 then 

begin 

FlndSymbol «storage>, <ldent>.ldname); 

<storage>.base := BaseReg; 

<storage>.lndex := 0; 

end; 

<storage> ::= <ident> ( <base?> , <index?> ) 

If pass = 2 then 

begln 

FindSymbol «storage>, <ident>.ldname); 

<storage>.base := <base?>.register; 

<storage>.lndex := <lndex?>.reglster; 

end; 

(storage> ::= <ldent> ( <base> ) 

If pass = 2 then 

begln 

FlndSymbol «storage>, <ldent>.idname); 

<storage>.base := <base>.reglster; 

<storage>.lndex := 0; 

end; 

<base?> .. -.. -
If pass = 2 then 

<base?>.reglster := BaseRegi 



<base?> ::= <base> 

<base> ::= <reglster> 

<lndex?> ::= 
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If pass = 2 then 

<lndex?>.register := 0; 

<lndex?> ::= <reglster> 

Figure 2: IBM Assembly Language Grammar 
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6. PROGRAMMING LANGUAGE TOOLS 

As noted by Glass [1982], the tYPlcal programmlng enVlronment 

contalns very few tools. 

dlsposal only complIers, 

The average programmer has at h1S or her 

ed1tors, 

formatters (or word processors). 

linkage ed1tors, and document 

However, with the aid of a 

parser generator a glven Installat10n can easily 1mprove the 

sItuatIon. LALR(l) grammars eXIst for all the maJor programmlng 

languages, Includlng Cobol and Fortran. 

One such parser-based tool 1S a pretty pr1nter [Oppen 1980], 

Wh1Ch 1S perhaps most useful 1n the malntenance phase, 

part1cularly, of older, heavlly modlfied programs. Another useful 

tool 1S a cross-reference program, whlch can easlly be developed 

from a slmple parser and can be enhanced to compute var10US 

software metr1cs, vlolatlons of lnstallatlon standards, etc. 

However, If too many enhancements are wanted, such a proJect can 

requlre almost as many resources as the bUlldlng of a complIer. 

In fact, any set of enhancements whlch requlres the bUllding of a 

complete symbol table for the language belng supported may be too 

ambltlous for a slmple support tool. 

Fortunately, Browne [1978] has shown a slmple, yet effectlve 

way out of thls dllemma. For the language under cons1deratlon you 

deflne a set of relations whlch capture the lmportant semant1c 

aspects of the language. Then, a slmple table-dr1ven parser can 



be used to 

analyzed. 

can then 
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bu~ld a relat~onal database for the program be~ng 

The query language for the relat~onal database system 

be used to check for v~olat~ons of installat~on 

standards, f~nd uses of part~cular ~dent~fiers, produce management 

reports, etc. Such an approach is surpr~s~ngly effective. 

Cons~der the case of build~ng a simple cross referencer for 

Pascal. One of the problems ~n Pascal is that a name, such as 

"x," may not be un~que; there may be several var~ables, a type, a 

procedure, etc., all named "x." One s~mple way to handle th~s is 

to keep a very s~mple symbol table ~n the database constructor. 

The symbol table ~tself can be kept as a stack of binary search 

trees, w~th one tree per scope level. Scopes are created 

(deleted) by push~ng (popp~ng) a level onto (off of) the stack. 

Other than the ldentlfier def~ned, almost no other ~nformat~on 

need be kept. Then each ~dentif~er can be referenced by a (scope, 

ldentlfler) palr, where each scope ~s g~ven a un~que number. 

Slmllarly, statements cannot be uniquely ldent~f~ed by the line 

they are on, Slnce Pascal allows mult~ple statements per l~ne. 

It, thus, seems best to uniquely number each statement, as well as 

recordlng the exact pos~t~on (l~ne and column) of the statement ~n 

the program. 

Flgure 3 g~ves a grammar fragment for bu~lding some of the 

needed relations. The "define" routines hlde the detaIls of the 
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interface to the relatlonal database system used. The 

"lookupname" routlne searches the symbol table for the ldentlfler 

and returns the unlque scope number for the ldentifier referenced. 

Other uses of a language parser include augmentlng the language 

with some needed facllity. These mlght lnclude adding relatlonal 

database constructs, graphlcs primitives, etc. Such additlons 

would then be mapped into calls to varlOUS runtlme support 

routlnes. ThlS approach allows for hldlng the complexlty of 

dealing wlth certain subroutine packages. 
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<whlle_stmt> ::= <whlle_clause> do <stmt> 

<whlle_clause> ::= <whlle> <expr> 

begin 

definestmt (stmtno, <whlle>.llneno, <whlle>.column, 

whlleclause, staticscope); 

(* relatlon stmt(stmt', Ilne', column., stmt_type, 

staticscopei) *) 

stmtno := stmtno + 1; 

end; 

<whlle> ::= whlle 

usagekind := reference; 

<expr> ::= <slmple_expr> 

<expr> ::= <slmple_expr> <relop> <slmple_expr> 

. . . 
<varlable> ::= <ldent> 

begln 

lookupnarne «ldent>.narne, scope); 

deflnenameusage «ldent>.narne, scope, strntno, 

<ldent>.lineno, <ldent>.column, usageklnd); 

end; 

(* relatlon nameusage (name, statlcscope', strnti, 

llne', column., usage_klnd) *) 

Flgure 3: Pascal Cross Reference 
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7. CONCLUSIONS 

In our env1ronment we have found the parser generator to be 

extremely useful as a general appl1cat1on generator. It has been 

used to develop both end-user appl1cat10n programs and var10US 

software tools. We have found that a parser generator can be 

effect1vely used by programmers having only a knowledge of 

grammars and no tra1ning at all 1n the theory of formal pars1ng. 

In part1cular, much of the power of the parser generator has 

been unleashed by the development of skeletal parsers targeted at 

part1cular appl1cat10n areas. At our un1vers1ty these 1nclude: 

two compiler skeletons, 

a two pass assembler, 

a three pass assembler, 

the query skeleton, 

the menu skeleton, 

two skeletons used for code generat1on. 

We have enhanced these skeletons to fac111tate debugging by those 

unfam111ar w1th pars1ng theory. Our students have found that the 

t1me and effort needed to learn to use these tools are well worth 

the 1nvestment. 
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NOTES 

Metaware is a trademark of Metaware, Santa Cruz, Ca. 

UNIX 1S a trademark of AT&T Bell Laborator1es. 
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