
r 

NASA Contractor Report 177961 

lCASE REPORT NO. 85-35 

leASE 
REORDERING COMPUTATIONS FOR PARALLEL EXECUTION 

, ' 

Loyce Adams " ~ 

AFOSR 85-1089 and NASl-17070 

July 1985 

NASA-CR-177961 
19850026209 

INSTITUTE FOR CO~WUTER APPLICATIONS IN SCIENCE AND ENGINEERING 
NASA Langley Research Center, Hampton, Virginia 23665 

Operated by the Un1vers1ties Space Research Associat1on 

National Aeronautics and 
Space AdmlnlstratJon 

Langley Research Center 
Hampton Virginia 23665 111111111111111111111111111111111111111111111 

NF00714 

'.~l[{ h'-"Et.RCH CU'll.., 

llai?r\~Y. IJ':'SA 

~·\\,P'uN •• 'h(;I"-"., 

https://ntrs.nasa.gov/search.jsp?R=19850026209 2020-03-20T16:55:02+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42844065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Report No NASA CR-177961 I 2 Government Accession No 3 RlClp!eflt's ClUlIog No 

lCASE Report No. 85-35 
4 Title and Subtitle 5 R.port Det. 

REORDERING COMPUTATIONS FOR PARALLEL EXECUTION T ", ,ooe: 

6 Peiformll'V Oro-nll.llOn Code 

7 Author(s' 8 Pertormlll!l Orglnilition Report No 

Loyce Adams 85-35 
10 Work Unit No 

9 Performing Organization Name and Addresl 

Institute for Computer Applications in Science 
and Engineering 11 Contract W Grtno~ AFOSR S-

Mail Stop 132C, NASA Langley Research Center NASl-17070 
Hampton VA 23665 13 Type of Report end Period Covered 

12 SponSOring Agency Name and Address 

National Aeronautics and Space Administration ~ n 

Washington, D.C. 20546 
14 Sponsorlll!l Agency " COde 

505-31-83-01 
15 Supplementary Notes Submitted to Communications for 

Langley Technical Monitor: Applied Numerical Methods 
J. C. South Jr. 

Final Report 
16 Abstract 

In thlS paper we show how to reorder the computations in the SOR algorithm 
to maintaln the same asymptotic rate of convergence as the rowwise ordering and 
to obtain parallel1sm at dlfferent levels. A parallel program is written to 
illustrate these ideas and actual machines for implementation of this program 
are discussed. 

17 Key Words (Suggested by Author(s" 18 DiStribution Statement 

successive overrelaxatlon, parallel 61 - Computer Programming & Software 
algorithms, parallel programming, 64 - Numerical Analysis 
multicolor algorithms, vector computers 

Unclassified - Unlimited 

19 Security aasslt (of thiS report, 20 Security ClalSlt (of thiS PI9I1 21 No of Pages 22 Price 

Unclassified Unclassified 19 A02 

N-30S For sale by the National Technical Information SerVice, Springfield. Virginia 22161 



REORDERING COMPUTATIONS FOR PARALLEL EXECUTION 

Loyce Adams 

University of California, Los Angeles 

ABSTRACT 

In this paper we show how to reorder the computations in the SOR 

algorithm to maintain the same asymptotic rate of convergence as the rowwise 

ordering and to obtain parallelism at different levels. A parallel prograa is 

written to illustrate these ideas and actual machines for impleaentation of 

this prograa are discussed. 

Research was supported in parc by the Air Force Office of Scientific 
Research under Contract No. AFOSR 85-1089 and in part by the National 
Aeronautics and Space Administration under NASA Contract No. NASI-17070 while 
the author was in residence at the Institute for Computer Applications in 
Science and Engineering, NASA Langley Research Center, Hampton, VA 23665. 



1 

1. introduction 

The effective implementation of a numerical method on a vector axnputer requires the computations to be 

ordered to allow vector operations. On computers with multiple processing elements, or with multiple instruction 

streams, the operations must be ordered in a way that permits them to be divided into groups that can execute in 

parallel with minimal communication. Since the ordering that results in either case is usually different from an 

ordering that would be used when implementing the method on sequential computers, we say that the operations 

have been reordered to achieve parallelism. (See Voigt[198S] for a description of four paradigms for achieving 

parallelism) . 

Usmg reordering of operations as a paradigm for obtaining parallelism leads to two major problems if not 

properly controlled. Fustly, we are unlikely to develop an ordering that is best for every new parallel computer 

that IS built or porposed. Instead, we would like to find an ordering that permits us to upre$$ through the seman­

ties of a parallel programming language the levels of parallelism we wish to obtain. Then, if this language can be 

effectively implemented on the actual architecture, our algorithms will be portable. Secondly, ordering the compu­

tations m different ways can change the mathematical properties of the algorithm. For example, convergence rates 

of Iterative methods or roundoff error of gaUSSIan elimination may be different when the computations are done in 

different orders. Hence, we would like orderings that satisfy some mathematical rule as well as provide parallel­

ism. 

In section 2, a procedure is demonstrated for fmding an ordering for the SOR (Sua:essive Overrelaxation) 

method that Yields the same asymptotic convergence rate as an ordering that is often used on sequential comput­

ers. In section 3, we show how to group the operations and how to store the data within groups to achieve paral­

lelism at two different levels. In section 4, we use PISCES Fortran, see Pratt[198S], to code the algoritlun and 

hence express the parallelism that was described in section 3. This PISCES program is used to show the parallel­

ism that may be obtained in the communication as well as the arithmetic in the algorithm. But just as important, 

this program points out the operations that must be or are mrrently being performed in sequence, thereby indicat­

ing the overhead costs or areas for improvement in the algorithm. In section S, we indicate what architectures our 



2 

algorithm can be implemented on by simply interpreting what the PISCES semantics would mean on these architec­

tures The hope is to convince the reader by writing only one program that the ordering, the grouping of opera-

tions, and the storage strategy within each group that was given in section 3 can be effectively implemented on a 

variety of architectures. 

2. A Parallel 0rdertDa for SOR 

Suppose the system of linear equations, 

(1) 

with A symmetric and positive deftnite, has arisen from a disaetization of an elliptic partial differential equanon 

on a rectangular domain with the 9-point stencil as shown in Figure 1. 

x x x x x x x x x x 

x 0 0 0 

~o 
0 0 x 

x 0 0 0 0
1

0 0 0 x 

/l~o x 0 0 0 0 0 x x i8 boundary node 

x x x x x x x x x x 

Figure 1. Di8cretized Problem Domain 

For simplicity assume there is one unknown per grid node and that Diricblet boundary conditions are imposed. 

We wish to solve system (1) by the SOR method. 

The flI'St JOb is to order the unknowns at the nodes in Figure 1 to mdicate winch nodes must be updated 

before others. An "ordering" implies that the nodes must update sequentially. So instead, we would like to rolor 

the nodes, see Adams and Ortega(1982], so that nodes of the same rolor may update simultaneously. Then, the 

"ordering" is by rolors with nodes of a given rolor ordered arbitrarily. This implies that two nodes can not be the 

same rolor if they are on the same 9-point stencil. It is easy to show that for this stencil, only three distinct four-

rolor topologies can be used to rolor the nodes. These are shown in Figures 2a, 2b, and 2c below (the rolor pat­

tern repeats beyond the region shown) 



3 

G 0 R B 0 B 0 B G 0 G 0 
R B G 0 G R G R R B R B 
G 0 R B B 0 B 0 G 0 G 0 
R B G 0 R G R G R B R B 

Figure 2&. Figure 2b. Figure 2c. 

For each figure above, we can order the colors in 41=24 ways. Hence, there are 72 different orderings we could 

choose, and the asymptotic convergence rates may be different for some of these orderings. 

To aid in choosing an ordering, we require our ordering to have the same asymptotic convergence rate as a 

baseline ordering; for example, the rowwise ordering of the domain -- bottom to top, left to right. This rowwise 

ordering is depicted by the stencil rule in Figure 3. 

&+1 &+1 &+1 

Figure 3. Stencil Rule for aowwi8e Ordering 

TIns figure indicates that a node may not be updated on iteration k+l until all nodes on the same stencil to the left 

and below have been updated on iteration k+ 1 and that values from iteration k must be used for nodes on the 

same stencil to the right and above. 

Adams and Jordan(1984] give a systematic procedure for fmding a particular 4-color ordenng for tins stencil 

that gives the same asymptotic convergence rate as the rowwise ordering. This strategy was also shown to produce 

multicolor orderings for many other stencils as well. The idea is to apply the stencil rule of Figure 3 to the grid in 

Figure 1 but permit nodes to update on subsequent lterations as soon as the appropriate data is available. This 

strategy leads to a sequence of update times for each node as shown in Figure 4. 



4 

R B G 0 R B G 0 
5,9 6,10 7,11 8,12 9 10 11 12 

G 0 R B G 0 R B 
3,7,11 4,8,12 5,9 6,10 7,11 8,12 9 10 

R B G o R B G o 
1,5,9 2,6,10 3,7,11 4,8,12 5,9 6,10 7,11 8,12 

:rigure 4. RlB/G/O COloring and Ordering 

Figure 4 oonsists of three distinct sets of nodes. Those in the f1l'5t set are on the third iteration while those in the 

second set are on the second iteration while those in the third set are on the f1l'5t iteration. We simply color all 

nodes with the same sequence of times the same color, and order the colors by the update times in the f1l'5t set; 

that IS, RIBIG'O are colors If2J3/4 respectively. On parallel computers, we will not process by the update times in 

Figure 4, but instead, the R nodes will be updated aaoss the entire domain, followed by the B nodes, the G 

nodes, and fmally the 0 nodes This ordering is one of the 24 orderings depicted in Figure 2a. In the next sec-

tion, we show that this ordering permits us to group the operations and store the data within group to achieve 

parallebsm at two different levels. 

3. Grouplna Nodea to TIIIkI and Task Data Stonge 

The nodes with the coloring shown in Figure 4 must be grouped into tasks that can run simultaneously. It is 

desU'able to have an equal number of each color of nodes in each task so that all tasks can update nodes of the 

same color SIMultaneously. It IS also desirable for programming constderations to have the same color pattern m 

each task. Figure 5 shows the unknowns grouped into 3 rows and 3 columns of tasks. Each task has a unique 

number (it,jt) as shown to indicate it is in the it-th task row and the jt-th task column. 



xB 
XO 
xB 
XO 

xB 
XO 
xB 
XO 

xB 
XO 
xB 
XO 

(3,1) 
G 0 R B 
R B G 0 
G 0 R B 
R B G 0 

(2,1) 
G 0 R B 
R B G 0 
G 0 R B 
R B G 0 

(1,1) 
G 0 R B 
R B G 0 
G 0 R B 
R B G 0 

I 

(3,2) 
G 0 R B 
R B G 0 
G 0 R B 
R B G 0 

G 0 R B 
R B G 0 
G 0 R B 
R B G 0 

(1,2) 
G 0 R B 
R B G 0 
G 0 R B 
R B G 0 

I 

(3,3) 
G 0 R B 
R B G 0 
G 0 R B 
R • G 0 

"'1,;:51 
G 0 R B 
R B G 0 
G 0 R B 
R B G 0 

(1,3) 
G 0 R B 
R B G 0 
G 0 R B 
R B G 0 

Piqure 5. Grouping of Rode. to Update TaBu 

Gx 
ax 
Gx 
ax 

Gx 
ax 
Gx 
ax 

Gx 
ax 
ex 
ax 

5 

Next, we must deade upon a storage scheme for the unknowns,)i, the right hand side a, and hence the coefficient 

matrix A, Wlthm each update task. We want to insure that a task can run on a vector oomputer as well as a 

sequential one because in the near future we are likely to have multiple processor systems for which each processor 

IS a vector oomputer. Figures 6a, and 6b show two possible storage schemes for the unknowns in the (2,2) task of 

Figure 5 that permit vector operations within a task. 

0 R B G 0 R 0 R B G 0 R 

31 32 33 34 35 36 35 8 18 27 36 9 

B G 0 R 

2:\ 
G B IG 0 R B G 

25 26 27 28 30 16 25 34 7 17 26 

0 R B G 0 R 0 R B G 0 R 

19 20 21 22 23 24 32 5 15 24 33 6 

B G 0 R B' G B G 0 R B G 
13 14 15 16 171 18 13 22 31 4 14 23 

I 
0 R B G ,~ I R 0 R B G 0 R 
7 8 9 10 12 29 2 12 21 30 3 

B G 0 R B G B G 0 R B G 
1 2 3 4 5 6 10 19 28 1 11 20 

piqure 6a. Constant Stride piqure 6b. Contiguoua 



6 

The nodes withIn the box are unknowns the (2,2) task IS to compute. The nodes around the box are neighbor task 

unknowns that must be known at particular times in the iteration; hence, they must be stored 

In Figure 6a, we number all nodes conserutlvely from 1 to 36, wrapping around from row to row In gen­

eral, if we have tr rows and tc columns of nodes (mcluding neighbor border nodes) we will store"- as a tr*tc lmear 

vector. Notice that by including the neighbor task's nodes in this storage scheme, nodes of the same color are a 

constant stnde apart in memory (the stride is nc the number of colors). This means on a vector computer that 

allows a vector to be storage locations a constant stride apart, we may vectorize the updating of nodes of a gIven 

color withIn a task ThIs would requrre the coefficients of A for tins task to be stored as a two dimensIOnal array, 

A(tr*tc,ns+l) where ns+l represents the 9 stenal locations, the last one being for the chagonal element Of 

course, at the end of updating a gIven color, we must reset the border nodes back to theu ongmal value smce they 

were updated only to permtt the computation to be vectonzed. A control feature like that of the CYBER 205 can 

be used to prohtbit these nodes from actually being updated. Notice that the nodes of the same color are also a 

constant stnde apart m the vertical di!ectlon, namely, a stnde of 2*tr. Therefore, If a control feature IS not avatl­

able, the resetting of values can be done by vector operations, smce the nodes that requrre resetting form a vector 

Because nodes of the same color are a constant stnde apart m both di!ectlons, updated values may be packaged as 

a vector to be sent to appropnate neighbor tasks and m turn the neighbor tasks can store the values as vectors 

Figure 6b shows the storage of unknowns for vector computers that requrre a vector to be a continuous set of 

storage locations Notice all R's are numbered fust, followed by all B's, etc, smce unknowns must be processed 

the same way they are stored The matnx A must be stmllanly orgaruzed Note that m the vertical di!ectJon, 

nodes of the same color are not contiguous Therefore, we would expect to have more overhead m packagmg 

values to be commurucated to neighbors 

At this point IS It worth commenting that the colormg m Figure 2c does not permtt vectonzatlon at the task 

level for either constant stnde or contiguous vectors So, if some mathematical rule had selected the colormg of 

Figure 2e, we MIght backtrack and settle for other mathematical properties m order to achteve more parallebsm 

There is always this tradeoff. 



7 

4. A PISCES Program for the RIB/G!O SOR Algorithm 

PISCES (parallel Implementation of Scientific Computing Environments), see Pratt[1985], is a tugh-Ievel pro­

grammmg environment for a carefully speafied vIrtUal parallel computer. It may be thought of as a parallel pro­

gramming language (in the semantic sense) for the PISCES virtual computer. Programs wntten in PISCES FOR­

TRAN may be run efficiently on various actual parallel computers If there is an effiaent match between the vutual 

and real computers. This IS analogous to saymg that programs written in FORTRAN may be run efflaently on 

many sequentIal computers since the FORTRAN VIrtual computer may be efficiently mapped onto many actual 

sequennal machines. For our purposes, the PISCES vutual computer views parallel computing the following way 

(For a prease defminon, see Pratt[1985]). 

(1) Tasks are complete programs There IS no shared data between tasks. 

(2) Tasks can initiate other tasks. The initiator is the parent. Tasks communicate to other tasks by message 

passmg. Only a task knows its own Id number. A task can only commurucate to another task If the Id 

number of the other task IS known; hence, a task must give its id number to other tasks If messages are to be 

received from these tasks 

(3) Tasks aa:ept messages by the message-type, not by any properties of the message sender A task may only 

accept a message of a given type If the task has a handler (a special subroutIne) capable of processing mes­

sages of this type. 

(4) Tasks and therr handlers can run on different processors, but they must commurucate through shared 

memory Via the FORTRAN Common block 

(5) Fmer grams of parallelIsm can be obtained withm a task Statement level parallehsm is obtamed Via the 

parbegm-parend construct; parallehsm across Instances of a do loop IS obtamed With the pardo-contmue con­

struct, and parallehsm at the operation level IS obtamed via vector operanons. 

We now descnbe the PISCES program of Figure 7 for the SOR algonthm that uses the ordermg of Figure 4, 

the groupmg of Figure 5, and the storage scheme of Figure 6a. The program has two types of tasks. a parent task 



8 

and an update task for each group of nodes m Figure 5. 

The flI'St .JOb of the parent task IS to initiate all the ntr*ntc update tasks, each With Its own data, its lOgIcal 

IdentificatIOn number (IJ) and Its startmg and ending rows (is and Ie), and ItS starting and endmg columns Us and 

je) of nodes. These rows and columns include the border nodes from neighbor update tasks as shown in Figure 6. 

These inItIatIOns may be done in parallel if enough processors are available on the actual hardware; otherWIse the 

pardo 1 and pardo2 loops can be changed or mterpreted as ordmary sequentIal do loops 

Since the true physical IdentificatIon numbers of the update tasks are not known untIl these tasks begm exe­

cutIon, and smce these tasks will need to communicate With each other, they must exchange Ids. An easy way to 

accomplIsh tins IS to send therr Ids to the parent task and In tum the parent task collects the Ids and then broad­

casts the result back to all the update tasks. Now, the parent accepts the Ids as ntr*ntc messages of type uknnty 

The handler uknnty reads the data that is sent mto the parameter list like a read statement. Thus, the Ids sent are 

stored by tins handler m the array tu1set (of type taslad) which IS m memory common With the parent task The 

parent W8lts untIl all Ids have been stored in the array tu1set and then sends a message of type tid to all the update 

tasks for therr future use 

The parent task then enters the SOR iteration loop and waits for ntr*ntc total local convergence messages, 

either type converge or type noconv, which are sent each iteratIon by the update tasks. to be accepted by the 

handler noconv or to be counted as a SIgnal If the type is converge (Signals are speaal messages that requrre no 

processmg by a handler.) These two types of messages can be accepted simultaneously SInce they are WithIn the 

same accept statement, that IS, the noconv handler could be runnmg on a different processor than the task that IS 

acceptIng Signals If the variable global IS true at the end of an IteratIon, the parent task eXits the IteratIon loop 

and W8lts for the answers that are sent by each update task to be accepted by the answers handler The answers 

which are now stored m the Ii array are wntten to a fIle and the parent task termmates 

We note that all Instances of a gIven handler can execute in parallel For example, all ntr X ntc ukntlty mes­

sages can be received at once, proVlded enough processors are avaIlable There IS always the cost consideratIOn of 

whether obtwnmg all the parallelIsm Inherent In the algonthm actually saves tune The pomt here IS that tins 



9 

parallebsm IS expressable and parameter studies could be done to determme for what machines It IS worthwhlle and 

the lMplementation of PISCES adjUSted accordingly. 

Next, we turn to the description of an update task. This task first sends its physicalld (PPPSlf) back to the 

parent task m a message of type idenhty and then Walts until handler tid has acx:epted from the parent and stored 

the task ids of all other update tasks. An update task only needs to communicate to nhbs other update tasks 

whose 1081cal ids are stored in neigh(nhbs,2). Notice that the task ids of all the update tasks are stored in taslad 

even though not all will be used. This is because it is probably less time consuming for the parent task to send all 

the Ids rather than to package and send individually to each task JUSt what is needed. 

The update task now begins the SOR Iteranon loop 100, and the loop 200 over the number of colors, nc 

Each time through the 200 loop, the task processes all nodes of the same color assuming the storage arrangement 

in Figure 6a. The notation temp(st;sp;nc)=O means that locations of the linear array temp begmrung in locanon st, 

endmg m location sp with stnde nc are set to zero as a vector operation. Likewise, A(st;sp;nc,nst) means all rows 

starting Wlth row st ending with row sp, incrementing by snide nc, Wlth column nst flXed are processed as a vec­

tor Note that the anthmenc in the algorithm within a task vectorizes in statements 201-203, and a vector dot pro­

duct IS done in statement 204 

After the values of a 8lven color have been updated, the border values of this color are sent to appropnate 

neighbors This is done for each neighbor in parallel with the pardo 300 statement. The update task retneves the 

package to be sent as a vector Wlth startlng locanon stene), stoppmg locanon sp(ne), and stnde UIC(ne) and the 

neighbor's handler stores the package as a vector Wlth starting location nest(ne), stopping locanon nsp(ne), and 

stnde mnc(ne) Of pamcu1ar note IS the type of message sent; namely, ncolors.uvals. There are nc different u 

value handlers, one to deal Wlth messages of each color from all the update tasks. Only instances of handlers for a 

8lven color can work in parallel smce a task must accept all R's before the B's can be accepted for the next Itera­

non The reason for havmg nc different handlers to accept the u values instead of only one IS not for parallebsm, 

but rather to ensure correctness and sunpllClty of the program. That is, if all messages were of type uvals and a 

neighbor update task operates faster and sends a message with B values, this message could be counted m the 



10 

total. In this case, all R values would not be accepted before the update task begms to rompute B values. That IS, 

we can not be guaranteed that messages arnve in the same order they are sent, but by aa:eptmg only messages of 

the type ncolors uvals we are guaranteed that all our total messages are R ones on the fust pass through the 200 

loop. Of rourse, we rould add a data field to indicate rolor to messages of type uvals This would reqUIre more 

procesSIng to examme the messages and more storage to save messages of the wrong rolor until they are needed, 

thereby adding to the rompleXJty of the program. 

After all rolors have been processed, the local error IS determined as a dot product err er m statement 204 

The task then sends a message of type converge or noconv to the parent and aWaits the deaslOn. The parent sends 

this deaslon as a message of type convflag which handler convjlag records in the vanable global. If converged, the 

update task sends its tr*tc " values back to the parent With a message of type answers; otherWIse, the next Iteration 

begms 

These programs show the levels of parallehsm that are adnevable With the RfBIGlO ordermg, the groupmg 

of unknowns, and the data storage scheme Wlthm a task that were gaven m Figures 4, 5, and 6a respectively. ThIs 

parallehsm can be broken mto parallel anthmetic and parallel rommunication as summanzed below 

Parallel AnthmetIC 

(1) Nodes m different tasks update Simultaneously 

(2) Nodes of the same rolor Within a task can execute simultaneously, probably as vector operations 

Parallel Communu:atwn 

(1) All update tasks can be mItlated Simultaneously 

(2) The parent accepts the task ids in parallel from the update tasks. The update tasks can then accept the 

broadcasted result Simultaneously 

(3) The parent accepts ronvergence Information from the update tasks m parallel. The broadcasted convergence 

deaslOn may be accepted m parallel by the tasks. 



(4) Updated values can be sent to neighbors simultaneously. 

(5) Values of the same color may be accepted from all neighbors simultaneously. 

(6) Answers send back in parallel from the update tasks can be accepted in parallel by the parent. 

However, the algorithm pomts out where sequential operation seems to prevail. 

SequenhalArU~hC 

11 

(1) The dot product is partIally sequential and can be more costly than vector multiplication, for example, on 

vector machines. The dot products are done in parallel across tasks. 

(2) Starting and stopping indices must be computed within each task, but are done in parallel across tasks. 

5. Possible Architectures for implementation 

The PISCES program that was described in the last section shows that the RIBIG'O SOR algorithm can be 

run on different parallel computer architectures. We conclude by mentioning four types of ardutectures and the 

proper mterpretation of the tasks and handlers for these architectures. 

(1) If only one task 1S defmed and the vector operattons are converted to do loops, no handlers are needed and 

the result is the sequential machine algorithm. 

(2) If only one task 1S defined and the vector operattons remain, no handlers are needed and the result is a con­

stant stride vector program that could run on the CRAY, for example. (Syntax would need repainng, but 

the semanttcs are the same) 

(3) Assume a task and 1ts handlers run on the same processor and that we have many tasks and many processors. 

Also assume that each processor is a scalar processor and that the processors do not have shared memory, 

but are connected by some mterconnectton network. Then, tf the mterconnectton network 1S that of the 

hyperrube, for example, our algorithm will run on Caltech's Hyperrube. If instead, the mteroonneetton net­

work 1S that of a flat 8 nearest netghbor conneetton, the algonthm will run on NASA Langley's Ftnlte Ele­

ment Madune. 



12 

(4) If we relax the requirement that tasks can not have shared memory (deviatmg from PISCES), and let several 

tasks run on the same processor in multIple mstruction stream fashion (pipehned MIMD), we see that our 

algonthms can be run on the Deneloor HEP With one or multIple PEMs The accept statement would be 

analogous to synchronization through a shared variable; SInCe, for example, a task would only need to W81t 

until R values were updated by all tasks (HEP proceses) before the updatIng of B values IS begun 

(5) To actually realIze all the levels of parallehsm in our algorithm, we WIll have to wait untIl novel ardutectures 

compnsed of many processors, are available Some of the processors would be vector processors for the 

update tasks wlule others would be scalar processors for the handlers and the parent task Since the proces­

sor for an update task and the processors for the the update task's handlers require shared data they could be 

connected to a shared memory. A communication network MIght be used to connect chfferent update 

processorlhandler processor clusters 



tasktype parent 
parameter (ntr- ,ntc- ,n- ,maxiter- ,<other parameter.» 
common Iwithidentityl tidset 
common Iwitbnoconvl global 
common Iwithanawersl u 
real u(n,n) ,<other real declarations> 
integer <integer declarations> 
taskid tidset(ntr,ntc) 
handler noconv,answer.,identity 
signal converge 
end declarations 

*initiate the ntr*ntc update tasks 
pardo 1 i-1,ntr 

pardo 2 j-1,ntc 
is(i,j)- ,ie(i,j)­
js(i,j)- ,je(i,j)-

13 

on same initiate update(i,j,is(i,j),ie(i,j),j.(i,j),je(1,j),<other data» 
2 continue 
1 continue 

*accept the task ids of the tasks and send results back to all update tasks 
accept (ntr*ntc) 

identity 
end 
to all send tid«(tidset(i,j),1-1,ntr),j-1,ntc» 

*begin the iteration 
do 100 iter-1,maxiter 

global-.true 
accept (ntr*ntc) of 

converge 
noconv 

end accept 
to all send convflag(glObal) 
if (global) then go to 3 

100 continue 

*accept the answers from all the tasks 
3 accept (ntr*ntc) 

answers 
end accept 

*write the answers to file 6 
pardo 4 i-1,n 

write(6,*)(u(i,j),j-1,n) 
4 continue 

stop 
end 

Figure 7. PISCES Program (continued on next 3 pages) 



handler noconv 
COlllDOJl Ivi thnoconvl glcmal 
logical glcmal 
end declarations 
global-.faIBe 
return 
end 

handler identity (it,jt,tidBet(it,jt» 
parameter (ntr- ,ntc- ) 
COlllDOJl Ivithidentityl tidBet 
integer it, jt 
taBkid tidBet(ntr,ntc) 
end declarations 
return 
end 

handler answerB (iB,ie,jB,je,«u(i,j),i-iB,ie),j-jB,je» 
parameter (n- ) 
COlllDOJl IvithaJunrerBI u 
integer iB,ie,jB,je 
real u(n,n) 
end declarations 
return 
end 

14 



15 

tasktype update(it,jt,i.,ie,j.,je,<ta.k~. other data.) 
parameter (ntr- ,ntc- , tr- , tc- ,ne- , w- ,118- , nbba- ,lIIIlXiter- • <tau' 8 other par ... ter8.) 
common /withtid/ tidaet 
common /withconvflag/ global 
common /withuvala/ u 
integer it,jt,ia,ja <other integer declarations. 
real u(tr*tc). b(tr*tc). A(tr*tc,n8+1).atencil(n8),neigh(~,2),<other8. 

loqical global 
taakid tidaet(ntr.ntc) 
aignal done,converge 
handler tid,convflag,(k.uval.,k-1,nc) 
end declarations 

* retrieve taak ida of other update taaks 
to parent .end identity(it,jt,ppp.lf) 
accept 

tid 
end accept 

*begin the iteration 

201 

202 

203 

do 100 iter-1.maxiter 
do 200 ncolora-1,nc .t- . .p-

temp(at;.p;nc)-O 
do 202 nat-1.na 

temp(at;ap;nc)-temp(at;ap;nc)+A(at;ap;ne,nat)*u(.t+atencil(n8t);8p+.tencil(n8t);nc 
continue 
<re.et temp to be u at the boundary node •• 
temp(.tj.p;ne)-(b(.t;.p;ne)-te.p(.t;.p;ne»/A(.t;.p;ne,n8+1) 
er(at;ap;nc)-tempC.t;.p;ne)-u(at;.p;nc) 
u(.t;.p;nc)-w*temp(.t;.p;ne)+(1-w)*temp(.t;.p;nc) 

*aend appropriate u valuea of thia color to all neighbor. 
pardo 300 ne-1,nhha 

300 

num(ne)-
if(num(ne).ne.O)then 

at(ne)- ,ap(ne)- ,inc(ne)-
neat(ne)- .nap(ne). Dinc(ne)-
to tidaet(neigh(ne.1)+it,neigh(ne,2)+jt) .end neolor8.uval. 

(neat(ne).nap(ne),ninc(ne).(u(i).i-at(ne),ap(ne),inc(ne») 
endif 

continue 

*accept (total) meaaagea of type ncolora.uvala from any neighbor 
total-
accept (total) 

ncolora.uvala 
end accept 

200 continue 



*check for local and then global convergence 
e-dot(er.er) 
it (e.lt.eps) then 

to parent send converge 
else 

to parent send noconv 
endit 

*accept convergence decision trom parent 
accept 

convtlag 
end accept 

*if converged then exit iteration loop 
if (global) then go to 5 

100 continue 

*send 
5 

anevers back to parent 
to parent send answers 
stop 
end 

(is.ie.js.je.(u(i).i-1.tr*tc» 

handler tid «(tidset(i.j).i-1.ntr).j-1.ntc» 
parameter (ntr- .ntr- ) 
common /withtidl tidset 
taskid tidset(ntr.ntc) 
end declarations 
return 
end 

hand1er conV£1ag(g10ba1) 
common /withconvtlag/ global 
logica1 g1oba1 
end declarations 
return 
end 

handler k.uvals (st.sp.inc.(u(i).i-st.sp.inc» 
parameter (tr- • tc-. nc- ) 
common /withuvals/ u 
integer st.sP.inc 
rea1 u(tr.tc) 
return 
end 

16 



REFERENCES 

Adams, L.M., Ortega, J.M. [1982]. "A Multi-Color SOR Method for Parallel Computa­
tion," Proc of the 1982 Inti. Conference on Parallel Processing. IEEE Catalog 
No. 82CID794-7, August, pp. 53-56. 

Adams, Loyce M., Jordan, Harry F. [1984]. "Is SOR Color-blind?", lCASE Report No. 
84-14. Accepted, Siam Journal on Scumtijic and Statistical Computing. 

Pratt, Terrence W. [1985] "PISCES: An Environment for Parallel Scientific Computa­
tion," lCASE Report No. 85-12, aa:epted IEEE Software. 

VOIgt, Robert G. [1985]. "Where Are the Parallel Algorithms?", lCASE Report No. 85-
2, accepted NCC' 85 Conference Proceedings. 

17 



End of Document 


