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ABSTRACT
Weargue that FIP orderlng of elemental abundances ]n solar energetic
particles and in the corona can both be explained Coulomb effects.

1. Introduction. Solar energetic particles (SEP) and coronal gas have
anomalous abundances relative to the photosphere (i). The anomalies are
similar in both cases: this led Meyer (i) to conclude that SEPacceleratlon
is not selective, but merely preserves the source abundances (in the
corona). Here, we argue that SEP acceleration can be selectlve, because
identical selectivity operates to determine the--c-oronal abundances.

The abundance anomalies are ordered by first ionization potential
(FIP). Meyer (1) claims that this requires source temperatures of T=8000
K. However, we find that FIP ordering occurs even if T > I06K.

2. Coulomb effects in SEP. SEPpre-acceleration in magnetlc reconnection
(e.g. in a solar flare) favors ions with low Coulomb losses (2) (hereafter
ML). Pre-acceleration selects ions with charge Z < R AO.5. (A is atomic
weight, R is a critlcal number.) ML argued that in a hydrogen dominated
corona, where coronal nearing itself depends on reconnection, R should lie
close to the proton value, R=I.0. Then the pre-acceleration time scale t B
would be marginally shorter than the proton Coulomb loss time tp. W}th
R:I, pre-acceleration of (e.g.) iron ions w111 favor ions with Z_ 7. This
selection of certain (low) charge states gives rlse to abundance anomalies
in SEP (see (2)).

ML discussed two cases of reconnection in a coronal magnetic loop. Case
A had t B < t D only at the top of the loop; case B had t B < t R at all
points in the loop. Abundance anomalies in Case A were foun_ to be quite
large in somecases: to agree with observations, the anomalies would require
dilution with non-processed material. Meyer (i) criticizes Case A because
different flares would apparently require rather simllar dilution factors.
However,Case B yleldsanomalieswhich are much closerto the observed
values. Dilutionis irrelevantin Case B. In this paper,we referonly to
CaseB.

ML predictedthat Na/Si,Mg/Si,Ca/Fe,and Ni/Fe shouldbe less ]n
flaresthan in the photosphereby factorsof 2-3. Meyer (1)claimsthatSEP
data do not supportthese predictions.However,the observedratioshave a
largescatterin differentflares(seeFig. 3 in (1)). The scatteris such
that the lower limiton the aboveratioscan be smallerthanphotosphericby
factorsof 2-3 (as Case B predicts)except--f-orNa/Si. Thus,the Na/Si
ratiosmight presenta problemfor Case B: perhapsthe ionization
equilibri(2mofNa are incorrect.Apart fromNa, however,the data can be
reconciledwith Case B predictions,contraryto the claimin (1) tha-'t'-theML
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scenariodisagreeswith the data. (Meyer(1) did not discussCase B of ML).

As an indicationof how the HL scenariosucceeds,both qualitativelyand
quantitat]vely,in reproducingthe observedelementalanomallesin energetic
particles,we showCase B predictionsand data in Fig. 1, as a functionof
FIP. (Bothcases are normalizedto Si). Experimentalpointsin Fig. 1 are
takenmainlyfrom (1),but in the case of elementswhichhave not yet been
detectedin solarcosmicrays,we tookdata from (3) for the galacticcosmic
rays. (Elementalanomaliesare quitesimlar in solarand galacticcosmic
rays (1).) As regardsthe ML predictionsplottedin Fig. 1, we notethat no
speciflcvalueswere predlctedInCase B for H and He. The natureof the ML
scenarlo(marginalheatingof H) is suchthat the amountof hydrogen
selectedfor pre-accelerationdependsin detallon the extentto which the
marginIs exceeded This is not known:however,a firm predictionis that,
sinceH and He in the coronahave identicalvaluesof Z2/A,the abundances
of both H and He (whateverthey are)shouldbe identlcal.To showthis in
Fig. 1, we jointhe H and He predlctionsby a horizontaldashedline. The
vertlcalplaclngof this linecannotbe determinedat the presentlevelof
detail:we havechosento plot it so as to overlapwiththe errorbars of
the data for H and He.
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Fig. 1. Relative abundances of elements as a functlon of FIP.

The agreement between Case B predictions and data in Fig. i is quite
good. Thus, both show maxlmum values of the abundance anomalles (around
values of i) at low FIP (except for Na), and both show a pronounced "step"
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Flg. 1. Relative abundances of elements as a functlon of FIP. 

The agreement between Case B predictions and data in Fig. 1 is quite 
good. Thus, both show maX1mum values of the abundance anomalles (around 
values of 1) at low FIP (except for Na), and both show a pronounced "step" 



23g SH 2.1-10

down to lower values at about 10 volts. The lower abundances at large FIP
are down for both by factors of 3-10 relative to those at low FIP. The
"step" is well-deflned in the Case B predictlons: for the elements P, S, and
C, the FIP values differ by < 10%, but thelr abundances dlffer by factors of
- i000_. The H and He data can be reconciled wlth the predlctlon of equal
abundances: H need not be regarded as an exceptlon in the Case B scenarlo.
Note that the only fr---ee parameter in Case B is the loop thermal structure.

Slnce the ML predlctlons in Fig. 1 were obtained for coronal loops with
T ) I06K, an important concluslon from Fig. 1 Is that FIP orderlng of
elemental abundances does not requlre a chromospherlc phenomenon: it may
occur even in the corona.

We stress that the predicted anomalies in Fig. 1 arlse from a selectlon
of ions with Z2/A less than a critical ratio, viz. R:I.O. Abundance
anomalies similar to those shown in Fig. i are expected to occur in any loop
where ions with Z < A0-5 are preferentlally selected. This w111 be
important to keep in mind when we conslder the accumulatlon of minor ions in
the solar corona due to solar wlnd outflow.

3. Solar Wind: Minor lons. The solar wlnd consists malnly of protons, but
minor ions are dragged along by Coulomb effects if the proton flux is
sufficiently large. In order that ions of atomic welght A and charge Z be
dragged out of the sun, the proton flux must exceed the minlmum value

Fmin = 3.4 x 108 (T/106) 3/2 G(A,Z) cm-2s -1 (cgs). [i]

Coronal temperature T will be taken to be 106 K here. G Is a function of
A, Z, and T (see (4)): in the llmit of heavy ions, G ~ A/Z 2.

The actual solar wlnd flux is not inflnitely large: therefore, some ions
will not be dragged out by the protons, but will instead be left behind to
accumulate in the corona. Which ions are left behlnd? To answer thls, we
refer to the actual value of the solar wind flux. During the years
1962-1975, in low speed solar wind, the flux was 3.9xi0 _ cgs on average;
in high speed^wlnd, it was 2.7x108 cgs on average; in a long term average,
it was 3.8xi0 _ cgs (5). As mentloned in (5), these fluxes are uncertaln
by factors of order 30%, and there is a rather large spread in the fluxes:
the standard deviation in the long term average is 2.4x10 _ cgs (5). In a
sample of solar wind recorded near solar maximum (August 1978 to February
1980) by ISEE-3, we have examined a series of 2117 "snapshots" of the solar
wind, each lasting 3 seconds, wlth one "snapshot" ever_ 5-6 hours throughout
a 550-day interval. The mean flux we found was 3.2x10 _ cgs. Thls lles
withln the 30% uncertainty of the long term average in (5). It appears safe
to adopt a mean solar wind flux of (3-4)xi08 cgs.

The interesting aspect of these fluxes for our purposes can be seen from
eq. [i]. The mean flux apparently suffices to drag out only those _ops
which have G < (3-4)/3.4 : 0.9-1.2, i.e. ions wlth Z > (0.92-I.06)A u'°.
The remaining ions, those with Z_ (0.92-1.06)A 0-5, are left behind to
enrich the corona.

There is no a priori reason why the solar wlnd flux should have any
relationshlp whatever to the coefflcient in eq. [1]. Thus, the mean value
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of the upper limiton the ratioR = Z2/A of the ionswhlchwould enrich
the coronacouldbe arbitrary,in prlnciple. We draw attentionto the fact
that,in practlce,however,the upperlimiton R in the enrlchedcoronalgas
is equalto unity (wlthlnthe uncertaintiesof the solarwind
measurements).Thus, ionsof (e.g.)ironwith Z < 7 will accumulatein the
solarcorona.

4. Discussion.We havefound that Ionswhich are selectively
preacceleratedin SEP (i.e.thosewlth R < 1) are the sameas thosewhlch
enrichthe coronalgas becausethe averag_solarwind leavesthem behlnd.
Therefore,abundanceanomalieswhlch appearin SEP becauseof the Coulomb
selectivityare alsoexpectedto appearin the coronalgas. Thus, the
predictionsin Fig. 1 shouldalsobe relevantfor abundancesin the coronal
gas,providedthermalstructuresare not too different. (NotethatCase B
predictions,which appearin Fig. 1, are insensitiveto sourcetemperature,
as longas T ) 106 K; see Fig.8 of (2). Hence,dlfferencesin
temperaturebetweena solarflare slteand the sourcereglonof the solar
wlnd w111 not affectthe predlctlonsin Fig. i, sincebothtemperaturesin
all likelihoodare _ I06K.) We suggestthatcoronalabundancesare
anomalousrelativeto the photospherebecauseof Coulomblossesin the solar
wind,while SEP anomaliesare due to Coulomblossesat a flareslte. Hence,
SEP accelerationcan be selective:but slnce it enhancesthe selectionwhich
has alreadyoccur_ in the corona,the anomaliesappearslmllar. Different
classesof Fe-richnessin SEP may reflectsituationsin the sun where SEP
selectivityand/orsolarwlnd selectlvltyhave operatedand reinforcedeach
other to varyingextents.

The enrichmentof the solarcoronawill not proceedindefinltely:at
t_mes,the solarwind fluxbeqbmesconsiderablylargerthan average. Thus,
in the data set discussedin _5),the 5-95% range limlton the solarwind
flux Is (1.5-7.8)x 108 cgs./In 550 daysof ISEE-3data,we found9
samples(outof 2117)withfl/uxesof (9.0-9.9)x 108 cgs.each separated
by an averageintervalof about60 days. At such times,the accumulated
enrichmentof 60 days is fl_hed out, suchthatonly ionswith verysmallZ
are leftbehind(Z< (0.5-0_6)A0.5).But on the average,enrlchmentsof
coronalgas will buildup w4th abundanceanomaliesas shownin Fig. 1.

5. Conclusions.Elementalabundancesare observedto be anomalous(relative
to the photosphere)in bothSEP and In coronalgas. Herewe proposethat
Coulombeffectscan explainboth setsof anomalles.The Coulombloss
scenariomakes predictionsof elementalanomaliesas a functionof FIP and
these predlctlonsagreewell bothqualitativelyand quantitatlvelywith the
observeddatafor energeticparticles(seeFig. 1). FIP orderingis not a
slgn thatthe sourcematerialIs at T=8000K: we findthat the source
materlalcan haveT _ 106K,and stillpreserveFIP ordering.
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