leanvakh icndD—100CAN2C200 202N N2 INTAL-CL-0D 100007

brought to you by .{ CORE

A Litoo:llntve noco cons

View metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

NASA Contractor Report 177961
ICASE REPORT NO. 85-35 NASA-CR-177961

- TCASE

REORDERING COMPUTATIONS FOR PARALLEL EXECUTION

Loyce Adams ot

AFOSR 85-1089 and NAS1-17070

July 1985

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langlev Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

- FILIADY 2 an
CHARIY LurY
NAS,\ SEP25 1085

National Aeronautics and .

Space Administration SCLEE RESEARCH CEMgw

LISRARY, 144S4

Langiey Research Center . e HAS
oo vranazerss (NININIINIR @
L NFOO71444444«7

https://core.ac.uk/display/42844065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

ICASE Report No. 85-35

Report No 2 Government Accession No

NASA CR-177961

3 Recipient’s Catalog No

4 Title and Subtitie

REORDERING COMPUTATIONS FOR PARALLEL EXECUTION

5 Report Dete

€ Performing Organization Code

Author(s)
Loyce Adams

8 Performing Organization Report No
85-35

10 Work Unit No

Performing Orgamization Name and Address

Institute for Computer Applications in Science
and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665

P IR
NAS1-17070

13 Type of Report and Period Covered

Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, D.C. 20546

14 Sponsoring Agency ﬁ

505-31-83-01

Supplementary Notes

Langley Technical Monitor:
J. C. South Jr.

Final Report

Submitted to Communications for
Applied Numerical Methods

Abstract

In this paper we show how to reorder the computations in the SOR algorithm
to maintain the same asymptotic rate of convergence as the rowwise ordering and
A parallel program is writtem to
1llustrate these ideas and actual machines for implementation of this program

to obtain parallelism at different levels,

are discussed.

17 Key Words (Suggested by Author(s))

successive overrelaxation, parallel
algorithms, parallel programming,
multicolor algorithms, vector computers

18 Distnibution Statement

61 - Computer Programming & Software
64 — Numerical Analysis

Unclassified - Unlimited

19 Secunity Classif (of this report)

20 Secunty Classif (of this page)

Unclassified Unclassified

21 No of Pages
19

22 Price
AQ2

N-305

For sale by the National Techmical Information Service, Springfield, Virginia 22161

REORDERING COMPUTATIONS FOR PARALLEL EXECUTION

Loyce Adams

University of California, Los Angeles

ABSTRACT
In this paper we show how to reorder the computations in the SOR
algorithm to maintain the same asymptotic rate of convergence as the rowwise
ordering and to obtain parallelism at different levels. A parallel program is
written to illustrate these ideas and actual machines for implementation of

this program are discussed.

Research was supported in parc by the Air Force Office of Scientific
Research under Contract No. AFOSR 85-1089 and in part by the National
Aeronautics and Space Administration under NASA Contract No. NASI-17070 while
the author was in residence at the Institute for Computer Applications in
Science and Engineering, NASA Langley Research Center, Hampton, VA 23665.

1. Introduction

The effective implementation of a numerical method on a vector computer requires the computations to be
ordered to allow vector operations. On computers with multiple processing elements, or with multiple instruction
streams, the operations must be ordered in a way that permits them to be divided into groups that can execute in
paralle] with minimal communication. Since the ordering that results in either case is usually different from an
ordering that would be used when implementing the method on sequential computers, we say that the operations
have been reordered to achieve parallelism. (See Voigt[1985] for a description of four paradigms for achieving
parallelism).

Using reordering of operations as a paradigm for obtaining parallelism leads to two major problems if not
properly controlled. Firstly, we are unlikely to develop an ordering that is best for every new parallel computer
that 18 built or porposed. Instead, we would like to find an ordering that permits us to express through the seman-
tics of a paralle]l programming language the levels of parallelism we wish to obtain. Then, if this language can be
effectively implemented on the actual architecture, our algorithms will be portable. Secondly, ordering the compu-
tations mn different ways can change the mathematical properties of the algorithm. For example, convergence rates
of 1terative methods or roundoff error of gaussian elimination may be different when the computations are done in
different orders. Hence, we would like orderings that satisfy some mathematical rule as well as provide parallel-
ism.

In section 2, a procedure is demonstrated for finding an ordering for the SOR (Successive Overrelaxation)
method that yields the same asymptotic convergence rate as an ordering that is often used on sequential comput-
ers. In section 3, we show how to group the operations and how to store the data within groups to achicve paral-
lelism at two different levels. In section 4, we use PISCES Fortran, see Pratt[1985], to code the algorithm and
hence express the parallelism that was described in section 3. This PISCES program is used to show the parallel-
ism that may be obtained in the communication as well as the arithmetic in the algorithm. But just as important,
this program points out the operations that must be or are currently being performed in sequence, thereby indicat-

ing the overhead costs or areas for improvement in the algorithm. In section 5, we indicate what architectures our

algorithm can be implemented on by simply interpreting what the PISCES semantics would mean on these architec-
tures The hope is to convince the reader by writing only one program that the ordering, the grouping of opera-
tions, and the storage strategy within each group that was given in section 3 can be effectively implemented on a

variety of architectures.

2. A Parallel Ordering for SOR
Suppose the system of linear equations,
Au=h 1)

with A symmetric and positive definite, has arisen from a discretization of an elliptic partial differential equation
on a rectangular domain with the 9-point stencil as shown in Figure 1.

x x x x x x X x x x

Sé
b 4 o [~] o] 0 | o o X

o
xoooo/L\oooxxilhoundarynode

x x x X X x x x x x

x o o o o [+ o x

Figure 1. Discretized Problem Domain

For simplicity assume there is one unknown per grid node and that Dirichlet boundary conditions are imposed.

We wish to solve system (1) by the SOR method.

The first job is to order the unknowns at the nodes in Figure 1 to indicate which nodes must be updated
before others. An “ordering” implies that the nodes must update sequentially. So instead, we would like to color
the nodes, see Adams and Ortega[1982], so that nodes of the same color may update simultancously. Then, the
"ordering” is by colors with nodes of a given color ordered arbitrarily. This implies that two nodes can not be the
same color if they are on the same 9-point stendil. It is easy to show that for this stendil, only three distinct four-
color topologies can be used to color the nodes. These are shown in Figures 2a, 2b, and 2c below (the color pat-

tern repeats beyond the region shown)

G O R B O B O B G 0 G O
R B G O G R G R R B R B
G O R B B O B O G 0 G O
R B G O R G R G R B R B
Figure 2a. Figure 2b. Figure 2c¢.

For each figure above, we can order the colors in 4!=24 ways. Hence, there are 72 different orderings we could
choose, and the asymptotic convergence rates may be different for some of these orderings.

To aid in choosing an ordering, we require our ordering to have the same asymptotic convergence rate as a
baseline ordering; for example, the rowwise ordering of the domain -- bottom to top, left to right. This rowwise
ordering is depicted by the stendil rule in Figure 3.

o o [«]
k\r / x
k+1/{i?\:
!
k+1 k+1 k+1

Figure 3. Stencil Rule for Rowwise Ordering

Thus figure indicates that a node may not be updated on iteration k+1 until all nodes on the same stengil to the left
and below have been updated on iteration k+1 and that values from iteration X must be used for nodes on the
same stendil to the right and above.

Adams and Jordan[1984] give a systematic procedure for finding a particular 4-color ordering for thus stencil
that gives the same asymptotic convergence rate as the rowwise ordering. This strategy was also shown to produce
multicolor orderings for many other stencils as well. The idea is to apply the stencil rule of Figure 3 to the grid in
Figure 1 but permit nodes to update on subsequent iterations as soon as the appropriate data is available. This
strategy leads to a sequence of update times for each node as shown in Figure 4.

R B G o) R B G (o]
5,9 6,10 7,11 8,12 9 10 1 12
G o R B G (o) R B
3,7,11 4,8,12| 5,9 6,10 7,11 8,12 9 10
R B G (o] R B G o

1,5,9 2,6,10 3,7,11 4,8,12| 5,9 6,10 7,11 8,12

Figure 4. R/B/G/0 Coloring and Ordering

Figure 4 consists of three distinct sets of nodes. Those in the first set are on the third iteration while those in the
second set are on the second iteration while those in the third set are on the first iteration. We simply color all
nodes with the same sequence of times the same color, and order the colors by the update times in the first set;
that 1s, R/B/G/O are colors 1/2/3/4 respectively. On parallel computers, we will not process by the update times in
Figure 4, but instead, the R nodes will be updated across the entire domain, followed by the B nodes, the G
nodes, and finally the O nodes This ordering is one of the 24 orderings depicted in Figure 2a. In the next sec-
tion, we show that this ordering permits us to group the operations and store the data within group to achieve

parallelism at two different levels.

3. Grouping Nodes to Tasks and Task Data Storage

The nodes with the coloring shown in Figure 4 must be grouped into tasks that can run simultaneously. It is
desirable to have an equal number of each color of nodes in each task so that all tasks can update nodes of the
same color simultaneously. It 1s also desirable for programming considerations to have the same color pattern in
each task. Figure 5 shows the unknowns grouped into 3 rows and 3 columns of tasks. Each task has a unique

number (it,jt) as shown to indicate it is in the ir—¢h task row and the jt—th task column.

(3,1 (3,2) (3,3)
xB8 | G 0 R B/ |6 0 R B |G O R B| Gx
x0O |[R B 6 Ol IR B 6 O| |R B G O Rx
x8 |6 O R B| |G O R B/ |G O R B Gx
x0 |[R B G Of IR B 6 O/l |R B G O Rx
{(2,1) (2,2) (2,3)
x8 |G O R B| 6 0 R B| |G O R B| Gx
x |R B 6 O (R B G Ol |[R B 6 O| Rx
x8 ({6 O R B/ |G 0O R Bl |G O R B| Gx
x {R B G O/ |[R B G Ol [R B G O| Rx
(1,1) (1,2) (1,3)
xB (6 0O R B/ |I6G O R B/ [G O R B| Gx
xX |[R B G O/ |[R B 6 O |R B 6 O| Rx
x8 |6 0O R B/ |G O R B/ |6 O R B| Gx
x |[R B 6 O/ |[R B G O /R B G O] Rx

Figure 5. Grouping of Nodes to Update Tasks

Next, we must deade upon a storage scheme for the unknowns, , the right hand side b, and hence the coefficient
matrix A, within each update task. We want to insure that a task can run on a vector computer as well as a
sequential one because in the near future we are likely to have multiple processor systems for which each processor
1s a vector computer. Figures 6a, and 6b show two possible storage schemes for the unknowns in the (2,2) task of

Figure 5 that permit vector operations within a task.

0O R B G O R 0O R B G O R
31 32 33 34 35 36 35 8 18 27 36 9
B! G O R B| G B !G O R B| G
25 |26 27 28 29} 30 16 25 34 7 17 | 26
O|/R B G O R O R B G O| R
19 |20 29 22 23| 24 32 5 15 24 33 6
B|G O R B G B |G O R B| G
13 |14 15 16 17} 18 13 22 3N 4 14|23
O{R B G O| R O R B G O] R
7 8 9 10 11§ 12 29 2 12 21 30 3
B 6 O R B G B 6 O R B G
1 2 3 4 5 6 10 19 28 1 11 20

Figure 6a. Constant Stride Figure 6b. Contiguous

The nodes within the box are unknowns the (2,2) task 1s to compute. The nodes around the box are neighbor task

unknowns that must be known at particular times in the iteration; hence, they must be stored

In Figure 6a, we number all nodes consecutively from 1 to 36, wrapping around from row to row In gen-
eral, if we have tr rows and 7c columns of nodes (including neighbor border nodes) we will store y as a #*/c hnear
vector. Notice that by including the neighbor task’s nodes in this storage scheme, nodes of the same color are a
constant stride apart in memory (the stride is nc the number of colors). This means on a vector computer that
allows a vector to be storage locations a constant stride apart, we may vectorize the updating of nodes of a given
color within a task This would require the coefficients of A for this task to be stored as a two dimensional array,
A(tr*tc,ns+1) where ns+1 represents the 9 stenal locations, the last one being for the diagonal element Of
course, at the end of updating a given color, we must reset the border nodes back to their onginal value since they
were updated only to permut the computation to be vectornized. A control feature hike that of the CYBER 205 can
be used to prolubit these nodes from actually being updated. Notice that the nodes of the same color are also a
constant stride apart 1n the vertical direction, namely, a stride of 2*tr. Therefore, if a control feature 1s not avail-
able, the resetting of values can be done by vector operations, since the nodes that require resetting form a vector
Because nodes of the same color are a constant stride apart in both directions, updated values may be packaged as

a vector to be sent to appropnate neighbor tasks and in turn the neighbor tasks can store the values as vectors

Figure 6b shows the storage of unknowns for vector computers that require a vector to be a continuous set of
storage locations Notice all R’s are numbered furst, followed by all B’s, etc, since unknowns must be processed
the same way they are stored The matrix A must be simulanily orgamzed Note that in the vertical direction,
nodes of the same color are not contiguous Therefore, we would expect to have more overhead in packaging

values to be commumcated to neighbors

At this point 1s 1t worth commenting that the colornng in Figure 2c does not permut vectorization at the task
level for erther constant stnde or contiguous vectors So, if some mathematical rule had selected the coloring of
Figure 2c, we mught backtrack and settle for other mathematical properties in order to achieve more parallelism

There is always this tradeoff.

4. A PISCES Program for the R/B/G/O SOR Algorithm

PISCES (Parallel Implementation of Scientific Computing Environments), see Pratt{1985], is a lugh-level pro-
grammng environment for a carefully speafied virtual parallel computer. It may be thought of as a parallel pro-
gramming language (in the semantic sense) for the PISCES virtual computer. Programs wrtten in PISCES FOR-
TRAN may be run efficiently on various actual parallel computers if there is an effiaent match between the virtual
and real computers. This 1s analogous to saymng that programs written in FORTRAN may be run effiaently on
many sequential computers since the FORTRAN wirtual computer may be efficiently mapped onto many actual
sequential machines. For our purposes, the PISCES virtual computer views parallel computing the following way
(For a prease definition, see Pratt[1985]).

(1) Tasks are complete programs There 1s no shared data between tasks.

(2) Tasks can initiate other tasks. The initiator is the parent. Tasks communicate to other tasks by message
passing. Only a task knows its own 1d number. A task can only communicate to another task if the 1d
number of the other task 1s known; hence, a task must give its id number to other tasks if messages are to be

received from these tasks

(3) Tasks accept messages by the message-type, not by any properties of the message sender A task may only
accept a message of a given type if the task has a handler (a special subroutine) capable of processing mes-

sages of thus type.

(4) Tasks and their handlers can run on different processors, but they must communicate through shared

memory via the FORTRAN Common block

(5) Finer grains of parallehsm can be obtained within a task Statement level parallehsm is obtaned via the
parbegin-parend construct; parallehsm across instances of a do loop 1s obtained with the pardo-continue con-

struct, and parallelism at the operation level 1s obtained via vector operations.

We now descnibe the PISCES program of Figure 7 for the SOR algonthm that uses the ordering of Figure 4,

the grouping of Figure 5, and the storage scheme of Figure 6a. The program has two types of tasks. a parent task

and an update task for each group of nodes in Figure S.

The first job of the parent task 1s to initiate all the nr*ntc update tasks, each with 1ts own data, its logical
identification number (i,7) and 1ts starting and ending rows (is and te), and 1ts starting and ending columns (js and
Je) of nodes. These rows and columns include the border nodes from neighbor update tasks as shown in Figure 6.
These imtiations may be done in parallel if enough processors are available on the actual hardware; otherwise the

pardol and pardo2 loops can be changed or interpreted as ordinary sequential do loops

Since the true physical 1dentification numbers of the update tasks are not known until these tasks begin exe-
cution, and since these tasks will need to communicate with each other, they must exchange 1ds. An easy way to
accomphish this 1s to send their 1ds to the parent task and in turn the parent task collects the 1ds and then broad-
casts the result back to all the update tasks. Now, the parent accepts the 1ds as ner*ntc messages of type idennty
The handler identity reads the data that is sent into the parameter list like a read statement. Thus, the 1ds sent are
stored by this handler in the array fidset (of type taskid) which 1s 1n memory common wath the parent task The
parent waits until all 1ds have been stored in the array ndset and then sends a message of type nd to all the update

tasks for their future use

The parent task then enters the SOR iteration loop and waits for ntr*atc total local convergence messages,
either type converge or type noconv, which are sent each iteration by the update tasks. to be accepted by the
handler noconv or to be counted as a signal if the type is converge (Signals are speaal messages that requre no
processing by a handler.) These two types of messages can be accepted simultaneously since they are waithin the
same accept statement, that 1s, the noconv handler could be runming on a different processor than the task that is
accepting signals If the variable global 1s true at the end of an iteration, the parent task exits the iteration loop
and waits for the answers that are sent by each update task to be accepted by the answers handler The answers

which are now stored 1n the g array are written to a file and the parent task termunates

We note that all instances of a given handler can execute in parallel For example, all ntr Xnic idennty mes-
sages can be received at once, provided enough processors are available There 1s always the cost consideration of

whether obtaiming all the parallehsm inherent in the algonithm actually saves time The point here 1s that this

parallelism 1s expressable and parameter studies could be done to determine for what machines 1t 1s worthwhile and

the implementation of PISCES adjusted accordingly.

Next, we turn to the description of an update task. This task first sends its physical 1d (pppslf) back to the
parent task n a message of type identity and then waits until handler #id has accepted from the parent and stored
the task ids of all other update tasks. An update task only needs to communicate to nhbs other update tasks
whose logical ids are stored in neigh(nhbs,2). Notice that the task ids of all the update tasks are stored in taskid
even though not all will be used. This is because it is probably less time consuming for the parent task to send all

the 1ds rather than to package and send individually to each task just what is needed.

The update task now begins the SOR 1teration loop 100, and the loop 200 over the number of colors, nc
Each time through the 200 loop, the task processes all nodes of the same color assuming the storage arrangement
in Figure 6a. The notation temp(st;sp;nc)=0 means that locations of the linear array temp beginmng in location st,
ending in location sp with stride nc are set to zero as a vector operation. Likewise, A(st;spyic,nst) means all rows
starting with row st ending with row sp, incrementing by stride nc, with column nst fixed are processed as a vec-
tor Note that the anthmetic in the algorithm within a task vectorizes in statements 201-203, and a vector dot pro-

duct 1s done in statement 204

After the values of a given color have been updated, the border values of thus color are sent to appropriate
neighbors Ths is done for each neighbor in parallel with the pardo 300 statement. The update task retrieves the
package to be sent as a vector with starting location st(ne), stopping location sp(ne), and stride inc(ne) and the
neighbor’s handler stores the package as a vector with starting location nest(ne), stopping location nsp(ne), and
stride mnc(ne) Of particular note 1s the type of message sent; namely, ncolors.uvals. There are nc different u
value handlers, one to deal with messages of each color from all the update tasks. Only instances of handlers for a
given color can work in parallel since a task must accept all R’s before the B’s can be accepted for the next itera-
tion The reason for having nc different handlers to accept the u values instead of only one 1s not for parallehsm,
but rather to ensure correctness and simplcity of the program. That is, if all messages were of type uvals and a

neighbor update task operates faster and sends a message with B values, this message could be counted in the

10

total. In this case, all R values would not be accepted before the update task begins to compute B values. That 1s,
we can not be guaranteed that messages arnve in the same order they are sent, but by accepting only messages of
the type ncolors uvals we are guaranteed that all our fotal messages are R ones on the first pass through the 200
loop. Of course, we could add a data field to indicate color to messages of type wvals This would require more
processing to examune the messages and more storage to save messages of the wrong color until they are needed,

thereby adding to the complexity of the program.

After all colors have been processed, the local error 1s determined as a dot product er’er in statement 204
The task then sends a message of type converge or noconv to the parent and awaits the deasion. The parent sends
this decsion as a message of type convflag which handler convflag records in the vanable global. If converged, the

update task sends its &r*tc y values back to the parent with a message of type answers; otherwise, the next iteration
begins
These programs show the levels of parallehsm that are achievable with the R/B/G/O ordenng, the grouping

of unknowns, and the data storage scheme withwn a task that were given in Figures 4, 5, and 6a respectively. This

parallehism can be broken into parallel anthmetic and parallel communication as summarized below

Parallel Arithmetic

(1) Nodes in different tasks update simultaneously

(2) Nodes of the same color within a task can execute simultaneously, probably as vector operations
Parallel Communication

(1) Al update tasks can be imtiated simultaneously

(2) The parent accepts the task ids in parallel from the update tasks. The update tasks can then accept the

broadcasted result simultaneously

(3) The parent accepts convergence information from the update tasks in parallel. The broadcasted convergence

deasion may be accepted 1n parallel by the tasks.

11

(4) Updated values can be sent to neighbors simultaneously.

(5) Values of the same color may be accepted from all neighbors simultaneously.

(6) Answers send back in parallel from the update tasks can be accepted in parallel by the parent.

However, the algorithm pownts out where sequential operation seems to prevail.

Sequental Arithmetic

(1) The dot product is partially sequential and can be more costly than vector multiplication, for example, on
vector machines. The dot products are done in paralle] across tasks.

(2) Starting and stopping indices must be computed within each task, but are done in parallel across tasks.

5. Possible Architectures for Implementation

The PISCES program that was described in the last section shows that the R/B/G/O SOR algorithm can be
run on different parallel computer architectures. We conclude by mentioning four types of architectures and the

proper interpretation of the tasks and handlers for these architectures.

(1) If only one task 1s defined and the vector operations are converted to do loops, no handlers are needed and

the result is the sequential machine algorithm.

(2) If only one task 1s defined and the vector operations remain, no handlers are needed and the result is a con-
stant stride vector program that could run on the CRAY, for example. (Syntax would need repairing, but

the semantics are the same)

(3) Assume a task and 1ts handlers run on the same processor and that we have many tasks and many processors.
Also assume that each processor is a scalar processor and that the processors do not have shared memory,
but are connected by some interconnection network. Then, if the interconnection network 1s that of the
hypercube, for example, our algorithm will run on Caltech’s Hypercube. If instead, the interconnection net-
work 1s that of a flat 8 nearest neighbor connection, the algorithm will run on NASA Langley’s Finute Ele-

ment Machine.

12

(4) If we relax the requirement that tasks can not have shared memory (deviating from PISCES), and let several

)

tasks run on the same processor in multiple instruction stream fashion (pipelined MIMD), we see that our
algonthms can be run on the Denelcor HEP with one or multiple PEMs The accept statement would be
analogous to synchronization through a shared variable; since, for example, a task would only need to wait

until R values were updated by all tasks (HEP proceses) before the updating of B values 1s begun

To actually realize all the levels of parallehism in our algorithm, we will have to wait unti novel architectures
compnised of many processors, are available Some of the processors would be vector processors for the
update tasks while others would be scalar processors for the handlers and the parent task Since the proces-
sor for an update task and the processors for the the update task’s handlers require shared data they could be
connected to a shared memory. A communication network mught be used to connect different update

processor/handler processor clusters

13

tasktype parent

parameter (ntrs ,ntes ,n= ,maxiters ,<other parameters>)
common /withidentity/ tidset

common /withnoconv/ global

common /withanawers/ u

real u(n,n),<other real declarations>
integer <integer declarations»>
taskid tidset(ntr,ntc)

handler noconv,answers,identity
signal converge

end declarations

#initiate the ntrsntc update tasks
pardo 1 i=1,ntr
pardo 2 j=1,ntc

i8(1,3)= , le(i,]j)~

ja(i,J)= , Je(i,))=

on same initiate update(i,j,is(i,j),ie(i,]),Is(4,]),Je(i,)),<other data>)
2 continue
1 continue

saccept the task ids of the tasks and send results back to all update tasks
accept (ntrsntc)
identity
end
to all send tid(((tidset(i,3j),i=1,ntr),3j=1,ntc))

s+begin the iteration
do 100 iter=1,maxiter
globals.true
accept (ntrsntc) of
converge
noconv
end accept
to all send convflag(global)
if (global) then go to 3
100 continue

saccept the answers from all the tasks
3 accept (ntrsntc)
ansvers
end accept

swrite the answers to file 6
pardo 4 i=1,n
write(6,+)(u(i,j),J=1,n)
4 continue

stop
end

Figure 7. PISCES Program (continued on next 3 pages)

handler noconv

common /withnoconv/ global
logical global

end declarations
globals.false

return

end

handler identity (it,jt,tidset{it,jt))
parameter (ntrs ,ntcs)

common /withidentity/ tidset

integer it,jt

taskid tidset(ntr,ntc)

end declarations

return

end

handler answers (is,ie,Jjs,je,((u(i,j),i=is,ie),j=js, je))
parameter (ns)

common /withanswers/ u

integer is,ie,Jjs,je

real u(n,n)

end declarations

return

end

14

15

tasktype update(it,jt,is,ie,js,je,<task’s other data>)
parameter (ntrs ,ntcs ,trs ,tcs ,ncs ,w= ,nss ,nbhs= ,maxiters ,<task’s other parameters>)
common /withtid/ tidset
common /withconvflag/ global
common /withuvals/ u
integer it,Jjt,is,js <other integer declarations>
real u(trstc), b(trstc), A(trstc,ns+1),stencil(ns),neigh({nhbs,2),<others>
logical global
taskid tidset(ntr,ntc)
signal done,converge
handler tid,convflag,(k.uvals,k=1,nc)
end declarations

+ retrieve task ids of other update tasks
to parent send identity(it, jt,pppslf)
accept

tid
end accept

+begin the iteration
do 100 iter=1,maxiter
do 200 ncolorss=1,nc
stw , sp=
201 temp(st;sp;nc)=0
do 202 nst=1,ns
temp(st;sp;nc)stemp(st;sp;nc)+A(st;sp;nc,nst)su(st+stencil(nst);sp+stencil(nst);nc
202 continue
<reget temp to be u at the boundary nodes>
temp(st;sp;nc)s(b(st;sp;nc)~-temp(st;spinc))/A(st;sp;nc,ns+1)
er(st;sp;nc)stemp(st;sp;nc)-u(st;sp;nc)
203 u(st;sp;nc)=wstemp(st;sp;nc)+(1-w)stemp(st;:sp;nc)

ss8end appropriate u values of this color to all neighbors
pardo 300 ne=1,nbhs
num(ne)w
if(num(ne).ne.0)then
st{ne)s ,sp(ne)s ,inc(ne)s
nest(ne)= ,nap{ne), ninc(ne)=
to tidset(neigh(ne,1)+it,neigh(ne,2)+jt) send ncolors.uvals
(nest(ne),nsp(ne),ninc(ne),(u(i),isst(ne),sp(ne),inc(ne)))
endif
300 continue

saccept (total) messages of type ncolors.uvals from any neighbor
totals
accept (total)
ncolors.uvals
end accept

200 continue

acheck for local and then global convergence

esdot(er,er)
if (e.lt.eps) then

to parent send converge
else

to parent send noconv
endif

saccept convergence decision from parent

accept
convflag
end accept

+if converged then exit iteration loop

100

+gend
5

if (global) then go to 5
continue

answers back to parent

to parent send answers (is,ie,js,je,(u(i),is1,trstc))
stop

end

handler tid (((tidset(i,j),i=1,ntr),3j=1,nte))
parameter (ntrs ,ntrs)

common /withtid/ tidset

taskid tidset(ntr,ntc)

end declarations

return

end

handler convflag(global)
common /withconvflag/ global
logical global

end declarations

return

end

handler k.uvals (st,sp,inc,(u(i),i=st,sp,inc))
parameter (trs ,tcs, ncs)

common /withuvals/ u

integer st,sp,inc

real u(tr,tc)

return

end

16

REFERENCES

Adams, L.M., Ortega, J.M. [1982]. "A Multi-Color SOR Method for Parallel Computa-
tion,"” Proc of the 1982 Intl. Conference on Parallel Processing, IEEE Catalog
No. 82CH1794-7, August, pp. 53-56.

Adams, Loyce M., Jordan, Harry F. [1984]. "Is SOR Color-blind?", ICASE Report No.
84-14. Accepted, Siam Journal on Scientific and Statistical Computing.

Pratt, Terrence W. [1985] “PISCES: An Environment for Paralle] Scientific Computa-
tion,” ICASE Report No. 85-12, accepted IEEE Software.

Voigt, Robert G. [1985]. "Where Are the Paralle] Algorithms?", ICASE Report No. 85-
2, accepted NCC’85 Conference Proceedings.

17

End of Document

