
NASA Contractor Report 177955

lCASE REPORT NO. 85-36

leASE
THE PARSER GENERATOR AS A GENERAL PURPOSE TOOL

Robert E. Noonan

W. Robert Collins

Contract No. NASl-17070

July 1985

NASA-CR-177955
19850026208

r ' -~:\ r~,,-f r~ [': r~.; ~r
I \, ,

C (,) ; ' ... ~ j

, I ~I~) ~l, I , '\

'(rTC,N, VltlG1NI/\

INSTITUTE FOR CO~WUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NI\SI\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665 1111111111/1111111111111111111111111111111111

NF00711

https://ntrs.nasa.gov/search.jsp?R=19850026208 2020-03-20T16:55:12+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42844066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Report No NASA CR-177955 I 2 Government Accession No 3 Reclpeent's <At.l1og No

lCASE Report. No. 85-36
4 Title and Subtitle 5 Report o.t.

The Parser Generator As a General Purpose Tool ~I}lv 1985
6 Performing OrglnlzltlOl'l Code

7 Author(s) 8 Performing Organization Report No

Robert E. Noonan and W. Robert Collins
85-36

10 Work Unet No

9 Per for mlnl Organezttlon Ntme and Addr"A, 1 lnsti ute or omputer pp ications in Science
and Engineering 11 Contract or Grant No

Mail Stop 132C, NASA Langley Research Center NAS1-17070
Hampton, VA 23665 13 Type of Report and Period Covered

12 Sponsoring Agency Name and Address
National Aeronautics and Space Administration Contractor Reoort
Washington, D.C. 20546 14 Sponsoring Agency Code

505-31-83-01
15 Supplementary Notes -SUDml.CCea co

Langley Technical Monitor: J. C. South, Jr. Computing Surveys
Final Report

16 Abstract

The parser generator has proven to be an an extremely useful, general
purpose tool. It can be used effectively by progammers having only a knowledge
of grammars and no training at all in the theory of formal parsing. Some of the
application areas for which a table-driven parser can be used include
interactive, query languages, menu systems, translators, and programming support
tools. Each of these is illustrated by an example grammar.

17 Key Words (Suggested by Author(s)) 18 Distribution Statement

parser generators, grammars 61 - Computer Programming & Software
translators, menu systems

Unclassified - Unlimited

19 Security aasslf (of thiS report) 20 Securely ClaSSlf lof thiS page) 21 No of Pages 22 Price
Unclassified Unclassified 36 A03

For sale by the NatIOnal Technical Information SerVice, Springfield Virginia 22161

THE PARSER GENERATOR AS A GENERAL PURPOSE TOOL

Robert E. Noonan l ,2
College of WIlliam and Mary

and
InstItute for Computer ApplIcatIons in SCIence and EngineerIng

W. Robert collinsl ,3
College of William and Mary

ABSTRACT

The parser generator has proven to be an an extremely

useful, general purpose tool. It can be used effectively by

progammers havIng only a knowledge of grammars and no training at

all In the theory of formal parSIng. Some of the application

areas for WhiCh a table-drIven parser can be used include

interactive, query languages, menu systems, translators, and

programmIng support tools. Each of these IS i llustr ated by an

example grammar.

lResearch was supported In part by NASA Langley Research Center
under Grant NSG-1435. .

2Research was supported In part by the NatIonal AeronautIcs and
Space AdmInistration under NASA Contract No. NASl-17070 while the
author was in reSidence at ICASE, NASA Langley Research Center,
Hampton, VA 23665.

3Research was supported in part by NASA Langley Research Center
under Grant NAG-1-534.

i

1. INTRODUCTION

In the last decade there has been a great deal of research 1n

the area known as software eng1neering. Two goals of this work

have been the improvement 1n qual1ty of the programs written and a

ga1n ln programmer productivity (however measured). Much of the

resultlng research has concentrated on better programming

methodologles.

In the commerclal area a galn 1n both programmer product1vlty

and program quallty has been achieved by the use of so-called 4th

generation languages, such as Mantis, Nomad, etc. These languages

are largely nonprocedural ln nature and succeed because they

restrlct themselves to a falrly restrlcted and well understood

domaln. Other examples of successful appllcatlon

1nclude screen generators, statistical packages,

packages, etc.

generators

spreadsheet

It 1S our thes1s that parser generators are another useful, yet

often neglected, application generator. In the last ten years

parser generators have become generally available on a large

number of computers. A partlal llSt of these would include BOBSW

[Berger 1978), Llla, LR [Wetherell 1981), LRParse, MetaWare (Tm)

[DeRemer 1981), Mystro [Coll1ns 1980), and YACC [Johnson 1979).

We lntend to show a number of appllcatlons of table-drlven

-2-

parsers, exclud1ng compilers. These applications

espec1ally novel, but do not appear to be w1dely known.

to show that table-driven parsers can prof1tably

are not

We hope

be used by

programmers with only a cursory understanding of the underlY1ng

theory. We do assume that the reader is fam1l1ar w1th

context-free (BNF) grammars, or equivalently, syntax charts.

-3-

2. BASIC NOTIONS OF PARSING

The prlmary use of parsers has tradltiona11y been ln the

so-called "front-end" of complIers, in WhlCh the parser lS

responslble for recognizing the basic constructs of the language,

lncludlng statements, expresslons, etc. Baslc complIer theory,

lncluding pars1ng, 1S well covered in the texts [Aho 1977],

[Barrett 1979], and [Wa1te 1983], whl1e an introductlon to just

(LR) parslng lS glven in [Aho 1974]. However, for our purposes

the reader need only understand the baslc grammar and parsing

material in these references, and not the detalls of parser

constructlon (for example, sectlons 1-3 of [Aho 1974]).

A dlctlonary definltion of the verb "parse" lS:

To resolve lnto ltS elements, as a sentence, pOlnting

out the several parts of speech and thelr

lnterrelatlon; to analyze and describe grammatlca11y,

as a word.

For our purposes a parser lS merely a grammar-based pattern

recognlzer.

Cons1der the following BNF

express10ns in

assoclatlvity:

"-" ,
grammar

wlth

for

the

comput1ng arithmet1c

usual precedence and

-4-

<calc> ::= <expr> <end>

<expr> ::= <expr> + <term>

<expr> ::= <term>

<term> ::= <term> * <factor>

<term> ::= <factor>

<factor> ::= (<expr>

<factor> ::= <number>

The term1nal symbol <end> denotes the end of the expression, wh1le

the term1nal symbol <number> denotes an arb1trary number.

Grammars are useful not Just for def1ning what sentences or

str1ngs are legal 1n a language, but more 1mportantly because a

der1vat1on or parse tree 1mposes a def1n1te structure on legal

str1ngs. In a parse tree each nonterm1nal serves as the root of a

subtree, where the subtree 1S der1ved from one of the product1ons

or rules for that nonterm1nal. A glven str1ng 1S a legal sentence

of the language 1f 1t has at least one tree der1vable from the

goal or start symbol. The grammar 1S amb1guous 1f there exists

some str1ng w1th two dist1nct parse trees.

Cons1der the str1ng "5 + 4 * 3". The only parse tree for th1S

str1ng accord1ng to the above grammar 1S:

-5-

<calc>
I

<expr>
I

+--------+------------+
I I I

<expr> + <term>
I I
I +------+------+

<term> I I I
I <term> * <factor>

<factor> I I
I <factor> <number>

<number> I =3
=5 <number>

=4

In bottom up or LR pars1ng, the input 1S recogn1zed from

left-to-right and the tree constructed from the bottom to the top.

Thus, f1rst, the <number> 5 1S reduced to <factor>, then the

<factor> reduced to a <term>, etc. After the seventh reduction

<term> ::= <term> * <factor>

the tree would appear as:

<expr>
I
I

<term>
I

<factor>
I

<number>
=5

+ <term>
I

+------+------+
I I I

<term> * <factor>
I I

<factor> <number>
I =3

<number>
=4

In order to be able to use an LR parser, one need not be

famlilar with the underlY1ng theory. It is important to know only

-6-

the order In WhlCh the reductlons or rules wlil be applled In

recognlzing the lnput. In uSlng an automatlcally generated

parser, lt lS usually a slmple matter to construct a sample lnput

and to have the parser print out the order In WhlCh symbols are

recognlzed and rules applled. Addltlonally, of course, a

programmer must have some famlilarlty wlth grammars and have a

parser generator avallable.

In addltlon, a programmer must know that the front end of a

complIer is dlvlded 1nto three phases [Aho 1977]: scanner,

parser, and semantlcs phase. The scanner 1S responslble for

readlng the lnput and coalescing characters into tokens, lncludlng

keywords, 1dentlflers, numbers, etc. Tokens are passed In a

stream to the parser, WhlCh 1n turn constructs a parse tree of the

1nput. As the end of a rule is recogn1zed, the parser 1nvokes the

semant1cs rout1ne, passing as arguments the number of the rule

recognlzed and the "semantlcs" assoclated w1th each symbol In the

rlght hand slde of the rule.

In our un1verslty, parser-based programs are commonly bUllt by

students who have had ne1ther a course 1n complIer constructlon

nor even a course ln programmlng languages (CS15 and CS8,

respect1vely, 1n Curr1culum 78 [Aust1ng 1979]). Such programs

1nclude construct1ng an

slmulator 1n computer

database systems, etc.

assembler 1n computer organlzatlon, a

arch1tecture, a database query language 1n

-7-

More generally, table-driven parsers have been used in:

1. Compilers

a. Parse phase

b. Code opt~mization

c. Code generat~on [Glanville 1978: Ganapath~ 1982]

2. Other translators

3. Command languages [Campbell 1984]

4. Editors

a. Trad~t~onal [Noonan 1985]

b. Language-based [F~scher 1984]

5. Query languages

6. Language-based tools

7. Software des~gn tools

8. Miscellaneous

In the sect~ons wh~ch follow, we show some typ~cal examples

from these areas, beginn~ng w~th query languages. For the sake of

concreteness, we w~ll show the grammars and assoc~ated semant~cs

as they would be ~nput to the Mystro system [Coll~ns 1980: Noonan

1984]. All of these examples were adapted from larger, production

appllcat~ons. Most of them could eas~ly be adapted to another

parser generator.

-8-

3. QUERY LANGUAGES

One of the slmplest and most popular uses of parsers is 1n the

development of interact1ve, query languages. One example of th1s

m1ght be a desk calculator program based on an expanded version of

the grammar g~ven ~n the prev~ous section. An added advantage to

using a grammar 1S that 1t forces the developer to expl1c~tly

specify the user ~nterface, often leading to a simpler and more

cons1stent 1nterface.

However, before proceed1ng with developing the desk calculator,

we must expla1n some of the convent1ons used. Grammars will be

given 1n standard BNF. Each production or grammar rule may be

followed by zero or more lines of semantics in Pascal [Jensen

1975], each of wh~ch w~11 be ~ndented s1~ght1y. These semant~c

l~nes may refer d~rect1y

adapted from [Aho 1977];

to grammar symbols, using notation

Mystro provldes for the translatlon of

these references to references to a runtime semantics stack.

Our completed desk calculator program with appropr~ate Pascal

semant~cs is shown ln Flgure 1. Three of the rules have no

semantlcs, namely, the fourth, sixth, and last rules; thlS

results from the fact that the nonterminal on the left w~ll

automat~cally lnher1t any value or mean1ng assoc1ated wlth a

slngle symbol on the right (whether terminal or nontermlnal). To

get a running appl~catlon, the desk calculator grammar need only

-9-

be ~nput to Mystro and the result~ng parser compiled and linked.

Mystro requires as additional input a skeletal program or

skeleton into which is inserted certain generated constants,

types, Pascal code, etc. These programs are called skeletons

because they need to be enhanced with applicat~on dependent code.

Over the years a number of distinct skeletons for var~ous

appl~cat~on areas have been developed. When used with a grammar

w~th no semant~cs, they result in a program that can be comp~led

and run without modificat~on. Such programs are useful in

debugg~ng the grammar, determining the order in wh~ch rules will

be appl~ed, creat~ng a set of val~dation tests, etc.

Table-driven parsers are commonly used as interfaces to

applicat~on programs with complex ~nput command languages, such as

database query languages. More recently, parser generators have

been used for the construction of menu-based systems.

-10-

<calc> ::= <expr> <end>

wrlteln ('= I, <expr>.val)l

<expr> ::= <expr> + <term>

<expr>.val := <expr>.val + <term>.vall

<expr> ::= <term>

1 (* <expr> inherits <term>'s val automatlcally *)

<term> ::= <term> * <factor>

<term>.val := <term>.val * <factor>.vall

<term> ::= <factor>

<factor> ::= (<expr>

<factor>.va1 := <expr>.va11

<factor> ::= <number>

1 (* the scanner must provide for <number>.val *)

Figure 1: Desk Calculator

-11-

4. MENU-BASED SYSTEMS

In recent years many 1nteract1ve systems have used menus rather

than a more tradit10nal command language. Here again a grammar

can be used to both spec1fy such an 1nterface, and to implement it

[Noonan 1985]. In some cases the user interface 1S a very small

part of the total system and 1S used partially to hide a very

large and complex system. In other cases the grammar and

assoc1ated semantic code constitute the entire applicat10n.

An example of the latter type occurs when one computer is used

to generate batch Jobs for another. A menu interface can be used

to h1de the id10syncracies of the command language of the batch

computer. In one such system a DEC VAX computer is used to

generate Jobs for a CDC VPS-32 supercomputer; complicat1ng the

sltuat10n 1S the fact that a CDC Cyber computer is used as a

front-end to the VPS. Of course, the VAX, Cyber, and VPS all have

d1stlnct command languages. Thus, SClentlsts on the VAX (who are

primarlly mathematlcians) wanting to use the VPS must know three

command languages!

In th1S partlcular 1nstance, the VAX is used to generate a Job

on the Cyber, which in turn generates a batch Job on the VPS.

Unfortunately, to save output on the Cyber or return lt to the

VAX, the VPS must 1n turn generate a batch job for the Cyber.

Thus, a typical Job stream contalns three batch jobs 1n two

different

commands.

-12-

command languages, consisting of three pages of

In order to m1nimize this complexity as much as possible, a

menu-based program was developed, based on a BNF grammar and its

support1ng LR parser. The skeleton used is novel in that it does

not contain a scanner. Instead the notions of lazy input [Kaye

1980] and syntact1c error recovery are combined. The parser does

not request any input unt1l 1t reaches a state in which a token 1S

requ1red. At th1s p01nt, the -error recovery" routine l1sts on

the term1nal the set of legal input tokens (menu opt1ons) and

reads the user's response. If the user selects a valid menu

choice, then the error recovery rout1ne returns w1th the token

chosen; otherwise the user 1S reprompted for 1nput. (Th1s

approach requires the use of "default" reductions [Anderson 1973]

1n the parser tables; fortunately, this is a widely used space

opt1rn1zat1on technique in parser generators.)

In this part1cular app11cat1on, for example, program data can

eX1st on the VAX, the Cyber, or the VPS. Usually, the data 1S

kept on the VAX if the program 1S (relat1vely) fixed and the data

changes from one run to another. Conversely, the data 1S usually

kept on the Cyber 1f it 1S large in size and 1nfrequently changed.

Data 1S only rarely kept on the VPS due to the lim1ted disk space

ava1lable and the inab1l1ty to edit VPS files directly. The

grammar rules defin1ng the data menu appear below:

· .-· .-
· ... -
: : =

· .-· .-

-13-

C(yber <cyber_data> <get_un1t> <data_menu>

I(case <1case_data> <get_unit> <data_menu>

N(o-more

In thls part1cular implementatlon, the f1rst letter of each menu

option is used to select the option; enter1ng a "C· or "c"

selects the Cyber option. Unfortunately, both VPS and VAX start

w1th the same letter, so the location of the VAX machine (ICASE)

was used 1nstead. The nonterminals <cyber_data>, <icase_data>,

and <vps_data> are used to prompt for the permanent f1lename of

the data file and generate the approprlate batch commands, wh1le

the nonterminal <get_unit> is used to prompt for the local VPS

filename or Fortran unlt number of the file. Right recurS10n 1S

used in the flrst three rules to provide a loop. The "N(o-more"

optlon is used to eX1t from this loop.

A sImilar, but more compl1cated structure is used for program

output flIes. Each such f1le can be pr1nted, mailed (vla

electronic mall), or saved. If not ma1led, the file can be

prlnted or saved on any of the three mach1nes. The grammar rules

deflning these menus appear as follows:

<output_menu> ::= P(r1nt <what_file> <print_menu> <output_menu>

<output_menu> ::= M(ail <what_file> <mall_f1Ie> <output_menu>

<output_menu>

<output_menu>

.. -.. -
· .-· .-

· .-· .-
· ... -
: : =

· .-· .-

::=

: : =

: : =

.. -.. -

-14-

S(ave <what_file> <save_menu> <output~enu>

N(o-more

C(yber <pr~nt_cyber>

I(case <print_icase>

E(x~t

C(yber <save_cyber>

I(case <save_icase>

V(ps <save_vps>

E(x~t

In th~s ~nstance, the "E(X1t" 1S prov1ded so that a choice can be

undone, 1f des1red. As before, the <what_f1le> nonterm1nal

prompts for the local f1lename or Fortran un1t number of the

output fl.le. The "pr1nt" nonterml.nals (exclud1ng <print_menu»

generate the appropr1ate batch commands. The "save" nonterml.nals

(excludl.ng <save_menu» prompt for permanent fl.lenames and

generate the appropr1ate batch commands.

The grammar for th1s appl1cat10n 1S about half the Slze of a

grammar for Pascal, counting the number of terminal symbols,

nontermlnal symbols, grammar rules, and parser states. A

prototype was developed rapidly and enhanced as the developers

better understood the batch command languages and the users

-15-

requested more options.

Such menu-based interfaces are merely spec1al cases of systems

Wh1Ch 1mplement a transit10n diagram. One interest1ng example 1S

the development of an intell1gent COCkP1t aid for aircraft

[Coll1ns 1985]. For such applications a translator program named

TD Converter was constructed which permits stylized natural

language in descr1blng the transltlon dlagram, which 1S then

converted automatlcally to a grammar. TD converter was, of

course, built uSlng a grammar-based parser.

-16-

s. TRANSLATORS

Another common applicat~on of parser generators is to build

translators of

students at our

various kinds, including comp~lers. For example,

university often are requ~red to bu~ld an

assembler ~n a course on computer organ~zat~on. The only exposure

of these students to grammars or syntax charts is l~mited to

learning Pascal; desp~te this, they use a parser generator to

construct their assemblers. We have found th~s approach to be

super~or to both the manual construct~on of assemblers and to the

use of meta-assemblers [Coll~ns 1983].

Assembly languages are qu~te dlstlnct ln structure from hlgh

level languages, and thus, pose dist~nct, but eas~ly solved

problems. F1rst, assembly languages tYP1cally have a slngle

statement per llne, wlth expl~c~t continuation convent1ons. Th1S

problem 1S eas1ly solved by hav1ng the grammar represent the

structure of only a slngle statement rather than the ent~re

program, w1th the parser be~ng called once per statement. One

advantage of th1S approach is that it simplifies syntact1c error

recovery. Expl1Cit continuatlon of statements across llne

boundarles 1S eas1ly handled ~n the scanner.

A second problem 1S that assembly languages are tYP1cally f~xed

format, with the following general form:

-17-

<label> <opcode> <operands> <comment>

Somet1mes the opcode, operands, and optional comment are

constralned to start in fixed columns. However, this problem is

aga1n eas1ly handled 1n the scanner.

A problem with several d1stlnct solutions is that trad1t1onal

assembly languages have no reserved words, yet knowledge of the

spec1f1c opcode 1S often crucial to further processing of the

statement. One approach often used 1n PL/I grammars is to allow

opcode names to appear expl1c1tly in the grammar, and also to map

the nonterminal <name> 1nto both the term1nal symbol <ldent>, as

well as any otherwise "reserved" names:

<operand> ::= <name>

• • •

<name> ::= <ldent>

<name> ::= LOAD

<name> ::= STORE

• • •

An alternatlve approach 1S to map the opcodes and pseudo ops into

angled term1nals ln the scanner:

-18-

<opcode> ::= <MACRO>

<opcode> ::= <LOAD>

<opcode> ::= <STORE>

•••

Yet another approach ~s to map the opcodes into classes in the

scanner based on the number and type of operands it requ~res.

Although all these approaches will work, we prefer the last one

since it results in a significantly smaller grammar and

corresponding parse tables.

The last problem ~s that the number and type of operands depend

on the opcode. For example, IBM 370 ~nstructlons [Struble 1975]

are dlvlded lnto storage classes, called register-reglster (RR),

reglster-storage (RX) , another reglster-storage (RS),

storage-immedlate (SI), and storage-storage (S5). The

opcode-operand formats for each of these classes ~s as follows:

<~nstr> ::= < RILop > <reg~ster> , <reg~ster>
<~nstr> · .-· .- < RX_op > <reg~ster> , <storage>

<instr> · .-· .- <R5_op> <register> , <reg~ster> , <storage>

<l.nstr> · .- <5I_Op> <storage> <immediate> · .- ,
<instr> · .- <55_op> <storage> <storage> .. - ,

We can combine all of these not~ons to produce a grammar for (a

part of) the assembly language for the IBM 370, as shown ~n FIgure

-19-

2. To this grammar we have added some simple semantics to update

the program counter, to define labels in pass 1, to generate code

in pass 2, etc. One of the advantages we have found to this

approach ~s that grammars are lnherently structured and modular.

Thus, ~t is a slmple matter to start with a subset grammar,

val~date lt on a subset of the test cases, and then expand either

the grammar or the semant~cs to ~nclude more and more of the

language being translated.

Other translators that have been developed us~ng a parser

generator ~nclude a code generator language [Donegan 1979), the

UNIX (Tm) make ut~l~ty [Feldman 1979), a database machlne

~nterface [F~shwick 1983), a ut~l~ty for typesetting mathemat~cs

[Kern~ghan 1975], etc.

<bal> ::= <stmt> <eoln>

pc := NewPC;

<stmt> ::= <comment>

<stmt> ::= <label> <~nstr>

if pass = 1 then

beg~n

-20-

NewSymbol (symbol, pc, <label>.idname);

DefineSymbol (symbol);

end;

<stmt> ::= <~nstr>

<~nstr> ::= <RR-op> <register> , <reg1ster>

begln

NewPC := pc + 2;

If pass = 2 then

GenerateRR «RR_op>.opcode, <register-l>.reg1ster,

<reg~ster-2>.register);

end; (* RR *)

<1nstr> ::= <RX_op> <reg1ster> , <storage>

beg~n

NewPC := pc + 4;

~f pass = 2 then

GenerateRX (pc, <RX_op>.opcode, <register>.reg1ster,

<storage>.1ndex, <storage>.base,

<storage>.address);

end; (* RX *)

-21-

<lnstr> ::= <RS_op> <reglster> , <reglster> , <storage>

begln

NewPC := pc + 4;

If pass = 2 then

GenerateRS (pc, <RS_op>.opcode, <reglster-I>.reglster,

<reglster-2>.reglster,

<storage>.base, <storage>.address);

end; (* RS *)

<lnstr> ::= <S1_op> <storage> , <lmmedlate>

begln

NewPC := pc + 4;

If pass = 2 then

GenerateS1 (pc, <S1_op>.opcode, <lmmedlate>.val,

<storage>.base, <storage>.address);

end; (* S1 *)

<lnstr> ::= <SS_op> <storage> , <storage>

begln

NewPC := pc + 6;

If pass = 2 then

GenerateSS (pc, <SS_op>.opcode, <storage-I>.length,

<storage-I>.base, <storage-I>.address,

<storage-2>.base, <storage-2>.address);

end; (* SS *)

<lnstr> ::= <unknown_op>

error (1llegalOpcode, <unknown_op>.ldname);

<reglster> ::= <number>

-22-

if pass = 2 then

<reglster>.reglster := <number>.val;

<storage> ::= <ldent>

If pass = 2 then

begin

FlndSymbol «storage>, <ldent>.ldname);

<storage>.base := BaseReg;

<storage>.lndex := 0;

end;

<storage> ::= <ident> (<base?> , <index?>)

If pass = 2 then

begln

FindSymbol «storage>, <ident>.ldname);

<storage>.base := <base?>.register;

<storage>.lndex := <lndex?>.reglster;

end;

(storage> ::= <ldent> (<base>)

If pass = 2 then

begln

FlndSymbol «storage>, <ldent>.idname);

<storage>.base := <base>.reglster;

<storage>.lndex := 0;

end;

<base?> .. -.. -
If pass = 2 then

<base?>.reglster := BaseRegi

<base?> ::= <base>

<base> ::= <reglster>

<lndex?> ::=

-23-

If pass = 2 then

<lndex?>.register := 0;

<lndex?> ::= <reglster>

Figure 2: IBM Assembly Language Grammar

-24-

6. PROGRAMMING LANGUAGE TOOLS

As noted by Glass [1982], the tYPlcal programmlng enVlronment

contalns very few tools.

dlsposal only complIers,

The average programmer has at h1S or her

ed1tors,

formatters (or word processors).

linkage ed1tors, and document

However, with the aid of a

parser generator a glven Installat10n can easily 1mprove the

sItuatIon. LALR(l) grammars eXIst for all the maJor programmlng

languages, Includlng Cobol and Fortran.

One such parser-based tool 1S a pretty pr1nter [Oppen 1980],

Wh1Ch 1S perhaps most useful 1n the malntenance phase,

part1cularly, of older, heavlly modlfied programs. Another useful

tool 1S a cross-reference program, whlch can easlly be developed

from a slmple parser and can be enhanced to compute var10US

software metr1cs, vlolatlons of lnstallatlon standards, etc.

However, If too many enhancements are wanted, such a proJect can

requlre almost as many resources as the bUlldlng of a complIer.

In fact, any set of enhancements whlch requlres the bUllding of a

complete symbol table for the language belng supported may be too

ambltlous for a slmple support tool.

Fortunately, Browne [1978] has shown a slmple, yet effectlve

way out of thls dllemma. For the language under cons1deratlon you

deflne a set of relations whlch capture the lmportant semant1c

aspects of the language. Then, a slmple table-dr1ven parser can

be used to

analyzed.

can then

-25-

bu~ld a relat~onal database for the program be~ng

The query language for the relat~onal database system

be used to check for v~olat~ons of installat~on

standards, f~nd uses of part~cular ~dent~fiers, produce management

reports, etc. Such an approach is surpr~s~ngly effective.

Cons~der the case of build~ng a simple cross referencer for

Pascal. One of the problems ~n Pascal is that a name, such as

"x," may not be un~que; there may be several var~ables, a type, a

procedure, etc., all named "x." One s~mple way to handle th~s is

to keep a very s~mple symbol table ~n the database constructor.

The symbol table ~tself can be kept as a stack of binary search

trees, w~th one tree per scope level. Scopes are created

(deleted) by push~ng (popp~ng) a level onto (off of) the stack.

Other than the ldentlfier def~ned, almost no other ~nformat~on

need be kept. Then each ~dentif~er can be referenced by a (scope,

ldentlfler) palr, where each scope ~s g~ven a un~que number.

Slmllarly, statements cannot be uniquely ldent~f~ed by the line

they are on, Slnce Pascal allows mult~ple statements per l~ne.

It, thus, seems best to uniquely number each statement, as well as

recordlng the exact pos~t~on (l~ne and column) of the statement ~n

the program.

Flgure 3 g~ves a grammar fragment for bu~lding some of the

needed relations. The "define" routines hlde the detaIls of the

-26-

interface to the relatlonal database system used. The

"lookupname" routlne searches the symbol table for the ldentlfler

and returns the unlque scope number for the ldentifier referenced.

Other uses of a language parser include augmentlng the language

with some needed facllity. These mlght lnclude adding relatlonal

database constructs, graphlcs primitives, etc. Such additlons

would then be mapped into calls to varlOUS runtlme support

routlnes. ThlS approach allows for hldlng the complexlty of

dealing wlth certain subroutine packages.

-27-

<whlle_stmt> ::= <whlle_clause> do <stmt>

<whlle_clause> ::= <whlle> <expr>

begin

definestmt (stmtno, <whlle>.llneno, <whlle>.column,

whlleclause, staticscope);

(* relatlon stmt(stmt', Ilne', column., stmt_type,

staticscopei) *)

stmtno := stmtno + 1;

end;

<whlle> ::= whlle

usagekind := reference;

<expr> ::= <slmple_expr>

<expr> ::= <slmple_expr> <relop> <slmple_expr>

. . .
<varlable> ::= <ldent>

begln

lookupnarne «ldent>.narne, scope);

deflnenameusage «ldent>.narne, scope, strntno,

<ldent>.lineno, <ldent>.column, usageklnd);

end;

(* relatlon nameusage (name, statlcscope', strnti,

llne', column., usage_klnd) *)

Flgure 3: Pascal Cross Reference

-28-

7. CONCLUSIONS

In our env1ronment we have found the parser generator to be

extremely useful as a general appl1cat1on generator. It has been

used to develop both end-user appl1cat10n programs and var10US

software tools. We have found that a parser generator can be

effect1vely used by programmers having only a knowledge of

grammars and no tra1ning at all 1n the theory of formal pars1ng.

In part1cular, much of the power of the parser generator has

been unleashed by the development of skeletal parsers targeted at

part1cular appl1cat10n areas. At our un1vers1ty these 1nclude:

two compiler skeletons,

a two pass assembler,

a three pass assembler,

the query skeleton,

the menu skeleton,

two skeletons used for code generat1on.

We have enhanced these skeletons to fac111tate debugging by those

unfam111ar w1th pars1ng theory. Our students have found that the

t1me and effort needed to learn to use these tools are well worth

the 1nvestment.

-29-

NOTES

Metaware is a trademark of Metaware, Santa Cruz, Ca.

UNIX 1S a trademark of AT&T Bell Laborator1es.

-30-

8. REFERENCES

1. Aho, Alfred V., and Johnson, Steven C. LR parsing, Computing

Surveys, 6, (June 1974), 99-124.

2. Aho, Alfred V., and Ullman, Jeffrey D. Principles of ComplIer

Deslgn. Addison-Wesley, 1977.

3. Anderson, T., Eve, J., and Hornlng, J. J. Efflclent LR(l)

parsers. Acta Informatica, 2 (1973), 12-39.

4. Aus~lng, Richard H., et. ale Curriculum '78:

recommendations for the undergraduate program in computer

science -- a report of the ACM Curriculum Commlttee on

Computer Science. CACM, 22 (March 1979), 147-165.

5. Barrett, William A., and Couch, John D. ComplIer

Construction: Theory and Practice. SRA, 1979.

6. Berger, W. F. BOBSW 3.0 -- a parser generator. UnlV. of

Texas at Austin Technical Report 87, (November 1978).

7. Browne, J. C., and Johnson, DaVid B. FAST: a second

generation program analysis system. Proceedings of 3rd Intl~

Conf. on Software Engineering. (May 1978), 142-148.

-31-

8. Campbell, Roy H., and K~rsl~s, Peter A. The SAGA proJect: a

system for software development. SIGSOFT/SIGPLAN Sympos~um on

Pract~cal Software Deyelopment Eny~ronments, (Apr~l 1984).

9. Coll~ns, w. Robert, Kn~ght, John C., and Noonan, Robert E. A

translator wrlt~ng system for mlcro-computer hlgh-level

languages and assemblers. NASA-AIAA Workshop on Aerospace

Appl~cat~ons of M~crocomputers, (November 1980), 179-186.

10. Collins, W. Robert, Noonan, Robert E., Gregory, Samuel T.,

Knlght, John C., and Hamm, Roy W. Comprehensive tools for

assembler construct~on. Software -- Pract~ce and Exper~ence,

13, (1983), 447-451.

11. Coillns, W. Robert, and Feyock, Stefan. Syntax programmlng,

expert systems, and real-t~me fault d~agnos~s. Proceed~ngs of

the 1985 Eastern Slmulatlon Conference, (March 1985).

12. DeRemer, F., and Pennello, T. J. The MetaWare (Tm) TWS

User's Manual. MetaWare, Santa Cruz, Ca., 1981.

13. Donegan, Mlchael K. , Noonan, Robert E., and Feyock, Stefan. A

code generator generator language. SIGPLAN Symposlum on

ComplIer Constructlon, (August 1979), 58-64.

14. Feldman, S. I. Make -- a program for malntalnlng computer

programs, Software

255-265.

-32-

Pract1ce & Experience, 9 (Aprll 1979),

15. Fischer, Charles N., et. ale The Poe language-based edltor

proJect. SIGSOFT/SIGPLAN SYmP0s1um on Practlcal Software

Development Environments, (Apr11 1984).

16. F1Shw1Ck, Paul A. HILDA: The Flexlble Des1gn and

Implementatlon of a Database Machlne Executive. MS thesls,

College of Wllllam and Mary, 1983.

17. Ganapathl, Mahadevan, and Flscher, Charles N.

Descr1ption-driven code generation using attribute grammars.

Nlnth Annual ACM Symposlum on Princ1p1es of Programm1ng

Languages, (January 1982), 108-119.

18. Glanvllle, R. Steven, and Graham, Susan L. A new method for

compller code generatlon. Fifth Annual ACM SYmP0s1um on

Prlnclples of Programm1ng Languages, (January 1978), 231-240.

19. Glass, Robert L. Recommended: a minlmum standard software

toolset. ACM Software Eng1neer1ng Notes, 7 (October 1982),

3-13.

20. Jensen, Kathleen, and Wirth, N1klaus. Pascal User Manual and

Report. Sprlnger-Verlag, 1975.

-33-

21. Johnson, S. C. Yacc -- Yet another comp~ler-comp~ler. llNLl

Programmer's Manual. Bell Laboratories, (January 1979).

22. Kaye, Douglas R. lnteract~ve Pascal input. SIGPLAN Not~ces,

15 (January 1980), 66-68.

23. Kern~ghan, Brian K., and Cherry, Lorinda L. A system for

typesett~ng mathemat~cs. ~,18 (March 1975), 182-193.

Robert. 24. Noonan, Robert E., and Coll~ns, W.

(v. 7.2): Parser Generator Gu~de.

Mary, 1984.

College

The Mystro System

of W~ll~am and

25. Noonan, Robert E., and Coll~ns, W. Robert. Construct~on of a

menu-based system, Software Pract~ce

appear, 1985). Also lCASE Report No.

Langley Research Center, Hampton, VA.

& Exper~ence, (to

85-16, lCASE, NASA

26. Oppen, Derek C. Prettyprlnt~ng. Trans. on Programming

Languages and Systems, 2 (October 1980), 465-483.

27. Struble, George W. Assembler Language Programmlng: the IBM

System/360 and 370, 2nd ed~tion. Addison-Wesley, 1975.

28. Walte, Wllllaffi M., and Goos, Gerhard. Comp~ler Construct~on.

Sprlnger-Verlag, 1983.

-34-

29. Wetherell, e., and Shannon,

generator and LR(l) parser.

1981), 274-278.

A. LR

IEEE Trans.

automat1c parser

Soft. Engr., 7 (May

End of Document

