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I. Introduction. Characteristics of suprathermal particles accelerated

by quasi-parallel interplanetary traveling shocks have been generally
explained in terms of a first order Ferml mechanlsm (e.g. see review in

ref. 7). Such models require diffusive scattering of particles upstream

of the shock. This scattering is characterized by a local diffusion
coefficient, K, which is determined by the local power density of waves

in the upstream region as described by Lee (7). A number of studies

have investigated the behavior of _ of il MeV upstream ions close to
interplanetary shocks. Scholer et al. (8) have used results of first

order Fermi shock acceleration theory (e.g. ref. i) to derive the
diffusion coefficient and its energy dependence from the measured

gradient of the upstream particle intensity. Van Nes et al. (9), using
the same approach, obtained the spatial and energy dependence of K for 3

interplanetary shocks over a more extended energy and distance range.
Klecker et al. (67 deduced the spatial dependence of K in the upstream

region for 30 and 130 keV protons from the measured first-order
anisotroples and intensity gradients.

In this paper we examine the dependence of the diffusion coef-
ficient of suprathermal upstream protons on distance from the November

12, 1978 interplanetary traveling shock using a different approach.
Unlike previous studies our method, which is based on measurements of

particle streaming and intensity gradients, does not rely on predictions
of shock acceleration theories or require first-order expansions. We

have chosen to examine the local spatial variations of K upstream of the
November 12, 1978 shock because the characteristics of this quasi-paral-
lel shock have been extensively studied (e.g. ref. 5), and also because

of its favorable geometry (i.e. B field nearly radial). The initial
results of this study have been reported by Gloeckler et al. (3).

2. Instrumentation and Method of Analysls. For this study we use the
counting rate data from the University of Maryland/Max-Planck-lnstitut-

Garching ULECA sensor (see ref. 4 for details) on ISEE-3 which was

placed in a halo orbit at a radial distance of _230 RE upstream of the
earth. Of relevance to the present discussion are the capabilities of

the electrostatic deflection v___senergy ULECA sensor to reliably separate
protons from alpha particles and to determine their differential inten-
sities in three energy bands centered on energies E of 33, 66 and 132

keV/e, and respective band widths AE/E of 20, 27 and 37%. The sensor
has a 60° fan-like acceptance aperature with its wide angle in a plane

perpendicular to the ecliptic. The three _roton counting rates are
available every 128 sec in each of eight 45 sectors of the ecliptic
plane.

For the present analysis we use the 33 and 66 keV sectored proton
counting rate data to derive the proton distribution function, f, in the
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o and find the velocity, _F' of that
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o rest frame relative to the space-

IO° 50 key craft. We follow the technique ofoO

"' Gloeckler et al. (2) for mapping0o

_ the sectored counting rate data
(3-

into segments of the rest frame

IO -I I I , I , I , I , l , I , distribution function f(v), where v
0 I 2 3 4 5 6 7 is the particle speed in the rest

PARTICLESPEED [xlO3km/s] frame, making use of the invariance
properties of f. When the proper

rest frame velocity, _F' is chosen,
the two segments of f(v) join up and the resulting spectrum becomes
smooth, as shown in Figure I. We note in particular that our method
requires no prior knowledge of the shape of the rest frame energy

spectrum nor need VF/V be small.

3. Observatlons. Using a least-squares technique we derive for each
available 128 sec interval the rest frame velocity and the rest frame
distribution function (over a range of particle speeds from ~i000 to

5000 km/s). Figure i shows an example of a 128 sec averaged distri-
bution function f(v) obtained ~ 4.10 10 cm upstream of the shock. We
note that the shape of f(v) tends to be between that of a pure power law

and an exponential, and that the spectrum becomes harder wlth distance
from the shock (3). In the present analysis an exponential form is

assumed and the e-foldlng speed, Vo, is computed from a linear flt to
the data as shown in the figure.

In Figure 2 we plot the derived speed, VF, (solid circles) and

direction of motion, 9' (upper panel) of the suprathermal proton rest
frame for each available 128 sec interval as a function of time as the

shock is approached. Notice that the direction of _F is generally
within ~i0° antisunward. Also shown is the sum of the solar wind, VSW,

and Alfv_n, VA, speeds taken (or derived) from data published in (5).
While far ahead of the shock VF exceeds (Vsw + VA) by as much as I000
km/s, close to shock this difference is about a few hundred km/s, and
behind the shock the two velocities are the same within experimental

errors, implying pure convention at a speed equal to the sum of solar

wlnd and Alfv&n speeds. If we interpret the difference between the

speeds VF and (Vsw + VA) upstream of the shock to be the diffusive
streaming of suprathermal ions along the magnetic field B (nearly radial
for this shock) which results from the observed upstream particle

density gradient, the local diffusion coefficient along B, mll(ri'v) at
a dlstance r = (t _-t_)V=_ from the shock (Vsh and tsh are the shock

183 

UOIverslty of Maryland I Max - Planck Instltut Garchlng 

ULECA SENSOR on ISEE - 3 

2 NOVEMBER 12, 1978 
10 , I I 

00 1704 to 00 19 12 

I I I 

PROTONS 

- 10
1 =-

VF = 999 km/s 

<PF = 177· 

'Q. Vo = 1735 km/s 
-

~ 
Vi z w 
o 
w 
u 
ct 10 0 -
(f) 

w 
(f) 

~ 

~ 

.~ 
50 keV ........ -

10 - I ~_~ I~I---l---,-I---'----LI--,--,I---,-_IL........J..--' 
0123456 7 

PARTICLE SPEED [X103 km/s] 

SH1.5-12 

F~gure 1. Rest frame proton phase 
space density, f(v). For VF = 999 

km/s and ~ = 1770 segments of f(v) 
from the 33 keV proton rate channel 
(open squares) and the 66 keV 
channel (solid circles) jo~n 

smoothly to form a common spectrum. 

frame of reference (rest frame) ~n 

which f is assumed to be isotropic, 

and find the velocity, 1F, of that 
rest frame relative to the space­

craft. We follow the technique of 
Gloeckler et al. (2) for mapping 

the sectored counting rate data 
~nto segments of the rest frame 
distribution function f(v), where v 

is the particle speed in the rest 

frame, making use of the invariance 
properties of f. When the proper 

rest frame veloc~ty, 1F , ~s chosen, 

the two segments of f(v) join up and the result~ng spectrum becomes 

smooth, as shown in Figure 1. We note in particular that our method 

requires no prior knowledge of the shape of the rest frame energy 

spectrum nor need VF/v be small. 

3. Observat~ons. Using a least-squares techn~que we der~ve for each 

available 128 sec interval the rest frame velocity and the rest frame 

distribut~on function (over a range of particle speeds from ~1000 to 

5000 km/ s) • Figure 1 shows an example of a 128 sec averaged dis tri­

bution function f( v) obtained ~ 4.10 10 cm upstream of the shock. We 

note that the shape of f(v) tends to be between that of a pure power law 

and an exponent~al, and that the spectrum becomes harder w~th distance 

from the shock (3). In the present analysis an exponential form is 

assumed and the e-fold~ng speed, vo ' is computed from a linear f~t to 

the data as shown in the figure. 

In Figure 2 we plot the derived speed, VF , (solid circles) and 

direction of motion, ~, (upper panel) of the suprathermal proton rest 

frame for each available 128 sec interval as a function of time as the 

shock is approached. Notice that the direction of 1F is generally 

within ~10o antisunward. Also shown is the sum of the solar wind, Vs ' 

and Alfven, VA' speeds taken (or derived) from data published 1ll (5~. 
Wh~le far ahead of the shock VF exceeds (V SW + VA) by as much as 1000 

km/s, close to shock this difference is about a few hundred km/s, and 

behind the shock the two velocities are the same within exper~mental 

errors, implying pure convent~on at a speed equal to th.: sum of solar 

w~nd and Alfven speeds. If we interpret the d~fference between the 

speeds VF and (VSW + VA) upstream of the shock to be the diffus~ve 

stream~ng qf suprathermal ions along the magnet~c field B (nearly rad~al 

for this shock) which results from the observed upstream particle 

dens~ty grad~ent, the local diffusion coeff~cient along B, K" (ri'v) at 

a d~stance r_ = (t~h-t~)Vah from the shock (VSh and tSh are the shock 



184 SHI .5-12

speed and arrival tlmes respectively) may be related to quantities

measured at ri as follows:

<ll(ri,v)*e+B._f(v)•

is the differential streaming (which in zero is the particle rest

frame), and _B is the unit vector along _. Since for the November 12,

1978 shock _ and _Su were nearly radial, and assuming that _A was
directed along _ in t_e upstream region, and that f(v) has an exponen-

tial dependence on v with e-foldlng speed Vo, eq. (i) may be simplified
to

(2) _,l(ri,v)= [3vV-_]*[ 256.10 I0 ], ].
o [In(fi+i/fi-l) vsh [VF-(VA+Vsw)

To obtain < at a distance ri upstream of the shock values for v are
obtained from the slope of the ith distribution functlon, an_ the
particle density gradient is determined from the neighboring values of f

at v = 3100 km/s (50 keV). VF and (VA + VSW ) are those plotted in
Figure I at times t. related to r. by ri=(tsh-ti)Vsh , where we used
values for Vsh of 6121km/s and tsh o_ 0:28:18 as given in (5).

Figure 2. Speed and

210Sun"_----"-_VF, direction of motion of

F \_F/ '' _'_ .... , .... I,''1,, .... ,,_ the rest frame (solid
180_ _ ' J symbols) and the solar
15oL,.._.,,,, ....,....i,.._l_l,_,_l_L_ wind plus Alfv_n speed

....,...._....,...., (Vsw + VA) vs time be-

'''''I''T'me°f.... '' fore and i---mmediately
2ooo Shockl _ after shock passage. The

_e_ _ss0g_ difference between VF and
+ VA) is interpreted

"e_ e. I_ _SWterms of diffusive

Iooo _e"e_'e_ J streaming. Behind the
_-_ shock VF _(Vsw + VA)
w implying pure convection

of 50 keV protons at that

ooooooloe_ 000
(Vsw+_) 4. Spatial Dependence of

< . In Figure 3 we show
values of < for ~ 50 keV

..... , ,I,,,,I,,,,I,,,,Ij !!
20%66 I '0',O'''i 020 OSO protons as a function of

T,me(UT) [hr re,n] distance from the shock,

NOVEMBER12,1978 where _ II is computed
using eq. (2). The un-
certainties shown come

primarily from inaccuracies in determining the local density gradients.

We note that there may be systematic errors (130%) in the values of K
resulting from using the simpler eq. (2) rather than eq. (I) which in-
corporates vector quantities. Consistent with expectations (7) we find
that _ increases exponentially from a value of ...7.1017 cm2/s near the
shock to ~2.5.10 18 cm2/s at ~ 4.5.10 10 cm from the shock with an e-

folding distance of 3.4.10 10 cm. What is surprising is the bubsequent
decrease (again exponential, with e-folding distance of ~i.i.i0 I0 cm) in
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Figure 2. Speed and 
direction of motion of 
the rest frame (solid 
symbols) and the solar 
wind plus Alfven speed 
(VSW + VA) ~ time be­
fore and immediately 
after shock passage. The 
difference between VF and 
(VSW + VA) is interpreted 
in terms of diffusive 
streaming. Behind the 
shock VF .:-(VSW + V A) 
implying pure convection 
of 50 keV protons at that 
speed. 

4. Spatial Dependence of 
~. In Figure 3 we show 
values of K" for ~ 50 keV 
protons as a function of 
distance from the shock, 
where K" is computed 
using eq. (2). The un-
certainties shown come 

primarily from inaccuracies in determining the local density gradients. 
We note that there may be systematic errors (~30%) in the values of K 
resulting from using the simpler eq. (2) rather than eq. (1) which 1n­
corporates vector quantities. Consistent with expectations (7) we find 
that K increases exponentially from a value of ~7 .10 17 cm 2/s near the 
shock to ~2.5'1018 cm 2/s at '" 4.5,10 10 cm from the shock with an e­
folding distance of 3.4.10 10 cm. What is surprising is the bubsequent 
decrease (again exponential, with e-folding distance of ~1.1·1010 cm) in 
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the value of _ with distance from the shock.

5. Discussion and Conclusions. The factor of ~ 4 increase in _ over a

distance of N 4.5.1610 cm is consistent wlth a comparable decrease in

the power spectral density of waves at 2.10-2 Hz (see Fig. 8 of ref. 7).

41o,e The value of 7.10 10 cm2/s of KII (50
.... i , _ keV) near the shock is in excellent

Kiifor ! 50keyPROTONS agreement wlth prediction (for this
shock) based on a self-consls tent

! theory for wave excitation and particle
Z
,,, acceleration upstream of interplanetaryt3-
,T shocks (7). Our values of _ and its
t,

w spatial dependence are also In quall-
o lO_eo tatlve agreement wlth those reported in
Z
_o (6,9). What is puzzling is the de-
o_

= crease of _ (50 keV) at larger1,

_- distances whlllch is not predicted byE3

current theory. To pursue thls point
4 I0 i7 .... 1 , , _ ,

5 IO further we computed _ (I00 keV) fol-
II

DISTANCEFROM SHOCK[xlO'°cm] lowing the procedure outlined above but
now using the 66 and 132 keV proton

Fl_ure 3. Spatial dependence counting rate data. We found that the

of _]fon upstream distance rest frame speeds VF characteristic of
from _he shock. NI00 keV protons are smaller than those

shown in Figure I for 50 keV protons.
Ratios of K100/K50 were determined to be --3.0, 1.2 and 1.8 near the
shock, at r = 4.10 10 cm and 8-10 10 cm respectively. Assuming a simple

power law dependence of _ on particle energy these values correspond to
K = E+1"6, E+0"26, E+0"85 respectively. We therefore conclude in agree-
ment with (9) that one cannot characterize the energy dependence (or the

spatial dependence) of _ in a simple way. Our results indicate an in-

crease in the wave power density beyond r ~ 5-10 10 cm and in general a

more effective scattering of 50 keV protons compared to I00 keV
protons. This hypothesis can be checked using local wave power spectrum
measurements as a function of distance from the November 12, 1978
interplanetary traveling shock.
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