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THE DISPERSIVE EVOLUTION OF CHARGED-PARTICLE BUNCHES
IN RANDOM MAGNETIC FIELDS

J.A. Earl

Dept. of Physics & Astronomy, Unlv. of MD, College Park, MD 20742

ABSTRACT

Shortly after a strongly anlsotropic beam of charged

particles is injected along a guiding magnetic field on which
is superimposed a small random component, the particle

density can be represented by a Gaussian profile whose center
moves with the coherent velocity V, and whose width increases
with time at a rate controlled by the coefficient of

dispersion D,. Both parameters depend upon the mean free
path I, which characterizes scattering by the random fields,

and the focusing length L, which characterizes spatial
variations of the guiding field. These dependences are known
explicltly for V,. _ormulae for D, are available only in the
limits of very weak and very strong focusing. This paper

presents a new expression for D_, whlch spans thls gap.

i. Introduction. The equation which describes particle transport

along a guiding field under the comblned influences of scatterlng

by magnetic turbulence and focusing by spatial inhomogenieties of
the guiding field is

_f _f i G _ -G _f

_-_+ _V_ = _ e -_e -_, (I)

where f is particle density in phase space, z is distance along
the guiding field, _ is the pitch-angle cosine and V is particle
velocity. If the coefficient of pitch-angle scattering is given

by the standard form

• 3(V/X) (i_ 2)l_lq-I
= (2-q)(4-q) ' (2)

where q is an index that measures the anisotropy of scattering,
then the odd function G is given by

G{z,_} = V _B _ i-} (4-q) 1
B _z _ +_7_} dv = 3 L _l_ll-q, (3)

where L is the focusing length and B is the guiding field.
Throughout this paper both I and L will be assumed to be constant.

Even with these assumptions, it is not posslble to solve
the transport equation in closed form. However, there are

approximations that provide considerable insight into phenomena,
such as those outlined in the abstract, that do not fit into the
familiar picture of purely diffuslve transport. A first-order

analysis (Earl, 1981; Kunstmann, 1979) leads to simplified
transport equations which describe coherent propagation in terms
of infinitely narrow pulses, but which do not include the

dispersive spreading of these disturbances. This paper presents a
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2 
G{ } V ClB r ]..II-v d (4-q) A Il l - q (3) 
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second-order analysis which includes this effect.

In the context of new possibilities for numerical solutions

opened up by advances in computer technology, the phenomenon of
dispersion takes on special slgniflcance, for there is an

artifact, which I call "numerical dispersion", and which can
obscure the physical effect. (See Paper SH 4.1-4) Numerical
dispersion is an artifact of the Boltzmann operator that appears

on the left hand side of equation (I). Consequently, it is not

affected by focusing. To avoid inaccuracies, it is necessary to
specify sufflaiently fine spatial resolution in the numerical

implementation so that the numerical dispersion coefficient is
much smaller than the physlcal one. This paper provides the

quantitative knowledge of D, needed to make this specification.

2. The Coefficient of Dispersion. The second approxlmation to
the distribution function takes a form

BeGH_ _F_ _ BeGw{__} _Hf = F_{z,t} + {z,t} + W{_} _z _z#, (4)

in which the first two terms represent supercoherent and
pseudodiffuslve components that appeared in the first-order
approximation and the second two are anisotropic components that

are proportional to the spatlal gradients of F_ and H_. Both of
these additions involve the same function W{_}, but the sign of
its argument is different in the two new terms. This relationship

reflects a fundamental symmetry of focused transport that I call
the "principle of complementarity". When equation (4) is
substituted in the transport equation, and when the first-order

transport equations are satisfied, the following equation for W is
obtained:

i _ e-G _W{_} V#K V_K -G V#K---- W_-U} = _uV + --) e , (5)
2 _ _ L(K2_I) (K2_I) (K2_I)

where

i r +leG d_, (6)
K =_ -i

is a normalization constant that goes from K = 1 in the limit of

weak focusing (I/L << i) to K = _ in the limit of strong focusing,
and

V 1+1 Gv# =ii (7)

is a characteristic velocity that I call the pseudodiffuslve

velocity. Note that this is not the coherent velocity V,, which
is given by

V#K

V, (K2_I)I/2 • (8)
Although the presence of the term in W{-B} complicates

equation (5), it can be solved for W with the aid of the method of
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eigenfunctions. In fact, because this term is relatively small, W
can be evaluated fairly accurately by a slmple double integratlon.

When the additional terms in f are taken into account, the
second-order transport equatlons take the forms

_F_ _ B _H§ _2F_

_--_---V# _+ K _ - D, (9)
_z2 '

and

_I_ _H_ 1 _FT _21_

_--_--+V# _+ B-K_t-- = D, -- (i0)
_z2 '

in which the left hand sides reproduce the first-order transport

equations and the right hand sides are second-order terms• Here,
the coefficient of dispersion, given by

1 +i V#K 2 V#K
--- _i d_ ((_V +-- -G _ __) W{_}, (Ii)

D, = 2K K2-I) e K2-I

determines the size of the new terms, which involve the second

spatial derlvatives of the supercoherent and pseudodlffuslve
components. They describe the dispersive aspect_ of coherent
propagation, in which the delta function pulses of the first-order
description are more accurately described as Gaussian disturbances

whose centers move with the coherent veloclty V, while thelr
widths increase with time at a rate controlled by the coefficlent
D •

In the I.O .......... ..•..._
• I I|_ I I I I I II

figure, separate

curves show how D, "'" q =1.5
depends upon (I/L) D# "'..
when the function -- t
W{_} is evaluated D
in three different

ways. The dashed

curve gives the O.I
exact result, in
which the term in

W{-_} is retained ---.... __..____
in equation (5). _ "_
The solid curve

gives a much simp-
ler result obtain-

ed from an approx-
imate evaluation O.O1-
in which this term

is ignored. For
most applications,
in which its _20% .00_I , , , i ,,,,I i , , , , l,,
deviation from the O.I ;.0 I0.0

exact result is _/
not important,
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this approximation is adequate. In contrast, the dotted curve, which
gives a result obtalned by Kunstmann (1979) and by Bieber (1977_
deviates by a factor of ~20 at small values of (%/L). These results

grew out of an analysis which describes correctly the strong focuslng
regime, but which does not take into account the coupling between
components embodied in equations (9) and (i0). Unless focusing is very

strong, this neglect leads to a large overestimate of the dispersive
effect.

3. Summary. The coefficlent of dispersion given by equatlon (ii) is a

basic parameter needed to implement numerical solutions of the transport
equation. In this context, where great accuracy is not required, the
limitations of the present analysis to constant % and L are not
important.
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