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ABSTRACT

Shortly after a strongly anisotropic beam of charged
particles is injected along a guiding magnetic field on which
is superimposed a small random component, the particle
density can be represented by a Gaussian profile whose center
moves with the coherent velocity V, and whose width increases
with time at a rate controlled by the coefficient of
dispersion Dy. Both parameters depend upon the mean free
path X, which characterizes scattering by the random fields,
and the focusing length L, which characterizes spatial
variations of the guiding field. These dependences are known
explicitly for Vi, Yormulae for Dy are available only in the
limits of very weak and very strong focusing. This paper
presents a new expression for D%’ which spans this gap.

l. Introduction. The equation which describes particle transport
along a guiding field under the combined influences of scattering
by magnetic turbulence and focusing by spatial inhomogenieties of
the guiding field is
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where f is particle density in phase space, z is distance along
the guiding field, u is the pitch-angle cosine and V is particle
velocity. If the coefficient of pitch-angle scattering is given

by the standard form
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where q is an index that measures the anisotropy of scattering,
then the odd function G is given by
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where L 1s the focusing length and B is the guiding field.
Throughout this paper both A and L will be assumed to be constant.

Even with these assumptions, it is not possible to solve
the transport equation in closed form. However, there are
approximations that provide considerable insight into phenomena,
such as those outlined in the abstract, that do not fit into the
familiar picture of purely diffusive transport. A first-order
analysis (Earl, 1981; Kunstmann, 1979) 1leads to simplified
transport equations which describe coherent propagation in terms
of 1infinitely narrow pulses, but which do not include the
dispersive spreading of these disturbances. This paper presents a
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second-order analysis which includes this effect.

In the context of new possibilities for numerical solutions
opened up by advances in computer technology, the phenomenon of
dispersion takes on special significance, for there 1is an
artifact, which I call '"numerical dispersion"”, and which can
obscure the physical effect. (See Paper SH 4.1-4) Numerical
dispersion is an artifact of the Boltzmann operator that appears
on the left hand side of equation (l1). Consequently, it is not
affected by focusing. To avoid inaccuracies, it is necessary to
specify sufficiently fine spatial resolution in the numerical
implementation so that the numerical dispersion coefficient is
much smaller than the physical one. This paper provides the
quantitative knowledge of Dy needed to make this specification.

2. The Coefficient of Dispersion. The second approximation to
the distribution function takes a form

G 3F G 3
£ = Epflz,t} + BeCH, {z,t) + Wy} 3. - Be W{—u}-ggé, (4)

¢
in which the first two terms represent supercoherent and
pseudodiffusive components that appeared in the first-order
approximation and the second two are anisotropic components that
are proportional to the spatial gradients of Fp and Hg. Both of
these additions involve the same function W{u}, but the sign of
its argument is different in the two new terms. This relationship
reflects a fundamental symmetry of focused transport that I call
the ‘'principle of complementarity". When equation (4) is
substituted in the transport equation, and when the first-order
transport equations are satisfied, the following equation for W is
obtained:
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is a normalization constant that goes from K = 1 in the limit of
weak focusing (AL << 1) to K = « in the limit of strong focusing,
and
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is a characteristic velocity that I call the pseudodiffusive
velocity. Note that this is not the coherent velocity Vi, which
is given by
v,K
Ve =77 - (8)
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Although the presence of the term in W{-u} complicates
equation (5), it can be solved for W with the aid of the method of
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eigenfunctions. 1In fact, because this term 1s relatively small, W
can be evaluated fairly accurately by a simple double integration.

When the additional terms in f are taken into account, the
second-order transport equations take the forms
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in which the left hand sides reproduce the first-order transport
equations and the right hand sides are second-order terms. Here,
the coefficient of dispersion, given by
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determines the size of the new terms, which involve the second
spatial derivatives of the supercoherent and pseudodiffusive
components., They describe the dispersive aspect_ of coherent
propagation, in which the delta function pulses of the first—order
description are more accurately described as Gaussian disturbances
whose centers move with the coherent velocity V, while their
widths increase with time at a rate controlled by the coefficient
D .
*
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this approximation is adequate. In contrast, the dotted curve, which
gives a result obtained by Kunstmann (1979) and by Bieber (1977%
deviates by a factor of ~20 at small values of (AML). These results
grew out of an analysis which describes correctly the strong focusing
regime, but which does not take into account the coupling between
components embodied in equations (9) and (10). Unless focusing is very
strong, this neglect leads to a large overestimate of the dispersive
effect.

3. Summary. The coefficient of dispersion given by equation (11) is a
basic parameter needed to implement numerical solutions of the transport
equation. In this context, where great accuracy is not required, the
limitations of the present analysis to constant A and L are not
important.
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