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I. Introduction. Definite evidence for particle acceleration in the

solar wind came around a decade ago (Mc Donald et al, 1976,Barnes et al,
1976). Since then a considerable amount of data have been taken at dif-

ferent distances from the sun confirming and extending the first

findings and it is now widely accepted that particles are accelerated in
the Solar Wind (Quenby, 1983). Two likely sources are known to exist:

particles may be accelerated by the turbulence resulting from the super-
position of A1fv_n and Magnetosonic waves (Statistical Acceleration) or

they may be accelerated directly at shock fronts formed by the interac-
tion of fast and slow solar wind (CIRSs) or by traveling shocks due to

sporadic coronal mass ejections. Naturally both mechanisms may be ope-
rative.

Shock acceleration has been widely investigated theoretica11y
(Axford, 1981 and references therein) and there is substantial evidence

of this as an operative mechanism in the HeIiosphere (Scholar, 1984).
However there are also experimental observations not obviously consistent
with shock acceleration v.g.(Van Ness et al, 1984) and some ion enhan-
cements only explained in terms of statistical acceleration (Richardson,
1984).

Previous treatments of statistical acceleration involved

theoretical methods based on power spectral representations of the elec-
tromagnetic field (see Quenby, 1983 and references therein).

In this work the acceleration problem was tackled numerically

using Helios I and 2 data to create a realistic representation of the
Heliospheric plasma as will be described in the next section. Two 24

hour samples were used: one where there are only wave like fluctuations
of the field (Day 90 Helios I) and another with a shock present in it
(Day 92 of Helios 2) both in 1976 during the STIP II interval. Transport
coefficients in energy space have been calculated for particles injected
in each sample and the effect of the shock studied in detail,

2. Interplanetary Medium Model. The magnetic field used is defined from
Bi three dimensional vectors where each one corresponds to the 8 sec.
measurements of Helios I or 2, Every point in space is also furnished
with a solar wind velocity vector Vi where these are the corresponding
velocities in the solar wind frame_ Consequently because all parts of
the solar wind are moving there is an electric field Ei=-Vi x Bi
associated to every point in soace. For every sample we have divided
the space in a series of layers where both the electric and magnetic
fields are constant. Trajectories are integrated based on analytical
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solutions of the equations of motion for each layer. For more details
see Houssas et a1,(1982),

Because we require layers of roughly 1/20 of a cyclotron radius
only 1OO MeV protons have been used in this work, lower energies
require smaller 1MF sampling time to keep a reasonable number of layers
per gyroradius.

3. Calculation of Transport Coefficients in Energy Spaceo First and

second order coefficients (DT and DTT) were calculated in energy space

by two different techniaues. One is based upon the construction of a
steady state distribution by injecting particles with a single energy
To (100 MeV in this case) and removing them when they reach any of the
two preset boundaries "above I' and "below Ij the inJection point (see
Houssas et al, 1982 for details).

Another method is based upon the time evolution of the energy
distribution. D_ is calculated via a least square fit of succesive
distributions first order momenta vs. time. If we take the diffusion
equation in energy, integrate for injection at T=To, assume a first

order Taylor expansion in energy for DTT , and make a determination of
the spread <(T-<T>)2> we arrive at

<(T-<T>)2> = 2DTT(To)t+2(DT )2

from where DTT can be calculated.

Both methods are generalizations of those initially developed
by Jones et al (1978) to study pitch angle scattering on a randomly
generated IMF.

The effect of the shock is traced by counting every particle
encounter with it and recording the resulting energy change. The
average energy change is given by the ratio of the total gain and the
number of shock encounters. Transport coefficients can be calculated
using the time an average particle takes to get back to the shock
t_ = 2X/v where X = mean free path = 0.03 AU (see Valdds-Galicia et al,
I_84) and v = particle velocity.

4. Shock Characteristics. The shock used in this study passed

through Helios 2 on day 92 of 1976 when the spacecraft was at 0.45 AU

from the Sun. It is a perpendicular shock OB_ = 89 ° (Lepping et al,

1971) with a high Alfv_n Mach number MA = 7,5, The magnetic field

overshoot is some 24 Gammas which is around 50% of the downstream
field.

It was assumed to be a plane shock and data were transformed

to a frame where the Y-E plane coincides with that of the shock so

that it is parallel to our layer planes.
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5. Results and Discussion. In figure I we present a resu]t of a time
stationary distribution of particles for an experiment carried out
using data from day 90/Helios I. It can be easily appreciated the
asymetry of the distribution towards the _right _j of the injection
energy To showing strong acceleration by waves. Boundaries were put
at + 2 tleV from To = I00 MeV. It should be noted that the mean free
path these partic]es is very smal] (k = 0.006 AU, Vald_s-Galicia et al,
1984).

Figure 2 shows an evolution diagram of the distribution
function of particles in energy and time. Contours are drawn for
different density levels. Areas with zero density within the distri-
bution are shown black. Injection energy is at the middle of the
figure and energy increases downwards. Full extension from top to
bottom is 6 MeV. The horizontal scale covers 2000 sec. Balck diamonds
represent first order momenta of particle distributions every 100 secs.

In table I we show the main results of this work. Transport
coefficients are average values of the calculations done by the two
different methods. Although not shown individually both values agree
within 15%. The second row of table I shows results for all particles
(85) used with Helios 2 day 92 sample including 79 shock crossings so
they are representative of the two proccesses involved (shock and
statistical acceleration),

We can aprecciate that even though average energy changes
corresponding to statistical and statistical plus shock acceleration
are greater than the shock produced average, transport coefficients
for this process are greater by an order of magnitude, In the last
column of the table we have calculated the the e-folding times (T)
corresponding to every experiment (Wibberenz et al, 1972). If we
calculate the time for adiabatic deceleration at 0,45 asuming

Vsw = 400 Km/sec and radial expansion we get _ad = 35.3 hours, Thus

altough statistical acceleration can have an effect in reducing the
adiabatic cooling only the shock accelerated particles are able to
overcome it at these energies,

Unfortunately we were limited by the time resolution of the
data and could not explore lower energies in a simi]ar manner,

6. Conclusions,

a) The time evolution and time stationary methods to calculate
transport coefficients agree quite well,

b) Statistical acceleration at particle energies of 100 MeV in the
inner Heliosphere is not able to overcome the effects of
adiabatic cooling.

c) Shock acceleration as opposed to statistical acceleration may be
a source of particles at these places an energies,
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FIG I FIG 2

TABLEI

BOYISC POSITi0:I ACCELERATI0;I-AT> DT DTT T
(AU) PF%ESS (t'EV) (_EVS-1) (r:EVS-2) (HRS)

9ClHEL1 0.31 STATI:TICAL 0.76 (3.6_2.1)x10-4 (4z3)x10-4 76.5

92/HEL2 0.45 SHOCK.SIATISTIC_L0,83 (5,2Z2)xlO"4 (5_3,5)x10-4 53.

92/HEL2 0.43 SHOCK %20 (3,4±1,5)x10"3 (1Z,9)xlO-4 10,9
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